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ABSTRACT

The incorporation of unnatural amino acids (Uaas) has provided an avenue for novel chemistries
to be explored in biological systems. However, the successful application of Uaas is often
hampered by site-specific impacts on protein yield and solubility. Although previous efforts to
identify features which accurately capture these site-specific effects have been unsuccessful, we
have developed a set of novel Rosetta Custom Score Functions and alternative Empirical Score
Functions that accurately predict the effects of acridon-2-yl-alanine (Acd) incorporation on protein
yield and solubility. Acd-containing mutants were simulated in PyRosetta, and machine learning
(ML) was performed using either the decomposed values of the Rosetta energy function, or
changes in residue contacts and bioinformatics. Using these feature sets, which represent Rosetta
score function specific and bioinformatics-derived terms, ML models were trained to predict
highly abstract experimental parameters such as mutant protein yield and solubility and displayed
robust performance on well-balanced holdouts. Model feature importance analyses demonstrated
that terms corresponding to hydrophobic interactions, desolvation, and amino acid angle
preferences played a pivotal role in predicting tolerance of mutation to Acd. Overall, this work
provides evidence that the application of ML to features extracted from simulated structural
models allow for the accurate prediction of diverse and abstract biological phenomena, beyond the

predictivity of traditional modeling and simulation approaches.



INTRODUCTION

Expansion of the genetic code by incorporation of unnatural amino acids (Uaas) has helped
to facilitate the study of biochemical phenomena which would otherwise be elusive.!* Although
Uaa incorporation is often used for the direct expression and purification of proteins with specific
post-translational modifications, where the site would be dictated by biological relevance, Uaas
are also used for photo-crosslinking, spectroscopic labeling, and biorthogonal conjugation, where
there are many options for the location of the Uaa.>® Various studies, including our own, have
demonstrated that the specific incorporation site of a Uaa has dramatic impacts on both the
solubility and yield of the resultant mutant protein.'*!> However, identification of positions which

will tolerate the newly incorporated Uaa is nontrivial.

A predictive method which can rapidly and accurately identify sites for Uaa incorporation
that maximize mutant protein solubility and yield could dramatically increase the use of Uaas in
both academia and industry. Several computational efforts have focused on accurately predicting
structural aspects of Uaa mutant proteins, such as amino acid rotameric or backbone orientations.'*
16 Others have concentrated on predicting interaction phenomena such as protein-protein binding
affinities'”!® or energies of hydration'’, but none have successfully predicted more complex
phenomena such as Uaa protein yield and soluble fraction. We believe the lack of attention
dedicated to these predictions stems from both the absence of a robust dataset that contains uniform
information regarding a protein’s native structure, solubility, and yield and a lack of evidence
supporting the predictability of such phenomena.!® Ultimately, in lieu of an effective predictor,
Uaa incorporation has often been restricted to sites where native residues possess similar chemical
characteristics to the Uaa of interest® or to mutationally tolerant sites identified prior to Uaa

incorporation.?! Alternative approaches employ empirical screening of sites, often through the use



of a green fluorescent protein (GFP) fusion reporter system to assess Uaa incorporation
efficiency.”>? The former approaches are very limiting in the number of positions for Uaa
incorporation, and the latter approach can require effort comparable to or greater than the effort
needed for the eventual experiment with the Uaa-labeled protein. Thus, there is a great need for a
facile approach which can identify sites in proteins that will tolerate mutation to Uaas. A
demonstration of a simple predictive method may also encourage community wide data collection
and result in a sufficiently large and varied dataset which would serve as a major step for improve

Uaas predictability.

Previously, we collected the largest uniform dataset that captures the soluble yield, total
yield, and soluble fraction for a singular unnatural amino acid (acridon-2-ylalanine, Acd) in a pair
of protein targets.!° During that investigation, we attempted to develop a simple heuristic descriptor
which could predict the effects of Uaa incorporation on these measurables, but were unsuccessful.
Acd, a blue wavelength fluorophore, was selected for this study because of its ability to be used as
an intrinsically fluorescent Uaa, its ability to be assayed quickly and cleanly using gel-
electrophoresis, and its many uses in in vitro assays such as fluorescence polarization and FRET
experiments as well as recent applications in live cell imaging.?** Acd has been shown to fulfill
these functions at a variety of positions in proteins and exemplifies the problem of choosing an
insertion site that is tolerated by the target protein. Our previous effort focused on investigating
the ability of structure-independent bioinformatics-based features (BLOSUMG62 matrix,
evolutionary conservation, measures of local hydrophobicity, etc.) to act as heuristic predictors of
the soluble fraction for various Acd-containing mutants of the bacterial proteins LexA and RecA.!"°
However, we demonstrated that none of the tested structure-independent bioinformatics features

individually acted as reliable predictors of tolerability, as none displayed a Pearson or Point-



