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ABSTRACT

We employ an unregulated computation the graviton self-energy from gravi-
tons on de Sitter background to infer the renormalized result. This is used
to quantum-correct the linearized Einstein equation. We solve this equa-
tion for the potentials which represent the gravitational response to static,
point mass. We find large spatial and temporal logarithmic corrections to the
Newtonian potential and to the gravitational shift. Although suppressed by
a minuscule loop-counting parameter, these corrections cause perturbation
theory to break down at large distances and late times. Another interesting
fact is that gravitons induce up to three large logarithms whereas a loop of
massless, minimally coupled scalars produces only a single large logarithm.
This is in line with corrections to the graviton mode function: a loop of
gravitons induces two large logarithms whereas a scalar loop gives none.
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1 Introduction

A key prediction of primordial inflation is that virtual gravitons of cosmo-
logical scale are ripped out of the vacuum [1,2]. The occupation number for

each wave vector ~k is staggering,

N(η, k) =
π∆2

h(k)

64Gk2
× a2(η) , (1)

where ∆2
h(k) is the tensor power spectrum, G is Newton’s constant and a(η)

is the scale factor at conformal time η. Our goal is to study how these
gravitons change the force of gravity.

We can describe the background geometry of cosmology in conformal
coordinates,

ds2 = a2(η)
[

−dη2 + d~x·d~x
]

=⇒ H ≡
a′

a2
, ǫ ≡ −

H ′

aH2
, (2)

where H(η) is the Hubble parameter and ǫ(η) is the first slow roll parameter.
A reasonable paradigm for inflation is provided by the special case of de Sitter
(ǫ = 0, constant H and a(η) = −1/Hη), which is tempting because there are
analytic expressions for the graviton propagator [3,4] and because there is no
mixing between gravitons and the matter fields that drive inflation [5,6]. One
quantum-corrects the linearized Einstein equation using the graviton self-
energy −i[µνΣρσ](x; x′) which is the 1PI (one particle irreducible) 2-graviton
function,

Dµνρσhρσ(x)−

∫

d4x′
[

µνΣρσ
]

(x; x′)hρσ(x
′) =

1

2
κT µν

lin (x) . (3)

Here κ2 ≡ 16πG is the loop-counting parameter, hµν ≡ (gµν −a2ηµν)/κ is the
graviton field, T µν

lin (x) is the linearized stress tensor and Dµνρσ is the graviton
kinetic operator in the same gauge that was used to compute −i[µνΣρσ](x; x′).
Our two aims in this work are (1) to infer a fully renormalized result for
−i[µνΣρσ](x; x′) at one loop from an old computation [7] that was made
without regularization, and (2) to work out one loop corrections to the grav-
itational response to a point mass.

There are four sections to this paper, of which this Introduction is the
first. Section 2 describes our procedure for extracting the renormalized self-
energy from the unregulated result, with technical details consigned to an
Appendix. Section 3 solves (3) for one loop corrections to the gravitational
potentials induced by a point mass. Our conclusions comprise section 4.
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2 Quantum Linearized Einstein Equation

This section derives an explicit expression for the quantum-corrected Einstein
equation (3). Our first tasks are specifying the gauge-fixed kinetic operator
Dµνρσ, explaining how we represent the tensor structure of the graviton self-
energy, and giving 3+1 decompositions of both. The main part of this section
is describing the process through which we infer most of the renormalized,
Schwinger-Keldysh result for the graviton self-energy from an unregulated,
noncoincident computation [7]. At the section’s end we give a direct, di-
mensionally regulated computation of the local 4-point contribution, and we
discuss the need for a fully dimensionally regulated calculation.

2.1 3 + 1 Decomposition

In the simplest gauge and D = 3 + 1 dimensions, the gauge-fixed kinetic
operator takes the form [3, 4],

Dµνρσ =
1

2
ηµ(ρησ)νDA −

1

4
ηµνηρσDA + 2a4H2δ

(µ
0η

ν)(ρδ
σ)
0 . (4)

Here DA is the massless, minimally coupled scalar kinetic operator,

DA = −a2
[

∂2
0 + 2aH∂0 −∇2

]

= ∂µa2∂µ . (5)

The 3 + 1 decomposition of Dµνρσhρσ is,

D00ρσhρσ =
1

4
DA(h00 + hkk)− 2a4H2h00 , (6)

D0iρσhρσ = −
1

2
DBh0i , (7)

Dijρσhρσ =
1

2
DA

[

hij +
1

2
δij(h00 − hkk)

]

, (8)

where DB stands for the kinetic operator of a massless, conformally coupled
scalar,

DB = −a2
[

∂2
0 + 2aH∂0 −∇2 + 2a2H2

]

= a∂2a . (9)

Note that adding (6) and the trace of (8) gives a relation for h00,

(

D00ρσ +Dkkρσ
)

hρσ = DBh00 . (10)
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Using general tensor analysis on a general cosmological background (2),
we can represent the graviton self-energy as a sum of 21 tensor differential
operators [µνDρσ] acting on scalar functions of η, η′ and ‖~x− ~x′‖ [8],

−i
[

µνΣρσ
]

(x; x′) =
21
∑

i=1

[

µνDρσ
i

]

×T i(x; x′) . (11)

The 21 basis tensors are constructed from δµ0, the spatial part of the Min-
kowski metric ηµν ≡ ηµν + δµ0δ

ν
0 and the spatial derivative operator ∂

µ
≡

∂µ + δµ0∂0. These 21 tensors are listed in Table 1.

i [µνDρσ
i ] i [µνDρσ

i ] i [µνDρσ
i ]

1 ηµνηρσ 8 ∂
µ
∂
ν
ηρσ 15 δ

(µ
0∂

ν)
δρ0δ

σ
0

2 ηµ(ρησ)ν 9 δ
(µ
0η

ν)(ρδ
σ)
0 16 δµ0δ

ν
0∂

ρ
∂
σ

3 ηµνδρ0δ
σ
0 10 δ

(µ
0η

ν)(ρ∂
σ)

17 ∂
µ
∂
ν
δρ0δ

σ
0

4 δµ0δ
ν
0η

ρσ 11 ∂
(µ
ην)(ρδ

σ)
0 18 δ

(µ
0∂

ν)
δ
(ρ
0∂

σ)

5 ηµνδ
(ρ
0∂

σ)
12 ∂

(µ
ην)(ρ∂

σ)
19 δ

(µ
0∂

ν)
∂
ρ
∂
σ

6 δ
(µ
0∂

ν)
ηρσ 13 δµ0δ

ν
0δ

ρ
0δ

σ
0 20 ∂

µ
∂
ν
δ
(ρ
0∂

σ)

7 ηµν∂
ρ
∂
σ

14 δµ0δ
ν
0δ

(ρ
0∂

σ)
21 ∂

µ
∂
ν
∂
ρ
∂
σ

Table 1: The 21 basis tensors used in expression (11). The pairs (3, 4), (5, 6), (7, 8),
(10, 11), (14, 15), (16, 17) and (19, 20) are related by reflection.

Table 2 gives the 7 pairs of the T i(x; x′) which are related by reflection
invariance, −i[µνΣρσ](x; x′) = −i[ρσΣµν ](x′; x).

i Relation i Relation

3, 4 T 4(x; x′) = +T 3(x′; x) 14, 15 T 15(x; x′) = −T 14(x′; x)

5, 6 T 6(x; x′) = −T 5(x′; x) 16, 17 T 17(x; x′) = +T 16(x′; x)

7, 8 T 8(x; x′) = +T 7(x′; x) 19, 20 T 20(x; x′) = −T 19(x′; x)

10, 11 T 11(x; x′) = −T 10(x′; x)

Table 2: Scalar coefficient functions in expression (11) which are related by reflection.
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The 3 + 1 decomposition of [µνΣρσ](x; x′)hρσ(x
′) is,

[

00Σρσ
]

hρσ −→ iT 4hkk + iT 13h00 + iT 14h0k,k + iT 16hkℓ,kℓ , (12)
[

0iΣρσ
]

hρσ −→
i

2
∂i

[

T 6hkk + T 15h00 + T 18h0k,k + T 19hkℓ,kℓ

]

+
i

2
T 9h0i +

i

2
T 10hik,k , (13)

[

ijΣρσ
]

hρσ −→ iδij

[

T 1hkk + T 3h00 + T 5h0k,k + T 7hkℓ,kℓ

]

+ iT 2hij

+i∂(i

[

T 11hj)0+T 12hj)k,k

]

+ i∂i∂j

[

T 8hkk+T 17h00+T 20h0k,k+T 21hkℓ,kℓ

]

. (14)

Some of these relations were simplified using transition invariance to partially
integrate spatial derivatives from the coefficient functions T i(x; x′) onto the
graviton field.

2.2 The Quantum Correction

Suppose that S[g] stands for the classical action, with ghost and gauge fix-
ing action Sg[h, θ, θ], and counterterms ∆S[g]. We can give an analytic ex-
pression for the one loop graviton self-energy using an expectation value of
variations of these actions,

−i
[

µνΣρσ
]

(x; x′) =

〈

Ω

∣

∣

∣

∣

T ∗

[

[ iδS[g]

δhµν(x)

]

hh

[ iδS[g]

δhρσ(x′)

]

hh
+
[ iδS[g]

δhµν(x)

]

θθ

×
[ iδS[g]

δhρσ(x′)

]

θθ
+
[ iδ2S[g]

δhµν(x)δhρσ(x′)

]

hh
+
[ iδ2∆S[g]

δhµν(x)δhρσ(x′)

]

1

]
∣

∣

∣

∣

Ω

〉

. (15)

The T ∗-ordering symbol indicates that derivatives are taken outside the time
ordering symbol, and the various subscripts give the number of weak fields
which contribute. The analogous Feynman diagrams are shown in Figure 1.

x x′

−

x x′

+

x

+

x

Figure 1: Diagrams contributing to the one loop graviton self-energy, shown in the same
order, left to right, as the four contributions to (15). Graviton lines are wavy and ghost
lines are dashed.
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2.2.1 The D = 4 Result

The unregulated result [7] can best be understood by considering how a
dimensionally regulated computation of −i[µνΣρσ](x; x′) would look. The
general forms of the 3-graviton and 4-graviton vertices are [3, 9],1

κaD−2h∂h∂h , κHaD−1hh∂h , (16)

κ2aD−2hh∂h∂h , κ2HaD−1hhh∂h . (17)

There are a plethora of different index contractions, but contributions to the
first two (nonlocal) diagrams of Figure 1 take the general form,

κaD−2 × ∂∂′i∆(x; x′)× ∂∂′i∆(x; x′)× κa′
D−2

, (18)

with i∆(x; x′) standing for a ghost or graviton propagator, and the under-
standing that one derivative at each vertex could be replaced by a factor of
H times the appropriate scale factor. Note also that, when an external leg
happens to be differentiated, then minus the derivative acts on everything.
On the other hand, the third (4-point) diagram of Figure 1 is local,

κ2aD−2 × ∂∂′i∆(x; x′)× iδD(x−x′) , (19)

with the same understanding concerning derivatives. The last (counterterm)
diagram of Figure 1 is also local,

κ2aD−4

D−4
× ∂2∂′2 × iδD(x−x′) , (20)

with the stipulation that any number of the four derivatives could each be
replaced by a factor of Ha.

