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ABSTRACT

We employ an unregulated computation the graviton self-energy from gravi-
tons on de Sitter background to infer the renormalized result. This is used
to quantum-correct the linearized Einstein equation. We solve this equa-
tion for the potentials which represent the gravitational response to static,
point mass. We find large spatial and temporal logarithmic corrections to the
Newtonian potential and to the gravitational shift. Although suppressed by
a minuscule loop-counting parameter, these corrections cause perturbation
theory to break down at large distances and late times. Another interesting
fact is that gravitons induce up to three large logarithms whereas a loop of
massless, minimally coupled scalars produces only a single large logarithm.
This is in line with corrections to the graviton mode function: a loop of
gravitons induces two large logarithms whereas a scalar loop gives none.
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1 Introduction

A key prediction of primordial inflation is that virtual gravitons of cosmo-
logical scale are ripped out of the vacuum [1,2]. The occupation number for
each wave vector k is staggering,

N k) = T2 ey 0

where A? (k) is the tensor power spectrum, G is Newton’s constant and a(n)
is the scale factor at conformal time 7. Our goal is to study how these
gravitons change the force of gravity.

We can describe the background geometry of cosmology in conformal
coordinates,

2 _ 2 2 = g2 a’ H’

ds :a(n)[—dn +d:)3-dx] = HE? €= (2)
where H(n) is the Hubble parameter and ¢(n) is the first slow roll parameter.
A reasonable paradigm for inflation is provided by the special case of de Sitter
(e =0, constant H and a(n) = —1/Hn), which is tempting because there are
analytic expressions for the graviton propagator [3,4] and because there is no
mixing between gravitons and the matter fields that drive inflation [5,6]. One
quantum-corrects the linearized Einstein equation using the graviton self-
energy —i["*3°7|(x; «’) which is the 1PI (one particle irreducible) 2-graviton
function,

DT (2) — / ata! [0 (0 (o) = %KT#;(I) | (3)
Here x? = 167G is the loop-counting parameter, h,, = (g, —a*n,,)/k is the
graviton field, T}, () is the linearized stress tensor and D*"*7 is the graviton
kinetic operator in the same gauge that was used to compute —i[**' 37| (x; 2).
Our two aims in this work are (1) to infer a fully renormalized result for
—i["¥r7](x;2") at one loop from an old computation [7] that was made
without regularization, and (2) to work out one loop corrections to the grav-
itational response to a point mass.

There are four sections to this paper, of which this Introduction is the
first. Section 2 describes our procedure for extracting the renormalized self-
energy from the unregulated result, with technical details consigned to an
Appendix. Section 3 solves (3) for one loop corrections to the gravitational
potentials induced by a point mass. Our conclusions comprise section 4.



2 Quantum Linearized Einstein Equation

This section derives an explicit expression for the quantum-corrected Einstein
equation (3). Our first tasks are specifying the gauge-fixed kinetic operator
Drvre - explaining how we represent the tensor structure of the graviton self-
energy, and giving 3+ 1 decompositions of both. The main part of this section
is describing the process through which we infer most of the renormalized,
Schwinger-Keldysh result for the graviton self-energy from an unregulated,
noncoincident computation [7]. At the section’s end we give a direct, di-
mensionally regulated computation of the local 4-point contribution, and we
discuss the need for a fully dimensionally regulated calculation.

2.1 3+ 1 Decomposition

In the simplest gauge and D = 3 4+ 1 dimensions, the gauge-fixed kinetic
operator takes the form [3,4],

1 1 -
DHYPo §np(pna)uDA - Z,r],uunpol)A + 2a4H25(ﬂ0nu)(p5 )0 ] (4)
Here D4 is the massless, minimally coupled scalar kinetic operator,
Dy = —a*|0 +2aHdy — V?*| = 0"a*0, . (5)

The 3 + 1 decomposition of D**7h,, is,

1
DY, = ZDA(hoo + hir) — 2a*H?hyy (6)
- 1
Do“’”hpa = _§DBh0i ; (7)
e 1 1
DY*%h,, = §DA [hij + §5ij(h00 - hkk)} ) (8)

where Dpg stands for the kinetic operator of a massless, conformally coupled
scalar,