Biserial correlation coefficient (R, calculated with SciPy) above 0.25 with the Acd mutant soluble
fraction data for LexA or RecA independently, or for the combined set. Interestingly, the most
useful features identified were categorical variables corresponding to the domain and secondary
structure in which Acd was incorporated. Although these heuristics seemed to be relatively
descriptive for LexA, which is composed of two isolated domains with different secondary
structures (an a-helical N-terminal domain and a [(3-sheet C-terminal domain connected by a
flexible linker), the trend did not hold for RecA, which comprises multiple mixed o/f3 domains.
Lastly, we investigated the utility of using the scores of structures resulting from Backrub
simulations of the Acd mutant proteins in Rosetta, which were again unable to act as effective
predictors of tolerability to Acd.'® Overall, this suggested that additional attention was required to
identify predictive features for this dataset that could support generalization, prior to developing

higher throughput methods for expanding the dataset.

Herein, we focus on establishing an accurate method for predicting Acd mutant protein
soluble fraction (soluble yield divided by total yield). This metric helps to report on whether
mutation of a residue to Acd will be tolerated and represents a class of experiments that has evaded
predictive methods in the past. Previously, we demonstrated that the predictivity of Rosetta
methods can be dramatically improved through the use of RCSFs.3°3! RCSFs, or Rosetta Custom
Score Functions, rely on generation of structural models in PyRosetta, which are subsequently
scored with the Rosetta full atom score function (beta_nov_16)3?, a linear combination of energetic
score terms (Lennard-Jones potential, electrostatics, implicit solvation etc.) that serves an
analogous role to forcefields in molecular dynamics (MD) simulations. Isolated score terms are
then subsequently re-combined through machine learning (ML) to generate an RCSF (Figure 1A).

Given the adaptability of RCSFs, we sought to investigate their utility in this problem that has



previously proved difficult. First, we focused on determining if the constitutive energies of the
Rosetta score function are more correlative than the structure independent bioinformatics terms
we previously tested. We also wished to test the descriptive capacity of combining these terms
through multiple linear regression (MLR). Subsequently, we sought to determine if the correlative
nature of these features was unique to the energetic terms in Rosetta, by investigating a set of
Empirical Score Terms (ESTs) which are based on contacts and structure independent
bioinformatics. After identifying both Rosetta and EST features that demonstrated significantly
improved correlation, we then used ML to train RCSFs and Empirical Score Functions (ESFs) and
compare their ability to predict Acd mutant protein solubility and yield. Lastly, we performed
feature importance analysis of the most predictive models from both the RCSF and ESF methods
to see which features imbue predictivity in order to better understand our system. Overall, this
effort demonstrates that such ML approaches are able to predict complex phenomena related to

Uaa incorporation.

METHODS

In order to simulate the Acd mutant LexA and RecA proteins, we first preprocessed and
energy minimized the LexA and RecA protein structures (from PDB IDs 1JHH* and 3CMW?¥*,
respectively) as detailed in the Starting Structures section of the Supplementary Information.* The
energy minimized parent structures of LexA and RecA were then mutated to incorporate Acd at
previously experimentally-tested positions using PyRosetta. The Rosetta amino acid params and
side chain rotamer library files used to make Acd mutant proteins were those used in our previous

work.!® Following mutation to Acd, the structures were subjected to five independent cartesian



FastRelax simulations (protocol to achieve low-energy protein backbone and side-chain
conformations similar to the starting conformation through iterative stages of packing and
minimization, with increasing repulsive weight in the scoring function over the course of the
simulation), where only residues with a an alpha carbon to alpha carbon (Co-Cy) distance within
8 A of Acd were allowed to be refined.3' These “local relaxes” allow for the surrounding residues
of the mutation site to accommodate the newly incorporated Acd residue and have previously been
shown to be a good sampling scheme for protein design.’® Every position in LexA and RecA which
was mutated to Acd was also locally relaxed about the wildtype (WT) residue in order to generate

the control scores.

The locally relaxed structures were scored with the beta_nov16 score function, selected for
its previously demonstrated efficacy, and the energy terms from the score function were averaged
over the five simulations on a per residue basis.>!#23¢ Score differences (deltas) were computed for
the total score function and for each term between the average weighted scores for the Acd mutant
and the corresponding WT values. Features for RCSF training were then passed as the score deltas
at the mutation site as well as the average of the score deltas of the surrounding locally relaxed

residues (Figure 1A).

