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Random dropout has become a standard regularization technique in artificial
neural networks (ANNSs), but it is currently unknown whether an analogous
mechanism exists in biological neural networks (BioNNs). If it does, its
structure is likely to be optimized by hundreds of millions of years of evolution,
which may suggest novel dropout strategies in large-scale ANNs. We propose
that the brain serotonergic fibers (axons) meet some of the expected criteria
because of their ubiquitous presence, stochastic structure, and ability to grow
throughout the individual's lifespan. Since the trajectories of serotonergic
fibers can be modeled as paths of anomalous diffusion processes, in this
proof-of-concept study we investigated a dropout algorithm based on the
superdiffusive fractional Brownian motion (FBM). The results demonstrate that
serotonergic fibers can potentially implement a dropout-like mechanism in
brain tissue, supporting neuroplasticity. They also suggest that mathematical
theories of the structure and dynamics of serotonergic fibers can contribute
to the design of dropout algorithms in ANNs.

artificial neural networks, convolutional neural networks, dropout, regularization,
serotonergic, stochastic, anomalous diffusion, fractional Brownian motion

Introduction

Random dropout is a simple but powerful technique employed in the training of
artificial neural networks (ANNs). Its main goal is to improve network regularization
and minimize overfitting (Srivastava et al., 2014; Goodfellow et al., 2016). In the standard
implementation, the output of a randomly selected set of hidden units is set to zero, and
this functional elimination is repeated in each training iteration. The eliminated units
neither participate in the current forward pass nor contribute to the backpropagation
calculations. As a consequence, the network has a slightly different architecture
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with each input and cannot heavily rely on any individual
neuron (Hinton et al., 2012; Krizhevsky et al., 2012).
Conceptually, this technique can be thought of as an efficient
approximation of bagging, in which a set of different models is
trained on a shared dataset (Goodfellow et al., 2016). In ANNS,
the dropout rate is typically 10-50%; the higher rates (40-50%)
are common in convolutional neural networks (CNNs) (Geron,
2019).

Artificial neural networks are fundamentally different from
biological neural networks (BioNNs), just as the artificial
and biological neurons have little in common. In fact, direct
mimicking of BioNNs can be counterproductive, as exemplified
by the relatively recent transition from the “more natural”
sigmoid activation function and to the less biologically realistic
but more efficient rectified linear activation function (ReLU)
(Krizhevsky et al., 2012). On the other hand, BioNNs are
superior to ANNs in their highly sophisticated level of
abstraction, which allows them to robustly learn from very small
training sets (sometimes a single instance).

The development of ANNs is primarily motivated by
practical applications, not by neuroscience. However, each of
the two fields has stimulated novel insights in the other.
For example, the fundamental architecture of modern CNNs
has deep roots in the visual neuroscience of the early 1960s
and, in particular, in the notion of a hierarchical system of
“receptive fields” (Hubel and Wiesel, 1962; LeMasurier and Van
Wart, 2012). On the other hand, recent advances in CNNs
have convincingly demonstrated that complex neuroanatomical
circuits with many specialized regions (Sporns, 2010) or large-
scale oscillations (He et al., 2010) are not necessary for reliable
detection and segmentation of objects in complex visual scenes
or for human speech recognition (Alzubaidi et al., 2021).
Presently, a major effort is underway to make ANNs more
“intelligent” (by getting closer to the brain’s ability to operate
at a high level of abstraction), which has led to the development
of a benchmark dataset, named the Abstraction and Reasoning
Corpus (ARC) (Chollet, 2019).

Dropout is peculiar in that it is now a standard and well-
validated method in ANN training but it has no obvious
counterpart in the biological brain. Logic suggests that BiloNNs
can also overfit, at the expense of deeper abstractions [as perhaps
manifested in savant memory (Bor et al., 2007; Song et al,
2019)]. If a dropout-like mechanism actually exists in neural
tissue, it can be expected to be (i) ubiquitously present and have a
structure that is both (ii) strongly stochastic, and (iii) unstable at
the level of individual neurons, including the adult brain. These
requirements may be met by the serotonergic fibers, a unique
class of axons described in virtually all studied nervous systems
(vertebrate and invertebrate).