Dg = —a? [88 +2aHOy — V* + 2a2H2] = ad’a . (9)

Note that adding (6) and the trace of (8) gives a relation for hqo,
(D% + D)y = Dighay (10)
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Using general tensor analysis on a general cosmological background (2),
we can represent the graviton self-energy as a sum of 21 tensor differential
operators ["Dr?] acting on scalar functions of n, n’ and ||Z — 2'|| [8],

21

—1q [’“’Z”"} (x;2') = Z [‘“’DZ’-M] xT(x;2") .

i=1

(11)

The 21 basis tensors are constructed from 6%, the spatial part of the Min-

kowski metric 7*

0" + 61,0 These 21 tensors are listed in Table 1.

I D] i D"
U mepe || 8 | @0 | 15| 64076007
o w9 | sUges?y | 16 | 664,00
3l mveryee, | 10 | sUged” || 17 | 3976767,
4| s | 11| @ pesy | 18 | v sa”
5| 7vad” | 12 | tpea” | 19| 68 0T
6| 6“3 | 13 | §06%06%0% | 20 | 9'95°,3”
7| 7T | 14| Fee @ | 21| 7TTT

Table 1:

(10,11), (14,15), (16,17) and (19, 20) are related by reflection.

n* + 6',0"%, and the spatial derivative operator ' =

The 21 basis tensors used in expression (11). The pairs (3,4), (5,6), (7,8),

Table 2 gives the 7 pairs of the T%(x;z’) which are related by reflection

invariance, —i["Xr7](x; 2') = —i[P7X*](2'; x).
{ Relation { Relation
3,4 || TYx;2) = +T3(2'; x) 14,15 | T (x;2') = —=T"(2'; )
5,6 || T%(x;2') = —T°(2';2) 16,17 | TV (x;2') = +T'(2'; )
7,8 || T¥(x;2) =+T"(2';2) | 19,20 | T®(z;2') = —=TY(2'; z)
10,11 T (z;2) = =T"(2; x)

Table 2: Scalar coefficient functions in expression (11) which are related by reflection.



The 3 + 1 decomposition of [*37](x; ") hpe (') is,
'OOZW} By — (T gy + iT 3 hoo + iT ™ hog o + iT Py e (12)
oiser |, — %ai [Tﬁhkk + T hog + T8 hope s, + Tlghk&,d}

+%T9h0i i %Tlohik,k . (13)

iise] hpo — i0;; [Tlhkk + T?hoo + T hor . + T7hke,ke} + iT%hy;

+idy 'Tllhj)0+T12hj)k7k} + 0,0, [Tshkk+T17h00+T20h0k7k+T21hM7k4] L (14)

Some of these relations were simplified using transition invariance to partially
integrate spatial derivatives from the coefficient functions T%(x;z’) onto the
graviton field.

2.2 The Quantum Correction

Suppose that S[g] stands for the classical action, with ghost and gauge fix-
ing action S,[h,0,0], and counterterms AS[g]. We can give an analytic ex-
pression for the one loop graviton self-energy using an expectation value of
variations of these actions,

R D 1 i8S i5S i6S
_Z[“ > }(“”) - <Q‘T Hahw[(ﬁ)hh[ahmg)hh+ [MW[(@)L(;
i6:5|g]

1628 i2AS
X [W]ee [5%(9;)551(:5')}% + [MW(:);)M[:;](:B’)] 1]

2). (15)

The T*-ordering symbol indicates that derivatives are taken outside the time
ordering symbol, and the various subscripts give the number of weak fields
which contribute. The analogous Feynman diagrams are shown in Figure 1.

