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1 Introduction

One of the most profound predictions of primordial inflation is that the accel-
erated expansion literally rips long wavelength quanta out of the vacuum [1].
This is what produced the tensor power spectrum ∆2

h(k) [2]. The occupation

number N(η, k) of a single polarization of wave number ~k at conformal time
η is simply staggering,

N(η, k) =
π∆2

h(k)

64Gk2
×a2(η) , (1)

where G is Newton’s constant and a(η) is the scale factor, which we remind
the reader grows exponentially rapidly in co-moving time.

The tensor power spectrum is the primary, tree order signal of the pro-
duction of inflationary gravitons. However, there must be secondary, loop
effects from the interactions of these gravitons with each other and with other
particles. Among these effects are:

1. The self-gravitation between inflationary gravitons may slow the ex-
pansion rate [3, 4];

2. Inflationary gravitons correct the linearized Einstein equation [5, 6],
which enhances the field strength of gravitational radiation [7, 8] and
has the potential to change the force of gravity [9];

3. Inflationary gravitons correct the linearized Dirac equation [10, 11],
which enhances the field strength of fermions [12];

4. Inflationary gravitons correct the field equations for a massless, mini-
mally coupled scalar [13], but make no significant change in the field
strength of scalar radiation [14];

5. Inflationary gravitons correct Maxwell’s equation [15], which enhances
the field strength of electromagnetic radiation [16] and makes significant
changes to the response to charges and currents at large distances and
late times [17]; and

6. Inflationary gravitons correct the field equation for a massless, con-
formally coupled scalar [18–20], but do not make significant changes,
either in the propagation of dynamical scalars or in the scalar exchange
potential [21].

1



No one doubts that a classical ensemble of gravitational radiation would
change kinematics and forces; this is the basis for the proposal to detect
gravitational radiation using the timing of pulsars [22,23]. However, graviton
propagators do require gauge fixing, and it has been argued that the apparent
effects of inflationary gravitons are artifacts of the gauge [24–31]. These
doubts persist in spite of the fact that similar effects derive from loops of
massless, minimally coupled scalars [9,32], which experience the same growth
(1) as inflationary gravitons and require no gauge fixing.

A technique has been developed for removing gauge dependence from
effective field equations by including quantum gravitational correlations with
the source which disturbs the effective field and the observer who detects
it [33]. The procedure is to build the same diagrams (Figure 1 gives two
examples) that would go into an S-matrix element, and then simplify them
with a series of relations derived by Donoghue [34–36] to capture the infrared
physics. In the end only vestigial traces of the source and observer remain,
and each of the simplified diagrams can be regarded as a correction to the
1PI 2-point function in the linearized, effective field equation.

x z z′ x′ x x′

Figure 1: The left diagram shows how the self-mass (3) contributes to massive scalar
scattering. The diagram on the right gives the contribution from graviton correlations
between the vertices. Solid lines represent the massless scalar, wavy lines represent the
graviton, and dashed lines are massive scalars.

It is worthwhile describing this for a massless, minimally coupled scalar
on flat space background (gµν ≡ ηµν +

√
16πGhµν) in the 2-parameter family

of covariant gauge fixing functions,

LGF = − 1

2α
ηµνFµFν , Fµ = ηρσ

(
hµρ,σ −

β

2
hρσ,µ

)
. (2)

The renormalized self-mass is [33],

−iM2(x; x′) = C0(α, β)×
G∂6

4π3

[
ln(µ2∆x2)

∆x2

]
, ∆x2 ≡ (x−x′)2 , (3)

C0(α, β) = +
3

4
− 3

4
× α− 3

2
× 1

β−2
+

3

4
× (α−3)

(β−2)2
. (4)
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Now imagine quantum gravitational corrections to the scattering of two mas-
sive scalars by the exchange of such a massless scalar. Figure 1 shows two
of the many diagrams which contribute. After applying the Donoghue Iden-
tities, each of these contributions can be regarded as a correction to the
self-mass, having the same spacetime dependence as (3) but multiplied by
different gauge dependent coefficients. Table 1 lists each contribution, and
one can see that the sum is indeed independent of α and β.

i 1 α 1
β−2

(α−3)
(β−2)2

Description

0 +3
4

−3
4

−3
2

+3
4

scalar exchange

1 0 0 0 +1 vertex-vertex

2 0 0 0 0 vertex-source,observer

3 0 0 +3 −2 vertex-scalar

4 +17
4

−3
4

0 −1
4

source-observer

5 −2 +3
2

−3
2

+1
2

scalar-source,observer

Total +3 0 0 0

Table 1: The gauge dependent factors Ci(α, β) for each contribution to the invariant
scalar self-mass-squared, and their gauge-independent sum. Figure 1 shows the i = 0 and
i = 1 diagrams.

In position space all diagrams consist of products of (possibly differenti-
ated) massive and massless propagators (from the scalar and the graviton),
i∆m(x; x

′) and i∆(x; x′), respectively. All the 3-point and 4-point diagrams
can be reduced to 2-point form by applying the Donoghue Identities [33],

i∆m(x; y)i∆(x; x′)i∆(y; x′) −→ iδD(x−y)

2m2

[
i∆(x; x′)

]2
, (5)

∂x
µi∆(x; x′)∂µ

y i∆(y; y′)i∆m(x; y)i∆m(x
′; y′)

−→ iδD(x−y)iδD(x′−y′)

2m2

[
i∆(x; x′)

]2
, (6)

∂x
µi∆(x; y′)∂µ

y i∆(y; x′)i∆m(x; y)i∆m(x
′; y′)

−→ −iδD(x−y)iδD(x′−y′)

2m2

[
i∆(x; x′)

]2
. (7)
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Any 2-point contribution so obtained can be regarded as a correction to the
self-mass through a trivial identity based the massless propagator equation
∂2i∆(x; x′) = iδD(x− x′),

f(x; x′) = −
∫

dDz i∆(x; z)

∫
dDz′ i∆(x′; z′)× ∂2

z∂
2
z′f(z; z

′) . (8)

The procedure just described has been implemented on flat space back-
ground for scalars [33] and for electromagnetism [37]. Generalizing it to de
Sitter will be challenging because the Hubble parameter H permits more
varied spacetime dependence than (3) on the dimensionless product H2∆x2.
Our program is therefore to find the simplest venue for implementing the
gauge purge on de Sitter background, and then check gauge independence
using the family of de Sitter breaking gauges analogous to (2) [38]. In addition
to simplicity, we require a system for which the potentially gauge dependent
computation shows big effects, because there is little point to removing gauge
dependence from a small or null effect. Previous studies have revealed that
graviton corrections to massless, conformally coupled scalars are simple but
do not engender significant effects [20, 21]. In this paper we show that the
massless, minimally coupled scalar provides the system we seek.