In vertebrates, the serotonergic fibers are axons of neurons
located in the brainstem raphe complex (Jacobs and Azmitia,
1992; Okaty et al,, 2019). These fibers travel in extremely long,
meandering trajectories and form dense meshworks in virtually
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all brain regions (Steinbusch, 1981; Lidov and Molliver, 1982;
Foote and Morrison, 1984; Lavoie and Parent, 1991; Vertes,
1991; Voigt and de Lima, 1991; Morin and Meyer-Bernstein,
1999; Vertes et al., 1999; Linley et al., 2013; Migliarini et al.,
2013; Donovan et al., 2019). Early estimates have suggested that
each cortical neuron in the rat brain is contacted by around
200 serotonergic varicosities (dilated fiber segments) (Jacobs
and Azmitia, 1992). The electrophysiological characterization
of serotonergic neurons remains grossly incomplete, given
their diversity (Okaty et al., 2019). Early studies have reported
neurons that fire at remarkably stable rates (Jacobs and Azmitia,
1992), suggesting low information transmission. More recent
research has shown that some serotonergic neurons respond
to conditions that require learning in uncertainty (Matias
et al,, 2017), and that serotonin (5-hydroxytryptamine) is
fundamentally associated with neural plasticity (Lesch and
Waider, 2012). The renewed interest in therapeutic applications
of serotonin-associated psychedelics is motivated by the recent
findings that these psychedelics can be surprisingly efficient in
rapidly boosting cognitive flexibility - thus opening up new
opportunities in the treatment of brain disorders associated with
cognitive persistence (Vollenweider and Preller, 2020; Daws
et al,, 2022). Conceptually, serotonin may support “unfreezing”
of synapses that may have become “locked in” or “overfitted.”

In addition, recent research has shown that the trajectories
of serotonergic fibers are strongly stochastic. Therefore, the
number of fiber contacts received by an individual neuron in
any brain region is a random event. The mathematical models of
serotonergic trajectories are an active area of research (Janusonis
and Detering, 2019; Janu$onis et al., 2020). Some features
of these fibers are captured by the superdiffusive fractional
Brownian motion (FBM), an anomalous diffusion process that
generalizes normal Brownian motion (Janusonis et al., 2020;
Voijta et al., 2020).

Normal Brownian motion describes simple diffusion. Its
scientific investigation dates back to the observation of water-
suspended pollen grains by Robert Brown (a Scottish botanist)
in 1827 and the pioneering theoretical work by Albert Einstein
in 1905 (Gardiner, 2010). In normal Brownian motion, the
spatial increments in any two non-overlapping time intervals
are statistically independent. Diffusing particles that start at
the origin produce a gradually widening normal (Gaussian)
distribution, the variance of which increases linearly with time.
FBM is a major theoretical extension of normal Brownian
motion. It can produce three qualitatively different diffusion
types, depending on the value of its parameter H (the
Hurst index, which varies from 0 to 1). The regime at
H < 0.5 is known as “subdiffusion” (characterized by anti-
persistent trajectories, in which two consecutive increments
are negatively correlated), the regime at H > 0.5 is known
as “superdiffusion” (characterized by persistent trajectories, in
which two consecutive increments are positively correlated),
and normal Brownian motion is recovered as a special case at
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H =0.5. As H approaches one, the trajectories approach straight
lines, effectively losing their stochastic character. Diffusing
particles described by FBM again follow a normal distribution,
but the variance and time are now related by a power-
law. Historically, FBM dates back to the data analyses of
Harold Edwin Hurst (a British hydrologist) (Hurst, 1951) and
the theoretical constructions by Andrey Kolmogorov (Biagini
et al., 2010) and Benoit Mandelbrot with John Van Ness
(Mandelbrot and Van Ness, 1968).

An important observation for this study is that the paths of
individual serotonergic fibers may continuously change, also in
the adult brain. Experimental research has demonstrated that
serotonergic fibers are nearly unique in their ability to robustly
regenerate in the adult mammalian brain after an injury, and
that regenerating fibers do not follow their previous paths
(Jin et al.,, 2016; Cooke et al., 2022). Long-term live imaging
of serotonergic fibers in intact brains currently poses major
technical challenges. However, circumstantial evidence suggests
that serotonergic fibers may undergo routine regeneration
in the healthy brain. They are extremely long, thin, and
not fasciculated, which may result in frequent interruptions
because of local tension forces and biological processes, such as
microglial activity (Janusonis et al., 2019). This dynamic would
continuously generate new fiber paths beyond the interruption
points.