In addition to computing Rosetta energy features from our structural models, we sought to
construct a second, more generally applicable, feature set for ML comprised of contact-based
terms."® Relevant contacts (pairwise atom distances < 4 A) were computed from our structural
models on an intra- and inter-residue basis using the biopython library.?” The score deltas
corresponding to the change in contacts upon mutation were used as features for training ESFs.
The contact-based features were supplemented with structure independent bioinformatics features

which provide information of evolutionary conservation and various measures of physiochemical



properties (BLOSUM matrices, conservation terms, measure of hydrophobicity etc.).
Supplementary Table 3 describes each of the contact-based terms as well as the structure

independent bioinformatics features in our ESF feature matrix.

The experimental dataset was prepared for ML by first assigning a response class to each
sample based on the distribution of the dependent variable. In Figure 1B, we present the spatial
distribution of the Acd mutants and the effect they have on LexA and RecA solubility. Response
class assignment was performed by identifying cutoffs which naturally balance the distribution of
actives and inactives of the set. For soluble yield, total yield and soluble fraction the response
classes were balanced at 520 nM, 1600 nM, and 39%, respectively. Next, to ensure that our ML
models were not overfit or the product of specifically engineered hyperparameters, we created a
large, well-balanced holdout dataset for validating our models. The complete dataset spans 51
datapoints where 32 points are mutations in LexA and the remaining 19 are from RecA.!° The
holdout dataset (not seen by the ML algorithms during hyperparameter tuning) was constructed to
represent 20% of the total dataset, comprising equal amounts of data from both proteins with a
representative distribution of soluble fraction values. Members of the holdout datasets can be
found in Supplementary Table 1 and on our GitHub (https://github.com/ejp-

lab/EJPLab_Computational_Projects/tree/master/RML_ACD/Dataset).

Given the large number of computed features to be used in ML, dimensionality was
reduced by selecting important features with univariate statistical analysis with the SelectKBest
module in scikit-learn.’® The following ML algorithms were employed using the respective default
parameters within scikit-learn to coarsely assess the effect of prediction accuracy as a function of
the number of features: Logistic Regression (LOG), Kernel Ridge Regression (KRR), Linear

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machines



(SVC), K Nearest Neighbors (KNN), Bernoulli Naive Bayes (BNB), Gaussian Naive Bayes
(GNB), and Gaussian Process Classification (GPC).*®* The optimal number of features were
selected as the combination of features which showed the highest accuracy following stratified
five-fold cross-validation, or CV5. The holdout datasets were validated by the aforementioned
algorithms that were tuned using stratified CV5 in an exhaustive grid search. Finally, tuning

parameters can be found in Supplementary Tables 10 and 11.

The metrics we have used to validate the performance of our models are accuracy,
precision, recall, and the F1 score. Accuracy scores represent the ratio of correctly predicted
observations (true positives and true negatives) to the total number of observations. Precision is
defined as the ratio of the number of correctly predicted positives to the total number of positive
observations predicted. Recall is used to assess how many of the positive observations were
identified and is given by the ratio of correctly predicted positives to total positives. Finally, the

F1 score is the weighted average of precision and recall.

RESULTS

In our previous study, analysis of the backrub simulated structures demonstrated that
neither structural deviations nor total energetic differences were correlative with any of the
experimental parameters of interest.! To confirm that this was not an artifact of the sampling
approach previously utilized, the experimental data from our previous study were simulated in
PyRosetta as described in the Methods Section.!” In this study, alpha carbon root mean squared
deviation (CaRMSD) analysis was performed for locally relaxed structures and demonstrated that

across the sets of independent simulations, each Uaa position converged to a singular structure in



both the Acd mutant and WT simulations. The largest observed CaRMSD within a simulation set
was 1.37 A. Larger deviations of up to 4.07 A were observed between the lowest energy member
of a set of Acd mutant and WT simulations for a given position. Linear regression of CaRMSD
values demonstrated no correlation with any of the dependent variables (all R<0.3, Supplementary
Figures 1-3). A similar analysis was performed using the difference in Rosetta total score in
Rosetta energy units (REU) between the Acd mutant and WT simulations and again no correlation
between REU and the dependent variables was observed (all R<0.3, Supplementary Figures 4-6).
This confirmed that traditional analyses such as RMSD and changes in total energy are insufficient

in predicting these phenomena, as previously observed.?’-!
Energetic Components Support Descriptive Modeling