In section 2 of this paper we compute the single graviton loop contri-
bution to the self-mass −iM2(x; x′) of a massless, minimally coupled scalar
on de Sitter background. Section 3 uses this result to quantum-correct the
linearized effective scalar field equation. Solving this equation reveals no
significant 1-loop correction to the field strength of scalar radiation, but a
large logarithmic correction to the scalar exchange potential. We also ex-
plain the large logarithm using a version of the renormalization group. Our
conclusions comprise section 4.

2 Graviton Loop Contribution to −iM 2(x; x′)

The purpose of this section is to compute the 1-graviton loop contribution
to the 1PI (one-particle-irreducible) 2-point function of a massless, mini-
mally coupled scalar on de Sitter background. We begin by precisely defining
−iM2(x; x′), analytically and diagrammatically, and by giving the required
Feynman rules. We next employ dimensional regularization to evaluate first
the simplest diagram and then the more complicated one. The section closes
with a discussion of renormalization.
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2.1 Feynman Rules

The bare Lagrangian in D spacetime dimensions is,

L =
[R−(D−2)Λ]

√−g

16πG
− 1

2
∂µφ∂νφg

µν
√−g , Λ ≡ (D−1)H2 , (9)

where G is Newton’s constant and Λ is the cosmological constant. We define
the graviton field hµν(x) as a perturbation of the conformally rescaled metric,

gµν(x) ≡ a2(η)g̃µν(x) ≡ a2(η)
[
ηµν + κhµν

]
, a(η) ≡ − 1

Hη
, (10)

where κ2 ≡ 16πG is the loop-counting parameter and η < 0. Our signature
is spacelike, and we employ an overlined tensor to denote the suppression of
its temporal components,

ηµν ≡ ηµν + δ0µδ
0
ν , ∂µ ≡ ∂µ − δ0µ∂0 . (11)

The 1-graviton loop contribution to the scalar self-mass can be repre-
sented as the in-out matrix element of variations of the action S[g, φ] and
the counterterm action ∆S[g, φ] (discussed in subsection 2.4),

−iM2(x; x′) =
〈
Ωout

∣∣∣T ∗

{[iδS[g, φ]
δφ(x)

]
hφ
×
[iδS[g, φ]

δφ(x′)

]
hφ

+
[ iδ2S[g, φ]

δφ(x)δφ(x′)

]
hh

+
[ iδ2∆S[g, φ]

δφ(x)δφ(x′)

]
1

}∣∣∣Ωin
〉
. (12)

The T ∗-ordering symbol in expression (12) indicates that derivatives are
taken outside time-ordering; the subscripts of square-bracketed variations
indicate how many perturbative fields contribute to the 1-loop result. The
associated diagrams are shown in Figure 2.

x x
′

x x

Figure 2: 1-graviton loop contributions to −iM2(x;x′) corresponding to the three terms
of expression (12). Graviton lines are wavy, scalar lines are straight and counterterms are
denoted by a cross.
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The propagators mostly depend on the de Sitter length function y(x; x′),

y(x; x′) ≡ aa′H2∆x2(x; x′) ≡ aa′H2
[∥∥∥~x−~x′

∥∥∥
2

−
(
|η−η′|−iǫ

)2]
. (13)

The scalar propagator is [41, 42],

i∆A(x; x
′) = A(y) + k ln(aa′) , k ≡ HD−2

(4π)
D

2

Γ(D−1)

Γ(D
2
)

, (14)

where the derivative of A(y) is,

A′(y) = − HD−2

4(4π)
D

2

{
Γ
(D
2

)(4
y

)D

2

+ Γ
(D
2
+1

)(4
y

)D

2
−1

+

∞∑

n=0

[
Γ(n+D

2
+2)

Γ(n+3)

(y
4

)n−D

2
+2

− Γ(n+D)

Γ(n+D
2
+1)

(y
4

)n

]}
. (15)

The undifferentiated result can be inferred from the coincidence limit,

i∆A(x; x) = k
[
−πcot

(Dπ

2

)
+ 2 ln(a)

]
. (16)

Our gauge fixing term is a de Sitter breaking analog of (2) for α = β = 1
[39, 40],

LGF = −1

2
aD−2ηµνFµFν , Fµ = ηρσ

[
hµρ,σ−

1

2
hρσ,µ+(D−2)aHhµρδ

0
σ

]
. (17)

In this gauge the graviton propagator is the sum of three constant tensor
factors times scalar propagators,

i
[
µν∆ρσ

]
(x; x′) =

∑

I=A,B,C

[
µνT

I
ρσ

]
×i∆I(x; x

′) . (18)

The A-type propagator is the same as the scalar propagator (14). The B-
type and C-type propagators are for minimally coupled scalars with masses
M2

B = (D − 2)H2 and M2
C = 2(D − 3)H2, which can be expressed as,

i∆B = − [(4y−y2)A′(y)+(2−y)k]

2(D−2)
, i∆C =

(2−y)i∆B

2
+

k

D−3
. (19)
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And the constant tensor factors [µνT
I
ρσ] are,

[
µνT

A
ρσ

]
= 2ηµ(ρησ)ν −

2

D−3
ηµνηρσ ,

[
µνT

B
ρσ

]
= −4δ0(µην)(ρδ

0
σ) , (20)

[
µνT

C
ρσ

]
=

2EµνEρσ

(D−2)(D−3)
, Eµν ≡ (D−3)δ0µδ

0
ν + ηµν . (21)

Here and henceforth, parenthesized indices are symmetrized.
A hatted 2nd rank tensor denotes the trace-reversal,

ĥµν ≡ hµν −
1

2
ηµνh . (22)

Trace-reversing a single index of the graviton propagator gives,

i
[
µ̂ν∆ρσ

]
= 2ηµ(ρησ)ν i∆A+4δ0(µην)(ρδ

0
σ)(i∆A−i∆B)−

2δ0µδ
0
νEρσ

D−3
(i∆A−i∆C) .

