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1 Introduction

The greatest story ever told in physics is how a century of brilliant experimental extempo-
rization culminated in the development of Maxwell’s equations. This was humanity’s first
relativistic, unified field theory and it set the stage for the discoveries of general relativity
and non-Abelian gauge theories. Electrodynamics is still one of the core subjects in the study
of physics. Most western physicists recall the ingenuity and perseverance required of them
as graduate students to solve Maxwell’s equations in the wide variety of settings treated in
the classic text by the late J. D. Jackson [1].

Quantum loop corrections to electrodynamics are small at low frequencies, and those
from quantum gravity are unobservable. One might therefore expect that including these
effects causes only a small change in electrodynamics. The math is simple enough: one first
computes the 1PI (one-particle-irreducible) 2-photon function, i[*I1”](z;2"), known as the
“vacuum polarization”. Then Maxwell’s equations are supplemented by the integral of the
vacuum polarization contracted into the vector potential A, (z’),

Oy F"" () + / d' [MHV} (z;2") Ay (2') = J*(x) , (1)

where F,, = 0,4, — 0,4, is the field strength tensor and J*(z) is the current density.
However, students of quantum field theory are strongly enjoined that they cannot think of
solving the quantum-corrected equation the same as its classical analog; they must instead
abandon the concept of local fields and infer physics entirely from scattering amplitudes.
Although basing physics on scattering amplitudes is valid for most situations on flat space
background, it does seem to be an over-reaction, and it is not even possible in cosmology.
The purpose of this paper is to provide a version of the quantum-corrected field equation
(1) which can be solved as in classical electrodynamics.

Part of the reason for the curious dichotomy between classical and quantum is the preva-
lence of the “in-out” formalism so elegantly summarized by the Feynman rules. The in-out
vacuum polarization is neither real, nor is it causal in the sense of vanishing for points z/*
outside the past light-cone of z#. Those two properties are not errors; in-out amplitudes
are precisely the right objects of study for computing scattering amplitudes. However, the
absence of reality and causality is certainly problematic if one wishes to regard solutions to
the quantum-corrected field equation (1) as electric and magnetic fields.

Julian Schwinger long ago devised a method for computing true expectation values which
is almost as simple to use as the Feynman rules [2]. When the vacuum polarization of the
Schwinger-Keldysh formalism is employed in equation (1) the effective field equations become
manifestly real and causal [3, 4, 5, 6, 7, 8, 9, 10]. However, there is still an obstacle: the
propagators of vector and tensor fields require gauge fixing, and loop corrections involving
these propagators cause the vacuum polarization to depend on the choice of gauge. For
example, single graviton loop corrections to the vacuum polarization on a D-dimensional
flat space background (g, = 1, + khy, with £ = 167G) with the most general, Poincaré
invariant gauge fixing functional,
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result in a primitive vacuum polarization of the form [11],

e AN H2CO(D7avb)(D_2)F2(§_1> w92 TRV 1
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where the gauge dependent multiplicative factor is,
Co(D,a,b) = D(D-2)(D-3) + (D=1)(D=2) [(2?[)__22))(3_1)_13([)_1) ]
+(D-1)(D—2)*(D—4) [—<“;1)+D2_2(Z:;)} )

Although the tensor structure and spacetime dependence of (3) is universal, the multi-
plicative factor C(D,a,b) can be made to range from —oo to 400 by adjusting the gauge
parameters a and b [11].

John Donoghue has shown how to use general relativity as a low energy effective field
theory to reliably compute quantum gravitational corrections to the long-range potentials
induced by the exchange of massless particles such as photons and gravitons [12, 13]. His
technique is to compute the scattering amplitude between two massive particles which in-
teract with the massless field, and then use inverse scattering theory to infer the exchange
potential. In this way one can derive gauge independent, single graviton loop corrections to
the Newtonian potential [14, 15] and to the Coulomb potential [16].