The gauge for this computation was fixed by adding [3, 4],

LGF = −
aD−2

2
ηµνFµFν , Fµ = ηρσ

(

hµρ,σ−
1

2
hρσ,µ+(D−2)aHhµρδ

0
σ

)

. (21)

In this gauge the ghost and graviton propagators become sums of constant
tensor factors multiplied by simple scalar propagators,

i
[

µ∆ρ

]

(x; x′) = ηµρ × i∆A(x; x
′)− δ0µδ

0
ν × i∆B(x; x

′) , (22)

i
[

µν∆ρσ

]

(x; x′) =
∑

I=A,B,C

[

µνT
I
ρσ

]

× i∆I(x; x
′) . (23)

1Vertices involving ghosts take the same form as (16).
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The various [µνT
I
ρσ] are,

[

µνT
A
ρσ

]

= 2ηµ(ρησ)ν −
2

D−3
ηµνηρσ ,

[

µνT
B
ρσ

]

= −4δ0(µην)(ρδ
0
σ) , (24)

[

µνT
C
ρσ

]

=
2EµνEρσ

(D−2)(D−3)
, Eµν ≡ (D−3)δ0µδ

0
ν + ηµν . (25)

Most of the scalar propagators can be expressed using a function A(y) of the
de Sitter length function y(x; x′) ≡ aa′H2∆x2,

i∆A(x; x
′) = A(y) + k ln(aa′) k ≡

HD−2

(4π)
D

2

Γ(D−1)

Γ(D
2
)

, (26)

i∆B(x; x
′) = B(y) ≡ −

[(4y−y2)A′(y)+(2−y)k]

2(D−2)
, (27)

i∆C(x; x
′) = C(y) ≡

1

2
(2−y)B(y) +

k

D−3
. (28)

The first derivative of A(y) is [10, 11],

A′(y) = −
HD−2

4(4π)
D

2

{

Γ
(D

2

)(4

y

)
D

2

+ Γ
(D

2
+1

)(4

y

)
D

2
−1

+

∞
∑

n=0

[

Γ(n+D
2
+2)

Γ(n+3)

(y

4

)n−D

2
+2

−
Γ(n+D)

Γ(n+D
2
+1)

(y

4

)n
]}

. (29)

Note that the yn and yn−
D

2
−2 terms cancel for D = 4, so they only contribute

when multiplied by a sufficiently singular term.
Divergences occur in the effective field equation (3) when the integration

over x′µ carries it to coincidence, x′µ = xµ. Hence the first two (nonlocal)
diagrams of Figure 1 can be taken to D = 4 away from coincidence, which
also makes the two local diagrams vanish. This was done for the unregulated
computation [7]. That computation was tractable because taking D = 4
simplifies the propagators,

i
[

µ∆
D=4
ρ

]

(x; x′) =
1

4π2

{

ηµρ
aa′∆x2

−
1

2
H2 ln(H2∆x2)ηµρ

}

, (30)

i
[

µν∆
D=4
ρσ

]

(x; x′) =
1

4π2

{

(2ηµ(ρησ)ν−ηµνηρσ)

aa′∆x2

−H2 ln(H2∆x2)
(

ηµ(ρησ)ν−ηµνηρσ

)

}

. (31)
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i Coefficient Functions T i
L(x; x

′) in expression (32)

1 8a2a′2H4 × [4∆η2

∆x6 + 1
∆x4 ] + 4a3a′3H6 × [4∆η4

∆x6 − ∆η2

∆x4 +
3

∆x2 ]

2 −16a2a′2H4 × [4∆η2

∆x6 + 1
∆x4 ]− 4a3a′3H6 × [8∆η4

∆x6 + 1
∆x2 ]

3 8a3a′3H6×[∆η2

∆x4 −
2

∆x2 ]−4a3a′2H5×[4∆η3

∆x6 −
∆η

∆x4 ]

5 16a2a′2H4 × ∆η

∆x4 + 4a3a′2H5 × [2∆η2

∆x4 + 3
∆x2 ]

7 −8a2a′2H4 × 1
∆x2 − 2a3a′3H6 × ∆η2

∆x2 − 2a3a′2H5 × ∆η

∆x2

9 −96aa′H2 × [16∆η4

∆x10 + 12∆η2

∆x8 + 1
∆x6 ]− 4a2a′2H4 × [24∆η4

∆x8 + 8∆η2

∆x6 − 1
∆x4 ]

10 96aa′H2×[2∆η3

∆x8 +
∆η

∆x6 ]+12a2a′2H4×[4∆η3

∆x6 +
∆η

∆x4 ]+a3a′3H6×[8∆η3

∆x4 −
4∆η

∆x2 ]

−8a2a′H3×[4∆η2

∆x6 +
1

∆x4 ]−4a3a′2H5×[2∆η2

∆x4 −
1

∆x2 ]

12 −8aa′H2×[4∆η2

∆x6 +
1

∆x4 ]−2a2a′2H4×[6∆η2

∆x4 −
9

∆x2 ]+4a3a′3H6 × ∆η2

∆x2

13 −96aa′H2 × [16∆η4

∆x10 + 12∆η2

∆x8 + 1
∆x6 ] + 4a2a′2H4 × [24∆η4

∆x8 + 56∆η2

∆x6 + 11
∆x4 ]

+8a3a′3H6 × [4∆η4

∆x6 − 2∆η2

∆x4 + 3
∆x2 ]

14 192aa′H2 × [2∆η3

∆x8 + ∆η

∆x6 ] + 8a2a′2H4 × [4∆η3

∆x6 − 3∆η

∆x4 ]

−16a2a′H3 × [4∆η2

∆x6 + 1
∆x4 ]− 16a3a′2H5 × [∆η2

∆x4 +
1

∆x2 ]

16 −8aa′H2×[4∆η2

∆x6 +
1

∆x4 ]+2a2a′2H4×[−6∆η2

∆x4 +
1

∆x2 ]−2a3a′3H6×∆η2

∆x2

+16a2a′H3 × ∆η

∆x4 + 6a3a′2H5 × ∆η

∆x2

18 −24aa′H2 × [4∆η2

∆x6 + 1
∆x4 ]− 2a2a′2H4 × [6∆η2

∆x4 + 5
∆x2 ]

19 8aa′H2 × ∆η

∆x4 + 6a2a′2H4 × ∆η

∆x2 − 4a2a′H3 × 1
∆x2

Table 3: Each tabulated term must be multiplied by − κ
2

64π4 .

Because one of the propagators in the nonlocal diagrams (18) might not carry
any derivatives, the coefficient functions T i(x; x′) in our representation (11)
of the graviton self-energy take the form,

T i(x; x′) ≡ T i
N (x; x

′) + T i
L(x; x

′)×ln(H2∆x2) . (32)

The coefficient functions T i
L(x; x

′) are given in Table 3, and the T i
N (x; x

′) are
given in Table 4. Both are functions of a, a′, ∆η ≡ η− η′ and inverse powers
of the Poincaré interval ∆x2 ≡ ‖~x− ~x′‖2 − (|η − η′| − iε)2.
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i Coefficient Functions T i
N(x; x

′) in expression (32)

1
736

5

∆x8 −aa′H2[616∆η2

∆x8 +
220

3

∆x6 ]−a2a′2H4[96∆η4

∆x8 +
812

3
∆η2

∆x6 + 19
∆x4 ]−a3a′3H6[64∆η4

∆x6 + 22∆η2

∆x4 ]

2
1952

5

∆x8 −aa′H2[416∆η2

∆x8 +
128

3

∆x6 ]−a2a′2H4[
112

3
∆η2

∆x6 − 56
∆x4 ]+a3a′3H6[32∆η4

∆x6 + 12∆η2

∆x4 ]

−184[
8

5
∆η2

∆x10 +
1

∆x8 ]+32aa′H2[36∆η4

∆x10 + 14∆η2

∆x8 −
43

3

∆x6 ]

3 −a2a′2H4[288∆η4

∆x8 −
1228

3
∆η2

∆x6 + 145
∆x4 ]+4a3a′3H6[16∆η4

∆x6 + 5∆η2

∆x4 ]

−8aH [232∆η3

∆x10 + 203∆η

∆x8 ]+4a2a′H3[74∆η3

∆x8 −
319

3
∆η

∆x6 ]−a3a′2H5× 38∆η

∆x4

5
368

5
∆η

∆x8 −32aa′H2[9∆η3

∆x8 −
4

3
∆η

∆x6 ]+4a2a′2H4[8∆η3

∆x6 −
∆η

∆x4 ]

+232aH [2∆η2

∆x8 +
1

∆x6 ]−2a2a′H3[
28

3
∆η2

∆x6 − 23
∆x4 ]−a3a′2H5× 12∆η2

∆x4

7 −
92

15

∆x6+aa′H2[24∆η2

∆x6 +
7

3

∆x4 ]+a2a′2H4[8∆η2

∆x4 −
3

∆x2 ]+a3a′3H6×∆η2

∆x2

−aH×
116

3
∆η

∆x6 − a2a′H3×
23

3
∆η

∆x4 + a3a′2H5× ∆η

∆x2

9 −16[
488

5
∆η2

∆x10 + 61
∆x8 ]+16aa′H2[88∆η4

∆x10 − 10∆η2

∆x8 − 35
∆x6 ]+4a2a′2H4[8∆η4

∆x8 +
2∆η2

∆x6 −
3

∆x4 ]