Next, we analyzed the correlations between Rosetta score deltas and the values from the
experimental dataset and attempted to describe the system through linear regression. We observed
that many of the score delta features were individually more correlative than any of the structure-
independent bioinformatics terms analyzed in our previous efforts (Supplementary Tables 6 and
7).1° Table 1 displays the ten features from the Rosetta score function that are most correlative with
Acd mutant protein soluble fraction. We identified that the most correlative terms were energetic
changes at the Acd incorporation site, demonstrating the importance of our structural modeling.
Given the correlations of the independent Rosetta score terms, we constructed a set of multiple
linear regressions (MLRs) in which we performed backwards selection to arrive at a small number
of features which strongly describe the dependent variables. Table 2 details the elements of the
MLRs including the feature set, dependent variable, number of model features, R, and f statistics
for the models. The MLR analyses convey the ability for small numbers of Rosetta derived features

to describe each protein subset for all three dependent variables above an R of 0.725. Additionally,
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we observed that unlike our prior study where the most predictive terms (protein domain and
secondary structure) were not capable of being generally applied to both protein datasets, these
MLRs are capable of effectively describing Acd mutant protein soluble yield, total yield, and

soluble fraction in the combined dataset (Table 2).

Detailed Structural Analysis Provides Basis for Correlation

Following our investigation of Rosetta features, we performed the same analyses for a set
of ESTs, to determine if more generalizable terms could be used in a similar approach. Although
the structure-independent terms were unable to achieve a Pearson correlation above 0.25, the new
contact-based ESTs were able to achieve correlations up to R values of 0.503. Table 3 displays the
ten ESTs that are most correlative with Acd mutant protein soluble fraction. Interestingly, we
observed that the most correlative terms directly report on changes in contacts due to Acd
incorporation. These results closely match the most correlative Rosetta terms as they also reported
largely on the Acd mutation site. Moreover, we observed that EST MLRs (Table 4) were able to
describe the soluble yield and soluble fraction datasets similarly to the Rosetta terms MLRs (Table
2), but were significantly less correlative with the total yield dataset. Overall, we were highly
encouraged that this approach might be generalizable beyond the use of Rosetta-specific score
terms based on the correlations of the contact and bioinformatics-based terms computed from the

PyRosetta generated mutant structures.

RCSF and ESF Features Produce Accurate Classifiers

Since our Rosetta and EST sets were significantly more correlated with soluble fraction
over the previously explored structure-independent bioinformatics terms, we next focused on

assessing the maximal utility of these terms by attempting to classify positional tolerance of Acd
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mutation based on prediction of soluble fraction. Since the number of potential features is larger
than the dataset, we reduced dimensionality through feature selection with the SelectK Best module
in scikit-learn. An upper threshold of 10 features was set to avoid overfitting. Furthermore, we
were interested in understanding which ML methods provide the most predictive power for each
experimental value with these features, so we tested a wide variety of algorithms. Feature selection
coupled with untuned model prediction showed varying results for the optimal number of features
and those that were selected for each classification task can be found in Supplementary Tables 8

and 9.

Following feature selection, each feature selected ML model was tuned using exhaustive
grid searching (stratified CV5) to identify the optimal hyperparameters for the soluble yield, total
yield, and soluble fraction models for both feature sets. First, we focused on generating RCSFs
from Rosetta score terms and analyzed confusion matrices (Figure 2) for RCSF cross validation
and holdout prediction across every dependent variable. Additionally, a dummy classifier is
presented for a baseline comparison (Figure 2A), which performed as expected given the stratified
criterion with a prediction training accuracy of ~53% and training precision of ~50%. The soluble
yield RCSF (Fig 2B) demonstrated a training accuracy of ~81% with a precision of ~88%. Very
similarly, the total yield RCSF (Fig 2C) was predicted at ~81% accuracy, but with a slightly lower
precision of ~78%. Lastly, our soluble fraction RCSF (Fig 2D), predicted with a training accuracy

85.4% and precision of ~81%.

The ability of the RCSFs to serve as practical tools for prediction of Acd mutant protein
yield and solubility requires accurate prediction of never-before-seen data. Again, for comparison
to random classification, a dummy classifier (Fig 2E) is shown which predicted the holdout with

an accuracy of 30% with 20% precision. Figure 2E-H show the confusion matrices for the
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prediction of the holdout datasets for every dependent variable. Here, both the soluble and total
yield RCSFs (Fig 2F and 2G) demonstrated 90% holdout accuracy and perfect precision. The

soluble fraction RCSF (Fig 2H), predicted the holdout at 90% accuracy with ~83% precision.