(23)
This form is desirable because the noncovariant tensor factors multiply differ-
ences, (i∆A− i∆B) and (i∆A− i∆C), which are only logarithmically singular
at coincidence. Trace-reversing on both indices gives,

i
[
µ̂ν∆ρ̂σ

]
=

[
2ηµ(ρησ)ν−ηµνηρσ

]
i∆A

+4δ0(µην)(ρδ
0
σ)(i∆A−i∆B)− 2

(D−2

D−3

)
δ0µδ

0
νδ

0
ρδ

0
σ(i∆A−i∆C) . (24)

2.2 The Primitive 4-Point Contribution

We might call the middle diagram of Figure 2 −iM2
4 (x; x

′). From expression
(12) we see that it involves the in-out matrix element of,

[ iδ2S[g, φ]

δφ(x)δφ(x′)

]
hh

= i∂µ

[√
−g(x) gµν(x)∂νδ

D(x−x′)
]
hh

, (25)

= iκ2∂µ

[
aD−2

(
ĥµρ(x)hν

ρ(x)−
1

4
ηµνĥρσ(x)hρσ(x)

)
∂νδ

D(x−x′)
]
. (26)

The matrix element involves the single trace-reversed propagator (23),

−iM2
4 = iκ2∂µ

{
aD−2

(
i
[
µ̂ρ∆ν

ρ

]
(x; x)− 1

4
ηµνi

[
ρ̂σ∆ρσ

]
(x; x)

)
∂νδ

D(x−x′)

}
.

(27)
It can be reduced to give,
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−iM2
4 (x; x

′) = iκ2∂µ

{
aD−2

(
ηµν

[
−(D−5)D

4
i∆A(x; x) +

1

2

(D−4

D−3

)
k
]

+δµ0δ
ν
0

[
Di∆A(x; x) +

(D−1)(D−4)

(D−2)(D−3)
k
])

∂νδ
D(x−x′)

}
, (28)

where we used the coincidence limits of i∆B and i∆C inferred from (19).

2.3 The Primitive 3-Point Contribution

The left hand diagram of Figure 2 might be called −iM2
3 (x; x

′). From ex-
pression (12) we see that it involves the product of two first variations,

[iδS[g, φ]
δφ(x)

]
hφ

= i∂µ

[√−g gµν∂νφ
]
hφ

= −iκ∂µ

[
aD−2ĥµν∂νφ

]
. (29)

The 3-point contribution involves the twice trace-reversed propagator (24),

−iM2
3 (x; x

′) = −κ2∂µ∂
′
ρ

{
(aa′)D−2i

[
µ̂ν∆ρ̂σ

]
(x; x′) ∂ν∂

′
σi∆A(x; x

′)
}
. (30)

Expression (24) suggests a natural decomposition into four parts,

−iM2
3A ≡ −κ2∂ ·∂′

{
(aa′)D−2i∆A×∂ ·∂′i∆A

}
, (31)

−iM2
3B ≡ −κ2∂µ∂′ρ

{
(aa′)D−2i∆A×(∂ρ∂

′
µ−∂µ∂

′
ρ)i∆A

}
, (32)

−iM2
3C ≡ −κ2∂µ∂′ρ

{
(aa′)D−2(i∆A−i∆B)

×
[
ηµρ∂0∂

′
0−δ0µ∂ρ∂

′
0+δ0ρ∂µ∂0−δ0µδ

0
ρ∇2

]
i∆A

}
, (33)

−iM2
3D ≡ 2

(D−2

D−3

)
κ2∂0∂

′
0

{
(aa′)D−2(i∆A−i∆C)∂0∂

′
0i∆A

}
. (34)

The terms inside the curly brackets of expression (31) are quadratically
divergent, whereas the curly brackets of (32-34) are only logarithmically di-
vergent. This means we only need a few terms of i∆A(x; x

′),

i∆A(x; x
′) =

Γ(D
2
−1)

4π
D

2 (aa′)
D

2
−1

{
1

∆xD−2
+

D(D−2)

8(D−4)

aa′H2

∆xD−4
+ . . .

}

+k

{
−πcot

(Dπ

2

)
+ ln(aa′) + . . .

}
. (35)
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The 4-step procedure for reducing expressions (31-34) is,

1. Act the two inner derivatives on i∆A;
1

2. Multiply by the scalar propagators from the graviton propagator, and
retain only those terms which are nonzero in the unregulated limit;

3. Extract derivatives from the quadratically divergent terms to reach a
logarithmically divergent form,

1

∆x2D−2
=

∂2

2(D−2)2

[ 1

∆x2D−4

]
; and (36)

4. Localize the divergence and take the unregulated limit on the remainder
using the flat space propagator equation [41],

1

∆x2D−4
=

∂2

2(D−3)(D−4)

[ 1

∆x2D−6

]
, (37)

=
µD−44π

D

2 iδD(x−x′)

2(D−3)(D−4)Γ(D
2
−1)

+
∂2

2(D−3)(D−4)

[ 1

∆x2D−6
− µD−4

∆xD−2

]
, (38)

=
µD−44π

D

2 iδD(x−x′)

2(D−3)(D−4)Γ(D
2
−1)

− 1

4
∂2
[ ln(µ2∆x2)

∆x2

]
+O(D−4) . (39)

Before applying the 4-step procedure on −iM2
3B(x; x

′) it is useful to ex-
pand the traces over µ and ρ,

−iM2
3B(x; x

′) = −κ2(∂0+∂′
0)∂i

{
(aa′)D−2i∆A(x; x

′)(∂0+∂′
0)∂ii∆A(x; x

′)
}
.