10
976

5
∆η

∆x8 −16aa′H2[8∆η3

∆x8 −
23

3
∆η

∆x6 ]−2a2a′2H4[
16

3
∆η3

∆x6 − 23∆η

∆x4 ]

+a3a′3H6× 4∆η3

∆x4 +aH×
64

3

∆x6 +8a2a′H3[
4

3
∆η2

∆x6 − 5
∆x4 ]−a3a′2H5× 4∆η2

∆x4

12 −
488

15

∆x6 +
32
3
aa′H2[∆η2

∆x6 −
1

∆x4 ]−a2a′2H4[
10

3
∆η2

∆x4 − 8
∆x2 ]−a3a′3H6× 2∆η2

∆x2

13 16[336∆η4

∆x12 + 336∆η2

∆x10 + 63
∆x8 ] + 4aa′H2[336∆η4

∆x10 + 868∆η2

∆x8 + 409
∆x6 ]

+a2a′2H4[424∆η4

∆x8 + 144∆η2

∆x6 + 557
∆x4 ]−24a3a′3H6[4∆η4

∆x6 −
∆η2

∆x4 ]

14 −672[
8

5
∆η3

∆x10 +
∆η

∆x8 ]−8aa′H2[30∆η3

∆x8 +
107

3
∆η

∆x6 ]−4a2a′2H4[16∆η3

∆x6 − 7∆η

∆x4 ]

−16aH [4∆η2

∆x8 +
35

3

∆x6 ]−2a2a′H3[
68

3
∆η2

∆x6 + 137
∆x4 ]+a3a′2H5× 16∆η2

∆x4

16 4[
84

5
∆η2

∆x8 +
13

3

∆x6 ]+aa′H2[24∆η2

∆x6 +
127

3

∆x4 ]+a2a′2H4[6∆η2

∆x4 +
5

∆x2 ]

−a3a′3H6× 3∆η2

∆x2 −aH× 28∆η

∆x6 +a2a′H3×
49

3
∆η

∆x4 +a3a′2H5× ∆η

∆x2

18 8[
168

5
∆η2

∆x8 +
29

3

∆x6 ]+4aa′H2[12∆η2

∆x6 − 23
∆x4 ]+a2a′2H4× 10∆η2

∆x4

19 −
112

5
∆η

∆x6 − 8aa′H2× ∆η

∆x4 − a2a′2H4× ∆η

∆x2 + aH×
50

3

∆x4

21
14

5

∆x4

Table 4: Each of the tabulated terms must be multiplied by − κ
2

64π4 .
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2.2.2 Recovering the Renormalized Result

In [12] we presented a 4-step procedure for reconstructing the dimensionally
regulated result for the first two diagrams of Figure 1:

1. Express each T i
L(x; x

′) as a sum of derivatives acting on three integrable
functions,

1

∆x2
,

∆η

∆x2
,

∆η2

∆x2
; (33)

2. Commute the various derivatives to the left of the multiplicative factor
of ln(H2∆x2);

3. Write the sum of the remainder ∆T i
L(x; x

′) from step 2, and T i
N (x; x

′),
as a sum of derivatives acting on the same integrable functions (33)
and 1/∆x4; and

4. Recognize the factors of 1/∆x4 from step 3 as the D = 4 limit of
1/∆x2D−4, and isolate the ultraviolet divergences on delta functions
which can be absorbed into counterterms.

Below we explain the rationale for each step and provide details. We also
implement the various steps on T 12(x; x′),

T 12
L (x; x′) = −

κ2 ln(H2∆x2)

64π4

{

aa′H2
[

−
32∆η2

∆x6
−

8

∆x4

]

+a2a′
2
H4

[

−
12∆η2

∆x4
+

18

∆x2

]

+ a3a′
3
H6

[4∆η2

∆x2

]

}

, (34)

T 12
N (x; x′) = −

κ2

64π4

{

−
488
15

∆x6
+ aa′H

[ 32
3
∆η2

∆x6
−

32
3

∆x6

]

+a2a′
2
H4

[

−
10
3
∆η2

∆x4
+

8

∆x2

]

+ a3a′
3
H6

[

−
2∆η4

∆x2

]

}

. (35)

To understand the rationale behind Step 1, note that a single factor of
ln(H2∆x2) from the propagators (30-31) can only contribute to one of the
T i
L(x; x

′) if no derivatives act on one of the two propagators in (18). In that
case all of the derivatives must act on the other propagator, and it is this
differentiated propagator, multiplied by the scale factors from the vertices,
which appear in T i

L(x; x
′). It follows that we can express T i

L(x; x
′) as a sum

9



of products of scale factors multiplied by derivatives of the three integrable
functions (33). For example, T 12

L (x; x′) in expression (34) can be written as,

T 12
L (x; x′) = −

κ2 ln(H2∆x2)

64π4

{

aa′H2×−4∂2
0

( 1

∆x2

)

+a2a′
2
H4

[

−6∂0

( ∆η

∆x2

)

+
24

∆x2

]

+ a3a′
3
H6

[4∆η2

∆x2

]

}

. (36)

The Appendix contains a number of useful identities (109-118) for extracting
derivatives.

Step 2 consists of commuting the multiplicative factor of ln(H2∆x2)
through the derivatives to multiply the three integrable functions (33). Of
course this produces a “remainder” ∆T i

L(x; x
′) in which derivatives act on the

logarithm to produce a term like those in T i
N (x; x

′). For example, carrying
out Step 2 on expression (36) for T 12

L (x; x′) gives,

T 12
L (x; x′) = −

κ2

64π4

{

aa′H2×−4∂2
0

( ln(H2∆x2)

∆x2

)

+ a2a′
2
H4

[

−6∂0

×
(∆η ln(H2∆x2)

∆x2

)

+
24 ln(H2∆x2)

∆x2

]

+ a3a′
3
H6×

4∆η2 ln(H2∆x2)

∆x2

}

−
κ2

64π4

{

aa′H2
[

−
48∆η2

∆x6
−

8

∆x4

]

+ a2a′
2
H4×−

12∆η4

∆x6

}

. (37)

Identities (119-127) in the Appendix facilitate these reductions. It is useful at
this stage to identify six integrable functions, with a factor of 2πi extracted
for future convenience,

2πiA1 ≡
ln(H2∆x2)

∆x2
, 2πiA2 ≡

1

∆x2
, (38)

2πiB1 ≡
∆η ln(H2∆x2)

∆x2
, 2πiB2 ≡

∆η

∆x2
, (39)

2πiC1 ≡
∆η2 ln(H2∆x2)

∆x2
, 2πiC2 ≡

∆η2

∆x2
. (40)

Hence we can write,

T 12
L = −

iκ2

32π3

{

−4aa′H2∂2
0A1−6a2a′

2
H4

[

∂0B1−4A1

]

+4a3a′
3
H6C1

}

+∆T 2
L ,

(41)

10



where the remainder term is,

∆T 12
L (x; x′) = −

κ2

64π4

{

aa′H2
[

−
48∆η2

∆x6
−

8

∆x4

]

+a2a′
2
H4×−

12∆η4

∆x6

}

. (42)

The terms involving A1, B1 and C1 would be ultraviolet finite in dimensional
regularization so it is perfectly valid to leave then in D = 4. Results for all
the algebraically independent coefficient functions are given in Table 5.

i Nonlocal Contributions to iT i
SK(x; x

′) which involve A1, B1 and C1

1 4a2a′2H4 × ∂2
0A1 + 2a3a′3H6 × [∂2

0C1−6∂0B1+10A1]

2 −8a2a′2H4 × ∂2
0A1−4a3a′3H6 × [∂2

0C1−5∂0B1+4A1]

3 4a3a′3H6×[∂0B1−5A1]−2a3a′2H5×[∂2
0B1−4∂0A1]

5 8a2a′2H4 × ∂0A1+4a3a′2H5 × [∂0B1+2A1]

7 −8a2a′2H4×A1 − 2a3a′3H6×C1 − 2a3a′2H5×B1

9 −4aa′H2 × ∂4
0A1−2a2a′2H4 × [∂3

0B1−4∂2
0A1]

10 4aa′H2×∂3
0A1+6a2a′2H4×[∂2

0B1−2∂0A1]

+a3a′3H6×[4∂0C1−12B1]−4a2a′H3×∂2
0A1−a3a′2H5×[4∂0B1−8A1]

12 −4aa′H2×∂2
0A1−6a2a′2H4×[∂0B1−4A1]+4a3a′3H6×C1

13 −4aa′H2 × ∂4
0A1 + 2a2a′2H4 × [∂3

0B1+8∂2
0A1]

+4a3a′3H6 × [∂2
0C1−7∂0B1+11A1]

14 8aa′H2 × ∂3
0A1 + 4a2a′2H4 × [∂2

0B1−6∂0A1]

−8a2a′H3 × ∂2
0A1−8a3a′2H5 × [∂0B1+A1]

16 −4aa′H2×∂2
0A1−a2a′2H4×[6∂0B1−8A1]−2a3a′3H6×C1

+8a2a′H3 × ∂0A1 + 6a3a′2H5×B1

18 −12aa′H2×∂2
0A1−a2a′2H4×[6∂0B1+4A1]

19 4aa′H2 × ∂0A1 + 6a2a′2H4 × B1 − 4a2a′H3 × A1

Table 5: Each tabulated term must be multiplied by κ
2

32π3 .
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i Nonlocal Contributions to iT i
SK(x; x

′) which involve A2, B2 and C2

1 −a2a′2H4[2∂3
0B2+

95
6
∂2
0A2]−a3a′3H6[5∂2

0C2−12∂0B2+2A2]

2 −50
3
a2a′2H4∂2

0A2−a3a′3H6[2∂2
0C2−16∂0B2+12A2]

3 3aa′H2∂4
0A2−a2a′2H4[6∂3

0B2−
523
6
∂2
0A2]+a3a′3H6[8∂2

0C2

−26∂0B2+10A2]+
37
6
a2a′H3∂3

0A2−a3a′2H5[3∂2
0B2+8∂0A2]

