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ABSTRACT  

The incorporation of unnatural amino acids (Uaas) has provided an avenue for novel chemistries 

to be explored in biological systems. However, the successful application of Uaas is often 

hampered by site-specific impacts on protein yield and solubility. Although previous efforts to 

identify features which accurately capture these site-specific effects have been unsuccessful, we 

have developed a set of novel Rosetta Custom Score Functions and alternative Empirical Score 

Functions that accurately predict the effects of acridon-2-yl-alanine (Acd) incorporation on protein 

yield and solubility. Acd-containing mutants were simulated in PyRosetta, and machine learning 

(ML) was performed using either the decomposed values of the Rosetta energy function, or 

changes in residue contacts and bioinformatics. Using these feature sets, which represent Rosetta 

score function specific and bioinformatics-derived terms, ML models were trained to predict 

highly abstract experimental parameters such as mutant protein yield and solubility and displayed 

robust performance on well-balanced holdouts. Model feature importance analyses demonstrated 

that terms corresponding to hydrophobic interactions, desolvation, and amino acid angle 

preferences played a pivotal role in predicting tolerance of mutation to Acd. Overall, this work 

provides evidence that the application of ML to features extracted from simulated structural 

models allow for the accurate prediction of diverse and abstract biological phenomena, beyond the 

predictivity of traditional modeling and simulation approaches.   
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INTRODUCTION  

Expansion of the genetic code by incorporation of unnatural amino acids (Uaas) has helped 

to facilitate the study of biochemical phenomena which would otherwise be elusive.1-4 Although 

Uaa incorporation is often used for the direct expression and purification of proteins with specific 

post-translational modifications, where the site would be dictated by biological relevance, Uaas 

are also used for photo-crosslinking, spectroscopic labeling, and biorthogonal conjugation, where 

there are many options for the location of the Uaa.5-9 Various studies, including our own, have 

demonstrated that the specific incorporation site of a Uaa has dramatic impacts on both the 

solubility and yield of the resultant mutant protein.10-12 However, identification of positions which 

will tolerate the newly incorporated Uaa is nontrivial.  

A predictive method which can rapidly and accurately identify sites for Uaa incorporation 

that maximize mutant protein solubility and yield could dramatically increase the use of Uaas in 

both academia and industry. Several computational efforts have focused on accurately predicting 

structural aspects of Uaa mutant proteins, such as amino acid rotameric or backbone orientations.13-

16 Others have concentrated on predicting interaction phenomena such as protein-protein binding 

affinities17,18 or energies of hydration19, but none have successfully predicted more complex 

phenomena such as Uaa protein yield and soluble fraction. We believe the lack of attention 

dedicated to these predictions stems from both the absence of a robust dataset that contains uniform 

information regarding a protein’s native structure, solubility, and yield and a lack of evidence 

supporting the predictability of such phenomena.10 Ultimately, in lieu of an effective predictor, 

Uaa incorporation has often been restricted to sites where native residues possess similar chemical 

characteristics to the Uaa of interest20 or to mutationally tolerant sites identified prior to Uaa 

incorporation.21 Alternative approaches employ empirical screening of sites, often through the use 
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of a green fluorescent protein (GFP) fusion reporter system to assess Uaa incorporation 

efficiency.22,23 The former approaches are very limiting in the number of positions for Uaa 

incorporation, and the latter approach can require effort comparable to or greater than the effort 

needed for the eventual experiment with the Uaa-labeled protein. Thus, there is a great need for a 

facile approach which can identify sites in proteins that will tolerate mutation to Uaas. A 

demonstration of a simple predictive method may also encourage community wide data collection 

and result in a sufficiently large and varied dataset which would serve as a major step for improve 

Uaas predictability.  

Previously, we collected the largest uniform dataset that captures the soluble yield, total 

yield, and soluble fraction for a singular unnatural amino acid (acridon-2-ylalanine, Acd) in a pair 

of protein targets.10 During that investigation, we attempted to develop a simple heuristic descriptor 

which could predict the effects of Uaa incorporation on these measurables, but were unsuccessful. 