(40)
A similar expansion of −iM2

3C(x; x
′) gives,

−iM2
C = κ2∇2

{
(aa′)D−2(i∆A−i∆B)∂0∂

′
0i∆A

}
+ κ2∂0∂i

{
(aa′)D−2

×(i∆A−i∆B)∂
′
0∂ii∆A

}
+ κ2∂′

0∂i

{
(aa′)D−2(i∆A−i∆B)∂0∂ii∆A

}

+κ2∂0∂
′
0

{
(aa′)D−2(i∆A−i∆B)∇2i∆A

}
. (41)

Also note that each divergence is proportional to one of two constants,
1Note that this can produce a delta function when acting on the most singular term,

∂α∂
′

β

[ 1

∆xD−2

]
=

δ0αδ
0
β4π

D

2 iδD(x−x′)

Γ(D
2
−1)

+ (D−2)
[ ηαβ

∆xD
− D∆xα∆xβ

∆xD+2

]
.
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A0 ≡ κ2kπcot
(Dπ

2

)
, A1 ≡

κ2H2

4π
D

2

µD−4Γ(D
2
)

(D−3)(D−4)
. (42)

Now apply the 4-step procedure to find,

−iM2
3A(x; x

′) =
[
A0 +

3

4
A1

]
∂µ

[
a2∂µiδ

D(x−x′)
]
+

κ2H2∂ ·∂′

64π4

{
aa′∂2

0

[ 1

∆x2

]

+
3

2
aa′∂2

[ ln(µ2∆x2)

∆x2

]
+ 4a2a′

2
H2

[ ln(1
4
H2∆x2)+1

∆x2

]

+
1

2
a2a′

2
H2∂2

0

[
ln2(

1

4
H2∆x2)+3 ln(

1

4
H2∆x2)

]}
, (43)

−iM2
3B(x; x

′) =
1

2
A1∂i

[
a2∂iiδ

D(x−x′)
]
− κ2H2∇2

64π4

{
aa′∂2

[ ln(µ2∆x2)

∆x2

]

+12a2a′
2
H2

[ ln(1
4
H2∆x2)+ 3

2

∆x2

]
+

1

2
a2a′

2
H2∆η2∂2

[ ln(µ2∆x2)

∆x2

]

+4a3a′
3
H4∆η2

[ ln(1
4
H2∆x2)+ 3

2

∆x2

]}
, (44)

−iM2
3C(x; x

′) = A1

{
−1

4
∂i

[
a2∂iiδ

D(x−x′)
]
+

1

4
(D−1)∂0

[
a2∂0iδ

D(x−x′)
]}

+
κ2H2∇2

64π4

{
1

2
aa′∂2

[ ln(µ2∆x2)

∆x2

]
+ 6aa′∂2

0

[ ln(1
4
H2∆x2)+2

∆x2

]

+
1

2
a2a′

2
H2∂2

[
ln2(

1

4
H2∆x2)+

1

2
ln(

1

4
H2∆x2)

]
−a2a′

2
H2∂2

0

[
ln2(

1

4
H2∆x2)

+
7

2
ln(

1

4
H2∆x2)

]
+ a3a′

3
H4

[
ln2(

1

4
H2∆x2)+3 ln(

1

4
H2∆x2)

]

+
1

2
a3a′

3
H4∂2

0

(
∆x2

[
ln2(

1

4
H2∆x2)+ln(

1

4
H2∆x2)−1

])}

+
κ2H2∂0∂

′
0

64π4

{
3

2
aa′∂2

[ ln(µ2∆x2)

∆x2

]
−2aa′∇2

[ ln(1
4
H2∆x2)+2

∆x2

]
− 3

2
a2a′

2
H2

×∂2 ln(
1

4
H2∆x2)+

1

2
a2a′

2
H2∇2

[
ln2(

1

4
H2∆x2)+3 ln(

1

4
H2∆x2)

]}
, (45)

−iM2
3D(x; x

′) = A1∂0

[
a2∂0iδ

D(x−x′)
]
+

κ2H2∂0∂
′
0

64π4

{
2aa′∂2

[ ln(µ2∆x2)

∆x2

]

+8aa′∂2
0

[ ln(1
4
H2∆x2)+2

∆x2

]}
. (46)

2.4 Renormalization

Reducing the 4-point contribution (28) to the 3-point form (43-46) gives,
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−iM2
4 (x; x

′) =
1

4
D(D−5)A0∂

µ
[
a2∂µiδ

D(x−x′)
]
−DA0∂0

[
a2∂0iδ

D(x−x′)
]
.

(47)
We can now sum the divergent parts from expressions (43-47),

−iM2
div(x; x

′) =
[
1

4
(D−1)(D−4)A0+A1

]
∂µ

[
a2∂µiδ

D(x−x′)
]

+
[
−DA0+

1

4
(D+4)A1

]
∂0

[
a2∂0iδ

D(x−x′)
]
. (48)

Recall that A0 and A1 were defined in (42).
The 1-loop divergences (48) are canceled by three counterterms,

∆L = −1

2
α1 φ φ

√
−g − 1

2
α2R∂µφ∂νφg

µν
√
−g − 1

2
α3R∂0φ∂0φg

00
√
−g .