5 −6aa′H2∂3
0A2+a2a′2H4[4∂2

0B2−6∂0A2]

−7
3
a2a′H3∂2

0A2−2a3a′2H5[∂0B2−A2]

7 3aa′H2∂2
0A2+a2a′2H4[4∂0B2−7A2]+a3a′3H6C2

−23
6
a2a′H3∂0A2+a3a′2H5B2

9 −14
3
aa′H2∂4

0A2−a2a′2H4[3∂3
0B2−13∂2

0A2]

10 14
3
aa′H2∂3

0A2+a2a′2H4[23
3
∂2
0C2+6∂0A2]+a3a′3H6[6∂0C2−12B2]

−14
3
a2a′H3∂2

0A2−6a3a′2H5[∂0B2−A2]

12 −14
3
aa′H2∂2

0A2−a2a′2H4[23
3
∂0B2−

47
3
A2]−2a3a′3H6C2

13 −29
6
aa′H2∂4

0A2+a2a′2H4[25
2
∂3
0B2−15∂2

0A2]

−a3a′3H6[6∂2
0C2−34∂0B2+22A2]

14 29
3
aa′H2∂3

0A2−a2a′2H4[2∂2
0B2−8∂0A2]−

53
3
a2a′H3∂2

0A2

16 −3aa′H2∂2
0A2−a2a′2H4[3∂0B2−8A2]−3a3a′3H6C2

+97
6
a2a′H3∂0A2+a3a′2H5B2

18 −12aa′H2∂2
0A2−a2a′2H4[∂0B2−A2]

19 −a2a′2H4B2

Table 6: Each of the tabulated terms must be multiplied by κ
2

32π3 .

In Step 3 we first combine T i
N(x; x

′) with the remainder ∆T i
L(x; x

′). For
our example of T 12(x; x′) we add (35) and (42),

T 12
N (x; x′) + ∆T 12

L (x; x′) = −
κ2

64π4

{

−
488
15

∆x6
+ aa′H

[

−
112
3
∆η2

∆x6
−

56
3

∆x4

]
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+a2a′
2
H4

[

−
46
3
∆η2

∆x4
+

8

∆x2

]

+ a3a′
3
H6×−

2∆η2

∆x2

}

. (43)

These sums typically contain ultraviolet divergences. If we again employ
the Appendix identities (109-118) to extract derivatives the result involves
factors of 1/∆x4 in addition to the three integrable functions (33). For
example, expression (43) gives,

[

T 12
N +∆T 12

L

]

(x; x′) = −
κ2

64π4

{

−∂2
( 61

15

∆x4

)

+ aa′H2
[

−∂2
0

( 14
3

∆x2

)

−
28
3

∆x4

]

+a2a′
2
H4

[

−∂0

( 23
3
∆η

∆x2

)

+
47
3

∆x2

]

+a3a′
3
H6×−

2∆η2

∆x2

}

. (44)

The ultraviolet finite factors of A2, B2 and C2 are reported in Table 6, whereas
we retain the factors of 1/∆x4 for further analysis,

T 12
N +∆T 12

L = −
iκ2

32π3

{

−
14

3
aa′H2∂2

0A2+a2a′
2
H4

[

−
23

3
∂0B2+

47

3
A2

]

−2a3a′
3
H6C2

}

−
κ2

64π4

{

−∂2
( 61

15

∆x4

)

−aa′H2
28
3

∆x4

}

. (45)

In Step 4 we isolate the logarithmic ultraviolet divergence implicit in the
factors of 1/∆x4 produced by Step 3. We first note that factors of 1/∆x4

would appear as 1/∆x2D−4 had dimensional regularization been retained.
Extracting a d’Alembertian from this uncovers an explicit factor of 1/(D−4),

1

∆x4
−→

1

∆x2D−4
=

∂2

2(D−3)(D−4)

[ 1

∆x2D−6

]

. (46)

The ultraviolet divergence is localized by adding a term proportional to the
flat space background massless propagator equation [10, 11],

1

∆x4
−→

∂2

2(D−3)(D−4)

[ 1

∆x2D−6

]

=
∂2

2(D−3)(D−4)

[ 1

∆x2D−6
−

µD−4

∆xD−2

]

+
µD−44π

D

2 iδD(x−x′)

2(D−3)(D−4)Γ(D
2
−1)

. (47)

The nonlocal part of (47) is both integrable and finite for D = 4. We can
take the unregulated limit of the nonlocal part of (47),

∂2

2(D−3)(D−4)

[ 1

∆x2D−6
−

µD−4

∆xD−2

]

−→ −
∂2

4

[ ln(µ2∆x2)

∆x2

]

≡ −
∂2

4

[

2πiA3

]

.

(48)
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These ultraviolet finite terms are given in Table 7.

i Nonlocal Contributions to iT i
SK(x; x

′) which involve A3

1 − 23
120

∂6A3+aa′H2[77
12
∂2
0−

11
12
∂2]∂2A3−

49
6
a2a′2H4∂2A3

2 − 61
120

∂6A3+aa′H2[13
3
∂2
0−

5
6
∂2]∂2A3−

55
3
a2a′2H4∂2A3

3 23
120

∇2∂4A3+aa′H2[52
12
∂2
0+

173
12
∂2]∂2A3+

425
6
a2a′2H4∂2A3

+aH [29
12
∂3
0+

29
6
∂0∂

2]∂2A3+
215
6
a2a′H3∂0∂

2A3

5 −23
60
∂0∂

4A3−
35
3
aa′H2∂0∂

2A3−
29
6
aH [∂2

0+∂2]∂2A3−
38
3
a2a′H3∂2A3

7 23
120

∂4A3+
11
12
aa′H2∂2A3+

29
12
aH∂0∂

2A3

9 61
60
∇2∂4A3+aa′H2[29

3
∂2
0+

41
3
∂2]∂2A3+4a2a′2H4∂2A3

10 −61
60
∂0∂

4A3−
29
3
aa′H2∂0∂

2A3−
2
3
aH∂4A3+

29
3
a2a′H3∂2A3

12 61
60
∂4A3+

7
3
aa′H2∂2A3

13 − 7
10
∇4∂2A3−aa′H2[86

3
∂2
0+

431
12
∂2]∂2A3−139a2a′2H4∂2A3

14 7
5
∇2∂0∂

2A3+
43
3
aa′H2∂0∂

2A3+aH [2
3
∂2
0+

11
2
∂2]∂2A3+

191
3
a2a′H3∂2A3

16 −[ 7
10
∂2
0+

23
120

∂2]∂2A3−
121
12
aa′H2∂2A3+

7
4
aH∂0∂

2A3

18 −[14
5
∂2
0+

61
60
∂2]∂2A3+23aa′H2∂2A3

19 7
5
∂0∂

2A3−
25
6
aH∂2A3

21 − 7
10
∂2A3

Table 7: Each of the tabulated terms must be multiplied by κ
2

32π3 .

It remains to renormalize the local divergence in expression (47). This
turns out to always produce a finite local term proportional to ln(a). It arises
from the incomplete cancellation between primitive divergences like (47) and
counterterms, which contain an extra factor of aD−4 from the measure,

µD−44π
D

2 iδD(x−x′)

2(D−3)(D−4)Γ(D
2
−1)

−
aD−4µD−44π

D

2 iδD(x−x′)

2(D−3)(D−4)Γ(D
2
−1)

−→ −2π2i×ln(a)δ4(x−x′) . (49)
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These local terms are reported in Table 8.

i Local Contributions to iT i
SK(x; x

′)

1 −23
30
∂4δ4(x−x′)+aa′H2[77

3
∂2
0−

11
3
∂2]δ4(x−x′)− 98

3
a2a′2H4δ4(x−x′)

2 −61
30
∂4δ4(x−x′)+aa′H2[52

3
∂2
0−

10
3
∂2]δ4(x−x′)− 220

3
a2a′2H4δ4(x−x′)

3 23
30
∇2∂2δ4(x−x′)+aa′H2[52

3
∂2
0+

173
3
∂2]δ4(x−x′)+ 850

3
a2a′2H4

×δ4(x−x′)+aH [29
3
∂3
0+

58
3
∂0∂

2]δ4(x−x′)+ 430
3
a2a′H3∂0δ

4(x−x′)

5 −23
15
∂0∂

2δ4(x−x′)− 140
3
aa′H2∂0δ

4(x−x′)

−58
3
aH∇2δ4(x−x′)− 152

3
a2a′H3δ4(x−x′)

7 23
30
∂2δ4(x−x′)+ 11

3
aa′H2δ4(x−x′)+ 29

3
aH∂0δ

4(x−x′)

9 61
15
∇2∂2δ4(x−x′)+aa′H2[116

3
∂2
0+

164
3
∂2]δ4(x−x′)+16a2a′2H4δ4(x−x′)

10 −61
15
∂0∂

2δ4(x−x′)− 116
3
aa′H2∂0δ

4(x−x′)− 8
3
aH∂2δ4(x−x′)

+116
3
a2a′H3δ4(x−x′)

12 61
15
∂2δ4(x−x′)+ 28

3
aa′H2δ4(x−x′)

13 −14
5
∇4δ4(x−x′)−aa′H2[344

3
∂2
0+

431
3
∂2]δ4(x−x′)−556a2a′2H4δ4(x−x′)

14 28
5
∇2∂0δ

4(x−x′)+ 172
3
aa′H2∂0δ

4(x−x′)

+aH [8
3
∂2
0+22∂2]δ4(x−x′)+ 764

3
a2a′H3δ4(x−x′)

16 −[14
5
∂2
0+

23
30
∂2]δ4(x−x′)− 121

3
aa′H2δ4(x−x′)+7aH∂0δ

4(x−x′)

18 −[56
5
∂2
0+

61
15
∂2]δ4(x−x′)+92aa′H2δ4(x−x′)

19 28
5
∂0δ

4(x−x′)− 50
3
aHδ4(x−x′)

21 −14
5
δ4(x−x′)

Table 8: Each of the tabulated terms must be multiplied by κ
2 ln(a)
32π2 .