Acd, a blue wavelength fluorophore, was selected for this study because of its ability to be used as 

an intrinsically fluorescent Uaa, its ability to be assayed quickly and cleanly using gel-

electrophoresis, and its many uses in in vitro assays such as fluorescence polarization and FRET 

experiments as well as recent applications in live cell imaging.24-29 Acd has been shown to fulfill 

these functions at a variety of positions in proteins and exemplifies the problem of choosing an 

insertion site that is tolerated by the target protein. Our previous effort focused on investigating 

the ability of structure-independent bioinformatics-based features (BLOSUM62 matrix, 

evolutionary conservation, measures of local hydrophobicity, etc.) to act as heuristic predictors of 

the soluble fraction for various Acd-containing mutants of the bacterial proteins LexA and RecA.10  

However, we demonstrated that none of the tested structure-independent bioinformatics features 

individually acted as reliable predictors of tolerability, as none displayed a Pearson or Point-
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Biserial correlation coefficient (R, calculated with SciPy) above 0.25 with the Acd mutant soluble 

fraction data for LexA or RecA independently, or for the combined set. Interestingly, the most 

useful features identified were categorical variables corresponding to the domain and secondary 

structure in which Acd was incorporated. Although these heuristics seemed to be relatively 

descriptive for LexA, which is composed of two isolated domains with different secondary 

structures (an α-helical N-terminal domain and a β-sheet C-terminal domain connected by a 

flexible linker), the trend did not hold for RecA, which comprises multiple mixed α/β domains. 

Lastly, we investigated the utility of using the scores of structures resulting from Backrub 

simulations of the Acd mutant proteins in Rosetta, which were again unable to act as effective 

predictors of tolerability to Acd.10 Overall, this suggested that additional attention was required to 

identify predictive features for this dataset that could support generalization, prior to developing 

higher throughput methods for expanding the dataset.  

Herein, we focus on establishing an accurate method for predicting Acd mutant protein 

soluble fraction (soluble yield divided by total yield). This metric helps to report on whether 

mutation of a residue to Acd will be tolerated and represents a class of experiments that has evaded 

predictive methods in the past.  Previously, we demonstrated that the predictivity of Rosetta 

methods can be dramatically improved through the use of RCSFs.30,31 RCSFs, or Rosetta Custom 

Score Functions, rely on generation of structural models in PyRosetta, which are subsequently 

scored with the Rosetta full atom score function (beta_nov_16)32, a linear combination of energetic 

score terms (Lennard-Jones potential, electrostatics, implicit solvation etc.) that serves an 

analogous role to forcefields in molecular dynamics (MD) simulations. Isolated score terms are 

then subsequently re-combined through machine learning (ML) to generate an RCSF (Figure 1A). 

Given the adaptability of RCSFs, we sought to investigate their utility in this problem that has 
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previously proved difficult. First, we focused on determining if the constitutive energies of the 

Rosetta score function are more correlative than the structure independent bioinformatics terms 

we previously tested.  We also wished to test the descriptive capacity of combining these terms 

through multiple linear regression (MLR). Subsequently, we sought to determine if the correlative 

nature of these features was unique to the energetic terms in Rosetta, by investigating a set of 

Empirical Score Terms (ESTs) which are based on contacts and structure independent 

bioinformatics. After identifying both Rosetta and EST features that demonstrated significantly 

improved correlation, we then used ML to train RCSFs and Empirical Score Functions (ESFs) and 

compare their ability to predict Acd mutant protein solubility and yield.  Lastly, we performed 

feature importance analysis of the most predictive models from both the RCSF and ESF methods 

to see which features imbue predictivity in order to better understand our system. Overall, this 

effort demonstrates that such ML approaches are able to predict complex phenomena related to 

Uaa incorporation.  

 

 

METHODS 

In order to simulate the Acd mutant LexA and RecA proteins, we first preprocessed and 

energy minimized the LexA and RecA protein structures (from PDB IDs 1JHH33 and 3CMW34, 

respectively) as detailed in the Starting Structures section of the Supplementary Information.35 The 

energy minimized parent structures of LexA and RecA were then mutated to incorporate Acd at 

previously experimentally-tested positions using PyRosetta. The Rosetta amino acid params and 

side chain rotamer library files used to make Acd mutant proteins were those used in our previous 

work.10 Following mutation to Acd, the structures were subjected to five independent cartesian 
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FastRelax simulations (protocol to achieve low-energy protein backbone and side-chain 

conformations similar to the starting conformation through iterative stages of packing and 

minimization, with increasing repulsive weight in the scoring function over the course of the 

simulation), where only residues with a an alpha carbon to alpha carbon (C⍺-C⍺)	distance within 

8 Å of Acd were allowed to be refined.31 These “local relaxes” allow for the surrounding residues 

of the mutation site to accommodate the newly incorporated Acd residue and have previously been 

shown to be a good sampling scheme for protein design.36 Every position in LexA and RecA which 

was mutated to Acd was also locally relaxed about the wildtype (WT) residue in order to generate 

the control scores.  

The locally relaxed structures were scored with the beta_nov16 score function, selected for 

its previously demonstrated efficacy, and the energy terms from the score function were averaged 

over the five simulations on a per residue basis.31,32,36 Score differences (deltas) were computed for 

the total score function and for each term between the average weighted scores for the Acd mutant 

and the corresponding WT values. Features for RCSF training were then passed as the score deltas 

at the mutation site as well as the average of the score deltas of the surrounding locally relaxed 

residues (Figure 1A).  