B i «i:év i

Figure 1: Diagrams contributing to the one loop graviton self-energy, shown in the same
order, left to right, as the four contributions to (15). Graviton lines are wavy and ghost
lines are dashed.
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2.2.1 The D =4 Result

The unregulated result [7] can best be understood by considering how a
dimensionally regulated computation of —i[**¥r7](z;2") would look. The
general forms of the 3-graviton and 4-graviton vertices are [3,9],!

ka”2hOhoh : kHaP~'hhoh (16)
x*a”"2hhOhoh : k> Ha” hhhoh . (17)

There are a plethora of different index contractions, but contributions to the
first two (nonlocal) diagrams of Figure 1 take the general form,

kaP=? x 00'iA(z;2') X 0FiA(z;2') x ka'" 72, (18)

with ¢A(x;2’) standing for a ghost or graviton propagator, and the under-
standing that one derivative at each vertex could be replaced by a factor of
H times the appropriate scale factor. Note also that, when an external leg
happens to be differentiated, then minus the derivative acts on everything.
On the other hand, the third (4-point) diagram of Figure 1 is local,

K2aP? x 00'iA(z; 7)) x 6P (x—1) , (19)
with the same understanding concerning derivatives. The last (counterterm)

diagram of Figure 1 is also local,

K,2a’D—4

D—4
with the stipulation that any number of the four derivatives could each be

replaced by a factor of Ha.
The gauge for this computation was fixed by adding [3,4],

x 20" x i0P (x—a) | (20)

D-2

1
Lor = - WvEF, | = nﬂff(hw,,a—§h,,(,7u+(D—2)aHhM,5°0) L (21)

In this gauge the ghost and graviton propagators become sums of constant
tensor factors multiplied by simple scalar propagators,

z[MAp] (w:2)) = T, x iDa(w;a)) — 000 x ilp(zia),  (22)

o] (@:2) = 30 wTh] x itz (23)

I=A,B,C

Wertices involving ghosts take the same form as (16).

b}



‘ I
The various [, T,,] are,

2
Al 0= = S B] _ 0 — 50
|:/u/Tpa:| - 277;1(;)770)1/ - D—_?)n,uunpo ) |:MVTpo':| =—40 (;ﬂh)(pa o) (24)
2, Es

WG| = Doy @ Bw= D=8 4T, (25)

Most of the scalar propagators can be expressed using a function A(y) of the
de Sitter length function y(z;z') = aa’ H*Ax?,

. N , _ HP2T(D-1)

iAa(z;2") = Ay) + kln(aa’) k= (4@@ O (26)
ate) = D= (AW
Boleid) = CW) = 52-9)BW) + 5 (29)

The first derivative of A(y) is [10,11],
D=2 D D_
= (D)) (B ()

= [T(n+2+2) n—L2 2 n n
s O - mi @ T e

D_

Note that the y™ and y"~2 ~2 terms cancel for D = 4, so they only contribute
when multiplied by a sufficiently singular term.

Divergences occur in the effective field equation (3) when the integration
over x'"* carries it to coincidence, z'* = x#. Hence the first two (nonlocal)
diagrams of Figure 1 can be taken to D = 4 away from coincidence, which
also makes the two local diagrams vanish. This was done for the unregulated
computation [7]. That computation was tractable because taking D = 4
simplifies the propagators,

: - 1 i 1
D=4l (). 1\ _ po Lo 2 A2\
i[uA27 (@:0) = W{aa/ L — SHIn(H?Aa )nup}, (30)
. - 1 (277 oMoy — w7 U)
D=4 (.. 1\ _ ke Al
! [WAP" } (z:2) = 42 { aa’ Ax?