To confirm the generalizability of generating predictive machine learned score functions
from sets of correlative terms, we created an identical set of ESFs from the ESTs. Similarly to the
RCSF analysis, Figure 3A-D displays confusion matrices for the ESF cross validation and holdout
prediction across every dependent variable, along with dummy classifier metrics. The soluble yield
ESF (Fig 3B) demonstrated a training accuracy of ~71% with a precision of 75%. The total yield
ESF (Fig 3C) predicts at ~66% accuracy, but with a low precision of 60%. Additionally, our
soluble fraction ESF (Fig 3D), demonstrated a training accuracy ~66% and precision of ~78%.
Moreover, analysis of the confusion matrices for the prediction of the holdout datasets of the
dummy classifier (Fig 3E) and ESFs (Fig 3F-H) demonstrated that the ESFs performed similarly,
albeit slightly less effectively than the RCSFs. The soluble yield ESFs (Fig 3F) demonstrated 80%
holdout accuracy and perfect precision, while the total yield ESF (Fig 3G) and the soluble fraction
ESF (Fig 3H), both predicted the holdout at 70% accuracy, with 85.7% and 100% precision
respectively. Table 5 displays a unified table of classification statistics for RCSFs and ESFs across

all the dependent variables.

Structural Accommodation and Desolvation of Acd Convey Predictivity

Finally, after demonstrating that RCSFs and ESFs can be used to accurately classify Acd
mutant protein soluble fraction, we focused on identifying which features were responsible for
generating this predictive accuracy. Since extraction of model feature importance for nonlinear

algorithms other than decision tree-based methods is not readily available in scikit-learn, we
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performed model feature importance analyses on LOG models (Fig. 4, Supplementary Tables 12-
15). Analysis of the feature importance in the soluble fraction RCSF LOG model demonstrated
that the most important Rosetta score terms were fa_atr_Site, omega_Site, fa_dun_rot_Site,
fa_intra_atr_xover_8A, lk_ball_bridge_uncpl_Site, and fa_intra_elec_Site (Fig. 4A). These terms
represent the energies associated with pairwise van der Waals attraction, the Acd residue specific
backbone omega dihedral angle and Acd rotameric preferences, the intra-residue van der Waals
attraction of the contacting sphere, the uncoupled bridging contribution of the Lazaridis- Karplus
solvation of Acd, and the intra-residue electrostatic energy of Acd respectively. The remaining
selected terms corresponding to fa_dun_rot_8A, 1k_ball_8A, and fa_intra_sol_Site were used to a
significantly lesser extent than the most import feature (<10% of fa_atr) and correspond to the
internal energy of the sidechain from Dunbrack’s statistics of residues in the contact sphere, the
anisotropic contribution of the Lazaridis-Karplus solution of the contact sphere and intra-residue

solvation for the Acd site.

Analysis of the feature importance in the soluble fraction ESF LOG model demonstrated
that all the selected features were similarly important, except for np_sc_sc_inter which had an
increased importance. The remaining features were blosum62_his, total_contacts, RSA, np_total,
np_bb_sc_inter, and delta_t_d_m (all terms detailed in Supplementary Table 3). The majority of
these terms (np_sc_sc_inter, total_contacts, np_total, and np_bb_sc_inter) are nonpolar contacts
computed between the Acd and the surrounding residues derived from our PyRosetta modeling.
RSA is the relative accessible surface area of the residue which is to be mutated to Acd and are
also a function of the residue’s contacts.? The blosum62_his and delta_t_d_m are the BLOSUM
values associated with the mutation site residue when mutated to histidine, and a measure of the

change in peptide meting temperature vs glycine.*#! As was observed during feature correlation
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analysis, the selected RCSF and ESF features are similar and represent properties associated with

the ability of a protein to accommodate the large aromatic sidechain of Acd.