In addition to computing Rosetta energy features from our structural models, we sought to 

construct a second, more generally applicable, feature set for ML comprised of contact-based 

terms.10 Relevant contacts (pairwise atom distances < 4 Å) were computed from our structural 

models on an intra- and inter-residue basis using the biopython library.37 The score deltas 

corresponding to the change in contacts upon mutation were used as features for training ESFs. 

The contact-based features were supplemented with structure independent bioinformatics features 

which provide information of evolutionary conservation and various measures of physiochemical 
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properties (BLOSUM matrices, conservation terms, measure of hydrophobicity etc.). 

Supplementary Table 3 describes each of the contact-based terms as well as the structure 

independent bioinformatics features in our ESF feature matrix.  

 The experimental dataset was prepared for ML by first assigning a response class to each 

sample based on the distribution of the dependent variable. In Figure 1B, we present the spatial 

distribution of the Acd mutants and the effect they have on LexA and RecA solubility. Response 

class assignment was performed by identifying cutoffs which naturally balance the distribution of 

actives and inactives of the set. For soluble yield, total yield and soluble fraction the response 

classes were balanced at 520 nM, 1600 nM, and 39%, respectively. Next, to ensure that our ML 

models were not overfit or the product of specifically engineered hyperparameters, we created a 

large, well-balanced holdout dataset for validating our models. The complete dataset spans 51 

datapoints where 32 points are mutations in LexA and the remaining 19 are from RecA.10 The 

holdout dataset (not seen by the ML algorithms during hyperparameter tuning) was constructed to 

represent 20% of the total dataset, comprising equal amounts of data from both proteins with a 

representative distribution of soluble fraction values. Members of the holdout datasets can be 

found in Supplementary Table 1 and on our GitHub (https://github.com/ejp-

lab/EJPLab_Computational_Projects/tree/master/RML_ACD/Dataset). 

Given the large number of computed features to be used in ML, dimensionality was 

reduced by selecting important features with univariate statistical analysis with the SelectKBest 

module in scikit-learn.38 The following ML algorithms were employed using the respective default 

parameters within scikit-learn to coarsely assess the effect of prediction accuracy as a function of 

the number of features: Logistic Regression (LOG), Kernel Ridge Regression (KRR), Linear 

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machines 
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(SVC), K Nearest Neighbors (KNN), Bernoulli Naïve Bayes (BNB), Gaussian Naïve Bayes 

(GNB), and Gaussian Process Classification (GPC).38  The optimal number of features were 

selected as the combination of features which showed the highest accuracy following stratified 

five-fold cross-validation, or CV5.  The holdout datasets were validated by the aforementioned 

algorithms that were tuned using stratified CV5 in an exhaustive grid search. Finally, tuning 

parameters can be found in Supplementary Tables 10 and 11.  

The metrics we have used to validate the performance of our models are accuracy, 

precision, recall, and the F1 score. Accuracy scores represent the ratio of correctly predicted 

observations (true positives and true negatives) to the total number of observations. Precision is 

defined as the ratio of the number of correctly predicted positives to the total number of positive 

observations predicted. Recall is used to assess how many of the positive observations were 

identified and is given by the ratio of correctly predicted positives to total positives. Finally, the 

F1 score is the weighted average of precision and recall.  

 

RESULTS 

In our previous study, analysis of the backrub simulated structures demonstrated that 

neither structural deviations nor total energetic differences were correlative with any of the 

experimental parameters of interest.10 To confirm that this was not an artifact of the sampling 

approach previously utilized, the experimental data from our previous study were simulated in 

PyRosetta as described in the Methods Section.10 In this study, alpha carbon root mean squared 

deviation (C⍺RMSD) analysis was performed for locally relaxed structures and demonstrated that 

across the sets of independent simulations, each Uaa position converged to a singular structure in 
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both the Acd mutant and WT simulations. The largest observed C⍺RMSD within a simulation set 

was 1.37 Å. Larger deviations of up to 4.07 Å were observed between the lowest energy member 

of a set of Acd mutant and WT simulations for a given position. Linear regression of C⍺RMSD 

values demonstrated no correlation with any of the dependent variables (all R<0.3, Supplementary 

Figures 1-3). A similar analysis was performed using the difference in Rosetta total score in 

Rosetta energy units (REU) between the Acd mutant and WT simulations and again no correlation 

between REU and the dependent variables was observed (all R<0.3, Supplementary Figures 4-6). 