_H2 ll’l(HzAI2) (ﬁu(pﬁa)u _ﬁpuﬁpa) } (31>
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i Coefficient Functions T% (z; ') in expression (32)
! 8a2a*H' x [0 + L] + da’aHO x [0 — 800 + 3]
9 _16a2d2H* x [4A;76 + L] — 4% HS % [SA:?G + ]
3 Sa’a’” HOx [ § — g2 —da’a HO x [ igt — 52
5 16a2a* H* x 21 4+ 4g3¢* H? x [2A2 4 3]
9 || —96aa’H? x [lgfﬂf + 12@22 + ] — daa> H* x [24Aig4 I 8AA:B7762 .
10} 96aa'H? x (552 + 53]+ 120° HY x [ 85+ k] + oo HO x ([ — 332
—8a%a' H? x [0 + L] —da®a HP x [ 22 — AZ .|
12 —8aa’H? x [4A’7 +A ] 2a2a’> H* x [Zﬁf AL] 343 [J6 x An
| o xS BT ]+ e PR
+8a3a’* HS x [4AA—"6 — QA” A?;(;?]
14 o2 H (B + 28] 5 5 H x5 5
—16a%a’ H® x [4A" + Am4] — 16a3a’>H® x [Ax4 + Am2]
16 —8aa’ H? x [4A" —|—A 7] +2a? a’2H4 x [~ 6An +A o] - 2a3a’3H6X§—Zz
+16ad’ H? x +6a3a/2H5 AA_
18 —24aa' H* x [4A" + Ar4] 2a a/2H4 [6 2]
19 8aa'H? x 2% + 6a’a”H* x L% — da’d H® x <55

Table 3: Each tabulated term must be multiplied by —%.

Because one of the propagators in the nonlocal diagrams (18) might not carry
any derivatives, the coefficient functions T"(x; ') in our representation (11)
of the graviton self-energy take the form,

T (z; ") = T (z;2") + T (z;2") x In(H*Ax?) . (32)

The coefficient functions T} (x;2’) are given in Table 3, and the T} (x; 2') are
given in Table 4. Both are functions of a, a’, An = n—n' and inverse powers
of the Poincaré interval Az?* = ||Z — @||*> — (|n — /| — ie)>.
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Coefficient Functions T]i,(x; x ) in expression (32)

1 5:8_aalﬂz[mﬁ?gf_i_%]_aza/zHﬂggAxg + AxG +A:c4] a3“/3H6[6Z€£4+22AAxZQ]
9 EZ —aa’H2[41§§8’72+§] 202 [11] AxGn _%]jLasa/sHﬁ[szAAxZ‘leleAxf]
C1SA[EED + L] 43200 H2[ 20 4 A 5 )
3 —a2a’2H4[28§§8’7 _TA;(;Afin + 145] 4a3a/3H6[%+5AA;75]
_8a H[232An +203An] 4a2a/H3[74AAzga_%xA6n] aBa>H % 38A17
5 & 30aa’ H2[228 — 380 4 4q2a"? HA[SA _ A
—I—232aH[2AA;782+A26] 2a2a’H3[ AA:EZ %]—OL:”OL’2H5><12@22
7 ?§6+aa’H2[24A’7 + i1 ]—I—a2a/2H4[8AA:;74 A$2]+a3a/3H6 A:BQ
—aH x TA L — a2 H3x 320 4 o3a/* HP x AAQZQ
9| —16[= 5 ]+16 o H?[350 —%——]Ma o HASRL 42 3
10 2T 16aa’ H2[8A” — A a2 ST 2
_'_a3a/3H6 4An +aH x 6+8a2a’H3[ Z_ﬁ]_ai’,aﬂHnyzlAm
12 32 /HZ[m_ﬁ] a a/2H4[_AiZ %]—CL3(LI3H6X2A
13 16[336An +336An + ]+4aa/H2[336An +86§§£2+%]
+a2a’2H4[42§§8" +144A" + 28] — 24a3a’3H6[4AA;76 224]
14 _GT2[AR 4 An 8aa'H2[%+ﬁ]—4a2a’2H4[%—ZA—xZ]
—16aH[4A’7 +x 5 5] — %2a2a H3[ 6 + 137]+a3 12 175 16AA$22
16 AT 5 )t aa HAZRE | 5 42 a’2H4[6A” + 2]
—agot’?’H6><‘Q)AA;2 2§§§7+a "H3 % 3 7 +ada’* H5 x AA;Q
18 8[%+%}+4aa’m[%g ——]+a2a’2H4 10872
19 —u:An 8aa’ H? x — a2a*H* x b+ aH x 3 5
14
21 ﬁ

Table 4: Each of the tabulated terms must be multiplied by —62”%.




