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Abstract: Over the last century, direct human modification has been a major driver of coastal wetland
degradation, resulting in widespread losses of wetland vegetation and a transition to open water.
High-resolution satellite imagery is widely available for monitoring changes in present-day wetlands;
however, understanding the rates of wetland vegetation loss over the last century depends on
the use of historical panchromatic aerial photographs. In this study, we compared manual image
thresholding and an automated machine learning (ML) method in detecting wetland vegetation
and open water from historical panchromatic photographs in the Florida Everglades, a subtropical
wetland landscape. We compared the same classes delineated in the historical photographs to 2012
multispectral satellite imagery and assessed the accuracy of detecting vegetation loss over a 72 year
timescale (1940 to 2012) for a range of minimum mapping units (MMUs). Overall, classification
accuracies were >95% across the historical photographs and satellite imagery, regardless of the
classification method and MMUs. We detected a 2.3–2.7 ha increase in open water pixels across all
change maps (overall accuracies > 95%). Our analysis demonstrated that ML classification methods
can be used to delineate wetland vegetation from open water in low-quality, panchromatic aerial
photographs and that a combination of images with different resolutions is compatible with change
detection. The study also highlights how evaluating a range of MMUs can identify the effect of scale
on detection accuracy and change class estimates as well as in determining the most relevant scale of
analysis for the process of interest.

Keywords: change detection; historical photograph; supervised classification; land cover; coastal
wetlands; Florida Coastal Everglades

1. Introduction
Coastal wetlands around the world are an economically and ecologically important

ecosystem type [1–3]. While only occupying ~15% of global natural wetland area, the
ecosystem services provided by coastal wetlands are estimated to have a global monetary
value of 20.4 trillion USD/per year [4]. However, coastal wetlands have experienced
disproportionately large amounts of degradation, primarily as a result of human-driven
land-use change [5,6]. As human activities continue to drive land-use change in coastal
wetlands, a key concern is how coastal wetlands will cope with the coupled effect of human
activities and 21st century climate change [6].

Climate-change-related drivers of land-cover change in coastal wetlands can broadly
be attributed to changes in temperature, precipitation [7–9], and sea-level rise (SLR), with
SLR including salinization and increases in inundation [6,10,11]. The impacts of SLR alone
present major challenges for coastal wetlands and have the potential to drive significant
changes in coastal wetlands due to the disruption of ecogeomorphic feedback loops [11–13].
When ecogeomorphic feedback loops are disrupted because of hydrological shifts imposed
by SLR, plant growth may slow down and decrease the stability of the wetland system,
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leading to a rapid collapse of plant communities [14–17]. Collapse of plant communities
has been well studied in subtropical wetland landscapes, such as the Florida Everglades,
and is a key concern of restoration efforts [16,18–20].

Quantifying the conversion of vegetated wetlands to open water is crucial for un-
derstanding and estimating the rate and extent of vegetation loss across coastal wet-
lands [21–23]. Remote sensing offers low-cost methods for monitoring landscape changes
across broad spatial and temporal scales, relative to resource-intensive, field-based meth-
ods [22,23]. Advances in satellite technology have increased the spatial, temporal, spectral,
and radiometric resolution of satellite imagery, which allows for more detailed detection
of land-cover changes at very fine scales [23]. This aspect is particularly important for
capturing the process of vegetation loss, as the transition of vegetated wetlands to open
water occurs at a fine scale and requires a high resolution for early detection.

The advantages of using remote sensing methods to classify and monitor coastal
wetlands has long been recognized, with numerous reviews detailing advances in the
different aspects of remote sensing applications [21–28]. Initially, reviews focused on the
types of sensors available for remote sensing applications in wetlands and their utility
in estimating biophysical parameters, such as vegetative biomass, with some discussion
of specific classification methods [21,22,24]. By now, a wide range of classification meth-
ods exist, with numerous machine learning algorithms having been used for supervised
classification of wetland vegetation [28]. Some of the more popular algorithms used for
supervised classifications include K-nearest neighbor, maximum likelihood, support vector
machines, and random forest [28]. While no single algorithm has been identified as the
most optimal for all remote sensing applications, the random forest algorithm has been
shown to have a high degree of prediction accuracy when applied to spectral data [29]. The
random forest algorithm is a classification tree method that creates an ensemble of trees
and combines predictions from each tree to arrive at a single decision tree [30], and it has
been used in multiple wetland monitoring studies [28,31–34].