This confirmed that traditional analyses such as RMSD and changes in total energy are insufficient 

in predicting these phenomena, as previously observed.30,31  

Energetic Components Support Descriptive Modeling 

Next, we analyzed the correlations between Rosetta score deltas and the values from the 

experimental dataset and attempted to describe the system through linear regression. We observed 

that many of the score delta features were individually more correlative than any of the structure-

independent bioinformatics terms analyzed in our previous efforts (Supplementary Tables 6 and 

7).10 Table 1 displays the ten features from the Rosetta score function that are most correlative with 

Acd mutant protein soluble fraction. We identified that the most correlative terms were energetic 

changes at the Acd incorporation site, demonstrating the importance of our structural modeling. 

Given the correlations of the independent Rosetta score terms, we constructed a set of multiple 

linear regressions (MLRs) in which we performed backwards selection to arrive at a small number 

of features which strongly describe the dependent variables. Table 2 details the elements of the 

MLRs including the feature set, dependent variable, number of model features, R, and ƒ statistics 

for the models. The MLR analyses convey the ability for small numbers of Rosetta derived features 

to describe each protein subset for all three dependent variables above an R of 0.725. Additionally, 
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we observed that unlike our prior study where the most predictive terms (protein domain and 

secondary structure) were not capable of being generally applied to both protein datasets, these 

MLRs are capable of effectively describing Acd mutant protein soluble yield, total yield, and 

soluble fraction in the combined dataset (Table 2). 

Detailed Structural Analysis Provides Basis for Correlation 

 Following our investigation of Rosetta features, we performed the same analyses for a set 

of ESTs, to determine if more generalizable terms could be used in a similar approach. Although 

the structure-independent terms were unable to achieve a Pearson correlation above 0.25, the new 

contact-based ESTs were able to achieve correlations up to R values of 0.503. Table 3 displays the 

ten ESTs that are most correlative with Acd mutant protein soluble fraction. Interestingly, we 

observed that the most correlative terms directly report on changes in contacts due to Acd 

incorporation. These results closely match the most correlative Rosetta terms as they also reported 

largely on the Acd mutation site. Moreover, we observed that EST MLRs (Table 4) were able to 

describe the soluble yield and soluble fraction datasets similarly to the Rosetta terms MLRs (Table 

2), but were significantly less correlative with the total yield dataset. Overall, we were highly 

encouraged that this approach might be generalizable beyond the use of Rosetta-specific score 

terms based on the correlations of the contact and bioinformatics-based terms computed from the 

PyRosetta generated mutant structures.   

RCSF and ESF Features Produce Accurate Classifiers 

Since our Rosetta and EST sets were significantly more correlated with soluble fraction 

over the previously explored structure-independent bioinformatics terms, we next focused on 

assessing the maximal utility of these terms by attempting to classify positional tolerance of Acd 
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mutation based on prediction of soluble fraction. Since the number of potential features is larger 

than the dataset, we reduced dimensionality through feature selection with the SelectKBest module 

in scikit-learn. An upper threshold of 10 features was set to avoid overfitting. Furthermore, we 

were interested in understanding which ML methods provide the most predictive power for each 

experimental value with these features, so we tested a wide variety of algorithms. Feature selection 

coupled with untuned model prediction showed varying results for the optimal number of features 

and those that were selected for each classification task can be found in Supplementary Tables 8 

and 9.  

Following feature selection, each feature selected ML model was tuned using exhaustive 

grid searching (stratified CV5) to identify the optimal hyperparameters for the soluble yield, total 

yield, and soluble fraction models for both feature sets. First, we focused on generating RCSFs 

from Rosetta score terms and analyzed confusion matrices (Figure 2) for RCSF cross validation 

and holdout prediction across every dependent variable. Additionally, a dummy classifier is 

presented for a baseline comparison (Figure 2A), which performed as expected given the stratified 

criterion with a prediction training accuracy of ~53% and training precision of ~50%. The soluble 

yield RCSF (Fig 2B) demonstrated a training accuracy of ~81% with a precision of ~88%. Very 

similarly, the total yield RCSF (Fig 2C) was predicted at ~81% accuracy, but with a slightly lower 

precision of ~78%. Lastly, our soluble fraction RCSF (Fig 2D), predicted with a training accuracy 

85.4% and precision of ~81%.  

The ability of the RCSFs to serve as practical tools for prediction of Acd mutant protein 

yield and solubility requires accurate prediction of never-before-seen data. Again, for comparison 

to random classification, a dummy classifier (Fig 2E) is shown which predicted the holdout with 

an accuracy of 30% with 20% precision. Figure 2E-H show the confusion matrices for the 
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prediction of the holdout datasets for every dependent variable. Here, both the soluble and total 

yield RCSFs (Fig 2F and 2G) demonstrated 90% holdout accuracy and perfect precision. The 

soluble fraction RCSF (Fig 2H), predicted the holdout at 90% accuracy with ~83% precision.  