In summary, serotonergic fibers (Figure 1A) have a
number of features that are conducive for a dropout-like
mechanism in biological neural tissue. In one scenario,
serotonergic fiber contacts may interfere with the normal
activity of individual neurons, effectively removing them from
the network. Alternatively, these contacts can stabilize the
output of individual neurons. In vitro, the growth rate of
serotonergic axons can be remarkably fast, with long extensions
over the course of hours (Azmitia and Whitaker-Azmitia, 1987).
To our knowledge, no reliable in vivo growth rate estimates are
currently available in the healthy adult brain.

In this study, we examined an FBM-based dropout
algorithm in simple ANNs, the layers of which (Figure 1B)
contained artificial serotonergic fibers modeled as two-
dimensional FBM-paths (Figure 1C). We show that the
performance of this dropout is comparable to that of the
standard dropout. At the same time, the FBM-dropout is
considerably more biologically realistic and may stimulate
further investigations of its potential in complex, large-scale
network architectures.

Materials and methods

Fractional Brownian motion is a continuous-time and self-
similar process, with several stochastic integral representations
(Biagini et al., 2010). The distribution of particles that start
at the origin is given by a normal distribution, with the
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mean at the origin and the variance increasing with time as
o22H (where 0 > 0 is a constant parameter, ¢ is time, and
0 < H < 1). At H = 0.5, the variance is simply a linear
function of time (o?t), as expected for normal diffusion. In
FBM, the increment correlation between two consecutive time

22H-1_1_ Four two-

intervals of equal length is given by
dimensional FBM paths at H = 0.1, 0.5, and 0.9, starting at
different points to better visualize their individual variability, are
shown (Figures 1D-F, respectively). In order to demonstrate
the relative spread of paths in the three regimes, four other
sample FBM paths, all starting at the origin, are shown for
the same H values (Figures 1G-I, respectively). In the dropout
analyses, FBM paths were generated using the Python stochastic
(0.6.0) package.

An FBM-based dropout method (further referred to as
the “FBM-dropout”) was tested in a fully connected network
consisting of an input layer (with the ReLU activation function),
a hidden layer (with the ReLU activation function), and an
output layer (Figure 2A). The input and hidden layers were
endowed with the Euclidean geometry (ie., with physical
distances), in addition to the standard topological structure (in
which only connections and their weights are important). In
both layers, neurons were arranged in a square grid (N x N),
extending from 0 to 1 unit in both physical dimensions. In the
grid, each neuron was represented by a square with the side
of 1/(2N) units and adjacent neurons were spaced by the same
distance (1/(2N) units) in both dimensions (Figure 2B).

The coordinates of two-dimensional FBM paths were
modeled as independent one-dimensional paths (with the same
H and o = 1). The value of H was set at 0.9 based on previous
experimental research (Janusonis et al.,, 2020). For each training
epoch, a number (1) of long FBM paths were generated in the
time interval [0, T], and their coordinates at each time-step (At)
were stored in an array (as the entire trajectories of » shorter,
moving fibers). The variable n was used to control the average
dropout rate (more fibers result in more neurons dropped
out). We note that the dropout rate can also be controlled by
adjusting the “length” of the moving fibers or the geometry of
the neurons, but these approaches are not equivalent in their
statistical structure. Based on an empirical optimization, in the
presented analyses we set T = i,,,4,,/10 and At = 1/500, where imayx
is the maximal number of training iterations (the actual number
of the used iterations may be lower). We note that T and At
refer to the FBM process itself and are not directly related to the
network training “time;” the two can be flexibly coupled.

In each iteration (i = 0, 1, 2,...), each moving fiber was
modeled as a sliding subarray of a long FBM path, representing
the time interval [(i x s) x At, (i x s + L) x At], where
L and s are positive integers representing the fiber “length”
(in the number of points) and the fiber shift in each training
iteration (in the number of points), respectively (Figure 2B
and Supplementary Video 1). Note that if s = L, the fiber
advances fast and in each iteration starts where it ended in
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FIGURE 1

3.2, and 7.9 units in each dimension, for H = 0.1, 0.5, and 0.9, respectively).