(49)
Hence the final diagram of Figure 2 is,

−iM2
ctm(x; x

′) ≡
[ iδ2∆S

δφ(x)δφ(x′)

]
1
= −α1∂

µ∂′ρ

[
(aa′)D−2∂µ∂

′
ρ

( iδD(x−x′)

aD

)]

+α2∂
µ
[
RaD−2∂µiδ

D(x−x′)
]
− α3∂0

[
RaD−2∂0iδ

D(x−x′)
]
, (50)

where the Ricci scalar is R = D(D−1)H2. Comparison between expressions
(48) and (50) implies,

α1 = 0 , (51)

α2R = −κ2H2µD−4

4π
D

2

{Γ(D)

Γ(D
2
)

(D−4)

16
πcot

(Dπ

2

)
+

Γ(D
2
)

(D−3)(D−4)

}
, (52)

α3R = −κ2H2µD−4

4π
D

2

{Γ(D−1)

Γ(D
2
)

D

4
πcot

(Dπ

2

)
− (D+4)Γ(D

2
)

4(D−3)(D−4)

}
. (53)

The vanishing of α1 is an artifact of α = β = 1 gauge in the flat space limit
(3). The counterterms proportional to α2 and α3 vanish in the flat space
limit and their potential gauge dependence is not known.

Combining the primitive divergence with the counterterms and taking the
unregulated limit gives,

−iM2
div(x; x

′)− iM2
ctm(x; x

′) = −κ2H2

4π2
∂µ

[
a2 ln(a)∂µiδ

4(x−x′)
]

+
κ2H2

2π2
∂0

[
a2 ln

(4µ2a

H2

)
∂0iδ

4(x−x′)
]
+O(D−4) . (54)
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The renormalized self-mass comes from adding these local terms to the non-
local parts of (43-46), and then simplifying the sum,

−iM2
ren(x; x

′) = −κ2H2

4π2
∂µ

[
a2 ln(a)∂µiδ

4(x−x′)
]

+
κ2H2

2π2
∂0

[
a2 ln

(4µ2a

H2

)
∂0iδ

4(x−x′)
]
+

κ2H2∂0∂
′
0

64π4

{
aa′∂0∂

′
0

[ 1

∆x2

]

+2aa′(∂0∂
′
0+∇2)

[ ln(µ2∆x2)

∆x2

]
− 2aa′(4∂0∂

′
0+∇2)

[ ln(1
4
H2∆x2)+2

∆x2

]}

+
κ2H2∇2

64π4

{
−2aa′(∂0∂

′
0+∇2)

[ ln(µ2∆x2)

∆x2

]
− 6aa′∂0∂

′
0

[ ln(1
4
H2∆x2)+ 11

6

∆x2

]

+
1

4
a2a′

2
H2(∂0∂

′
0−∇2) ln(µ2∆x2) +

15

4
a2a′

2
H2∂0∂

′
0 ln(

1

4
H2∆x2)

−a2a′
2
H2∇2

[
3

2
ln2(

1

4
H2∆x2) +

5

4
ln(

1

4
H2∆x2)

]}
. (55)

3 The Linearized Effective Field Equation

The purpose of this section is to use the renormalized self-mass (55) to
quantum-correct the linearized effective field equation and then solve this
equation for scalar radiation and for the scalar exchange potential. We begin
by explaining the Schwinger-Keldysh formalism that is used to produce a
causal and real effective field equation. The equation is then solved pertur-
batively, first for scalar radiation and then for the exchange potential. The
section closes by using the renormalization group to explain the latter.

3.1 Schwinger-Keldysh Formalism

The linearized effective field equation is,

√
−g φ(x) = ∂µ

[
a2∂µφ(x)

]
≡ Dφ(x) = J(x) +

∫
d4x′M2(x; x′)φ(x′) , (56)

where J(x) is the source. Substituting expression (55) for the self-mass re-
sults in an equation with three peculiar properties:

• It isn’t local because M2
ren(x; x

′) fails to vanish for x′µ 6= xµ;

12



• It isn’t causal because M2
ren(x; x

′) fails to vanish for x′µ outside the past
light-cone of xµ; and

• It isn’t real because M2
ren(x; x

′) has a nonzero imaginary part.

Effective field equations are unavoidably nonlocal but the other two proper-
ties derive from −iM2

ren(x; x
′) representing an in-out amplitude rather than

a true expectation value. Of course that is what the Feynman rules produce,
and it is exactly the right thing for scattering amplitudes. However, the “in”
and “out” vacua disagree due to the very cosmological particle production
(1) whose effect we seek to study, and causality precludes the S-matrix from
being an observable. It is therefore more sensible to study the evolution of
the expectation value of φ(x) in the presence of a state which was empty
in the distant past. The Schwinger-Keldysh formalism provides a diagram-
matic procedure for computing this which is almost as simple to use as the
Feynman rules [43–47]. This expectation value obeys the Schwinger-Keldysh
effective field equations, which are both causal and real [48–50].

It is straightforward to convert the in-out effective field equations to the
in-in equations of the Schwinger-Keldysh formalism. The rules are [51]:

• End points of lines in the diagrammatic formalism have ± polarizations,
resulting in four propagators and 2N 1PI N -point functions;

• The ++ propagator is the same as the Feynman propagator, and the
−− propagator is its complex conjugate;

• The +− and −+ propagators are homogeneous solutions of the prop-
agator equation, which are obtained from the Feynman propagator by
changing the iǫ in the conformal coordinate interval from (13) to,

∆x2
+− ≡ ‖~x−~x′‖2 − (η−η′+iǫ)2 , (57)

∆x2
−+ ≡ ‖~x−~x′‖2 − (η−η′−iǫ)2 ; and (58)

• Vertices carry only a single polarity, so all their lines are either + or
−, with the + vertices being the same as those of the Feynman rules
and the − vertices being their complex conjugates.