To see that primitive divergences are free of D-dependent scale factors, note
first that the two nonlocal diagrams of Figure 1, corresponding to the generic
expression (18), acquire a factor of (aa′)D−2 from the two 3-point vertices.
The D-dependence of these vertex scale factors is cancelled by scale factors
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from the two propagators. The most singular part of each propagator is,

HD−2Γ(D
2
−1)

(4π)
D

2

(4

y

)
D

2
−1

=
Γ(D

2
−1)

4π
D

2

( 1

aa′∆x2

)
D

2
−1

. (50)

Less singular terms differ among the various propagators, but their scale fac-
tors all have the form (aa′)1−

D

2 ×(aa′)N necessary to cancel theD-dependence
of the vertex scale factors.

2.2.3 The Schwinger-Keldysh Result

Even though the graviton field is Hermitian, the nonlocal factors (48) and
(38-40) are neither real nor causal because the Feynman diagrams from which
they derive are in-out matrix elements rather than expectation values. We
can derive true expectation values using the Schwinger-Keldysh formalism
[13–17] which is a diagrammatic technique that is almost as simple as the
Feynman rules. These expectation values obey effective field equations that
are real and causal, albeit nonlocal [18–20].

There is no point to deriving the rules for converting the 1PI N -point
functions such as −i[µνΣρσ](x; x′) from in-out amplitudes to the Schwinger-
Keldysh formalism. We merely list the rules [21]:

• Spacetime points carry a ± polarity.

• Because propagators have two points, each with two polarities, there
are four Schwinger-Keldysh propagators i∆±±(x; x

′). The ++ case is
just the Feynman propagator, whereas the −− case is its conjugate.
The −+ propagator is the free expectation value of the field at xµ

times the field at x′µ, and the +− propagator is the free expectation
value of the reverse-ordered product.

• Each vertex has a ± polarity. The + vertices are the same as those of
the in-out formalism while the − vertices are complex conjugates.

• Every in-out 1PI N -point function gives rise to 2N N -point functions
in the Schwinger-Keldysh formalism.

• The factor of [µνΣρσ](x; x′) in the linearized quantum Einstein equation
(3) is replaced by the sum of [µνΣρσ

++](x; x
′), which is the same as the

in-out result, and [µνΣρσ
+−](x; x

′).
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• On our simple background (2), one can infer the result for [µνΣρσ
+−](x; x

′)
from that for [µνΣρσ](x; x′) by dropping all the local contributions of
Table 8, multiplying the nonlocal terms by −1, and converting the
coordinate interval ∆x2 from

∆x2
++(x; x

′) ≡
∥

∥

∥
~x− ~x′

∥

∥

∥

2

−
(

|η−η′| − iε
)2

, (51)

to

∆x2
+−(x; x

′) ≡
∥

∥

∥
~x− ~x′

∥

∥

∥

2

−
(

η−η′ + iε
)2

. (52)

Implementing these rules is straightforward. First, recall that the only
dependence on the coordinate interval ∆x2 in the nonlocal results of Tables 5,
6 and 7 comes through the integrable functions A1−3, B12 and C1−2, which
were defined in expressions (38-40) and (48). We can eliminate the factors
of 1/∆x2 using identities (128-136) of the Appendix. For example, the ++
and +− versions of 2πi× A1 are,

2πi×A1 =
ln(H2∆x2

+±)

∆x2
+±

=
∂2

8

[

ln2(H2∆x2
+±)−2 ln(H2∆x2

+±)
]

. (53)

Because the scale factors and derivatives are identical in the ++ and +−
contributions, we just need to consider differences of logarithms,

ln(H2∆x2
++)− ln(H2∆x2

+−) = 2πi×θ(∆η−r) , (54)

ln2(H2∆x2
++)− ln2(H2∆x2

+−) = 4πi×θ(∆η−r) ln[H2(∆η2−r2)] , (55)

where r ≡ ‖~x − ~x′‖. For example, the factors of A1 on Table 5 have the
Schwinger-Keldysh correspondence,

A1 −→ +
∂2

4

{

θ(∆η−r)
[

ln[H2(∆η2−r2)]−1
]

}

. (56)

Identities (137-143) in the Appendix give the reductions needed for any of
the integrable functions A1−3, B1−2 and C1−2.

2.3 The 4-Point Contribution

The previous discussion concerned the two nonlocal diagrams of Figure 1,
and the local counterterms needed to renormalize them. There are also finite
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local contributions from the 3rd diagram. It derives from the 42 4-graviton
interactions given in equation (4.1) of [9]. One connects two of the graviton
fields to the external legs and then replaces the remaining two fields by
graviton propagator. The procedure is tedious and we shall content ourselves
with simply sketching it and giving the final result.

As an example we reduce the first of the 42 interactions,

S1 ≡
κ2

32

∫

dDx aD−2h2h,θh
,θ , (57)

where a comma denotes differentiation and the trace of the graviton field is
h ≡ hα

α ≡ ηαβhαβ . We first take variational derivatives of the action integral
with respect to hµν(x) and hρσ(x

′) as in expression (15),

iδ2S1

δhµν(x)δhρσ(x′)
=

κ2

32
ηµνηρσ

{

−∂θ

[

2aD−2hα
α(x)h

β
β(x)∂

θiδD(x−x′)
]

+4aD−2hα
α(x)h

β
β,θ(x)∂

θiδD(x−x′)−4∂θ
[

aD−2hα
α(x)h

β
β,θ(x)iδ

D(x−x′)
]

+2aD−2hα
α,θ(x)h

β
β,θ(x)

]

iδD(x−x′)

}

. (58)

Now compute the expectation value of the T ∗-ordered product, which amounts
to replacing the remaining two graviton fields of each term by the appropriate
coincident (and sometimes differentiated) propagator,
〈

Ω
∣

∣

∣
T ∗

[ iδ2S1

δhµν(x)δhρσ(x′)

]
∣

∣

∣
Ω
〉

=
κ2

32
ηµνηρσ

{

−∂θ

[

2aD−2×i
[

α
α∆

β
β

]

(x; x)

×∂θiδD(x−x′)

]

+4aD−2×∂′
θi
[

α
α∆

β
β

]

(x; x′)
∣

∣

∣

x′=x
×∂θiδD(x−x′)−4∂θ

[

aD−2

×iδD(x−x′)×∂′
θi
[

α
α∆

β
β

]

(x; x′)

]

+2aD−2iδD(x−x′)×∂θ∂
′θi
[

α
α∆

β
β

]

(x; x′)

}

. (59)

Finally, we express the tensor structure using the 21 basis tensors of Table 1,

ηµνηρσ =
(

ηµν−δµ0δ
ν
0

)(

ηρσ−δρ0δ
σ
0

)

, (60)

=
[

µνDρσ
1

]

−
[

µνDρσ
3

]

−
[

µνDρσ
4

]

+
[

µνDρσ
13

]

. (61)

The coincidence limits of the three propagators which appear in the gravi-
ton propagator (23) are,

i∆A(x; x) = k
[

−πcot
(πD

2

)

+2 ln(a)
]

, i∆B(x; x) = −
k

D−2
, (62)
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i∆C(x; x) =
k

(D−2)(D−3)
, k ≡

HD−2

(4π)
D

2

Γ(D−1)

Γ(D
2
)

. (63)

Note that only the undifferentiated A-type propagator is ultraviolet divergent
in dimensional regularization. The undifferentiated A-type propagator is
also the only way to get a factor of ln(a). First derivatives of coincident
propagators are all finite,

∂αi∆A(x; x
′)
∣

∣

∣

x′=x
= aHkδ0α , ∂αi∆B(x; x

′)
∣

∣

∣

x′=x
= 0 = ∂αi∆C(x; x

′)
∣

∣

∣

x′=x
.

(64)
Mixed second derivatives are also finite,

∂α∂
′
βi∆A(x; x

′)
∣

∣

∣

x′=x
= −

(D−1

D

)

kH2gαβ , (65)

∂α∂
′
βi∆B(x; x

′)
∣

∣

∣

x′=x
=

1

D
kH2gαβ , (66)

∂α∂
′
βi∆C(x; x

′)
∣

∣

∣

x′=x
= −

2

D(D−2)
kH2gαβ . (67)

i Nonzero contributions to iT i
SK(x; x

′) from the 4-point diagram

1 −8a2H2(∂0+2aH)∂0δ
4(x−x′)

2 8a2H2(∂0+2aH)∂0δ
4(x−x′)

3 −8a2H2[∇2+aH∂0+3a2H2]δ4(x−x′)

5 16a2H2(∂0+2aH)δ4(x−x′)

9 16a2H2∇2δ4(x−x′)

10 −16a2H2∂0δ
4(x−x′)

13 −72a4H4δ4(x−x′)

14 −16a3H3δ4(x−x′)

16 8a2H2δ4(x−x′)

18 −16a2H2δ4(x−x′)

Table 9: Each of the tabulated terms must be multiplied by κ
2 ln(a)
32π2 .
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Note that all primitive contributions have factors of aD−2, aD−1 or aD.
The counterterms which absorb ultraviolet divergences possess the very same
dependence on a so renormalization engenders no finite factors of ln(a) the
way it did for the nonlocal diagrams of expression (49). It does produce
factors of ln(H/µ) but we report only the ln(a) contributions in Table 9.

2.4 Anomalous Local Contributions

Our result for the renormalized self-energy consists of the local contributions,
collected in Tables 8 and 9, plus the nonlocal contributions of Tables 5, 6
and 7. The nonlocal contributions obey the Ward identity, just as did the
noncoincident, D = 4 result [7] from which they were inferred. However,
it turns out that the local contributions do not. It is possible that the
missing terms are associated with contributions from the first two (nonlocal)
diagrams of Figure 1 in which an A-type propagator is undifferentiated and
the derivatives on the other propagator are contracted into one another,

κaD−2 × i∆A(x; x
′)× ∂µ∂′

µi∆(x; x′)× κa′
D−2

. (68)

In that case the contracted derivatives would produce a delta function not
recovered by the noncoincident, D = 4 result [7],

∂µ∂′
µi∆(x; x′) = −

iδD(x−x′)

aD−2
+O

( 1

∆xD−2

)

. (69)

It is also possible that the Feynman rules need to include contributions from
the functional measure factor. A fully dimensionally regulated calculation
would seem to be necessary to resolve this. One should also re-examine the
contribution from a loop of massless, minimally coupled scalars [22] to see
if it shows similar anomalous local contributions. In the meantime, we can
proceed with the nonlocal contributions because it turns out that the local
contributions do not affect the potentials as strongly at late times and large
distances.