It has recently been noted that Donoghue’s S-matrix technique can be short-circuited to
produce gauge independent effective field equations directly, without passing through the
intermediate stages of computing scattering amplitudes and solving the inverse scattering
problem [17]. The key is applying position space versions of a series of identities derived
by Donoghue and collaborators for the purpose of isolating the nonlocal and nonanalytic
parts of scattering amplitudes which correct long-range potentials [13, 18]. These identities
degenerate the massive propagators of the particles being scattered to delta functions, thus
casting the important parts of higher-point contributions to 2-particle scattering in a form
that can be regarded as corrections to the 1PI 2-point function of the massless field. In
this picture the gauge dependence of the original effective field equation derives from having
omitted to include quantum gravitational interactions with the source which disturbs the
effective field and from the observer who measures it; and the corrections to the 1PI 2-point
function repair this omission. The new technique has already been implemented at one loop
order for quantum gravitational corrections to a massless scalar on flat space background,
and its independence of the gauge parameters a and b explicitly demonstrated [17]. In this
paper we do the same for quantum gravitational corrections to electrodynamics, which is a
realistic system and one involving vector fields.

This paper closely follows the analysis of Bjerrum-Bohr [16] who applied Donoghue’s
technique to include one graviton loop corrections to electrodynamics on flat space back-
ground. Section 2 goes through the position-space version of each of the same diagrams he
considered, including first order perturbations of the gauge parameters (2),

a=1+4da
{b51+5b} = Co(4,a,b) =8 +12-5a + 0-0b + O(5?) . (5)



In each case we show how the Donoghue identities allow one to regard the diagram as
a correction to the vacuum polarization. Of course the gauge dependence cancels when
everything is summed up, and the result has the same form (3), but with the constant
Co(4, a, b) replaced by the gauge independent number +40. Our conclusions comprise section
3. Three appendices give, respectively, the vertices, the propagators and the Donoghue
identities, including the new one we required for certain of the db contributions.

2 Including the Source and the Observer

In this section, we use the scattering of a pair of massive, charged scalars to provide the
source which disturbs the effective field and the observer who measures this disturbance.
The Lagrangian that describes the scattering is,

£ (o 2™ Py — (D)0 (D) + 60| V75 (6
G 4

where, D, =V, —ieA, and V, denotes the metric-compatible covariant derivative. (When
acting on a scalar the covariant derivative degenerates to the partial derivative, ¢, D,¢ =
0,¢ — ieA,¢.) Unless otherwise stated, we work with the usual ¢ = A = 1 convention
of particle physics, however, we employ a spacelike metric. General plus SQED (Scalar
Quantum Electrodynamics) is treated as a low energy effective field theory in the sense of
Donoghue [12, 13]. The perturbation is around flat space with the following definitions of

the graviton field h,, and the loop counting parameter x?,

9 (T) = N + Ky, K> = 167G . (7)

The vertices we require are listed in Appendix A, and the various propagators are given in
Appendix B.
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Figure 0: This diagram shows how the vacuum polarization contributes to the amputated 4-scalar vertex
function. Dashed lines represent massive scalars, wavy lines represent photons and curly lines represent
gravitons. These graphs have the same topology as Bjerrum-Bohr’s Diagram 8 [16].

Our procedure for purging gauge dependence from the one loop vacuum polarization
is to write down position space representations for each of the order e?x? contributions
to the amputated 4-scalar function. Any external derivatives are assumed to act on the
external scalar wave functions appropriate to 2-particle scattering. By exploiting the various



Donoghue Identities of Appendix C to degenerate the (internal) massive scalar propagators
to Dirac delta functions, we reduce each contribution to a form that can be interpreted as a
correction to i[MI1”](x; 2).

We begin by considering the contribution of the original, gauge dependent vacuum po-
larization to the amputated 4-scalar function as shown in Figure 0. The expression for this
diagram is

7"/0(5(:7 LL’/) :e(am i _am T)a X 6(890’ i _890’ T)B

X /dDz i) (5 2) /dDz' i[pA] (2 2) x i[MITY](z; 2) (®)

where the vacuum polarization was given in (3) and external derivatives with an up (down)
arrow act on upper (lower) scalar wave functions at that vertex. First note that Poincaré
invariance and partial integration allows us to act all longitudinal parts on the external legs,
where (by current conservation) they vanish due to the on-shell condition,

@1 -9, 01+ D) = (L —m?) — (B*+ —m?) . 9)

We can also use the relation,

Az2P=2 — 2(D—2)2 Az2P—4  2(D—2)2

1 & 1 & dr i
>iA(x; )|, (10)
to attain the form,

e?k%Cy(D, a, b)
4(D-1)(D2)

2
X /dDz iA(z; 2) /dDz' iA('; 2') 0202, [z’A(z; z’)] :

z'Vo(z; :L"') =— X (ax 1 =0, T)u(a:c’ b =0y T)u

(11)

The final step is to partially integrate the factors of §? and 9% to act on the massless
propagators, and use the delta functions that result from the propagator equation (B.1) to
eliminate the integrations over z* and 2'*,

Co(D,a,b) e2k?