When very high-resolution, modern-day satellite imagery is paired with historical
aerial photography, robust analyses of landscape change across long temporal extents can
be obtained [22]. Aerial photographs are a valuable tool for assessing land-cover change
over time as they pre-date the satellite era (starting in the 1970s) by decades, enabling
insight into historic changes in land cover [35]. However, there are numerous challenges
involved in the classification of historical photographs, as they are often low-resolution,
panchromatic data with limited spectral information and have degraded image quality due
to the presence of artifacts in the digitization process that can increase spectral noise [35].
Additionally, historical photographs often lack field reference data from the time of photo
acquisition, which limits their use to the differentiation of coarse land-cover classes that
can clearly be distinguished. Nonetheless, photographic interpreters can utilize the pattern,
texture, shape, size, and color or tone of features, along with experience and knowledge of
the region of interest to accurately classify land-cover types [35].

Given the well-documented degradation of wetland ecosystems during the 20th
century, the classification of historical photographs and their use in detecting land-cover
changes present an opportunity to quantify losses in wetland vegetation across broad spatial
and temporal extents. Early uses of historical aerial photographs for change detection in
wetlands focused on assessing increases in open water areal extents [36–38]. These studies
used differing methods to document transitions from vegetated wetland to open water
such as histogram thresholding [22] and manual delineation of wetland boundaries using
stereoscopes and planimeters [37,38]. While rudimentary, these early studies recognized the
distinct spectral differences between open water and the surrounding vegetation, allowing
these two land-cover types to be delineated using image processing techniques [36].

More recently, studies have used a mix of manual delineation, image segmentation,
and hierarchical classification to classify historical wetland landscapes [15,39–41]. These
studies report highly accurate historical wetland classifications (i.e., >90% overall accura-
cies), yet they use different methods for quantifying the accuracy and provide no discussion
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on why they selected their minimum mapping unit (MMU) or on how the selected MMU
affected the detection accuracy. The MMU is defined as “the smallest size area entity to be
mapped as a discrete area” [42]. The selection of the MMU affects not only the detection
accuracy but also the degree of information loss, as the MMU increases because smaller
objects are removed [43,44]. Selecting the MMU size depends on the original image resolu-
tion, the characteristics of the landscape (i.e., composition and configuration), and the size
of the smallest, discrete feature of interest to be retained [43–45].

Proper selection of an MMU can aid in the accurate detection of open water embedded
within a vegetated wetland matrix from panchromatic photography by reducing false
positives. False positives can arise due to the variability in brightness values of open water
pixels in panchromatic photographs. This variability can be due to (1) mixed pixels, where
a pixel may contain a proportion of vegetation and open water, which obscures the open
water signal; (2) solar glint reflecting off the water’s surface and increasing the brightness
values in the photographs; (3) bright spectral noise introduced during the process of
scanning the photograph to convert analog data to digital data; (4) misinterpreting dark
shadows as water.

Our objectives were three-fold: (1) detect and quantify the transition of vegetated wet-
land to open water in a coastal wetland landscape over a 72-year period using digital image
processing techniques; (2) estimate the accuracy differences for the detection methods when
classifying historical panchromatic photographs; (3) determine how the MMU affects the
accuracy of open water pond detection in a coastal wetland landscape. To accomplish this,
we detected the extent of open water ponds embedded in a coastal graminoid-dominated
marsh from very high-resolution 2012 multispectral satellite data. We then assessed how
accurately we could detect open water ponds in a historical, panchromatic photograph
from 1940, by comparing two classification methods: (1) manual image thresholding and
(2) automated classification using the random forest algorithm. We varied the MMU of
the 1940 and the 2012 wetland vegetation maps to identify how it affected the accuracy
and precision of detecting vegetation transitioning to open water ponds. We evaluated the
extent of vegetation to open water transitions across a 72-year period and then quantified
the classification accuracy of the 1940 and 2012 wetland classifications and change maps,
using a spatially explicit, design-based accuracy assessment (Figure 1). Our goal was to
refine methods for combining aerial photographs and multispectral satellite images to
assess coastal wetland degradation across multidecadal timescales.
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2. Methods
2.1. Study Area

The Florida Everglades, a World Heritage Site, International Biosphere Reserve, and
Wetland of International Importance, comprise hundreds of thousands of hectares of marsh,
mangrove, and estuarine open water habitat [46]. The southernmost region is home to the
Everglades National Park (ENP), where paleoecological studies indicate that some locations
are as old as 5700 cal years BP [47] and have seen considerable coastal transgression and
regression, indicating the dynamic nature of this coastal environment [48–52]. Since the late
19th century, anthropogenic activities have driven a decrease in hydrologic connectivity
between the northern Everglades and the coastal regions [53–55], altering the abiotic
conditions necessary for peatland maintenance and growth, leading to a 50% reduction in
peat horizontal and vertical extents [55–57].