DISCUSSION

Our identification of Rosetta score terms and ESTs as correlative features with Acd
incorporation tolerability based on soluble fraction and the combination of these terms through
machine learning to generate RCSFs and ESFs has several key advantages over the methods
previously employed. Previously, we hypothesized that positions which had low soluble fractions
(Fig. 1B, amino acids colored in red) would show greater structural deviations between the
different local relax simulations in the Acd mutant simulations. Additionally, we expected that the
Rosetta total score would reflect structural perturbation induced by Acd incorporation. Although
we did not observe correlations between Acd mutant protein soluble fraction and either the global
structural deviations or the total energy computed, we did see striking correlations for local
physical interactions and energies associated with perturbations at and around the mutation site.
These observations are consistent with our previous analyses predicting the change in energy of
mutations at protein-protein interfaces and positions in peptides that imbue proteolytic resistance
upon backbone thioamidation.’*3! Moreover, this phenomenon was reflected in the ESTs as they
too demonstrated that decomposed features were more correlative than their total feature
counterparts (i.e. number of sidechain-sidechain nonpolar contacts rather than total number of
contacts). Additionally, we observed that ESTs computed from our structural models were more
correlative than the structure independent bioinformatics terms, supporting the fact that

predictivity is rooted in the local structural changes more generally, and is not just attributable to
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Rosetta energies. The generalizability of this approach overall can also be supported by others who
have used energy-based machine learning methods that are not RCSFs.*#* For example, Adeshina
et al. minimized protein ligand complexes with Rosetta and used a subset of energies along side
other features in an effort to reduce the false positive rate in ligand virtual screening.*> Outside of
the Rosetta energy function, Rauer et al. simulated molecules in various solvents using MD in
order to predict hydration energies.* Taken together, these studies along with our investigations
demonstrate the strong predictivity of energy-based and empirical ML models and support the idea
that many different computational platforms can likely be used to generate predictions about Uaa

incorporation if ML is applied to perturbation of local structural features.

Beyond delivering significantly improved predictive capacity, the structure-based features
from this investigation were able to describe the important properties of each site as related to Acd
tolerance. This is intriguing as it begins to uncover the mechanisms behind the clear differences in
total yield, soluble yield, and soluble fraction observed, even when attempting to make
conservative mutations (i.e. Phe-to-Acd) or in mutating the same residue at different sites (i.e.
LexA Phe 12 vs. LexA Phe 111). Consulting chemical intuition, we would hypothesize that
positions which tolerate mutation to Acd would need to accommodate backbone and sidechain
rotameric states capable of desolvating the bulky, aromatic Acd side chain. If they are incapable
of doing so, the Acd side chain will be undesirably exposed to solvent or forced to clash with other
residues. Indeed, this chemical intuition informed our previous attempts to determine correlations
to individual properties,'® and although these were not able to predict tolerability, they are
nonetheless related to the top RCSF and ESF features. Many of the top ESF features correspond
to hydrophobic contacts, solvent accessible surface area, and measures of hydrophobicity. At the

same time, the top RCSF features correspond to van der Waals energies, peptide backbone angle
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preferences, and solvation energies. If we consider an example of mutation of Phe to Acd at
position 12 (tolerated) versus at 111 (not tolerated), we can observe these features in action. At
position 12, Acd is buried and adopts a clash free conformation. At position 111, while Acd is
fully desolvated, it is too large and highly clashed with surrounding residues. A different example.
where simply considering the identities of the native residues would have led to incorrect
predictions of tolerance but our models allow accurate classification are Ser60 and Tyr98. Naively,
one would expect a Tyr to Acd mutation to be better tolerated than a Ser to Acd mutation since
Tyr is a bulky aromatic (hydrophobic) residue like Acd, and Ser is much smaller and considered
to be polar. In this specific example however, the Ser mutation is tolerated, while the Tyr mutation
is not. Fortunately, our models could accurately differentiate these two positions and inspection of
the modeled structures allows chemical intuition to match the ESF and RCSF predictions. While
position is 60 is solvent exposed, the Acd side chain is able to form many hydrophobic interactions
and fill a small cleft. Position 98 is found at the dimer interface, and the Acd sidechain induces
steric clashes due to its greater size than Tyr. These examples are rewarding, as they match our
chemical intuition, demonstrating that this method provides models with a rationalizable basis for

prediction as previously observed in our investigation of modified peptides.*

Comparison of the utilities of the RCSFs and ESFs specifically can be made based on
training and holdout performance. Rewardingly, for all of our models, we observed only minor
differences in the quality of the holdout prediction as compared to the training albeit with different
predictive powers. Across the board, our RCSFs displayed training accuracies, precisions, and
recalls routinely above 80% and translatability of those predictive capacities to the holdout. These
data indicate good generalizability to new LexA and RecA data and show a strong ability to select

for positives, which would tremendously enrich small scale screens for tolerated sites over the
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unbiased experimental methods described above. Our ESF models were demonstrably weaker
predictors (training and holdout accuracies, precisions, recalls of 60-70%) than the RCSFs, but do
show enrichment versus the dummy classifiers and translatability to the holdout, supporting the

utility of their features.