Wolwir') = 51y po2) X 1

(am i _890 T)(&x/ i _890’ T) X [ZA(LL’7 x/)]2 : (12)

After applying the appropriate Donoghue Identity from Appendix C it turns out that all
contributions to the amputated 4-scalar function take this same form, with different gauge
dependent multiplicative factors. To simplify the notation, we define a new gauge dependent
constant which includes the factor of 1/(D—1)(D—-2), and we take D = 4 because dimensional
regularization plays no role, while also dropping higher order perturbations in the gauge
parameters a = 1 + da and b = 1 + 9D,

CO(D7 a, b)

iy =i +0(o-47). o

In other words, Co(da, 6b) = 3 + 24a.



2.1 Correlation Between Vertices
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Figure 1: This diagram shows the contribution of graviton correlation between two vertices. Dashed lines
represent massive scalars, wavy lines represent photons and curly lines represent gravitons. These graphs
have the same topology as Bjerrum-Bohr’s Diagram 4 [16].

The correlation between source (at z'*) and observer (at z*) vertices is the first extra contri-
bution to the amputated 4-scalar function, as shown in Figure 1. This diagram corresponds
to the analytic expression,

o 1 rvoa 14 (e} v o
iVi(w; a) =ger [0 00" =0 0] (001 =0u d)a

1
x gen [ 4 =] (0wt =0 s (14)

X 1w Ao (z;2") X 1], Ag) (25 2") .

Substituting the appropriate propagators from Appendix B, contracting all the indices, sim-
plifying and making use of the relation,

0,0 1 T2 -1) n 0,0 1
. L nwv . A 9 uv nv
i) g A ) = X lA:):QD—At @6 a5 - 1Y)
gives,
, . ERT(2 1) (3D—-2)da (D —2)%6b Ny
Wilsia') = B |y B DZ IR (5,40, 1), 004 -00 1) 5
(16)

Note that the second term in the square bracket of expression (15) drops out by current
conservation.
Recognizing the massless scalar propagator (B.2) provides a simpler form for (16),

(3D-2)da (D — 2)2b
4 4

iVi(wsa) = [D+ }xe%%aw—am-(m—ax/ MA@ ) . (17)

As promised, expression (16) takes the same form as the vacuum polarization contribution
(12), but with a different gauge dependent, multiplicative constant. By comparison with
(12) we can recognize,

(3D — 2)5a (D — 2)%b
4 4

Ci(D,a,b) = 4D—1)(D—2) {D+ +0(6?%)] . (18)



Henceforth we will not bother with dimensional regularization, and we will make the same
notational simplification as (13). This means that the vertex-vertex correction is,
e k2

iVi(z; 2") = C1(da, ob) x T(&Bi—&v D) (Opr L =0 1) X [iA(z;2))? (19)

where C}(da,0b) = 16 + 106a — 46b.

2.2 Vertex-Force Carrier Correlations
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Figure 2: These diagrams show the contributions from correlations between the force carrier and one of
the vertices. Dashed lines represent massive scalars, wavy lines represent photons and curly lines represent
gravitons. These graphs have the same topology as Bjerrum-Bohr’s Diagram 7 [16].

The next contribution comes from the correlations between a single vertex the exchange
photon, as shown in Figure 2. The analytic form is,

. / 1 € 4 (9% VvV, _€
iVa(w; o) =ger [n% 0" + 0" =" 0] (0 1 =0: L)s x (0 L —0ur 1)’
X / Pz (—ikV 7Y 8 il Ag) (25 2) Buaily Do) (2:27) X i A yo] (z32)  (20)

+ (Permutation) .