(A) Serotonergic fibers in the mouse primary somatosensory cortex, visualized with immunohistochemistry for the serotonin transporter (SERT,
5-HTT). This bright-field image represents three focal levels (in a 40 um-thick coronal section) that have been digitally merged. The
immunohistochemistry was performed as described in Janusonis et al. (2020). Scale bar = 50 um. (B) A 10 x 10 array of artificial neurons,
represented by small squares. Their size approximates the size of “typical” brain neurons, on the same physical scale as (A) (the side of the
squares is around 15 pm). (C) A 10 x 10 array of artificial neurons with 50 fractional Brownian motion (FBM) paths (H = 0.9, 0 = 1, T (time
length) = 1, At (time step) = 0.001) that start at random locations of the array ([0, 1] x [0, 1]). To approximate the microscope field of view, no
periodic boundary conditions were used, but the paths were allowed to leave the area and re-enter it (i.e., some paths are represented by more
than one visible segment). Note the similarity of the paths to actual serotonergic fibers. (D,E) Four FBM sample paths (o = 1, T = 10, At = 0.001)
starting at points (0, -5), (-5, 0), (0, 5), and (5, 0), with H = 0.1 (D, subdiffusion), H = 0.5 (E, normal diffusion), and H = 0.9 (F, superdiffusion).
(G-1) Another realization of four FBM sample paths (o = 1, T = 10, At = 0.001) starting at the same point (0, 0) to show the relative spread, with
H = 0.1 (G, subdiffusion), H = 0.5 (H, normal diffusion), and H = 0.9 (I, superdiffusion). The theoretical standard deviation of the spread is T (1.3,

the previous iteration. If s < L, the fiber “crawls” more slowly,
advancing fewer steps and retaining some of its previously
occupied positions. In the presented analyses, we set L = s = 50.

Extremely long FBM paths are computationally expensive
and often require supercomputing resources (Janusonis et al.,
2020; Vojta et al.,, 2020), due to their long-range dependence
on all previous steps (if H # 0.5). To simplify computations,
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we assumed that at the end of each training epoch the fiber
“branches,” initiating a new FBM path at a random point of the
last segment, also accompanied by the instant “degeneration”
of the previous path. In order to avoid boundary effects
(which would require modeling reflected FBM paths (Janusonis
et al,, 2020; Vojta et al.,, 2020) but would not be biologically
meaningful here), we implemented the periodic boundary
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FIGURE 2

(A) The general architecture of the neural network (the actual numbers of neurons are not shown). Fibers move in the input and hidden layers.
At each training iteration, all neurons that fall within any of the fiber paths are dropped out. In the standard dropout, each neuron would be
dropped out independently of other neurons with a preset probability p. (B) The dynamics of a set of fibers (randomly color-coded) at 75 (left),
150 (middle), and 225 (right) iterations. The neurons that are removed at each step are colored red. All fibers are the same “length” in the sense
that they represent equal time intervals (fractional Brownian motion (FBM) paths are fractal and do not have a defined length in the usual sense).
H=0.9,T=30, At =1/500, L = 50, s = 50. Supplementary Video 1 shows the general dropout process.

conditions (i.e., the fiber never leaves the layer and re-enters on
the opposite side when it crosses a border).

The dropout was modeled as follows: if any of the fiber
points was located inside a neuron (a geometric square),
the output of this neuron was set to zero in this training
iteration (Figure 2B and Supplementary Video 1). There was
no interaction among the fibers (e.g., the same neuron could
be contacted by more than one fiber). The described model is a
simplification of biological reality, where serotonergic fibers are
attached to a cell body and may instead continuously regenerate
with new paths from random interruption points (i.e., they
do not actually “crawl” as detached segments). However, the
overall dynamic of the model does approximate these biological
processes, including axon branching.

All ANN training and testing scripts were written in Python
3 with the PyTorch package (1.11.0). The simulations in the
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conceptual presentations (Figure 1 and Supplementary Video
1) were written in Wolfram Mathematica 13.0.

Results

The the FBM-dropout
fundamentally different in that in the former case neurons

standard dropout and are
are turned off independently of other neurons, but in the latter
case neurons in close proximity are more likely to be turned off
at the same time (because they are more likely to fall on the path
of the same fiber). This introduces spatial correlations, which
can be tightened or relaxed by controlling the number and
“length” of the fibers, their FBM parameter (H), their “speed”
(s), and the geometry of the neurons (e.g., they can be sparsely
or densely packed). Despite this more structured dropout,
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all neurons can get visited at some time during the training
(Figure 1 and Supplementary Video 1).