With regards to model effectiveness in new protein systems, since we are using score deltas
that are intrinsically normalized to the native structure, and the observed accurate testing on a
diverse holdout set (sites with various protein primary, secondary, and tertiary structures) support
the use of our models in predicting Acd tolerability in other systems. For other unique proteins, if
the energy features computed from PyRosetta simulations fall within the distributions of our
feature vectors laid out in Supplementary Table 4, these models may also demonstrate utility.
Nonetheless, the facile method described herein along with our previous two studies using RCSFs,
provide strong evidence that the construction of custom scoring functions for prediction of a
specific phenomenon is a superior strategy compared to the development of a singular generalized
scoring function (forcefield) for a Uaa such as Acd. Ultimately, this investigation demonstrates
that we have uncovered a method for predicting current datasets, suggesting that construction of a
dataset that includes both different Uaas and multiple proteins may yield a generally predictive

system of interest to the field.

CONCLUSION

Prior efforts to predict the parameters which reveal the tolerability of mutations to Uaas
have been limited and thus far unsuccessful, leading researchers to use empirical methods. Herein,

we focused on demonstrating that features, rooted in local structure computed from PyRosetta
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simulations, can serve as a basis for the development of predictive ML models. Uaa protein
mutants of interest were simulated using PyRosetta yielding structural models which can be used
to train RCSFs and ESFs that, for the first time, accurately predict Acd mutant protein soluble and
total yield as well as soluble fraction with high accuracy. Given our recent development of Acd as
a probe for imaging in living mammalian cells,”® we are excited about using the approach described
here to train models for predicting well-tolerated labeling sites for imaging applications. The
success of these models also has broad implications for the Uaa community and more generally
for those interested in predicting biological phenomena via computation methods. The observed
high cross validation scores, as well as generalizability, exemplified by accurate prediction of a
diverse well-balanced holdout dataset, demonstrate that this modeling approach can identify key
features for highly abstract experimental parameters in even small subsets of data. In the long term,
we will continue to investigate the ability for RCSFs and ESFs to be used in conjunction with each
other and additional features. Lastly, we have made our models for prediction of novel Acd mutant

protein data available on our GitHub.

LIMITATIONS AND OUTLOOK

Although this methodology demonstrates that RCSFs and ESFs can accurately predict
biological phenomena which elude more traditional approaches, the current study was performed
on a small dataset (51 datapoints). We used a standard holdout percentage of 20%, corresponding
to a low overall number of datapoints (10) for validation on never-before-seen data. It is likely that
the models trained here are not generalizable beyond Acd and the LexA and RecA proteins, as this

dataset is not expected to capture the diversity of protein structures across the proteome and other
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Uaas would have physical properties that are distinct from those of Acd so the relevant features
for those Uaas were not selected here. Moreover, we encourage others adopting the RCSF method
to consider the applicability of the Rosetta score function used for running simulations. For
example, the betaNov16 score function used here has been updated for improved ligand docking
as RosettaGenFF/beta_genpot. While this change would not be expected to affect our results since
no ligands were present, those attempting to perform similar studies in the presence of ligands
should evaluate the currently available Rosetta score functions and select the appropriate score
function depending on the task. Despite these limitations, the results herein and in prior reports
demonstrate that RCSFs and ESFs are highly useful for producing interpretable ML models for

predicting complex biological phenomena.**-3!
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FIGURES AND TABLES

A

Acd Modeling Feature Extraction || Classification o~

Mutation Site

Figure 1. Schematic of the computational workflow for developing a Rosetta Custom Score Function or Empirical
Score Function (A), spatial distribution and effect on soluble fraction of Acd mutants (B). LexA homo-dimer (left),
RecA monomer (right). Note, red corresponds to soluble fraction percentage equal to or below 39%, and green above
39%.
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Table 1. The most correlative Rosetta energy features with Uaa mutant soluble fraction

Top Features RCSF R Value Description

1 rama_prepro_8A 0.500 Energy of backbone phi and psi angles
2 fa_atr_Site 0.486 Attractive energy of inter-residue atoms
3 residue_total_score_Site 0434 Linear combination of score function energies
4 fa_intra_atr_xover_Site 0422 Attractive energy of intra-residue atoms
5 hbond_sr_bb_Site 0.349 Short-range hydrogen bond energies
6 fa_rep_Site 0.336 Repulsive energy of inter-residue atoms
7 l1k_ball_iso_Site 0.334 Isotropic contribution to Solvation

8 hbond_sc_Site 0.328 Sidechain hydrogen bond energies

9 lk_ball_iso_8A 0.322 Isotropic contribution to Solvation
10 fa_intra_atr_xover_8A 0.311 Attractive energy of intra-residue atoms

Note: The suffixes of _Site and _8A correspond to energies at the mutation site and the 8A contacting sphere respectively.