For this analysis, we focused on a 1.1 ⇥ 0.66 km area of coastal marsh along the
southwest coast of the ENP for detecting transitions from coastal graminoid marsh to open
water pond (Figure 2). The study area was located ~10 km upstream of the Gulf of Mexico,
on the south side of the Harney River, a major estuarine channel in ENP (Figure 2). The
study area is dominated by two emergent, graminoid marsh species: Cladium jamaicense
and Juncus romerianus (Figure 3A). Vegetative cover of these graminoids can range from
high density (100% cover; Figure 3A) to low density (<25% cover; Figure 3B). Interspersed
within the graminoid marsh matrix are permanently flooded, unvegetated open water
ponds of varying size (Figure 3C) and dense clusters of trees, known as “tree islands”,
dominated by mangrove and subtropical broad-leaved species (Figure 3A, background).
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Figure 2. Overview of study area indicating the location of (A) the study area (black star) within
the state of Florida (grey) in the United States; (B) the study area (white rectangle) and its position
relative to the southwest coast of Florida with the distance (~10 km) to the Gulf of Mexico indicated;
(C) the spatial extent (white box) of the study area. The aerial photography used an ArcGIS Pro (v.5.6)
imagery base map obtained on 29 January 2021.
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Figure 3. Photos from a graminoid dominated marsh in the coastal Everglades showing the major
wetland types mapped in this study; (A) high-density, graminoid marsh dominated by Cladium
jamaicense with a tree island dominated by mangrove spp. in the background; (B) low-density
graminoid marsh interspersed with open water; (C) an unvegetated open water pond bordered by
Cladium jamaicense and the scrub Rhizophora mangle.

2.2. Image Selection, Specifications, and Preprocessing
Historical wetland vegetation was mapped from a digitized March 1940 panchromatic

aerial photograph. The panchromatic photograph was publicly available and stored in a
digital image repository maintained by the United States Geological Survey for the Greater
Everglades Ecosystem [58]. The digital copy of the photograph was an 8-bit grayscale
panchromatic image, georeferenced to UTM NAD83 zone 17 with a 1 m grid spacing
(Foster 2004). Using the crop function in the R package raster [59], we clipped the photograph
to a study area with a maximum east–west extent of 0.66 km and a maximum north–south
extent of 1.1 km (Figure 2C). To align the grid spacing of the historical aerial photograph
with the high-resolution satellite image, we used bilinear resampling to resample the aerial
photograph to the same 2 m grid as the satellite image.

Contemporary vegetation cover was mapped from one, cloud-free, 8-band WorldView-2
(WV-2) satellite image (Digital Globe, Inc., Westminster, CO, USA) obtained on 3 November
2012, which covered the area of the historical photograph. The 2012 WV-2 image was
a 16-bit image. The image was geometrically corrected and projected to UTM NAD 83
zone 17 with a 2 m grid spacing using the Rigorous Orthorectification tool in ENVI (v.5.6).
Radiometric and atmospheric corrections were also accomplished in ENVI using the ra-
diometric calibration tool to convert digital numbers to radiance. The radiance image
was then atmospherically corrected using the Fast Line-of-Sight Atmospheric Analysis
of Hypercubes (FLAASH) atmospheric correction module with a mid-latitude summer
atmospheric model and maritime aerosol model. A scale factor of 1.0 was set for the bands.
Visibility was set at 100 km. The output scale was 10,000 to represent percent reflectance
values with 2 decimal precision as integers. Following corrections, the image was clipped to
the extent of the study area (Figure 2C) using the crop function in the R package raster [59].

2.3. Wetland Classification
2.3.1. Classification Scheme

Vegetated wetland generally reflects greater magnitudes of electromagnetic radia-
tion relative to open water bodies, which absorb the majority of incoming solar radia-
tion [36]. This strong spectral separation was observed in both the panchromatic photo-
graph (Figure 4A,C) and the satellite image (Figure 4B,D).

Since the focus of our study was assessing the transition of vegetated wetland to open
water, and open water to vegetated wetland, we mapped 1940 and 2012 wetland cover
using a binary classification scheme of (1) vegetated wetland and (2) open water. For the
2012 classification, when the reference aerial photography indicated a mixed pixel (see
Figure 3B, for example), we assigned a class label of vegetated wetland when the vegetated
cover was >50% within the pixel.
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imagery bands.

2.3.2. 1940 Manual Threshold Classification
For the manual threshold classification, visual interpretation of spectral values in the

historical photograph determined the threshold value that separated open water from
vegetated wetland (Figure 4A,C). Water had very low brightness values relative to the
surrounding vegetated wetland, with panchromatic spectral brightness values ranging
from 17 to 30 and wetland vegetation > 31 (Figure 4C). Pixels above this brightness value
were classified as “vegetated” and below this brightness value as “water”.

2.3.3. 1940 and 2012 Automated Machine Learning Classification
For the automated ML classification of the 1940 panchromatic photograph and the

2012 satellite image, we used the random forest algorithm with 5-fold cross-validation
using the R package caret [60].