We examined the performance of the network (with regard
to overfitting) in a simple training example. A random set
of 50 points in the range of [—1, 1] was generated, and a
linearly-dependent second set of points (y) was produced, with
an additive noise term (y = x + 0.3e, where ¢ has a normal
distribution with the mean of 0 and the standard deviation of 1).
A network with 100 neurons in the input and hidden layers was
trained on this set with no dropout, the standard dropout, and
the FBM-dropout. The FBM-dropout strongly outperformed
the no-dropout condition and was indistinguishable from
the standard dropout (Figure 3). Specifically, the expected
regression line was increasingly well approximated by the
standard and FBM-dropout models (Figures 3A-C), but the no-
dropout model strongly overfitted the training points (the red
jagged line in Figure 3C), effectively failing to detect the simple
underlying trend (and thus to generalize beyond the training
set). This observation was further supported by formal measures
that showed that the no-dropout model became increasingly
better in capturing the training point set (reflected by the low
training loss; Figure 3D), but underperformed compared to the
other models when presented with a new (testing) point set (the
high testing loss; Figure 3E). This difference was reflected by the
large generalization gap of the no-dropout model (defined as the
difference between the models’ performance on the training and
new data; Figure 3F).

A Target °

—— No Dropout

— Std. Dropout

—— FBM Dropout
o Tain

Test

10.3389/fnins.2022.949934

We next examined the performance of the network on a
reduced set of the Modified National Institute of Standards
and Technology database (MNIST) hand-written digits.! In
the set, 1,000 training samples and 1,000 testing samples were
randomly selected from the larger original set. A network with
1,024 neurons in the input and hidden layers was trained on
this set with no dropout, the standard dropout, and the FBM-
dropout. The FBM-dropout again performed well compared to
the standard dropout (Figure 4). Specifically, the FBM-dropout
model slightly lagged behind the other models in capturing
the details of the training set (reflected by the higher training
loss; Figure 4A); however, this resistance to overfitting led to
better performance on the new (testing) image set, especially
after epoch 60 (Figures 4B,C). Consequently, the FBM-dropout
model produced a generalization gap that was comparable to,
and slightly better than, that of the standard dropout model
(Figure 4D).

Discussion

Dropout was introduced around ten years ago (Hinton
et al., 2012; Labach et al,, 2019) and since has become a
standard technique in the machine learning field. Despite the

1 http://yann.lecun.com/exdb/mnist
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A regression-type model trained with no dropout (red in all panels), with the standard dropout (green in all panels), and with the fractional
Brownian motion (FBM)-dropout (blue in all panels). (A—C) The fitted curves at 1 (A), 20 (B), and 50 (C) epochs. (D) The training loss after each
training epoch. (E) The testing loss after each training epoch. (F) The generalization gap (the difference between the testing loss and the training
loss) after each training epoch. The network consisted of one input neuron, 100 neurons in the input and hidden layers, and one output neuron.
The number of epochs was 50, with 50 mini-batches with one sample each. The Adam optimizer with the learning rate of 0.01 was used. In all
conditions, the dropout probability was adjusted to be around 0.2. N =10,n =12, H= 0.9, T = 5, At = 1/500, L = 50, s = 50. The same dropout
parameters were used in the input and hidden layers (the two sets of fibers were independent in the layers).
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FIGURE 4

A model trained on an Modified National Institute of Standards and Technology database (MNIST) set with no dropout (red in all panels), with
the standard dropout (green in all panels), and with the fractional Brownian motion (FBM)-based dropout (blue in all panels). (A) The training loss
after each training epoch. (B) The testing loss after each training epoch. (C) The testing accuracy after each training epoch. The insets show the
zoomed-in plot segments after epoch 60. (D) The generalization gap (the difference between the testing loss and the training loss) after each
training epoch. The network consisted of 784 input neurons (28 x 28 grayscale images of digits), 1,024 neurons in the input and hidden layers,
and 10 output neurons. The number of epochs was 100, with 16 mini-batches with 64 samples each. The Adam optimizer with the learning rate
of 0.0001 was used. In all conditions, the dropout probability was adjusted to be around 0.2. N =32,n =60, H = 0.9, T = 2, At = 1/500, L = 50,
s = 50. The same dropout parameters were used in the input and hidden layers (the two sets of fibers were independent in the layers).