2.2.2 Recovering the Renormalized Result

In [12] we presented a 4-step procedure for reconstructing the dimensionally
regulated result for the first two diagrams of Figure 1:

1. Express each T} (z;2') as a sum of derivatives acting on three integrable
functions,
1 An An?

A2 A A (33)

2. Commute the various derivatives to the left of the multiplicative factor
of In(H?Ax?);

3. Write the sum of the remainder AT} (x;z') from step 2, and T (z; 2'),
as a sum of derivatives acting on the same integrable functions (33)
and 1/Ax?; and

4. Recognize the factors of 1/Az? from step 3 as the D = 4 limit of
1/Az*P~% and isolate the ultraviolet divergences on delta functions
which can be absorbed into counterterms.

Below we explain the rationale for each step and provide details. We also
implement the various steps on T'?(z; 2’),

2In(H*Az?) 32An? 8
T12 ! :_K’ /H2[_ _ ]
L (@) 6474 {aa AzS Azt
12An2 1 4An?
+a*d”H* [— sz +A—§;} +a3a’3H6[A;}2 }}, (34)
2 488 2Ap? B2
12/ N _ 15 [ 3 3
Ty (@) = _647r4{_@ +““H[ Aab AxG]
SA° 8 207"
+a?a*H* [— 3sz + @} + a*a” HS [— ASLZ ]} (35)

To understand the rationale behind Step 1, note that a single factor of
In(H?Az?) from the propagators (30-31) can only contribute to one of the
T (z;2") if no derivatives act on one of the two propagators in (18). In that
case all of the derivatives must act on the other propagator, and it is this
differentiated propagator, multiplied by the scale factors from the vertices,
which appear in T} (x;2'). Tt follows that we can express T (z;2') as a sum



of products of scale factors multiplied by derivatives of the three integrable
functions (33). For example, T}?(x;2') in expression (34) can be written as,

2In(H2Ax? 1
TP (x;2') = —M{aalﬂz X —483(—)

647t Ax?
ta2d’H! [—680 (AA—;> +A2—j2} + aPa HS [Zlﬁ—g;} } (36)

The Appendix contains a number of useful identities (109-118) for extracting
derivatives.

Step 2 consists of commuting the multiplicative factor of In(H?Az?)
through the derivatives to multiply the three integrable functions (33). Of
course this produces a “remainder” AT} (z;z') in which derivatives act on the
logarithm to produce a term like those in T%(z;z’). For example, carrying
out Step 2 on expression (36) for T}?(x;2') gives,

’ I<L2 , IH(H2A£L’2) ,
TP (25 2') = —m{aa H2X_403(Tx2> 1 a2 H [—680
Ann(H?Az?)\  24In(H?*Ax?) i s AARPIn(H?AZ?)
X( Aq2 )+ N }+aa H" x A7
R2 [ 48An7 8 R TIN
_647T4{aaH [— A _—A:c4] +a“a"H*x— A5 } (37)

Identities (119-127) in the Appendix facilitate these reductions. It is useful at
this stage to identify six integrable functions, with a factor of 27i extracted
for future convenience,

.. In(H?*Ax?) |
27TZA1 = Tﬂ y 27TZA2 = A—:LQ s (38)
. Anln(H?*Az?) . An
277'7,.81 = sz y 27TZBQ = A—IQ s (39)
. An?In(H?Az?) . An?
277'7,01 = Ax2 s 27TZCQ = @ . (40)

Hence we can write,

K>

12
= 3273

{—4aa'H2agA1 —6a%d* H* [(%Bl —4A1] +4a3dP HOC, L+ AT?
(41)
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where the remainder term is,

2 A8AR?2 8 12An*
AT2(g: 27) = _6Z7T4{aa/H2 [_ AxZ - L a2d? Hix— AxZ } (42)

The terms involving Ay, B; and C; would be ultraviolet finite in dimensional
regularization so it is perfectly valid to leave then in D = 4. Results for all
the algebraically independent coefficient functions are given in Table 5.