For both the 1940 and 2012 random forest classification, we developed training datasets
to cover the range of brightness values for each class using on-screen point digitization with
samples labeled in ArcGIS Pro (v2.8.0). Characteristics, such as brightness, color, texture,
pattern, and context, were used to identify and label samples as either vegetation or open
water. For classifying open water in the 1940 photograph, we focused on placing training
points within identifiable, discrete open water ponds.

The training datasets totaled 5362 points for the 1940 panchromatic photograph and
5606 points for the 2012 satellite image. The 1940 training dataset had 3082 samples for
vegetated wetland and 2280 open water samples, while the 2012 training dataset consisted
of 3582 vegetated wetland samples and 2024 open water samples.

For the 1940 training points, brightness values were extracted from the panchromatic
photograph. For the 2012 training points, spectral reflectance values of the eight spectral
bands and seven vegetation indices were extracted from the satellite image (Table 1). A
random forest algorithm was then trained using each dataset. Training datasets were
developed using an iterative process where we began with an initial sample of training
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points, then added points to locations that were incorrectly classified by the random forest
algorithm until the addition of new points did not improve the model’s accuracy.

Table 1. WorldView-2 bands and vegetation indices used in the 2012 wetland classification.
NIR = near-infrared; RE = red edge.

Band/Vegetation Index Equation Reference

Red, Blue, Green, Coastal, Red,
NIR1, NRI2, RE None N/A

Simple Ratio (SR) Red/NIR1 [61]

Normalized Difference
Vegetation Index (NDVI) (NIR1 � Red)/(NIR1 + Red) [62]

Normalized Difference Red-Edge
Index (NDRE) (NIR1 � RE)/(NIR1 + RE) [63]

Normalized Difference Water
Index (NDWI) (Green-NIR2)/(Green + NIR2) [64]

Green Normalized Difference
Vegetation Index (GNDVI) (NIR1-Green)/(NIR1 + Green) [65]

Soil Adjusted Vegetation
Index (SAVI) 1.5 ⇥ ((NIR1 � Red)/(NIR1 + Red + 0.5)) [66]

Enhanced Vegetation Index (EVI) 2.5 ⇥ ((NIR1 � Red)/(NIR1 + 2.4 ⇥ Red + 1)) [67]

2.4. Morphological Filtering and Minimum Mapping Unit
Following image classification, we applied a morphological filter to remove vegetation

and open water patches smaller than three specified MMUs: 12 m2 (3 pixels), 24 m2

(6 pixels), and 36 m2 (9 pixels). Mathematical morphological frameworks have been used
by image analysts for decades as a tool to reduce error rates through an iterative process
of dilation (opening) and erosion (closing) operations to remove noisy pixels based on a
specified window [68–70]. The morphological filter iteratively filled in patches smaller than
the MMU from the edges of the patches to the center, replacing values of those patches with
the majority rule applied to a user-defined 3 ⇥ 3 kernel size. The morphological filtering
algorithm was scripted in R [71]. For the 1940 wetland classification, this resulted in six
maps (two classification methods times three MMUs) and for the 2012 wetland classification
in three maps (one classification method times three MMUs). We selected the range of
MMUs to use 12 m2 as the smallest MMU to filter single- and two-pixel noise that often
occurs due to the vegetation’s shadows. The largest MMU we evaluated was 36 m2, beyond
which the loss of open water ponds was considered unacceptable.

Following morphological filtering, we converted each raster-based map to polygons
in ArcGIS Pro (v2.8.0) using the Raster to Polygon tool. We then calculated the total count
and area of open water ponds to assess how the MMU affected the total number of detected
ponds and their size distributions.

2.5. Vegetation Change Detection
To quantify vegetation transitions, we overlaid the filtered wetland maps from 1940

and 2012 and assigned class-change labels to each pixel. The resulting classification had
three classes: (1) no change, (2) vegetated wetland to open water, and (3) open water to
vegetated wetland. We scripted change detection using R statistical software [71] and
assessed per-pixel changes in wetland cover between 1940 and 2012 for each 1940 detection
method (n = 2) and each MMU (n = 3), for a total of six change maps.

2.6. Design-Based Accuracy Assessments of 1940 and 2012 Wetland Classifications and Change Maps
We conducted a post-classification design-based accuracy assessment with a stratified

random sample design to assess the accuracy of the 1940 and 2012 maps and each change
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map. For each accuracy assessment, the spatial assessment unit was the pixel, and agree-
ment was defined as the predicted map label being the same as the reference label. We
estimated the sample size needed for each map based on a multinomial distribution with
a desired level of confidence of 95% and a precision of 3% [72]. For vegetation maps the
number of samples was calculated for the vegetated wetland and open water classes. For
the change maps, we sampled the three change classes of no change, vegetated to water,
and water to vegetated.