For reducing this diagram it is useful to note how the product of a massless propagator
times one of the gauge variations can be expressed as a differential operator acting on a
single function of the Poincaré interval,

iA(x; ) ag?”iA(x;x’) :inw,[iA(x;x/)F — %@@I{[iA(m;x')F} , (21)
. ,/alaﬁ» ,/_l)_2 . L N2 D . L oN2
aHZA(I} i ) P ZA(QE7 i ) = m&ﬁaﬁﬁl{[zA(w, a )] } + m’f}aﬁaﬁ[ZA(I7 i )]
D -2

— D=1y s + esOa)liA i )

(22)

where the symbol 7{} represents indefinite integration of the argument with respect to Az?.
The final result for these diagrams is,
2.2

iVa(z;2") = Co(da, 6b) X QTK(&Bi—&E D) (O L =0 1) x [iA(2; 2)]?, (23)

where Cy(da, 0b) = —12 — 16da + 49b.



2.3 Vertex-Source and Vertex-Observer Correlations
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Figure 3: These diagrams show the contributions from correlations between the source (primed) or observer
(unprimed) and the opposite vertex. Dashed lines represent massive scalars, wavy lines represent photons
and curly lines represent gravitons. These graphs have the same topology as Bjerrum-Bohr’s Diagram 3 [16].

We next consider contribution from correlations between the source, or observer, and the
opposite vertex, as shown in Figure 3. (Correlations with nearer vertices do not contribute
because they are cancelled by field strength renormalization.) We use z# (y*) for incoming
(outgoing) observer, and 2" (") for incoming (outgoing) source. We also adopt the notation
that a bar over a vertex with only a single external leg denotes differentiation of the on-
shell external wave function. With these conventions we can write the analytic form of the
diagrams in Figure 3 as,

Figure 3 :% (o0 +0y ol —n (9y-0,4+m?)] x e(0y— 0,1, (23 7)
er . / . /
X (7P +077 0 =P 0] (O T =0 )a X i[s A5 ] (2 2") X i[0 A o] (y; 2)

+ (3 permutations) .
(24)

As can be seen from Figure 3, these contributions involve an internal massive scalar
propagator in the loop. This poses an obstacle to regarding expression (24) as a correction
to the vacuum polarization. This is overcome through the “Donoghue Identities” of Appendix
C C, which degenerate the massive scalar propagator to a Dirac delta function, and reduce
expression (24) to the same 2-point form (12) as the contribution from the original vacuum
polarization. The part of expression (24) which is independent of the gauge parameters da
and 6b reaches the desired form through the Donoghue Identiies (C.1) and (C.2).
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As an example of the part of (24) proportional to da, we consider the term,

K 5 v | au v 2 3 ;
da x 5 [%Lﬁy +0, 0, —n* (8y-8y+m2)] X e(0y— 0y )i A (3 y) 5)
el{ o (o N0 g . 8 80' .
X 5 (P07 40770 =P ] (0w T — 0w L)a X i[s A4 ] (z; 27) xnyp%zA(y;x’) )
The derivative 0, acting on the massless propagator ¢A(y; 2) can be partially integrated to
act on the massive propagator iA,,(z;y),

—(0,+9,), [558§+5585—n“” (8y-0,+m?)] = —5Zi5D(x—y) : (26)

The remaining factor of 9°/9? can be reduced using,
iA(z;2') x %ZA(:C; o) = (0T {iA )} (27)
PI{[iA(z; 2]} — —2(D—4)[iA(x;2)]? . (28)

From expression (B.8) for the graviton propagator we see that there are two parts pro-
portional to §b. The second term with 9,0, /0% can reduced using relation (25). The other
term requires additional effort,

—20b x = [043+3,05 —n (9,-0,+m) ] x (8, =0,) i (3) )
29

er . / a aCT . /
X o [0 a0 =] (O 1 =0 ) X5 ) (3 27) X, =5 i (3 21)

To reduce this term we distinguish between y* derivatives acting on the external leg 55), the
massive propagator (9!') and the massless propagator of the graviton (9,

o+l + 0l =0. (30)

Now note that,

M [010+008 = (,-0,+m%)] = (2=m?) + (2—m?) — P —2m>. (31

Y

The factor of (55 — m?) vanishes due to the external leg being on shell. The next term in
(31) degenerates the massive scalar propagator,

(82— m?)il(asy) = 67 (2—y) (32)

Of course the factor of 55 eliminates the troublesome inverse D‘Alembertian, whereupon the
Donoghue Identity (C.3) completes the reduction. The final term in (31) requires the newly
Donoghue Identities (C.5) and (C.6).