i | Nonlocal Contributions to iT% (z; #’) which involve A;, By and C}

1 4a2a”” H* x O3 A, + 2aPa”® HO x [03C, —60,B, +10A,]
2 —8a%a”’ H* x 92A,—4a3a/* HS x [02C, — 59, B, +4A,]
3 4a3a’”® H x [0y By —5.A1] —2a’a/* H® x [02 By — 40, A4
5 8a2a’” H* x 0y Ay +4a*a’” H® x [0y B, +2A,]
7

9

—8a2a*H x Ay — 2a3a* HS x C} — 2a3a’*H® x B,

—4ad' H? x 9 Ay —2a%a’” H* x [03 B, —403 A1)

10 daa’ H? x B A, +6a2a”” H* x [03 B; — 20, A4
+aa’® HO% [40,C) —12B,] —4a*d’ H*x 02 Ay — aPa> Hox [40y B —8 A4

12 —4aa' H? x 92 Ay —6aa’” H* x [0y B) —4 A, +4a*a* HO x C,

13 —4aa' H? x O A, + 2a2a* H* x [03 B, +892 A,
+4aPa® H® x [03C, =70y B, +11A,]

14 8aa'H? x O3 A, + 4a’a’* H* x [02 B, —60yA4]

—8a%d’ H? x 88A1—8a3a’2H5 X [0gB1+ Aj]

16 —4ad’ H* X 92 A, —a2a* H* (609 B1 —8A1] —2a3a’* Hb x C
+8a%a’ H? x 9y A, + 6a’a* H® x B,

18 —12aa' H* x R A, —a*a’> H* x [60y B; +4A,]

19 4ad H? x 9yA; + 642> H* x By — 4a2a’H3 x A,

Table 5: Each tabulated term must be multiplied by %
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i | Nonlocal Contributions to iT% (z; *') which involve Ay, By and Cy

1 —a*a’”® HY[203 By+ 203 A5 — a*a”> HO[503Cy — 120y By +2 A
2 —2062a? H* 92 Ay —a®a’® H9[203 C, — 160y By +12.45)]
3 3aa' H?03 Ay —aa’* H*[603 B, — 2202 Ay +a’a’”® HO[802Cs

—260 By +10A4]+ 3L a%a’ H303 Ay — a’a’® H[303 By + 80 As)
5 —6aa’ H?03 Ay +a2a’® H*[40% By — 60y A,

—§a2a’H38§A2 — 2a3a’2H5[8oBg — Ay
7 3aa’ H*93 Ay +a’a’> H*[40y By — T Ay +aa’® HOC,
— 2_630;2a/H300A2 +a3a’>H® B,

9 —1—34aa’H28§A2—a2a/2H4[38832—1383A2]

10| Yad H*f Ao ta’a” H B 05Co 468 o] +a’a  HO[60,C> —12By)]
—1—;a2a’H38§A2 - 6a3a’2H5 [0032 - AQ]

12 —1—34aa’H283A2 —a’d*H* [?8032 — %AQ] —2a3a’* HOC,

13 —Dqa' H20} Ao +a2a” HY[2 03 By — 1502 Ay
—a?a’® HO[603Cy — 340y By 422 Ay

14 Baa' H?03 Ay —a?a* H* (203 B, — 800 As] — 2 a’a’ H392 A,

16 —3aa’ H*02 Ay —a?a’” H*[30) By —8 Ay) —3aa’® HOC,

+9Za2a' H39y Ay +a’a’” H° B
18 —12aa' H*R Ay — a*a’> H*[0y By — Ay
19 —a?d*H B,

Table 6: Each of the tabulated terms must be multiplied by %

In Step 3 we first combine T% (z; ') with the remainder AT} (z;2'). For
our example of T%(z; 2’) we add (35) and (42),

12 12 K i A S
o el — !
Ty (z;2") + AT, (x’x)__647r4{—Ax6+aaH N _Ax4]