3 The Effect on the Force of Gravity

In this section we solve the effective field equations (3) to find one loop cor-
rections to the gravitational response to a point mass. Our first step is to
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specialize the general equation (3) appropriately for a perturbative deter-
mination of the potentials. We next compute the source terms induced by
integrating the one loop self-energy against the classical potentials. We close
the section by solving for the leading one loop corrections at late times and
large distances.

3.1 Equations for the Potentials

The linearized stress-energy for a static point mass is,

8πGT µν
lin (x) = 8πGMaδ3(~x) . (70)

The gravitational response to such a source is given by four scalar potentials,

κh00 ≡ −2Ψ , κh0i ≡ −∂iΩ , κhij ≡ −2δijΦ− 2∂i∂jχ . (71)

We can derive an equation for Ψ from the sum of the µ = 0 = ν and the
spatial trace,
[

D00ρσ+Dkkρσ
]

κhρσ(x) = −2DBΨ(x) = 8πGMaδ3(~x)

+

∫

d4x′
{[

00Σρσ
]

(x; x′)+
[

kkΣρσ
]

(x; x′)
}

κhρσ(x
′) , (72)

where DB is the kinetic operator of a conformally coupled scalar (9). The
µ = 0, ν = i components give an equation for Ω,

D0iρσκhρσ =
∂i
2
DBΩ(x) = 0 +

∫

d4x′
[

0iΣρσ
]

(x; x′)κhρσ(x
′) . (73)

And the equation for χ and Ψ− Φ is,
[

Dijρσ−δijDkkρσ
]

κhρσ = −∂i∂jDAχ+ δijDA(Ψ−Φ) = 0

+

∫

d4x′
{[

ijΣρσ
]

(x; x′)−δij
[

kkΣρσ
]

(x; x′)
}

κhρσ(x
′) , (74)

where DA is the kinetic operator of a massless, minimally coupled scalar (5).
Although equations (72-74) are correct, they cannot be solved exactly

because we only possess one loop results for the graviton self-energy. This
means we must develop perturbative solutions,

Ψ = Ψ0 + κ2Ψ1 + κ4Ψ2 + . . . , (75)
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and so on for the other potentials. The zeroth order solutions are,

Ψ0(x) = Φ0(x) =
GM

ar
, Ω0(x) = χ0(x) = 0 . (76)

It is only these zeroth order potentials that appear on the right hand side of
equations (72-74). If we use the symbol T i(x; x′) to stand for just the one
loop contribution to the graviton self-energy then the one loop correction to
Ψ is given by,

−2DBκ
2Ψ1(x) =

∫

d4x′

{

[

9iT 1+3iT 2+3(iT 3+iT 4)+iT 13
]

+
[

3(iT 7+iT 8)+iT 12+(iT 16+iT 17)
]

∇′2 + iT 21∇′4

}

×−2Ψ0(x
′) . (77)

The equations for Ω1 and χ1 are,

DBκ
2Ω1(x) =

∫

d4x′

{

[

3iT 6+iT 10+iT 15
]

+ iT 19∇′2

}

×−2Ψ0(x
′) , (78)

DAκ
2χ1(x) = −

∫

d4x′

{

[

3iT 8+iT 12+iT 17
]

+ iT 21∇′2

}

×−2Ψ0(x
′) . (79)

And the equation for the gravitational slip is,

DAκ
2
[

Ψ1(x)−Φ1(x)
]

= −

∫

d4x′

{

[

6iT 1+2iT 2+2iT 3
]

+
[

2iT 7+3iT 8+iT 12+iT 17
]

∇′2 + iT 21∇′4

}

×−2Ψ0(x
′) . (80)

3.2 Performing the Source Integrations

From equation (77) we see that Ψ1 is sourced by various combinations of
the Schwinger-Keldysh coefficient functions multiplied by zero, one or two
powers of ∇′2 acing on −2Ψ0(x

′). Having a factor of ∇′2 simplifies the source
integration enormously because,

∇′2 ×−2Ψ0(x
′) =

8πGMδ3(~x′)

a′
(81)

The ∇′4 source comes entirely from iT 21
SK = κ2

32π3 × A3. Table 10 gives the

combination which multiplies ∇′2.
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Operator Factor

−12aa′H2∂2
0 + 8aa′(a−a′)H3∂0 − 8a2a′2H4 A1

−18a2a′2H4∂0 B1

−12a3a′3H6 C1

22
3
aa′H2∂2

0+
14
3
aa′(a−a′)H3∂0−

31
3
a2a′2H4 A2

31
3
a2a′2H4∂0+4a2a′2(a−a′)H5 B2

−2a3a′3H6 C2

−(7
5
∂2
0−

107
60
∂2)∂2+9(a−a′)H∂0∂

2− 37
3
aa′H2∂2 A3

− ln(a)(28
5
∂2
0−

107
15
∂2)− 100

3
ln(a)a2H2 δ4(∆x)

Table 10: Contributions for 3(iT 7+iT 8)+iT 12+(iT 16+iT 17). Each tabulated term must

be multiplied by κ
2

32π3 .

These ∇′2 source integrations can be evaluated exactly, for example,

κ2

32π3

∫

d4x′[−8a2a′
2
H4]A1(x; x

′)×
8πGMδ3(~x′)

a′

= −
GMκ2H4a2∂2

2π2

∫ η−r

ηi

dη′a′
{

ln
[

H2(∆η2−r2)
]

− 1
}

, (82)

=
GMκ2H3a2∂2

2π2

{

ln2
(

Hr+
1

a

)

− ln
(

Hr+
1

a

)

+

∞
∑

n=1

1

n2

[

1−
(

Hr+
1

a

)n]

+

∞
∑

n=1

1

n2

[(Hr− 1
a

Hr+ 1
a

)n

−
(

Hr−
1

a

)n]
}

. (83)

However, all that really matters for us is the limiting form for aHr ≫ 1 with
Hr ≪ 1,

κ2

32π3

∫

d4x′[−8a2a′
2
H4]A1(x; x

′)×
8πGMδ3(~x′)

a′

−→
2GMκ2H3a2 ln(Hr)

π2r2
. (84)
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Operator Factor

−4aa′H2∂4
0+28a2a′2H4∂2

0+24a2a′2(a−a′)H5∂0+56a3a′3H4 A1

2a2a′2H4∂3
0−6a2a′2(a−a′)H5∂2

0−52a3a′3H6∂0 B1

10a3a′3H6∂2
0 C1

79
6
aa′H2∂4

0+
37
2
aa′(a−a′)H3∂3

0+
631
2
a2a′2H4∂2

0 A2

−24a2a′2(a−a′)H5∂0−16a3a′3H6

−83
2
a2a′2H4∂3

0−9a2a′2(a−a′)H5∂2
0+34a3a′3H6∂0 B2

−9a3a′3H6∂2
0 C2

−( 7
10
∂4
0+

1
4
∂2
0∂

2+ 14
5
∂4)∂2+ 29

4
(a−a′)H(∂2

0+2∂2)∂0∂
2 A3

+aa′H2(817
12
∂2
0+

478
12
∂2)∂2+ 215

2
aa′(a−a′)H3∂0∂

2+ 315
2
a2a′2H4∂2

− ln(a)(14
5
∂4
0+∂2

0∂
2+ 56

5
∂4)+ln(a)a2H2(529

3
∂2
0+

334
3
∂2) δ4(∆x)

−96 ln(a)a3H3∂0+486 ln(a)a4H4

Table 11: Contributions for 9iT 1+3i2+3(iT 3+iT 4)+iT 13. Each tabulated term must

be multiplied by κ
2

32π3 .

Table 11 gives the combination of coefficient functions contributing to
Ψ1(η, r) which carry no factors of ∇′2. These terms cannot be evaluated
exactly, but there is no problem getting them in the limit aHr ≫ 1 and
Hr ≪ 1. Consider the example,

κ2

32π3

∫

d4x′[56a3a′
3
H4]A1(x; x

′)×−
2GM

a′r′

= −
7GMκ2H4a3∂2

8π3

∫

d4x′a
′2θ(∆η−r′)

‖~x+~x′‖

{

ln
[

H2(∆η2−r′
2
)
]

− 1
}

, (85)

= −
7GMκ2H4a3∂2

2π2

∫ η

ηi

dη′a′
2
∫ ∆η

0

dr′r′
2
[θ(r−r′)

r
+

θ(r′−r)

r′

]

×
{

ln
[

H2(∆η2−r′
2
)
]

− 1
}

, (86)

−→
7GMκ2H4a3∂2

0

2π2r

∫ η

ηi

dη′a′
2

∫ ∆η

0

dr′r′
2
{

ln
[

H2(∆η2−r′
2
)
]

− 1
}

, (87)
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−→ −
7GMκ2H2a3 ln2(a)

π2r
. (88)

When all the Ψ1 source contributions are included, the leading late time
result is,

−2DBκ
2Ψ1 −→ −

3GMκ2H4a4[ln2(a)− ln(Hr)]

π2ar
+O(a2) . (89)

Operator Factor

12aa′H2∂3
0−4aa′(a−2a′)H3∂2

0−12a2a′2H4∂0+8a2a′2(a−2a′)H5 A1

10a2a′2H4∂2
0−4a2a′2(a+a′)∂0−12a3a′3H6 B1

4a3a′3H6∂0 C1

−11
3
aa′H2∂3

0−aa′(14
3
a− 74

3
a′)H3∂2

0−4a2a′2H4∂0+6a2a′2(a−a′)H5 A2

53
3
a2a′2H4∂2

0−6a2a′2(a−a′)H5∂0−12a3a′3H6 B2

6a3a′3H6∂0 C2

(7
5
∂2
0−

23
30
∂2)∂0∂

2+ 1
6
∂2(83a′∂2

0−4a∂2+54a′∂2)H A3

−91
3
aa′H2∂0∂

2+aa′(29
3
a− 77

3
a′)H3∂2

ln(a)[(28
5
∂2
0−

46
15
∂2)∂0+aH(166

3
∂2
0+

100
3
∂2)− 268

3
a2H2∂0−48a3H3] δ4(∆x)

Table 12: Contributions for 3iT 6+iT 10+iT 15. Each tabulated term must be multiplied

by κ
2

32π3 .