The term “M2(x; x′)” in the Schwinger-Keldysh effective field equation
(56) is M2

++(x; x
′)+M2

+−(x; x
′). It is real because the ± vertex at x′µ results

in a relative minus sign, and because ∆x2
+− = ∆x2

++ for η < η′ whereas
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∆x2
+− = (∆x2

++)
∗ for η > η′. To see causality one first eliminates inverse

powers of ∆x2,

1

∆x2
=

1

4
∂2 ln(µ2∆x2) , (59)

ln(µ2∆x2)

∆x2
=

1

8
∂2
[
ln2(µ2∆x2)− 2 ln(µ2∆x2)

]
. (60)

Now note that differences of powers of ++ and +− logarithms are propor-
tional to θ(∆η −∆r), where ∆η ≡ η − η′ and ∆r ≡ ‖~x− ~x′‖,

ln(µ2∆x2
++)− ln(µ2∆x2

+−) = 2πiθ(∆η−∆r) , (61)

ln2(µ2∆x2
++)− ln2(µ2∆x2

+−) = 4πiθ(∆η−∆r) ln[µ2(∆η2−∆r2)] .(62)

In converting expression (55) to Schwinger-Keldysh form we will employ the
notation Θ ≡ θ(∆η −∆r) to achieve a more compact form,

M2
SK(x; x

′) =
κ2H2

4π2

{
∂µ

[
a2 ln(a)∂µ

]
−2∂0

[
a2 ln

(4µ2a

H2

)
∂0

]}
δ4(x−x′)

+
κ2H2∂0∂

′
0

128π3

{
−2aa′(∂0∂

′
0+∇2)∂2

[
Θ ln[µ2(∆η2−∆r2)]

]
+ 9aa′∂0∂

′
0∂

2Θ

+4aa′∇2∂2Θ+ 2aa′(4∂0∂
′
0+∇2)∂2

[
Θ ln[

1

4
H2(∆η2−∆r2)]

]}

+
κ2H2∇2

128π3

{
2aa′(∂0∂

′
0+∇2)∂2

[
Θ ln[µ2(∆η2−∆r2)]

]
+ 3aa′∂0∂

′
0∂

2Θ

−2aa′∇2∂2Θ+ 6aa′∂0∂
′
0∂

2
[
Θ ln[

1

4
H2(∆η2−∆r2)]

]
− 16a2a′

2
H2∂0∂

′
0Θ

+6a2a′
2
H2∇2Θ+ 12a2a′

2
H2∇2

[
Θ ln[

1

4
H2(∆η2−∆r2)]

]}
. (63)

3.2 The Scalar Mode Function

Scalar radiation corresponds to J(x) = 0 and solutions take the form,

φ(x) = u(η, k)ei
~k·~x , k ≡ ‖~k‖ . (64)
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The spatial exponential can be factored out using translation invariance,

Du(η, k) ≡ −a2
[
∂2
0 + 2aH∂0 + k2

]
u(η, k) =

∫
d4x′M2

SK(x; x
′)u(η′, k)e−i~k·∆~x.

(65)
Here any spatial derivatives in the self-mass are replaced by ∂i −→ iki.

Because we only have the 1-loop self-mass, equation (65) must be solved
perturbatively (u = u0 + u1 + . . . ) in powers of the loop-counting parameter
κ2 ≡ 16πG. The tree order solution is,

u0(η, k) =
H√
2k3

[
1− ik

aH

]
exp

[ ik

aH

]
a→∞−−−→ H√

2k3

[
1 +

k2

2a2H2
+ . . .

]
, (66)

and it is useful to note,

∂0u0(η, k) =
H√
2k3

[
− k2

aH

]
exp

[ ik

aH

]
=⇒ (∂2

0 + k2)
[
a∂0u0(η, k)

]
= 0 .

(67)
Relation (67) means that the 2nd and 3rd lines of expression (63) for M2

SK

make no contribution to the 1-loop correction,

Du1(η, k) =
κ2H2

4π2

{
−3a3H∂0u0(η, k) + 2 ln

(4µ2a

H2

)
a2k2u0(η, k)

}

−κ2H4k2a

64π3

{
2(∂2

0+k2)

∫
d4x′Θ ln[µ2(∆η2−∆r2)]a′

3
u0(η

′, k)e−i~k·∆~x

+(3∂2
0−2k2)

∫
d4x′Θa′

3
u0(η

′, k)e−i~k·∆~x+6∂2
0

∫
d4x′Θ ln[

1

4
H2(∆η2−∆r2)]

×a′
3
u0(η

′, k)e−i~k·∆~x + a(8∂2
0−3k2)

∫
d4x′Θa′

2
u0(η

′, k)e−i~k·∆~x

−6ak2

∫
d4x′Θ ln[

1

4
H2(∆η2−∆r2)]a′

2
u0(η

′, k)e−i~k·∆~x

}
. (68)

In reaching this form we have also used,

(∂2
0+k2)

[
au0(η, k)

]
= 2a3H2u0(η, k) . (69)

Equation (68) has the general form,

−a2
[
∂2
0 + 2aH∂0 + k2

]
u1(η, k) = S(η) . (70)
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It is important to understand the relation between the asymptotic late time
form of the source S(η) and the late time form it induces in u1(η, k),

S = a4H2 ln(a) =⇒ u1 → −1

6
ln2(a) , S = a4H2 =⇒ u1 → −1

3
ln(a) , (71)

S = a3H2 ln(a) =⇒ u1 → +
ln(a)

2a
, S = a3H2 =⇒ u1 → +

1

2a
, (72)

S = a2H2 ln(a) =⇒ u1 → +
ln(a)

2a2
, S = a2H2 =⇒ u1 → +

1

2a2
. (73)

One can see that the leading asymptotic form of the local source terms on
the first line of (68) is,

κ2H2

4π2

{
−3a3H∂0u0 + 2 ln

(4µ2a

H2

)
a2k2u0

}
−→ κ2H2

4π2
× 2a2 ln(a)k2u0(0, k) .

(74)
Because all the nonlocal terms contain at least one factor of k2, we can
suppress higher powers of k2, which carry factors of 1/a2. This simplifies the
integrations,

−κ2H4k2u0(0, k)a

64π3

{
2∂2

0

∫
d4x′Θ ln[µ2(∆η2−∆r2)]a′

3
+ 3∂2

0

∫
d4x′Θa′

3

+6∂2
0

∫
d4x′Θ ln[

1

4
H2(∆η2−∆r2)]a′

3
+ 8a∂2

0

∫
d4x′Θa′

2

}

−→ κ2H2

4π2
×

[
ln
(H

2µ

)]
+
5

4

]
a2k2u0(0, k) . (75)

In view of (73), expressions (74) and (75) imply,

u1(η, k) −→
κ2H2

4π2
×k2 ln(a)

a2H2
×u0(0, k) . (76)

Hence 1-loop graviton corrections do not change the constant freeze-in value
of the mode function (66), but they do slow down the rate of approach to
this constant.