For all accuracy assessments, we sampled a set of reference points for each map
(Tables S1 and S2) using the Strata function in the R package sampling [73]. Samples were
visually evaluated and labeled using ArcGIS Pro (v.2.8.0) using the corresponding aerial
photograph for each map. Reference points were used to compute an area-based error ma-
trix with adjusted area, adjusted user’s accuracy, producer’s accuracy, and overall accuracy.
We estimated the upper and lower bounds for each accuracy metric with 95% confidence
intervals using error matrix reference samples and map ratios [74]. The equations we used
for all accuracy estimates can be found in [74].

3. Results
3.1. 1940 Wetland Classification

Across both the thresholding and random forest classifications of the 1940 historical
photograph, the overall accuracy and user’s accuracy were consistently above 95%, ranging
from 96.2 ± 4.8% to 99.8 ± 0.1%, with the MMU only showing a marginal effect on accuracy
(Table 2; Figure 5A). For the open water class, the only statistically lower user’s accuracy
was observed for the random forest classification at an MMU of 24 m2 (Table 2). The
producer’s accuracy was consistently above 99% for both classes, except for the threshold
classification at an MMU of 24 m2, which showed a decrease of 50.1 ± 49.2%. The high
confidence interval for that accuracy, however, suggests that the estimated accuracy is
highly uncertain. The random forest classifier predicted ~50% more open water than the
threshold classifier, ranging from 1.9 to 2.2 ha for the random forest classification and from
1.4 to 1.5 ha for the threshold classification.

Table 2. Area-adjusted accuracy estimates (percent ± 95% confidence interval) as well as the total
mapped area for wetland classifications for the 1940 panchromatic photograph and 2012 satellite
image. Estimates are presented for each 1940 classification method, the 2012 classification, and each
minimum mapping unit (MMU). Thres = threshold classifications; rF = random forest classification.

Year and
Method MMU (m2) Class

Mapped
Area
(ha)

Adjusted
Area
(ha)

Adjusted
Producer’s
Accuracy

Adjusted
User’s

Accuracy

Overall
Accuracy

1940 Thres

12
Vegetated 70.4 70.6 ± 0.1 99.8 ± 0.1 100 ± 0.0

99.8 ± 0.1
Open water 1.5 1.4 ± 0.1 100 ± 0.0 91.5 ± 7.2

24
Vegetated 70.5 69.4 ± 2.5 99.7 ± 0.2 96.4 ± 4.9

96.2 ± 4.8
Open water 1.5 2.6 ± 2.5 50.1 ± 49.2 87.5 ± 8.7

36
Vegetated 70.6 70.7 ± 0.1 99.8 ± 0.2 100 ± 0.0

98.8 ± 0.1
Open water 1.4 1.3 ± 0.1 100 ± 0.0 90.6 ± 0.4

1940 rF

12
Vegetated 69.8 70.2 ± 0.1 99.7 ± 0.2 100 ± 0.0

99.7 ± 0.1
Open water 2.2 1.8 ± 0.1 100 ± 0.0 90.4 ± 6.8

24
Vegetated 69.9 70.2 ± 0.2 99.5 ± 0.2 100 ± 0.0

99.5 ± 0.2
Open water 2.0 1.7 ± 0.2 100 ± 0.0 83.1 ± 8.4

36
Vegetated 70.0 70.2 ± 0.1 99.7 ± 0.2 100 ± 0.0

99.5 ± 0.2
Open water 1.9 1.8 ± 0.1 100 ± 0.0 90.4 ± 6.8
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Table 2. Cont.

Year and
Method MMU (m2) Class

Mapped
Area
(ha)

Adjusted
Area
(ha)

Adjusted
Producer’s
Accuracy

Adjusted
User’s

Accuracy

Overall
Accuracy

2012 rF

12
Vegetated 68.5 68.1 ± 1.1 99.8 ± 0.1 99.2 ± 1.5

99.1 ± 1.5
Open water 3.5 3.9 ± 1.1 86.3 ± 23.2 96.8 ± 3.0

24
Vegetated 68.6 67.1 ± 1.8 99.8 ± 0.1 97.6 ± 2.7

97.6 ± 2.6
Open water 3.4 4.9 ± 1.8 66.5 ± 25.0 96.8 ± 3.1

36
Vegetated 68.7 68.1 ± 1.1 99.9 ± 0.1 99.1 ± 1.6

99.2 ± 1.5
Open water 3.3 3.8 ± 1.1 85.1 ± 12.6 99.9 ± 1.6
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3.2. 2012 Wetland Classification
For the 2012 random forest wetland land-cover classification, we obtained an overall

accuracy and user’s accuracy above 96% across all MMU’s (Table 2; Figure 5B). The user’s
accuracy for the vegetated wetland and open water classes were similar across classified
wetland maps (Table 2). For the open water class, the producer’s accuracy was low, ranging
from 66.5 ± 25.0% to 86.3 ± 23.2%.