To confirm the generalizability of generating predictive machine learned score functions 

from sets of correlative terms, we created an identical set of ESFs from the ESTs. Similarly to the 

RCSF analysis, Figure 3A-D displays confusion matrices for the ESF cross validation and holdout 

prediction across every dependent variable, along with dummy classifier metrics. The soluble yield 

ESF (Fig 3B) demonstrated a training accuracy of ~71% with a precision of 75%. The total yield 

ESF (Fig 3C) predicts at ~66% accuracy, but with a low precision of 60%. Additionally, our 

soluble fraction ESF (Fig 3D), demonstrated a training accuracy ~66% and precision of ~78%. 

Moreover, analysis of the confusion matrices for the prediction of the holdout datasets of the 

dummy classifier (Fig 3E) and ESFs (Fig 3F-H) demonstrated that the ESFs performed similarly, 

albeit slightly less effectively than the RCSFs. The soluble yield ESFs (Fig 3F) demonstrated 80% 

holdout accuracy and perfect precision, while the total yield ESF (Fig 3G) and the soluble fraction 

ESF (Fig 3H), both predicted the holdout at 70% accuracy, with 85.7% and 100% precision 

respectively. Table 5 displays a unified table of classification statistics for RCSFs and ESFs across 

all the dependent variables.  

Structural Accommodation and Desolvation of Acd Convey Predictivity 

Finally, after demonstrating that RCSFs and ESFs can be used to accurately classify Acd 

mutant protein soluble fraction, we focused on identifying which features were responsible for 

generating this predictive accuracy. Since extraction of model feature importance for nonlinear 

algorithms other than decision tree-based methods is not readily available in scikit-learn, we 
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performed model feature importance analyses on LOG models (Fig. 4, Supplementary Tables 12-

15).  Analysis of the feature importance in the soluble fraction RCSF LOG model demonstrated 

that the most important Rosetta score terms were fa_atr_Site, omega_Site, fa_dun_rot_Site, 

fa_intra_atr_xover_8A, lk_ball_bridge_uncpl_Site, and fa_intra_elec_Site (Fig. 4A). These terms 

represent the energies associated with pairwise van der Waals attraction, the Acd residue specific 

backbone omega dihedral angle and Acd rotameric preferences, the intra-residue van der Waals 

attraction of the contacting sphere, the uncoupled bridging contribution of the Lazaridis- Karplus 

solvation of Acd, and the intra-residue electrostatic energy of Acd respectively. The remaining 

selected terms corresponding to fa_dun_rot_8A, lk_ball_8A, and fa_intra_sol_Site were used to a 

significantly lesser extent than the most import feature (<10% of fa_atr) and correspond to the 

internal energy of the sidechain from Dunbrack’s statistics of residues in the contact sphere, the 

anisotropic contribution of the Lazaridis-Karplus solution of the contact sphere and intra-residue 

solvation for the Acd site.  

Analysis of the feature importance in the soluble fraction ESF LOG model demonstrated 

that all the selected features were similarly important, except for np_sc_sc_inter which had an 

increased importance. The remaining features were blosum62_his, total_contacts, RSA, np_total, 

np_bb_sc_inter, and delta_t_d_m (all terms detailed in Supplementary Table 3). The majority of 

these terms (np_sc_sc_inter, total_contacts, np_total, and np_bb_sc_inter) are nonpolar contacts 

computed between the Acd and the surrounding residues derived from our PyRosetta modeling. 

RSA is the relative accessible surface area of the residue which is to be mutated to Acd and are 

also a function of the residue’s contacts.39 The blosum62_his and delta_t_d_m are the BLOSUM 

values associated with the mutation site residue when mutated to histidine, and a measure of the 

change in peptide meting temperature vs glycine.40,41 As was observed during feature correlation 
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analysis, the selected RCSF and ESF features are similar and represent properties associated with 

the ability of a protein to accommodate the large aromatic sidechain of Acd. 

 

DISCUSSION  

Our identification of Rosetta score terms and ESTs as correlative features with Acd 

incorporation tolerability based on soluble fraction and the combination of these terms through 

machine learning to generate RCSFs and ESFs has several key advantages over the methods 

previously employed. Previously, we hypothesized that positions which had low soluble fractions 

(Fig. 1B, amino acids colored in red) would show greater structural deviations between the 

different local relax simulations in the Acd mutant simulations. Additionally, we expected that the 

Rosetta total score would reflect structural perturbation induced by Acd incorporation. Although 

we did not observe correlations between Acd mutant protein soluble fraction and either the global 

structural deviations or the total energy computed, we did see striking correlations for local 

physical interactions and energies associated with perturbations at and around the mutation site. 