Putting everything together gives the final result for Figure 3,

e2k?

iV3(z;2") = Cs(da, 0b) X T(&Bi—&v D) (O L =0 1) x [iA(2; 2)]?, (33)

where C3(da,0b) = —32 — 8Ja — 20b.



2.4 Source-Observer Correlations
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Figure 4: These diagrams show the contributions from correlations between the source (primed) and
observer (unprimed). Dashed lines represent massive scalars, wavy lines represent photons and curly lines
represent gravitons. These graphs have the same topology as Bjerrum-Bohr’s Diagram 2 [16].

Figure 4 shows contributions from correlations between source and observer. (Correlations
between the source and itself, or the observer and itself, do not correct the exchange photon.)
The analytic form for these diagrams is,

(Figure 4) =" (30 + 3,04~ (3,0, +m%)] (0. ~0.)" i)

< A0~ (B0 +m?)] (B —00) id () OV

2
X [, As] (x5 2") X[, o] (Y3 y') + (3 Permutations) .

Note that the two permutations on the bottom line of Figure 4 contain an extra minus sign
due to 2-scalar-1-photon vertex.

The part of (34) independent of da and b is accomplished by the Donoghue Identity
(C.4). The reduction of the gauge dependent parts is similar to what we have seen before
with one difference: after using relation (26), one must combine parts from the various
diagrams to eliminate some troublesome terms. The final result for Figure 4 is,

e k2

Z‘/;l(xa lj) = C4((SCL, 5b) X T(axi _81‘ T) ’ (a:c’ \L _890’ T) X [ZA(ZQ ZL’I)]2 ’ (35)

where Cy(da, 0b) = £ + 0 - da + 26b.



2.5 Force Carrier Correlations with Source and Observer
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Figure 5: These diagrams show the contributions from correlations between the source (primed) or observer
(unprimed) and the force carrier. Dashed lines represent massive scalars, wavy lines represent photons and
curly lines represent gravitons. These graphs have the same topology as Bjerrum-Bohr’s Diagram 6 [16].

The next contribution comes from correlations between the source or observer and the pho-
ton. The Feynman diagrams are given in Figure 5, and the analytic expression is,

(Figure 5) = (950, +3,0) =0 (3,0,+m?)] (9, —0.) il (a:y)
0 o ,
57 el (w:2) 521l Do) (23 27) x e (O L O 1)? (36)

X [ e] + (3 Permutations) .

X /dDz(—mV'YMT’”)

The reduction process is almost same as in Section 2.3, the chief difference being the extra
photon propagator. We extract a D’Alembertian and then use (B.1) to eliminate this and
the integration over z#. The final contribution from these diagrams is,

e2k?

ZV},(IE, lj) = C15(6(% 5b) X T(axi _81‘ T) ’ (a:c’ \L _890’ T) X [ZA(:L’7 ZL’I)]2 ’ (37)

where C5(da, 0b) = 12 + 12d5a + 44b.

2.6 Gravitational 1-PR Vertex Corrections

The final contribution to the amputated 4-scalar function comes from diagrams in which a
loop of photons corrects one of the vertices and the graviton carries the exchange force. The
relevant diagrams are shown in Figure 6.
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Figure 6: These diagrams show the contributions from the 1PR (one particle reducible) diagrams corre-
sponding to gravitational vertex corrections. Dashed lines represent massive scalars, wavy lines represent
photons and curly lines represent gravitons. These graphs have the same topology as Bjerrum-Bohr’s Dia-
gram 5 [16].

The analytic form for first two diagrams is,
Vial:2') =2 (007 44081 02 L= (0,10, L?)] xe (=)

x e (9y —0y) iDy (s y) /dDz (—if@V“"smp")%i[eA(;](z; x’)a;;i[,yAg](z; z')

X [, Do) (x; 2) + (Permutation) .

(38)
The second two diagrams are,
Voo (w3 27) % x % (014 0% L4021 O L= (021 O L4m?) | x (—2ien )
. aTpo a . / a .
[PV ) A ) Al ) (39)

X [, Apo)(x; 2) + (Permutation) .