Equation (89) shows a source term for Ψ1 which grows like a3; we ignore
sources with fewer factors of a. Table 12 gives the combinations of coefficient
function which contribute to Ω1 and involve no factors of ∇′2. There is an
additional source involving iT 19×∇′2. When the various source integrations
are evaluated, and the late time form taken, the result is no contributions of
order a3,

DBκ
2Ω1 −→ 0 +O(a2) .. (90)

Table 13 gives the Ω1 source contributions which contain no factors of ∇′2.
There is an additional contribution involving iT 21∇′2. When the source
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integrations are performed the result is,

DAκ
2χ1 = −

GMκ2H2a4[5−ln(16)]

8π2ar
+O(a2) . (91)

Operator Factor

−8aa′H2∂2
0−8aa′2H3∂0+8a2a′2H4 A1

−12a2a′2H4∂0 B1

−4a3a′3H6 C1

4
3
aa′H2∂2

0−
14
3
aa′2H3∂0+

8
3
a2a′2H4 A2

4
3
a2a′2H4∂0−4a2a′3H5 B2

−2a3a′3H6 C2

−( 7
10
∂2
0−

7
5
∂2)∂2−9a′H∂0∂

2−5aa′H2∂2 A3

− ln(a)(14
5
∂2
0−

28
5
∂2)−36 ln(a)aH∂0−12 ln(a)a2H2 δ4(∆x)

Table 13: Contributions for 3iT 8+iT 12+iT 17. Each tabulated term must be multiplied

by κ
2

32π3 .

Tables 14 and 15 give the source combinations for the gravitational slip which
contain no factor of∇′2 and one factor of it, respectively. When the iT 21×∇′4

contribution is added, the leading late time result is,

DAκ
2
[

Ψ1 − Φ1

]

=
GMκ2H4a4[4 ln2(a)−3 ln(Hr)]

π2ar
+O(a2) . (92)

3.3 Solving for the Potentials

Equations (89), (90), (91) and (92) determine 1-loop corrections to the var-
ious potentials. It would be straightforward to express the potentials as
integrals over the sources because we possess the exact Green’s functions for
DA and DB,

GA(x; x
′) = −

1

4π

{

δ(∆η−∆r)

aa′∆r
+H2θ(∆η−∆r)

}

, (93)

GB(x; x
′) = −

1

4π

δ(∆η−∆r)

aa′∆r
. (94)
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Operator Factor

8a2a′2H4∂2
0+16a3a′2H5∂0+48a3a′3H6 A1

−4a3a′2H5∂2
0−24a3a′3H6∂0 B1

4a3a′3H6∂2
0 C1

6aa′H2∂4
0+

37
3
a2a′H3∂3

0+46a2a′2H4∂2
0−16a3a′2H5∂0−16a3a′3H6 A2

−24a2a′2H4∂3
0−6a3a′2H5∂2

0+52a3a′3H6∂0 B2

−18a3a′3H6∂2
0 C2

(23
60
∂2
0−

107
60
∂2)∂4+ 29

6
aH(∂2

0+2∂2)∂0∂
2+aa′H2(335

6
∂2
0+

65
3
∂2)∂2 A3

+215
3
a2a′H3∂0∂

2+56a2a′2H4∂2

ln(a)[(23
15
∂2
0−

107
15
∂2)∂2+ 58

3
aH(∂2

0+2∂2)∂0+a2H2(526
3
∂2
0+

212
3
∂2) δ4(∆x)

+620
3
a3H3∂0+176a4H4]

Table 14: Contributions for 6iT 1+2iT 2+2iT 3. Each tabulated term must be multiplied

by κ
2

32π3 .

Operator Factor

−8aa′H2∂2
0−8aa′2H3∂0−8a2a′2H4 A1

−12a2a′2H4∂0−4a3a′2H5 B1

−8a3a′3H6 C1

22
3
aa′H2∂2

0−aa′(23
3
a+ 14

3
a′)H3∂0−

34
3
a2a′2H4 A2

28
3
a2a′2H4∂0+2a2a′2(a−2a′)H5 B2

0 C2

−( 7
10
∂2
0−

107
60
∂2)∂2+(29

6
a−9a′)H∂0∂

2− 19
6
aa′H2∂2 A3

− ln(a)(14
5
∂2
0−

107
15
∂2)− 50

3
ln(a)aH∂0−

14
3
ln(a)a2H2 δ4(∆x)

Table 15: Contributions for 2iT 7+3iT 8+ iT 12+ iT 17. Each tabulated term must be
multiplied by κ

2

32π3 .
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However, this would be overkill because the various sources are only known
for late times. It is better instead to change the temporal variable from
η to the scale factor a, and then extract a factor of −a4H2 from the two
differential operators,

DA = −a4H2
[

a2
∂2

∂a2
+ 4a

∂

∂a
−

∇2

a2H2

]

, (95)

DB = −a4H2
[

a2
∂2

∂a2
+ 4a

∂

∂a
+ 2−

∇2

a2H2

]

. (96)

The advantage of this form is that the temporal differential operators inside
the brackets neither increase nor decrease number of scale factors, while the
effect of the spatial derivatives is sub-dominant at late times. It is therefore
trivial to invert DA and DB to the leading late time form for the relevant
sources,

DAf(a) = −a4H2 ×
[α ln2(a)+β ln(Hr)]

ar
, (97)

=⇒ f(a) −→ −
[α ln2(a)+β ln(Hr)]

2ar
, (98)

DBg(a) = −a4H2 ×
[γ ln2(a)+δ ln(Hr)]

ar
, (99)

=⇒ g(a) −→
[1
3
γ ln3(a) + δ ln(a) ln(Hr)]

ar
. (100)

Applying expression (100) to equations (89) and (90) gives,

κ2Ψ1(η, r) −→
2GM

ar

{

−
4GH2 ln3(a)

π
+

12GH2 ln(a) ln(Hr)

π

}

, (101)

κ2Ω1(η, r) −→ 0 . (102)

And the last two potentials come from using expression (98) to invert DA in
equations (91) and (92),

κ2χ1(η, r) −→
2GM

ar

{ [−5+ln(16)]G

2π

}

, (103)

κ2(Ψ1−Φ1) −→
2GM

ar

{16GH2 ln2(a)

π
−

12GH2 ln(Hr)

π

}

. (104)

28



4 Epilogue

As long as the two points do not coincide, xµ 6= x′µ, no regularization is
needed for the 1-loop graviton self-energy −i[µνΣρσ](x; x′). In section 2 of
this paper we exploited an old, unregulated computation of the graviton
contribution to the graviton self-energy [7] to infer the fully renormalized
result. Our answer is expressed as a sum (11) of 21 coefficient functions
T i(x; x′), multiplied by basis tensors listed in Table 1. Our results for the
renormalized coefficient functions are expressed in Tables 5, 6, 7, 8 and 9, as
derivative operators and functions of the two scale factors, acting on δ4(x−x′)
and seven nonlocal functions A1,2,3(x; x

′), B1,2(x; x
′) and C1,2(x; x

′), which are
defined in expressions (137-143).

Although the nonlocal contributions obey the Ward Identity away from
coincidence, there is a local obstacle proportional to ln(a)δ4(x − x′). This
obstacle might originate from anomalous contributions (68) to the first two
diagrams of Figure 1. Such diagrams would contribute ln(a)δ4(x− x′) terms
which we would not be able to recognize from the unregulated, noncoincident
result. It is also possible that we have missed some exotic, local contribu-
tions to the Feynman rules associated with the functional measure factor or
time-ordering. More work is required to resolve this issue, and we believe a
good venue for this study is the much simpler contribution to −i[µνΣρσ](x; x′)
arising from a loop of massless, minimally coupled scalars [22]. Fortunately,
the missing local terms do not make leading order contributions to the grav-
itational potentials.

In section 3 we applied our result to work out the gravitational response
to a static point mass (70) at 1-loop. Because the graviton self-energy was
computed in a fixed gauge, we had to solve the effective field equations using
the same gauge fixing functional [3,4]. This resulted in there being four scalar
potentials (71), instead of the usual two. Our final results for the leading
late time forms of the four potentials were given in equations (101), (102),
(103) and (104). Of particular interest are the Newtonian potential and the
gravitational slip,

Ψ −→
GM

ar

{

1 +
8GH2

π

[

− ln3(a) + 3 ln(a) ln(Hr)
]

+ . . .

}

, (105)

Ψ− Φ −→
GM

ar

{

0 +
8GH2

π

[

4 ln2(a)− 3 ln(Hr)
]

+ . . .

}

. (106)

It is interesting to compare the effect of graviton contributions to the
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Newtonian potential (105) with that from a loop of massless, minimally cou-
pled scalars [23],

ΨMMCS −→
GM

ar

{

1−
GH2

10π

[1

3
ln(a) + 3 ln(aHr)

]

+ . . .

}

. (107)

In both cases the 1-loop correction reduces the gravitational potential, but
gravitons induce two additional factors of ln(a). The same pattern is evident
for the gravitational slip, which gets two factors of ln(a) from gravitons but
none at all from scalars [23]. Similarly, the 1-loop correction to the gravi-
ton mode function is enhanced by ln2(a) [12], but is not affected at all by
scalars [24]. We therefore conclude that loops of inflationary gravitons con-
tribute more strongly than matter loops by two large logarithms. It is also
noteworthy that graviton loop corrections to gravity are much strong than
graviton loop corrections to fermions [25–27], to electrodynamics [28–32], and
to massless, minimally coupled scalars [33–35]. The key difference seems to
be that graviton loop corrections to gravity can involve two graviton propa-
gators whereas graviton corrections to other fields involve only one.

The appearance of very large logarithms in graviton loop corrections im-
plies the breakdown of perturbation at late times and large distances. It
has been difficult to devise a resummation procedure because these loga-
rithms derive from two sources: the “tail” part of the graviton propagator
and logarithmic ultraviolet divergences of the form (49) [36]. This led to
the speculation that resummation might be accomplished by combining a
variant of Starobinsky’s stochastic formalism [37, 38] with a variant of the
renormalization group. This speculation was recently confirmed in the con-
text of nonlinear sigma models on a nondynamical de Sitter background [39],
which possess the same kinds of derivative interactions as quantum gravity
and exhibit the same mixture of “tail” and ultraviolet logarithms. The tech-
nique has been applied to explain graviton loop corrections to the exchange
potential of a massless, minimally coupled scalar [35], and strenuous efforts
are underway to devise similar explanations for the collection of large gravi-
ton logarithms that have been patiently accumulated by direct computation
over the course of two decades.