Table 2. Summary statistics of RCSF multiple linear regressions

MLR R Adj.R F Statistic Prob. F Statistic  Number Features
Soluble Yield RCSF 0.899 0.872 16.86 2.15E-11 10

Total Yield RCSF 0.947 0.940 7720 6.21E-21 5

Soluble Fraction RCSF  0.725 0.670 6.817 1.86E-05 7
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Table 3. The most correlative EST features with Uaa mutant soluble fraction

Top Features EST R Value Description

1 np_bb_sc_intra 0.503 Intra-residue backbone to sidechain nonpolar contacts
2 total_np_contacts 0.488 Total number of nonpolar contacts

3 np_sc_sc_inter 0.390 Inter-residue sidechain to sidechain nonpolar contacts
4 total_contacts 0.376 Total number of polar and nonpolar contacts

5 p_sc_sc_inter 0.321 Inter-residue sidechain to sidechain polar contacts
6 ASA 0.241 Accessible surface area

7 kD_cyclohexane_water  0.226 Measure of hydrophobicity

8 RSA 0.223 Relative accessible surface area

9 kD_vapor_to_water 0.219 Measure of hydrophobicity

10 kD_octanol_to_water 0.215 Measure of hydrophobicity

Note: Definitions of features can be found in Supplementary Table 3.

Table 4. Summary statistics of ESF multiple linear regressions

MLR R Adj.R F Statistic Prob. F Statistic Number Features
Soluble Yield ESF 0.903 0.794 4427 2.06E-05 10

Total Yield ESF 0.738 0.704 10.78 742E-07 5

Soluble Fraction ESF 0.708 0.649 6.189 4 .86E-05 7
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Fig 2. Confusion matrices showing predictions from stratified CV5 and prediction of the holdout. For a binary
classifier the top left represents true positives, the top right represents false positives, the bottom left represents false
negatives, and finally the bottom right represents true negatives. The top row (A-D), shows cross validation scores
for RCSFs and the bottom row (E-H), shows holdout prediction for RCSFs. Matrices A and E display the results of a
dummy classifier using the stratified criterion, matrices B and F display the tuned soluble yield models, matrices C
and G display the tuned total yield models, and matrices D and H display the tuned soluble fraction models. Note:
BNB, KRR, and NuSVC are the Bernoulli Naive Bayes, Kernel Ridge Regression, and Nu Support Vector
classifiers respectively. Advanced metrics can be found in Table 5.
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Fig 3. Confusion matrices showing predictions from stratified CV5 and prediction of the holdout. The top row (A-
D), shows cross validation scores for ESFs and the bottom row (E-H), shows holdout prediction for ECSFs.
Matrices A and E display the results of a dummy classifier using the stratified criterion, matrices B and F display the
tuned soluble yield models, matrices C and G display the tuned total yield models, and matrices D and H display the
tuned soluble fraction models. Note: POL3, QDA, and KNN are the Support Vector Degree 3, Quadratic
Discriminant, Analysis, and K Nearest Neighbors classifiers respectively. Advanced metrics can be found in Table

5.
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Table 5. Classification metrics of classifiers

Metric Soluble Yield Best Total Yield Best Soluble Fraction Best
RCSF

CV Accuracy 0.805 0.805 0.854
Holdout Accuracy 0.900 0.900 0.900
CV5 Precision 0.875 0.777 0.810
Holdout Precision 1.000 1.000 0.833
CV5 Recall 0.700 0.777 0.895
Holdout Recall 0.857 0.875 1.000
CV5 F1 Score 0.778 0.777 0.850
Holdout F1 Score 0.923 0.933 0.909
ESF

CV Accuracy 0.707 0.659 0.659
Holdout Accuracy 0.800 0.700 0.700
CV5 Precision 0.750 0.600 0.778
Holdout Precision 1.000 0.857 1.000
CV5 Recall 0.600 0.667 0.368
Holdout Recall 0.714 0.750 0.400
CV5 F1 Score 0.667 0.632 0.500
Holdout F1 Score 0.833 0.800 0.571

Note, CV5 corresponds to Stratified 5-fold cross validation
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