These observations are consistent with our previous analyses predicting the change in energy of 

mutations at protein-protein interfaces and positions in peptides that imbue proteolytic resistance 

upon backbone thioamidation.30,31 Moreover, this phenomenon was reflected in the ESTs as they 

too demonstrated that decomposed features were more correlative than their total feature 

counterparts (i.e. number of sidechain-sidechain nonpolar contacts rather than total number of 

contacts). Additionally, we observed that ESTs computed from our structural models were more 

correlative than the structure independent bioinformatics terms, supporting the fact that 

predictivity is rooted in the local structural changes more generally, and is not just attributable to 
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Rosetta energies. The generalizability of this approach overall can also be supported by others who 

have used energy-based machine learning methods that are not RCSFs.42-44  For example, Adeshina 

et al. minimized protein ligand complexes with Rosetta and used a subset of energies along side 

other features in an effort to reduce the false positive rate in ligand virtual screening.42 Outside of 

the Rosetta energy function, Rauer et al. simulated molecules in various solvents using MD in 

order to predict hydration energies.43 Taken together, these studies along with our investigations 

demonstrate the strong predictivity of energy-based and empirical ML models and support the idea 

that many different computational platforms can likely be used to generate predictions about Uaa 

incorporation if ML is applied to perturbation of local structural features. 

Beyond delivering significantly improved predictive capacity, the structure-based features 

from this investigation were able to describe the important properties of each site as related to Acd 

tolerance. This is intriguing as it begins to uncover the mechanisms behind the clear differences in 

total yield, soluble yield, and soluble fraction observed, even when attempting to make 

conservative mutations (i.e. Phe-to-Acd) or in mutating the same residue at different sites (i.e. 

LexA Phe 12 vs. LexA Phe 111). Consulting chemical intuition, we would hypothesize that 

positions which tolerate mutation to Acd would need to accommodate backbone and sidechain 

rotameric states capable of desolvating the bulky, aromatic Acd side chain. If they are incapable 

of doing so, the Acd side chain will be undesirably exposed to solvent or forced to clash with other 

residues. Indeed, this chemical intuition informed our previous attempts to determine correlations 

to individual properties,10 and although these were not able to predict tolerability, they are 

nonetheless related to the top RCSF and ESF features.  Many of the top ESF features correspond 

to hydrophobic contacts, solvent accessible surface area, and measures of hydrophobicity. At the 

same time, the top RCSF features correspond to van der Waals energies, peptide backbone angle 
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preferences, and solvation energies. If we consider an example of mutation of Phe to Acd at 

position 12 (tolerated) versus at 111 (not tolerated), we can observe these features in action. At 

position 12, Acd is buried and adopts a clash free conformation. At position 111, while Acd is 

fully desolvated, it is too large and highly clashed with surrounding residues. A different example. 

where simply considering the identities of the native residues would have led to incorrect 

predictions of tolerance but our models allow accurate classification are Ser60 and Tyr98. Naively, 

one would expect a Tyr to Acd mutation to be better tolerated than a Ser to Acd mutation since 

Tyr is a bulky aromatic (hydrophobic) residue like Acd, and Ser is much smaller and considered 

to be polar. In this specific example however, the Ser mutation is tolerated, while the Tyr mutation 

is not. Fortunately, our models could accurately differentiate these two positions and inspection of 

the modeled structures allows chemical intuition to match the ESF and RCSF predictions. While 

position is 60 is solvent exposed, the Acd side chain is able to form many hydrophobic interactions 

and fill a small cleft. Position 98 is found at the dimer interface, and the Acd sidechain induces 

steric clashes due to its greater size than Tyr. These examples are rewarding, as they match our 

chemical intuition, demonstrating that this method provides models with a rationalizable basis for 

prediction as previously observed in our investigation of modified peptides.30 

Comparison of the utilities of the RCSFs and ESFs specifically can be made based on 

training and holdout performance. Rewardingly, for all of our models, we observed only minor 

differences in the quality of the holdout prediction as compared to the training albeit with different 

predictive powers.  Across the board, our RCSFs displayed training accuracies, precisions, and 

recalls routinely above 80% and translatability of those predictive capacities to the holdout. These 

data indicate good generalizability to new LexA and RecA data and show a strong ability to select 

for positives, which would tremendously enrich small scale screens for tolerated sites over the 
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unbiased experimental methods described above. Our ESF models were demonstrably weaker 

predictors (training and holdout accuracies, precisions, recalls of 60-70%) than the RCSFs, but do 

show enrichment versus the dummy classifiers and translatability to the holdout, supporting the 

utility of their features. 

With regards to model effectiveness in new protein systems, since we are using score deltas 

that are intrinsically normalized to the native structure, and the observed accurate testing on a 

diverse holdout set (sites with various protein primary, secondary, and tertiary structures) support 

the use of our models in predicting Acd tolerability in other systems. For other unique proteins, if 

the energy features computed from PyRosetta simulations fall within the distributions of our 

feature vectors laid out in Supplementary Table 4, these models may also demonstrate utility. 