It is well known that classical modified gravity models also correct the
force of gravity [40], and can induce nonzero gravitational slip [41, 42]. One
is therefore led to wonder if our results (105) and (106) could be reproduced
by some local, metric-based model. The answer seems to be no because the
only stable, local, invariant and metric-based modification of gravity is f(R)
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gravity [43]. However, the modified force induced by these models on de
Sitter background depends only on the combination aHr [40], and cannot
reproduce the distinct ln3(a) and ln(a) ln(Hr) terms of our result (105). It
should also be noted that neither the scalar nor the tensor amplitudes in
these models experience secular growth after horizon crossing [44], unlike the
ln2(a) dependence we found previously [12].

We close by commenting on the gauge issue. On flat space background the
graviton self-energy is known to be highly gauge dependent [45]. Because the
H → 0 limit of our result agrees with the flat space limit, our de Sitter gravi-
ton self-energy must inherit this gauge dependence. The large logarithms we
have found all derive from terms which carry factors of H2, and their gauge
dependence is not known, although indications from gravity plus electromag-
netism suggest that there is some [32]. A procedure has been developed for
removing this gauge dependence [46], which has been successfully applied on
flat space background to graviton loop corrections to the massless, minimally
coupled scalar [46], and to electromagnetism [47]. The massless, minimally
coupled scalar exchange potential ha been identified as the simplest venue
for generalizing this technique to de Sitter background [35], and it is hoped
that a result will be available later this year. Based on flat space background
experience [46, 47], we expect that the elimination of gauge dependence will
not eliminate large graviton logarithms but might change their numerical
coefficients.
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5 Appendix: Derivative Identities

This Appendix summarizes the various derivative identities we employ to con-
vert the unregulated results of Tables 3 and 4 to the renormalized Schwinger-
Keldysh results of Tables 5, 6, 7 and 8.
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5.1 Extracting Derivatives

We begin with the relations needed to write each term as derivatives acting
on the four fundamental expressions,

1

∆x4
,

1

∆x2
,

∆η

∆x2
,

∆η2

∆x2
. (108)

Terms with large inverse powers of ∆x2 all reach 1
∆x4 ,

∆η4

∆x12
=

[ ∂4
0

1920
−
∂2
0∂

2

640
+

∂4

5120

] 1

∆x4
,

∆η2

∆x10
=

[∂2
0∂

2

384
−

∂4

1536

] 1

∆x4
, (109)

∆η3

∆x10
=

[ ∂3
0

192
−
∂0∂

2

128

] 1

∆x4
,

∆η

∆x8
=

∂0∂
2

48

( 1

∆x4

)

, (110)

∆η2

∆x8
=

[∂2
0

24
−
∂2

48

] 1

∆x4
,

1

∆x8
=

∂4

192

( 1

∆x4

)

, (111)

∆η

∆x6
=

∂0
4

( 1

∆x4

)

,
1

∆x6
=

∂2

8

( 1

∆x4

)

. (112)

Terms with ∆η4 divided fewer than six powers of ∆x2 involve all four of the
fundamental expressions (108),

∆η4

∆x10
=

∂4
0

384

( 1

∆x2

)

−
[∂2

0

32
−

∂2

128

]( 1

∆x4

)

, (113)

∆η4

∆x8
=

∂3
0

48

( ∆η

∆x2

)

−
∂2
0

8

( 1

∆x2

)

+
1

8

( 1

∆x4

)

, (114)

∆η4

∆x6
=

∂2
0

8

(∆η2

∆x2

)

−
5

8
∂0

( ∆η

∆x2

)

+
3

8

( 1

∆x2

)

. (115)

The last relations we require involve fewer powers of both ∆η and ∆x2,

∆η3

∆x8
=

∂3
0

48

( 1

∆x2

)

−
∂0
8

( 1

∆x4

)

,
∆η3

∆x6
=

∂2
0

8

( ∆η

∆x2

)

−
3

8
∂0

( 1

∆x2

)

,(116)

∆η2

∆x6
=

∂2
0

8

( 1

∆x2

)

−
1

4

( 1

∆x4

)

,
∆η2

∆x4
=

∂0
2

( ∆η

∆x2

)

−
1

2

( 1

∆x2

)

, (117)

∆η

∆x4
=

∂0
2

( 1

∆x2

)

,
∆η3

∆x4
=

∂0
2

(∆η2

∆x2

)

−
( ∆η

∆x2

)

. (118)
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5.2 Absorbing the Factor of ln(H2∆x2)

The next step is passing derivatives through the factor of ln(H2∆x2) that
multiplies all terms in Table 3. This is facilitated by the identities,

∂0

( 1

∆x2

)

×ln(H2∆x2) = ∂0

[ ln(H2∆x2)

∆x2

]

+
2∆η

∆x4
, (119)

∂2
0

( 1

∆x2

)

×ln(H2∆x2) = ∂2
0

[ ln(H2∆x2)

∆x2

]

+
2

∆x4
+

12∆η2

∆x6
, (120)

∂3
0

( 1

∆x2

)

×ln(H2∆x2) = ∂3
0

[ ln(H2∆x2)

∆x2

]

+
36∆η

∆x6
+

88∆η3

∆x8
, (121)

∂4
0

( 1

∆x2

)

×ln(H2∆x2) = ∂4
0

[ ln(H2∆x2)

∆x2

]

+
36

∆x6
+
528∆η2

∆x8
+
800∆η4

∆x10
, (122)

∂0

( ∆η

∆x2

)

×ln(H2∆x2) = ∂0

[∆η ln(H2∆x2)

∆x2

]

+
2∆η2

∆x4
, (123)

∂2
0

( ∆η

∆x2

)

×ln(H2∆x2) = ∂2
0

[∆η ln(H2∆x2)

∆x2

]

+
6∆η

∆x4
+

12∆η3

∆x6
, (124)

∂3
0

( ∆η

∆x2

)

×ln(H2∆x2) = ∂3
0

[∆η ln(H2∆x2)

∆x2

]

+
6

∆x4
+
72∆η2

∆x6
+
88∆η4

∆x8
,(125)

∂0

(∆η2

∆x2

)

×ln(H2∆x2) = ∂0

[∆η2 ln(H2∆x2)

∆x2

]

+
2∆η3

∆x4
, (126)

∂2
0

(∆η2

∆x2

)

×ln(H2∆x2) = ∂2
0

[∆η2 ln(H2∆x2)

∆x2

]

+
10∆η2

∆x4
+

12∆η4

∆x6
. (127)

The “remainder” terms, which carry no logarithms, are combined with the
appropriate entries in Table 4, and then reduced to derivatives acting on the
fundamental expressions (108) using relations (109-118).

5.3 Eliminating Inverse Powers

Reducing Table 3 according to this scheme results in a series of derivatives
acting on the product of a single factor of ln(H2∆x2) times the last three
terms in expression (108). The inverse powers can be eliminated using,

ln(H2∆x2)

∆x2
≡ 2πi×A1 = +

∂2

8

[

ln2(H2∆x2)−2 ln(H2∆x2)
]

, (128)

∆η ln(H2∆x2)

∆x2
≡ 2πi×B1 = −

∂0
4

[

ln2(H2∆x2)
]

, (129)

∆η2 ln(H2∆x2)

∆x2
≡ 2πi×C1 = +

∂2
0

8

[

∆x2
(

ln2(H2∆x2)−2 ln(H2∆x2)+2
)]
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+
1

4
ln2(H2∆x2) .(130)

The terms of Table 4 produce a series of derivatives acting on the four fun-
damental expressions (108). We eliminate the last three terms using,

1

∆x2
≡ 2πi×A2 = +

∂2

4

[

ln(H2∆x2)
]

, (131)

∆η

∆x2
≡ 2πi×B2 = −

∂0
2

[

ln(H2∆x2)
]

, (132)

∆η2

∆x2
≡ 2πi×C2 = +

∂2
0

4

[

∆x2
(

ln(H2∆x2)−1
)]

+
1

2
ln(H2∆x2) . (133)

The factor of 1
∆x4 is divergent. When combined with the appropriate coun-

terterm it gives,

1

∆x4
−→ −

∂4

32

[

ln2(µ2∆x2)−2 ln(µ2∆x2)
]

− ln(a)×2π2iδ4(x−x′) , (134)

≡ 2πi×
[

−
∂2

4
A3

]

− ln(a)×2π2iδ4(x−x′) . (135)

Note that any derivatives that act on expression (135) occur to the right of
the factor of ln(a), for example,

∂2
[ 1

∆x4

]

−→ 2πi×
[

−
∂4

4
A3

]

− ln(a)×2π2i∂2δ4(x−x′) . (136)

5.4 Schwinger-Keldysh Reductions

Each of the in-out logarithms in (128-134) gives rise in the Schwinger-Keldysh
formalism to real and causal expressions for A1,2,3, B1,2 and C1,2,

A1 −→ +
∂2

4

{

θ(∆η−∆r)
[

ln[H2(∆η2−∆r2)]−1
]

}

, (137)

B1 −→ −
∂0
2

{

θ(∆η−∆r) ln[H2(∆η2−∆r2)]

}

, (138)

C1 −→ +
∂2
0

4

{

θ(∆η−∆r)(∆r2−∆η2)
[

ln[H2(∆η2−∆r2)]−1
]

}

+
1

2
θ(∆η−∆r) ln[H2(∆η2−∆r2)] , (139)
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A2 −→ +
∂2

4

{

θ(∆η−∆r)

}

, (140)

B2 −→ −
∂0
2

{

θ(∆η−∆r)

}

, (141)

C2 −→ +
∂2
0

4

{

θ(∆η−∆r)(∆r2−∆η2)

}

+
1

2
θ(∆η−∆r) , (142)

A3 −→ +
∂2

4

{

θ(∆η−∆r)
[

ln[µ2(∆η2−∆r2)]−1
]

}

. (143)

(144)

Here ∆r ≡ ‖~x− ~x′‖
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