3.3. Changes in Wetland Classes from 1940 to 2012
Change maps (Figure 6) had overall accuracies above 96%, with the change map

comparing the 1940 threshold classification and 2012 classification at a 12 m2 MMU having
the greatest overall accuracy of 99.0 ± 0.3% (Table 3). The highest user’s accuracy of
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the vegetated wetland to water change class was 83.5 ± 7.2% for the 1940 random forest
classification and 2012 classification change map at a 12 m2 MMU (Table 3). However, the
1940 threshold and 2012 classification at a 24 m2 MMU had a significantly lower user’s
accuracy of 70.1 ± 9.7%. This corresponded to a low producer’s accuracy for the no-change
class, which ranged from 58.9% to 68.3% across all change maps (Table 3). The user’s
accuracy of the open water to vegetated wetland class was above 50% for all change maps,
ranging from 53.2 ± 10.1% to 72.6 ± 9.0%.

The total estimated area of 1940 vegetated wetland that was converted to open water
ranged from 2.3 ha (3.2%) to 2.7 ha (3.7%) across all change maps, with a conversion from
water to vegetation ranging from 0.6 ha (0.08%) to 1.2 ha (1.7%) across all change map
versions (Table 3). The “no-change” class was consistently estimated to have an area of
68.3 ha (94.8%) to 68.7 ha (95.4%) across all change map versions (Table 3).
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Figure 6. Maps of (A) wetland change between the 1940 manual threshold and the 2012 random
forest classifications; (B) wetland change between the 1940 random forest and 2012 random forest
classifications. Both maps are shown at a 12 m2 MMU. There are three wetland change classes: no
change (semitransparent grey), vegetated wetland to open water (blue), and open water to vegetated
wetland (yellow).
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Table 3. Area-adjusted accuracy estimates for change maps (percent ± 95% confidence interval)
including total mapped area. Thres = threshold classifications; rF = random forest classification.

Change
Map

MMU
(m2) Class Mapped

Area (ha)
Adjusted
Area (ha)

Adjusted
Producer’s
Accuracy

Adjusted
User’s

Accuracy

Overall
Accuracy

1940 Thres,
2012 rF

12

No Change 68.6 69.3 ± 0.2 98.9 ± 0.3 100 ± 0.0

99.0 ± 0.3Vegetated to Water 2.7 2.2 ± 0.2 100 ± 0.0 81.1 ± 7.9

Water to Vegetated 0.7 0.5 ± 0.1 100 ± 0.0 72.6 ± 9.0

24

No Change 68.7 69.5 ± 0.2 98.9 ± 0.3 100 ± 0.0

98.9 ± 0.3Vegetated to Water 2.6 2.0 ± 0.2 100 ± 0.0 80.2 ± 8.2

Water to Vegetated 0.7 0.4 ± 0.1 100 ± 0.0 63.7 ± 9.9

36

No Change 68.9 69.0 ± 1.6 98.6 ± 0.3 98.8 ± 2.2

97.6 ± 2.2Vegetated to Water 2.5 2.5 ± 1.6 68.7 ± 42.3 70.1 ± 9.7

Water to Vegetated 0.6 0.4 ± 0.1 100 ± 0.0 68.9 ± 9.8

1940 rF,
2012 rF

12

No Change 68.3 67.9 ± 1.8 98.6 ± 0.3 98.1 ± 2.6

96.9 ± 2.5Vegetated to Water 2.5 3.4 ± 1.8 61.1 ± 32.9 83.5 ± 7.2

Water to Vegetated 1.2 0.7 ± 0.1 100 ± 0.0 57.3 ± 9.6

24

No Change 68.5 68.7 ± 1.4 98.6 ± 0.3 98.9 ± 1.9

98.7 ± 0.3Vegetated to Water 2.4 2.0 ± 0.2 100 ± 0.0 81.6 ± 7.7

Water to Vegetated 1.1 1.3 ± 1.4 100 ± 0.0 56.1 ± 9.8

36

No Change 68.6 68.9 ± 1.4 98.6 ± 0.3 98.9 ± 2.1

97.6 ± 2.0Vegetated to Water 2.4 2.5 ± 1.4 71.2 ± 40.2 77.6 ± 8.4

Water to Vegetated 1.0 0.5 ± 0.9 100 ± 0.0 53.2 ± 10.1

3.4. Open Water Pond Detections: Total Count and Size
For the 1940 wetland classification and across the MMUs, the median open water

body size was similar across classification methods, but the random forest classification
consistently identified more open water bodies than the threshold classification across
each MMU (Table 4). For the 2012 wetland classification, the median open water body size
increased with the MMU, from 55 m2 to 97 m2, while the total number of open water bodies
decreased from 307 to 197 (Table 4).