3.3 The Response to a Point Source

The scalar exchange potential corresponds to J(x) = Kaδ3(~x). The solution
has the form Φ(η, r), so this system is fundamentally 2-dimensional, unlike
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the 1-dimensional problem of the mode function u(η, k). The tree order
response is [52],

Φ0(t, r) =
KH

4π

{
− 1

aHr
+ln

(
Hr+

1

a

)}
a→∞−−−→ HK

4π

{
ln(Hr)− 1

2a2H2r2
+. . .

}
.

(77)
Derivatives of Φ0(η, r) are,

∂0Φ0(η, r) =
KH2

4π

{ 1

Hr
− 1

Hr+ 1
a

}
, ∂2

0Φ0(η, r) = −KH3

4π

1

(Hr+ 1
a
)2

,

(78)

∇2Φ0(η, r) =
Kδ3(~x)

a
+

1

a2
∂0

[
a2∂0Φ0

]
. (79)

In addition to DΦ0 = Kaδ3(~x), two useful consequences are,

∂2
[
aΦ0

]
= Kδ3(~x)− 2a3H2Φ0 , ∂2

[
a∂0Φ0

]
= −HKaδ3(~x) . (80)

The second identity of (80) can be used to perform the spatial integrations
in the 1-loop sources induced by the 2nd and 3rd lines of (63),

DΦ1(η, r) =
κ2H2

4π2

{
Ka ln(a)δ3(~x)− 3a3H∂0Φ0 − 2 ln

(4µ2a

H2

)
∂0

[
a2∂0φ0

]}

+
κ2H3K∂0
128π3

{
−2a∂2

∫ η−r

ηi

dη′a′ ln[µ2(∆η2−r2)] + a(4∇2−9∂2
0)

∫ η−r

ηi

dη′a′

+2a(∇2−4∂2
0)

∫ η−r

ηi

dη′a′ ln[
1

4
H2(∆η2−r2)]

}
+

κ2H2∇2

128π3

{
2a∂2

∫
d4x′Θ

× ln[µ2(∆η2−∆r2)]∂′2[a′Φ0(x
′)]− a(2∇2+3∂2

0)

∫
d4x′Θ∂′2[a′Φ0(x

′)]

−6a∂2
0

∫
d4x′Θ ln[

1

4
H2(∆η2−∆r2)]∂′2[a′Φ0(x

′)]+a2H2(16∂2
0+6∇2)

∫
d4x′Θ

×a′
2
Φ0(x

′) + 12a2H2∇2

∫
d4x′Θ ln[

1

4
H2(∆η2−∆r2)]a′

2
Φ0(x

′)

}
. (81)

Each of the source terms on the right hand side of (81) can be evaluated, at
least for late times, and then its contribution to Φ1(η, r) can be derived by
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integrating against the retarded Green’s function associated with the differ-
ential operator D ≡ ∂µa2∂µ,

Gret(x; x
′) = − 1

4π

{δ(∆η−∆r)

aa′∆r
+H2θ(∆η−∆r)

}
. (82)

However, it turns out that only the first source term in equation (81) makes
a significant contribution at late times,
∫
d4x′Gret(x; x

′)×κ2H2

4π2
Ka′ ln(a′)δ3(~x′)

= −κ2H3K

32π3

{
ln2

(
Hr+

1

a

)
− 2 ln(Hr+ 1

a
)

aHr

}
. (83)

The easiest way to see that the other source terms in equation (81) do
not contribute at late times is by changing the time variable to a and the
space variable to aHr, and then extracting a factor of a4H2 from both sides
of equation (81). The left hand side becomes,

D = a4H2
[
−a2

∂2

∂a2
− 4a

∂

∂a
+

1

a2H2

∂2

∂r2
+

2

a2H2r

∂

∂r

]
. (84)

For an example of the right hand side, consider the second of the nonlocal
source terms,

κ2H3K∂0
128π3

{
a(4∇2−9∂2

0)

∫ η−r

ηi

dη′a′
}
=

κ2H2K∂0
128π3

{
a(4∇2−9∂2

0) ln
( 1

Hr+ 1
a

)}
,(85)

= a4H2×κ2H3K

128π3

{
− 16

aHr
+

16

aHr+1
+

3

(aHr+1)2
− 10

(aHr+1)3

}
. (86)

The part of expression (86) inside the curly brackets goes like 1/(aHr)2 at
late times, which corresponds to a late time contribution to Φ1(η, r) of the
same strength according to (84). The strongest nonlocal source goes like
ln(a)/aHr. Hence the leading (a ≫ 1, aHr ≫ 1) form comes from (83),

Φ1(t, r) −→ −κ2H2

8π2
ln(Hr)×HK

4π
ln(Hr) . (87)

3.4 Renormalization Group Explanation

The h∂φ∂φ interaction of gravity with our scalar is very similar to the
A∂B∂B interaction of a nonlinear sigma model which was recently stud-
ied [53]. It was shown that the leading inflationary logarithms of that model
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could all be explained by combining a variant of Starobinsky’s stochastic
formalism [54, 55], based on curvature-dependent effective potentials, with
a variant of the renormalization group, based on curvature-dependent field
strength renormalizations. The φ → φ + constant shift symmetry of our
Lagrangian (9) precludes there being any effective potential for φ but it does
seem possible to identify a curvature-dependent field strength renormaliza-
tion among the three 1-loop counterterms of expression (49),

∆L = −1

2
α1 φ φ

√−g − 1

2
α2R∂µφ∂νφg

µν
√−g − 1

2
α3R∂0φ∂0φg

00√−g .