Whenever possible, it is prudent to partially integrate and reflect a derivative through the
graviton propagator to act on the 2-scalar-1-graviton vertex. One then makes use of the
relation,

(D0 L 402 1), (027 07 L4071 O L= (0x 1 Da L 4m7)] = 0. (40)
The rest of the reduction is same as in earlier sections. The final result is,
ek
Vil ') = ColBa,30)x (0, L=001) (D L0 1) < i (5" (41)

where Cg(da, 6b) = —18 40 - da — 46b.
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2.7 Sum Total

As we have explained, the Donoghue Identities of Appendix C allow us to cast each contri-
bution to the amputated 4-scalar function in the form,

2,2

Vil 2') = Col6a, 66) x (0, L —0, 1) (Bar L —0u 1) X i3 (42)

where the gauge dependent constant is C;(da, 6b) = O; + A;0a + B;db. Table 1 summarizes
our results.

) Description O; A; B;
0 Vacuum Polarization —i—% +2 0
1 Circular Diagram +16 +10 —4
2 Vertex-Force Carrier —12 —16 +4
3 Triangular Diagrams —32 -8 -2
4 Box Diagrams —l—% 0 +2
5 | Source, Obs.- Force Carrier | +12 +12 +4
6 Graviton 1PR Vertex —? 0 —4

Total +2 0 0

Table 1: The entry on the i*" row represent the gauge dependent factors for the contribution
coming from the diagram in Figure :.

Of course the point of the exercise is to total the O;’s, and to show that the terms
proportional to da and db sum to zero,

21%2

6
S W) = + 2 x S0, -0 1) -0 Nx AP . @)
=0

We then reverse the steps that led from expression (8) to (12) in order to conclude that the
gauge independent vacuum polarization from a single graviton loop is,
40 K2 1

i) (25 2") = 3 X 1674 [77#1’82_8#81,} Ag2D—2

(44)
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3 Conclusions

The main result of this paper is that including quantum gravitational corrections from the
source which disturbs the effective field, and from the observer who measures the distur-
bance, eliminates the massive gauge dependence of the quantum-corrected Maxwell equa-
tion (1) that was evident in the multiplicative constant Cy(D, a,b) of expression (4). After
renormalization, and application of the Schwinger-Keldysh formalism [10], our final result
for the one loop effective field equation is,

5hG "

o, F"*
() + 48723

/d4x’H(At—Ar){ln[u2(At2—r2)]—1}8;F”“(x’) = Ji(z),  (45)

where At =t—1t', r = ||# — 2’| and we have restored the factors /& and ¢. Although equation
(45) is not local, it is real and causal.
For a static point charge J*(t, %) = ¢6",0°(¥—1") the quantum-corrected Coulomb poten-

tial is,
q 10rG 9
This result agreees with Bjerrum-Bohr [16], but we now have the ability to solve for quantum
gravitational corrections to the full range of problems one encounters in classical electrody-
namics. These corrections are bound to be quite small under ordinary conditions, although
the potential for slightly super-luminal propagation is noteworthy [11], and was predicted
long ago [19, 20].

Although it is nice to finally be able to include quantum gravitational corrections to
Maxwell’s equations on flat space background, we could always have inferred physics from
scattering amplitudes. The real necessity for our method is for studying quantum gravita-
tional corrections to electrodynamics in cosmology. These effects can be significant, espe-
cially during the epoch of primordial inflation. For example, when the simplest de Sitter
background gauge [21, 22] is employed to compute single graviton loop corrections to the
vacuum polarization [23] one finds corrections to the Coulomb potential [24], and to the
photon field strength [25] which become nonperturbatively strong at large distances and late
times. When the vacuum polarization is computed in a much more complicated, 1-parameter
family of gauges [26], one finds the same time dependence for the photon field strength, but
with a different numerical coefficient [27], signaling a slight gauge dependence which must
be eliminated to infer reliable results. First order corrections to the graviton propagator in
the de Sitter generalization of the gauge (2) have been derived recently [28]. This should
facilitate extending the current work to de Sitter background.
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A Appendix: The Vertices

o 2-Scalars-1-Photon Vertex

o 2-Scalars-2-Photon Vertex

o 2-Photon-1-Graviton Vertex
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B Appendix: Propagators
The massless scalar propagator iA(z;z") obeys the equation,
O*iA(z;0") = i6P (z—2) . (B.1)