(E) Examples of the images used in the training and testing.

computational simplicity and effectiveness of random dropout
in some ANNS, it has serious limitations in important network
architectures. These networks include the powerful CNNs,
where random dropout has little effect due to the highly
correlated pixels in feature maps (Labach et al., 2019). As ANNs
become larger and more complex in their architecture, dropout
algorithms are likely to evolve in several directions.

Here, we present an approach that is strongly motivated
by neurobiology and is built on recent analyses of serotonergic
fibers, led by one of the co-authors (Janusonis and Detering,
2019; Janu$onis et al., 2020). We demonstrate the feasibility of
this approach in simple, proof-of-concept networks, where it
performs at least as well as the standard dropout. However, it
has a rich statistical structure which may serve as a toolbox for
future improvements in dropout techniques.

Conceptually, the method is simple: the relevant neuron
layers are placed in a Euclidean space and enriched with fiber-
like entities that move through this space. When a fiber comes
into contact with a neuron, the neuron becomes (temporarily)
inactive. Computationally, a number of parameters can be
easily adjusted, resulting in different dropout statistics. These
parameters include the geometry of the layer (the size and
shape of the neurons, as well as their spacing which can
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be deterministic or stochastic) and the fibers themselves,
which can differ in their numbers, H values, “length,” and
“speed.” For example, many short, fast moving fibers with
H = 0.5 will approximate the standard dropout, but one
long, slow moving fiber with H > 0.5 will result in strongly
correlated dropout events.

An intriguing extension of this method can be produced
by adding a third dimension and allowing fibers to move
across network layers, as serotonergic fibers do in brain tissue.
Tracing studies have shown that a single serotonergic fiber can
traverse multiple brain regions, separated by vast anatomical
distances (Gagnon and Parent, 2014). This extension is not
trivial conceptually, given the topological nature of ANNS, but
it may lead to interesting findings. Computationally, it would
produce correlated dropout events at different processing levels
in the network hierarchy, which might be beneficial in CNNGs. It
may also find applications in artificial spiking neural networks
(SNNs) which already encode spatial and temporal information
(Pfeiffer and Pfeil, 2018).

A question arises whether other H values in the FBM
model or other neurobiologically-inspired dropout models can
perform as well. Generally, stochasticity is neither necessary
nor sufficient to achieve the regularizing effect in all ANNs
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(Goodfellow et al, 2016), but the current development of
dropout techniques strongly relies on this property (Labach
etal, 2019). The H values that are close to 0 would not perform
well because FBM trajectories would tend to dwell on the same
neurons (Figures 1D,G). At the other extreme, the H values that
are close to one would produce nearly straight trajectories that
would cycle through the same subset of neurons (assuming the
periodic boundary conditions). As noted, the brain serotonergic
system has a number of properties that are particularly well-
suited for ANN-like dropout, but it does not rule out a number
of other possible mechanisms. In particular, stochasticity has a
long history in the analysis in neuron circuits, with a number
of recent studies focusing on its fundamental significance and
constructive aspects (Geisler and Goldberg, 1966; Srinivasan
et al., 1971; Olshausen and Field, 1996; Anton-Sanchez et al.,
2014; Shaham et al., 2022; van der Groen et al., 2022).

We note in conclusion that further optimization of dropout
techniques may also enrich neuroscience. In particular, the
well-described brain regional differences in the density of
serotonergic fibers, currently unexplained functionally, might
be associated with different levels of plasticity in these brain
regions. For example, a high level of plasticity is likely to
be beneficial in prefrontal cortical circuits, but such plasticity
may be undesirable in brain circuits that control vital organ
functions (and may lead to neurological problems). To our
knowledge, such analyses have never been carried out. Further
insights into dropout algorithms based on FBM, as well as on
other anomalous diffusion processes, will strongly motivate this
experimental research.
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SUPPLEMENTARY VIDEO 1

One layer of artificial neurons with one long fractional Brownian motion
(FBM) path (H=0.9,0 =1, T = 3, At = 0.002) that starts at the center of
the array ([0, 1] x [0, 1]) and conforms to the periodic boundary
conditions (i.e., the array is topologically a torus: if a fiber leaves the flat
array, it re-enters on the opposite side). The neurons that are dropped
out are colored red. The yellow flashes represent times when the
network receives a training set (e.g., a minibatch), with the following
weight update. Generally, the model allows for flexible temporal
coupling between the two processes.
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