(88)
This is the α2 counterterm, which can be viewed as a field strength renor-
malization of the original Lagrangian (9) with δZ = α2R. Just as for A-B
nonlinear sigma model of Ref. [53], the higher derivative counterterm propor-
tional to α1 plays no role because it cannot be viewed as a renormalization
of the bare Lagrangian. Nor can the noncovariant counterterm proportional
to α3, whose existence is partially due to our use of the simple, de Sitter
breaking gauge [39,40], and partly to the time-ordering of interactions which
seems unavoidable in the Schwinger-Keldysh formalism [56].

If we accept the α2 counterterm as a field strength renormalization, and
employ our result (52) for α2R, the associated γ function is,

Z = 1 + α2R +O(κ4) =⇒ γ ≡ ∂ ln(Z)

∂ ln(µ2)
= −κ2H2

8π2
+O(κ4) . (89)

The exchange potential Φ(η, r) represents an integral of the 1PI 2-point func-
tion, so the Callan-Symanzik equation for it should read,

[ ∂

∂ ln(µ)
− 2γ

]
Φ(t, r) = 0 . (90)

If we replace the scale parameter µ by r, it will be seen that equation (90)
exactly explains the leading 1-loop logarithm from the known tree order
result (77),

∂Φ1

∂ ln(r)
= −2×κ2H2

8π2
×Φ0 =⇒ Φ1(t, r) −→ −κ2H3K

32π3
ln2(Hr) . (91)

No similar explanation can be given for the late time correction (76)
to the mode function. This seems to be because u1(η, k) is not a leading
logarithm effect; indeed, it vanishes at late times. Replacing µ by a, or any
other time variable, is also problematic because most of the time dependence
of the mode function comes in the form of k/aH .
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4 Conclusions

Our long term goal is to establish the reality of large loop corrections from
inflationary gravitons (1) by purging the effective field equations of gauge
dependence. The Introduction described a procedure which has already
been implemented on flat space background for massless, minimally cou-
pled scalars [33], and for electromagnetism [37]. We plan to generalize this
procedure to de Sitter background and, for that purpose, we have sought
the simplest system which exhibits large graviton loop corrections before the
gauge purge. Although conformally coupled scalars are very simple, neither
their mode function nor their exchange potential shows a large correction
at 1-loop order [21]. The next simplest system is the massless, minimally
coupled scalar which we analyzed in this paper. We found that there is no
large correction to the 1-loop mode function (76), but the 1-loop exchange
potential (87) does experience such a correction. Our main conclusion is
therefore that the massless, minimally coupled scalar (9) is the system we
have been seeking, and its exchange potential is the proper thing to study.

Section 2 employed dimensional regularization to compute the fully renor-
malized 1-loop graviton contribution to the scalar self-mass (55). Although
we discovered some small mistakes in a previous computation [14], which
do not alter the conclusion of that work that there are no growing secu-
lar corrections to the mode function, our biggest improvement is the use of
a simple representation which is not burdened with cumbersome de Sitter
invariant inverse differential operators. In section 3 we used the result to
quantum-correct the linearized, Schwinger-Keldysh effective field equation
(56). Specializing this equation to scalar radiation gave relation (68) for the
1-loop mode function, whose asymptotic late time solution is (76). We find
no correction to the freeze-in amplitude of the mode function, but we do find
a large temporal logarithm correction to the approach to freeze-in. Special-
izing (56) to the response to a point source gave relation (81) for the 1-loop
exchange potential, whose asymptotic late time solution is (87). We find a
large spatial logarithm correction to the exchange potential. It is significant
that this correction derives entirely from the first of the source terms on the
right hand side of equation (81). Of course that means we can focus on just
this term when carrying out the gauge purge, which is a huge simplification
and justifies the effort put into this study.

In section 3.4 we used the renormalization group to explain the large
logarithm in the 1-loop exchange potential (87). This is significant for two
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reasons:

• It is the first time a large logarithm from inflationary gravitons has
been explained using the renormalization group; and

• It ties the appearance of a large inflationary logarithm to the existence
of the α2 counterterm in (49).

The second point is relevant to the continuing controversy over the reality
of graviton-induced logarithms because it means that the absence of infla-
tionary logarithms at ℓ-loop order requires that divergences proportional to
(GR)ℓ∂µφ∂νφg

µν
√−g must vanish, for all ℓ, and in the absence of any sym-

metry argument. That seems to strain credulity.
Before closing we should adumbrate the subsequent steps in our pro-

gram, its relation to the manner in which one combines Green’s functions to
produce an S-matrix, and our expectations for the fate of large logarithms.
Our aim is to purge gauge dependence from the linearized effective field
equations of massless fields. The procedure was described in some detail in
the Introduction, and it has been explicitly carried out on flat space back-
ground for gravtion corrections to the massless, minimally coupled scalar [33]
and for graviton corrections to electromagnetism [37]. What one does is to
consider exactly the same Green’s functions that would contribute to the
scattering amplitude for the exchange of a massless particle between two
massive particles. These Green’s functions will include 2-point, 3-point and
4-point diagrams of the massive particle. Instead of going on-shell in mo-
mentum space (which would not be observable in cosmology) one applies a
series relations derived by Donoghue [34–36] which reduce the 3-point and
4-point diagrams to 2-point form, without disturbing the long-range part of
the amplitude. The flat space forms of these relations were given in equations
(5-7), and we propose to make the most straightforward generalizations to
de Sitter background. The next step is using the propagator equation for
the massless field to regard the various 2-point diagrams as contributions
to a gauge-independent 1PI 2-point function of the massless field, as per
equation (8). We then use this 1PI 2-point function to quantum-correct the
linearized effective field equation of the massless field. Gauge independence
can be checked by repeating the computation in the 2-parameter family of
simple, de Sitter-breaking gauges for which the graviton propagator has been
derived [38]. Our expectation is that whatever large logarithmic corrections
occurred with the gauge-dependent computation in the simplest gauge [39,40]

21



will persist in the gauge-independent computation but with possibly different
numerical coefficients.
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