Nonetheless, the facile method described herein along with our previous two studies using RCSFs, 

provide strong evidence that the construction of custom scoring functions for prediction of a 

specific phenomenon is a superior strategy compared to the development of a singular generalized 

scoring function (forcefield) for a Uaa such as Acd. Ultimately, this investigation demonstrates 

that we have uncovered a method for predicting current datasets, suggesting that construction of a 

dataset that includes both different Uaas and multiple proteins may yield a generally predictive 

system of interest to the field.  

 

CONCLUSION  

Prior efforts to predict the parameters which reveal the tolerability of mutations to Uaas 

have been limited and thus far unsuccessful, leading researchers to use empirical methods. Herein, 

we focused on demonstrating that features, rooted in local structure computed from PyRosetta 
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simulations, can serve as a basis for the development of predictive ML models. Uaa protein 

mutants of interest were simulated using PyRosetta yielding structural models which can be used 

to train RCSFs and ESFs that, for the first time, accurately predict Acd mutant protein soluble and 

total yield as well as soluble fraction with high accuracy. Given our recent development of Acd as 

a probe for imaging in living mammalian cells,28 we are excited about using the approach described 

here to train models for predicting well-tolerated labeling sites for imaging applications. The 

success of these models also has broad implications for the Uaa community and more generally 

for those interested in predicting biological phenomena via computation methods. The observed 

high cross validation scores, as well as generalizability, exemplified by accurate prediction of a 

diverse well-balanced holdout dataset, demonstrate that this modeling approach can identify key 

features for highly abstract experimental parameters in even small subsets of data. In the long term, 

we will continue to investigate the ability for RCSFs and ESFs to be used in conjunction with each 

other and additional features. Lastly, we have made our models for prediction of novel Acd mutant 

protein data available on our GitHub.  

 

LIMITATIONS AND OUTLOOK  

Although this methodology demonstrates that RCSFs and ESFs can accurately predict 

biological phenomena which elude more traditional approaches, the current study was performed 

on a small dataset (51 datapoints). We used a standard holdout percentage of 20%, corresponding 

to a low overall number of datapoints (10) for validation on never-before-seen data. It is likely that 

the models trained here are not generalizable beyond Acd and the LexA and RecA proteins, as this 

dataset is not expected to capture the diversity of protein structures across the proteome and other 
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Uaas would have physical properties that are distinct from those of Acd so the relevant features 

for those Uaas were not selected here. Moreover, we encourage others adopting the RCSF method 

to consider the applicability of the Rosetta score function used for running simulations.  For 

example, the betaNov16 score function used here has been updated for improved ligand docking 

as RosettaGenFF/beta_genpot. While this change would not be expected to affect our results since 

no ligands were present, those attempting to perform similar studies in the presence of ligands 

should evaluate the currently available Rosetta score functions and select the appropriate score 

function depending on the task. Despite these limitations, the results herein and in prior reports 

demonstrate that RCSFs and ESFs are highly useful for producing interpretable ML models for 

predicting complex biological phenomena.30,31  

 

 

 

 

 

 

 

 

 



 

 21 

 

 

FIGURES AND TABLES 

Figure 1. Schematic of the computational workflow for developing a Rosetta Custom Score Function or Empirical 
Score Function (A), spatial distribution and effect on soluble fraction of Acd mutants (B).  LexA homo-dimer (left), 
RecA monomer (right). Note, red corresponds to soluble fraction percentage equal to or below 39%, and green above 
39%.  
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Table 1. The most correlative Rosetta energy features with Uaa mutant soluble fraction 

Top Features RCSF R Value Description 

1 

2 

rama_prepro_8A 

fa_atr_Site 

0.500 

0.486 

Energy of backbone phi and psi angles 

Attractive energy of inter-residue atoms 

3 

4 

residue_total_score_Site 

fa_intra_atr_xover_Site 

0.434 

0.422 

Linear combination of score function energies 

Attractive energy of intra-residue atoms 

5 

6 

hbond_sr_bb_Site 

fa_rep_Site 

0.349 

0.336 

Short-range hydrogen bond energies 

Repulsive energy of inter-residue atoms 

7 

8 

lk_ball_iso_Site 

hbond_sc_Site 

0.334 

0.328 

Isotropic contribution to Solvation 

Sidechain hydrogen bond energies 

9 

10 

lk_ball_iso_8A 

fa_intra_atr_xover_8A 

0.322 

0.311 

Isotropic contribution to Solvation 

Attractive energy of intra-residue atoms 

Note: The suffixes of _Site and _8A correspond to energies at the mutation site and the 8A contacting sphere respectively.    