Table 4. Median open water body detection number and median size in square meters (m2)
for 1940 and 2012 wetland maps across classification methods and MMUs of 12, 24, and 36 m2.
Thres = threshold classifications; rF = random forest classification.

Year,
Classification-MMU

Total Open Water Body
Detections

Median Open Water
Area (m2)

1940, Thres-12 172 43.0

1940, Thres-24 132 58.0

1940, Thres-36 103 80.0

1940, rF-12 251 32.0

1940, rF-24 161 70.0

1940, rF-36 125 87.0

2012, rF-12 307 55.0

2012, rF-24 232 84.5

2012, rF-36 197 97.0
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4. Discussion
The results of this study demonstrate that manual thresholding and automated clas-

sification methods can achieve similar classification accuracy when classifying wetland
landscapes with panchromatic photographs (Table 2). High overall accuracies (>95%)
were consistent for all wetland vegetation maps across classification methods and MMUs
(Table 2). We obtained high user’s and producer’s accuracies for vegetated wetland and
open water classes; however, in two instances, the producer’s accuracy of the open water
declined significantly, decreasing to as low as 50.1 ± 49.2%. Further, while change map
overall accuracy was consistently above 96%, we obtained multiple change maps with a low
user’s and/or producer’s accuracy, in the range of 50 to 70%. Low class-specific accuracies
can be attributed to (1) large differences in proportional class area (Tables S1 and S2) and
(2) misclassifications of tree islands in the panchromatic photograph.

4.1. The Importance of Spatially Explicit Accuracy Assessments
Accuracy assessments are critical for quantifying the error and uncertainty of land-

cover classifications. The importance of accuracy assessments increases when spatially
explicit, detailed, class-specific changes are of interest, rather than just the spatially implicit
comparisons of land-cover classes between time points. For point-based accuracy assess-
ments, the number of reference samples per class is determined by the desired confidence
and precision level, the proportion of the majority class, and total number of classes [72].
While the proportional area of the majority class was similar across wetland and change
maps, the change maps contained three classes while the wetland maps contained two
classes (Tables S1 and S2). The increase in class count led to more reference samples per
class in the change maps and the identification of misclassified water pixels, and a reduc-
tion in the user’s and producer’s accuracy. Had an implicit estimate of change classes
been relied upon, as conducted in other change detection studies [75], we would not have
identified these misclassifications. This underscores the need for spatially explicit accuracy
assessments of change classes when conducting digital change detection analyses.

When evaluating change classes in a spatially explicit manner, it has also been rec-
ommended, and demonstrated here, that estimates of accuracy and areal class cover need
to be adjusted for misclassifications that are estimated from the reference dataset. When
there are few classes that have large differences in proportional area, small changes in
the reference sample error matrix can amount to large changes in estimated accuracy and
uncertainty leading to 95% confidence intervals greater than ±40%, as occurred in multiple
of our change maps (Table 3). This level of uncertainty makes it impossible to evaluate
the producer’s accuracy of a map. This demonstrates that even for seemingly trivial re-
mote sensing problems (i.e., differentiating water from vegetation across multidecadal
timescales), the methods used to evaluate spatially explicit change need to account for
large areal differences in mapped classes and consider adjustments using the error matrix
proportions in order to build confidence in the location-specific mapped changes [74].

4.2. Misclassifications and Improving Accuracy
The binary classification scheme of vegetated wetland and open water was predicated

on the large difference in spectral reflectance between graminoid marsh and open water in
both the panchromatic photograph and high-resolution satellite image (Figure 3). However,
in the panchromatic photography, the brightness values of dense clusters of trees were
lower and appeared darker than the graminoid vegetation and often resembled grey values
of open water areas. The misclassification of tree islands in the 1940 photograph was
only apparent when overlaying the photograph on modern-day aerial photographs. This
observation required a well-trained aerial photo-interpreter with familiarity of the region,
highlighting a challenge of working with historical, panchromatic photographs and the
need for developing robust protocols for image processing.

To improve the differentiation of dark pixels, such as open water or tree clusters,
additional data sources should be incorporated into the image processing procedure. Tex-
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tural analysis has been shown to improve the discrimination of components of vegetation
structure in infrared images [76] while also improving the classification accuracy of panchro-
matic photographs [77,78]. Additionally, stereoscopic imaging can aid in the discrimination
of dark pixels that contain vegetation, as stereoscopy allows for a three-dimensional con-
struction of an area and the estimation of vegetation height [79].