Even in D spacetime dimensions it has a simple expression in terms of Lorentz interval

Az?(z; 7)),
. / F(Q - 1) 1 %_1
iA(z;2') = 4;[)/2 (Aﬂ) , (B.2)

where we define,
A (z;2) = |2 — 2| = ([t — '] —ie)” . (B.3)

The massive scalar propagator iA,,(z;x’) obeys the equation,
(0 —m?)iA\, (x;2') = 0P (z—2') . (B.4)

It can be written in terms of Bessel functions but the expression itself is not necessary for
purposes. It turns out that we can always eliminate iA,,(x;2’), either with the propagator
equation (B.4) or by recourse to one of the Donoghue Identities given in Appendix C.

The photon field also requires gauge fixing. The most general Poincaré invariant gauge
fixing functional depends upon an arbitrary parameter c,

1
Lenmax = —%(8%4“)2 : (B.5)

The associated propagator can be expressed using the massless scalar propagator (B.2),

al(aia!) = i + =) % i) (5.6)

The longitudinal term proportional to ¢c—1 presumably drops out due to current conservation
but we shall simply adopt the ¢ = 1 Feynman gauge that Bjerrum-Bohr employed [16],

ilpAs] (5 2") = npeiA(z;2) . (B.7)

The most general Poincaré invariant gauge fixing function (2) depends on two parameters
a and b # 2 (for b = 2 the gauge fixing functional degenerates to the square of a linearized
Ricci scalar). To simplify the analysis we work only to first order in the perturbations
a=1+daand b =1+ b,

2 po 40a0,1)(p0r)
D—2 0?

Z.[MVAPU]("E; [L’,) = 2nu(pno)u -
(B.8)

9,0 @Lay)

—26b (nwj 820 + Npor 72 iA(z; ') .
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C Appendix: The Donoghue Identities

What we term the “Donoghue Identities” are not equalities but rather relations for extracting
the nonlocal and nonanalytic parts of amplitudes which can contribute to long range forces.
As originally derived by Donoghue and collaborators [12, 13, 18], they included nonlinear
classical effects as well as quantum effects, but we have retained only the parts relevant
for quantum effects. When expressed in position space these relations all have the effect
of degenerating massive propagators to delta functions. We required six such relations, of
which the final two (those involving factors of 1/9%) were derived by us for this project:

e This concerns 3-point diagrams with no derivatives acting on propagators,

0" (x—y)

A . A . /'A R,
iAp (25 9)iA(x; 2" )iA(y; 2") — o2

[iA(z;2")])? . (C.1)

e This concerns 3-point diagrams with a derivative acting on a massless propagator,

0P (z—y)

021 i )i ) — 02 [

[iA(2; x')]Z] . (C.2)

e This concerns 3-point diagrams with two derivatives acting on a massless propagator,

L0siA )] 1A ) A ) — {000t P DL L no, 10,
+8;(8m+8y)“> — in“”(ﬁﬁayf} {L 2(;;2_” [iA(x;x’)]z} :
(C.3)

e These concern 4-point diagrams with no derivatives acting on the propagators. The
first is relevant to the box diagrams as shown on the upper part of Figure 4. The
second is relevant to the cross diagrams as shown on the lower part of Figure 4,

m? (0, +0,)* [IAn(z;9)iA(y; ¥)iAnL(y; 2 )iA(2'; )]
— (1= ) il P -7 )

20,402 i (3 )i Ay 2 )i (' ¥ A (s )]
m) 1A (s 257 (r— )67 (o — )

(C.4)

— | 1+

< 3m?

e This concerns 3-point diagrams with a derivative and an inverse Laplacian on a massless
propagator,

. . / o /
1A () iA(x; )EA(y; x')
0" (x—y)

U (@t o 1 ., 2 N
el 5+ g O] | T A )
(C.5)
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e This concerns 3-point diagrams with two derivatives and an inverse Laplacian on a
massless propagator,

oro”
B (3 )iA (w50 = Ay )
1 1 1 ,
— [57 - 28585 0+ 0, + 5 (940, +0,)
v n QY Z(SD([L’—y) . L I\12
#0200+ 0)1) = o0+ 0, P0rr] | T i w2
(C.6)
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