Table 2. Summary statistics of RCSF multiple linear regressions 

MLR R Adj. R F Statistic Prob. F Statistic Number Features 

Soluble Yield RCSF 

Total Yield RCSF 

Soluble Fraction RCSF 

0.899 

0.947 

0.725 

0.872 

0.940 

0.670 

16.86 

77.20 

6.817 

2.15E-11 

6.21E-21 

1.86E-05 

10 

5 

7 
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Table 3. The most correlative EST features with Uaa mutant soluble fraction 

Top Features EST R Value Description 

1 

2 

np_bb_sc_intra 

total_np_contacts 

0.503 

0.488 

Intra-residue backbone to sidechain nonpolar contacts 

Total number of nonpolar contacts 

3 

4 

np_sc_sc_inter 

total_contacts 

0.390 

0.376 

Inter-residue sidechain to sidechain nonpolar contacts 

Total number of polar and nonpolar contacts 

5 

6 

p_sc_sc_inter 

ASA 

0.321 

0.241 

Inter-residue sidechain to sidechain polar contacts 

Accessible surface area 

7 

8 

kD_cyclohexane_water 

RSA 

0.226 

0.223 

Measure of hydrophobicity 

Relative accessible surface area 

9 

10 

kD_vapor_to_water 

kD_octanol_to_water 

0.219 

0.215 

Measure of hydrophobicity 

Measure of hydrophobicity 

Note: Definitions of features can be found in Supplementary Table 3. 

 

Table 4. Summary statistics of ESF multiple linear regressions 

MLR R Adj. R F Statistic Prob. F Statistic Number Features 

Soluble Yield ESF 

Total Yield ESF 

Soluble Fraction ESF 

0.903 

0.738 

0.708 

0.794 

0.704 

0.649 

4.427 

10.78 

6.189 

2.06E-05 

7.42E-07 

4.86E-05 

10 

5 

7 

 

 



 

 24 

 

Fig 2. Confusion matrices showing predictions from stratified CV5 and prediction of the holdout. For a binary 
classifier the top left represents true positives, the top right represents false positives, the bottom left represents false 
negatives, and finally the bottom right represents true negatives. The top row (A-D), shows cross validation scores 
for RCSFs and the bottom row (E-H), shows holdout prediction for RCSFs. Matrices A and E display the results of a 
dummy classifier using the stratified criterion, matrices B and F display the tuned soluble yield models, matrices C 
and G display the tuned total yield models, and matrices D and H display the tuned soluble fraction models. Note: 
BNB, KRR, and NuSVC are the Bernoulli Naïve Bayes, Kernel Ridge Regression, and Nu Support Vector 
classifiers respectively. Advanced metrics can be found in Table 5. 
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Fig 3. Confusion matrices showing predictions from stratified CV5 and prediction of the holdout. The top row (A-
D), shows cross validation scores for ESFs and the bottom row (E-H), shows holdout prediction for ECSFs. 
Matrices A and E display the results of a dummy classifier using the stratified criterion, matrices B and F display the 
tuned soluble yield models, matrices C and G display the tuned total yield models, and matrices D and H display the 
tuned soluble fraction models. Note: POL3, QDA, and KNN are the Support Vector Degree 3, Quadratic 
Discriminant, Analysis, and K Nearest Neighbors classifiers respectively. Advanced metrics can be found in Table 
5. 
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Table 5. Classification metrics of classifiers 

Metric Soluble Yield Best Total Yield Best Soluble Fraction Best 

RCSF    

CV Accuracy 0.805 0.805 0.854 

Holdout Accuracy 0.900 0.900 0.900 

CV5 Precision 

Holdout Precision 

CV5 Recall 

Holdout Recall 

CV5 F1 Score 

Holdout F1 Score 

0.875 

1.000 

0.700 

0.857 

0.778 

0.923 

0.777 

1.000 

0.777 

0.875 

0.777 

0.933 

0.810 

0.833 

0.895 

1.000 

0.850 

0.909 

ESF    

CV Accuracy 0.707 0.659 0.659 

Holdout Accuracy 0.800 0.700 0.700 

CV5 Precision 

Holdout Precision 

CV5 Recall 

Holdout Recall 

CV5 F1 Score 

Holdout F1 Score  

0.750 

1.000 

0.600 

0.714 

0.667 

0.833 

0.600 

0.857 

0.667 

0.750 

0.632 

0.800 

0.778 

1.000 

0.368 

0.400 

0.500 

0.571 

Note, CV5 corresponds to Stratified 5-fold cross validation 
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Fig 4. Normalized model feature importance from soluble fraction Logistic RCSF (A) and Logistic ESF (B). The 

most important feature has score 100 and each score less than 100 is used at that percent of the most important 

feature. 
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