4.3. Impact of the Minimum Mapping Unit on Open Water Detection
Across the 72-ha study area, an estimated 2.3 to 2.7 ha of vegetated wetland transi-

tioned to open water across all change map versions (Table 4). This can be attributed to
both an increase in the median open water pond size and total count of open water ponds
detected (Table 3). Across MMUs, the increases in total open water ponds detected between
1940 and 2012 ranged from 56 to 135 (Table 3), which corresponds to a 22% to 78% increase.
The increase in median open water pond size ranged from 12 m2 to 26.5 m2. Our images
had a spatial resolution of 4 m2, meaning an MMU of 12 m2 is a combination of 3 pixels.
Based on these results, a 12 m2 MMU was large enough to filter out noisy pixels but small
enough to retain the detail needed to capture the conversion of vegetated wetland to open
water. Since conversion of vegetation to open water can occur at spatial scales <1 m2 in
wetland landscapes, such as the Florida Everglades [19], retaining smaller water bodies is
desirable and suggests the MMU should be selected at the smallest size possible that still
retains high accuracy.

4.4. Ecological Implications
Our finding of losses in vegetation and increases in open water have broader implica-

tions for the coastal wetland landscape of the Florida Everglades. In a similar study, manual
delineation of historical images was used to assess changes in open water ponds between
1953 and 2009 in the Ten Thousand Islands region of the ENP [16]. The results of this study
found a similar increase in total open water ponds and pond size, ranging from 13 m2 to
31 m2 across their study area, which had sites that were differentially affected by freshwater
management and sea-level rise [16]. Our study area was in a similar ecogeomorphic setting
but encompassed a smaller spatial extent and was in a remote setting ~74 km south of [16]
and along the southwest coast of the ENP. Both sites have been subjected to hydrologic
stresses, but sites within [16] have been more directly impacted by decreased freshwater
delivery and saltwater intrusion as a result of the creation of a large canal that intersects
their study area [80].

In wetland landscapes, geomorphic processes, such as the collapse of highly organic
peat soils, have the potential to drive landscape-level transitions from vegetated wetland to
open water [17,81]. A process that can lead to the conversion of vegetated wetland to open
water that has recently received considerable attention is “peat collapse” [17,82–84]. Peat
collapse is the process of rapid subsidence of the soil surface that alters elevation profiles of
the landscape, and it can drive a permanent loss in emergent vegetation, causing a transi-
tion to an open water environment [17,85–88]. Across the Florida Everglades, decades of
freshwater management has altered the timing, distribution, and volume of freshwater de-
livery to the coastal estuary and prompted the creation of the largest freshwater restoration
effort in the world [20]. There is growing concern that by 2040–2050, the coastal wetland
ecosystems will begin a widespread conversion to estuarine conditions [89]. Uncertainty
remains at the global scale as to whether coastal wetland spatial extent will increase or
decrease over the next century [90], but clearly more regional scale research is needed at
broad temporal extents to understand past rates of vegetation loss and better predict their
future condition.

5. Conclusions
In this study, a methodology was developed to detect losses in coastal wetland vege-

tated land cover at the multidecadal scale using a combination of historical panchromatic
aerial photography and high-resolution satellite imagery. This methodology was tested
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in a coastal peat marsh in the subtropical Florida Everglades, where two methods were
compared for classifying historical panchromatic photographs across a range of minimum
mapping units to assess the classification accuracy of open water body detection. The
results indicate that when classifying historical wetland land cover using panchromatic
aerial photography, manual thresholding and automated, machine learning methods can
obtain equally accurate classifications in coastal wetland environments, but automated
classification methods should be preferentially used if additional data can be obtained that
will increase performance. It was also shown how an image analyst’s selection of the MMU
can impact the classification results, indicating that an MMU should be selected at the
smallest size possible, based on spatial resolution and the phenomenon of interest while
delivering high-accuracy maps that allow for location-specific analysis of landscape-scale
processes such as peat collapse. Further, the importance of conducting point-based accu-
racy assessments on change maps when performing digital change detection analyses was
also underscored, as misclassifications can go undetected in classification map accuracy
assessments, and this error will propagate to the change maps. Including the confusion
matrix in accuracy assessments assists in the evaluation of uncertainty and areal cover
estimation, even when the overall accuracy of the maps is high. This methodology can be
applied across broad spatial extents in order to assess degradation and vegetation loss in
coastal wetland environments that may have occurred over the last century due to the fact
of anthropogenic- and climate-related impacts in order to better predict an uncertain future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14163976/s1, Table S1: classified wetland maps accuracy as-
sessment; Table S2: Change maps accuracy assessment; Figure S1: Frequency distribution of open
water pond sizes for each 1940 and 2012 classification across minimum mapping units.
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