12



2 An? 2An°
+a2d*H|— ?’Axn + Ai +alaHO x — Ag?? } (43)
These sums typically contain ultraviolet divergences. If we again employ
the Appendix identities (109-118) to extract derivatives the result involves
factors of 1/Az* in addition to the three integrable functions (33). For
example, expression (43) gives,
61 14 28

i+ 7)) = el -0 () + o [-8(523) - ]

23 A a7 2
2 24| 3 271 3 13176 _2A77
+a“a"H [ 8(]( )+Ax2}+aa H®x }.(44)

Ax? Ax?
The ultraviolet finite factors of Ay, By and C5 are reported in Table 6, whereas
we retain the factors of 1/Ax? for further analysis,

;2 14 47
T4 AT = —312’;3{ —ad B9 Ay +a’a PH |- —aOBQ+ . 4|

3 13776 K 2 (1% 2 5

/

—2a’a HC}_647T4{ 8<A 4> aaHA4}.(45)
In Step 4 we isolate the logarithmic ultraviolet divergence implicit in the

factors of 1/Az* produced by Step 3. We first note that factors of 1/Ax?

would appear as 1/Az?P~* had dimensional regularization been retained.
Extracting a d’Alembertian from this uncovers an explicit factor of 1/(D—4),

1 1 0? 1

Ari Ag?D-1 - 3(D—3)(D—4) [A:cw—ﬁ} ' (46)
The ultraviolet divergence is localized by adding a term proportional to the
flat space background massless propagator equation [10,11],

1 0? 1

Art 2(D—3)(D—4) [A:L'w—ﬁ]

0? 1 puP—4 pP =472 i6P (z—2)

~ 2(D-3)(D—4) [A:L'ZD—G a A:)jD—2] * 2(D-3)(D-4HI(2-1)" (47)

The nonlocal part of (47) is both integrable and finite for D = 4. We can
take the unregulated limit of the nonlocal part of (47),

2 D—4 2 2 2 2
o s~ ] — o [EA) = Z foria).
(48)
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These ultraviolet finite terms are given in Table 7.

i Nonlocal Contributions to iT% (x; ") which involve Aj
1 — 200 Ag+ad H*[ 1205 — 15 0%]0% As —@a2a’2H402A
9 12086/13—{—@& H2[1302 582]82143 55 a2 /2H402A
3 BNV Az +aa HA 203+ 120707 As +42—5a2a’2H402A3

120
—l—aH[%Bg 290 82]82A3+ 215 /H38002A3
5! — %0084/13 - ﬁaCI,/[’[zaoazflg — —.aH[82 —|—02]82A3 — —a2a’H302A3

7 B.0* Az +5ad H*0? A3+ 22aH 0,0% As

9 SIN201 Ay +aa’ H2[2 02+ 40202 Ay +4a2a* H1O? Ay

10 8 Ot Ag— aa/H20082A3— —aH84A3—|— D020 H30? A,
12 SLO* A+ Laa' H?0* As

13 —LV10%A; —ad H2 [ 02+ 21 520245 — 139a2a/* H10?A,

14 %V28082A3+ %GQ/H28002A3+&H[202 + 202]82/13%— @aza’H?’@zAg

16 - [%ag 12230 02]82143 121 GCL H202A3+ aH8002A3
18 —[1—54884—%82]82A3+23aa’H282A3

19 %8082143—%&}[82143

21 — L9 Ay

Table 7: Each of the tabulated terms must be multiplied by %

It remains to renormalize the local divergence in expression (47). This
turns out to always produce a finite local term proportional to In(a). It arises
from the incomplete cancellation between primitive divergences like (47) and
counterterms, which contain an extra factor of a”~* from the measure,

(P47 2 i6P (z—2) B aP=4 P47 3 6P (x—2')
2(D-3)(D-4)T(2-1) 2(D-3)(D-4)I(2-1)
— —2n%ixIn(a)d*(x—2') . (49)
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These local terms are reported in Table 8.

i Local Contributions to iT¢, (z; 2)

1 —%8454(23—:)3’)+aa’H2[§8§—13—102]54(93—x’)—%aza’2H454(x—x’)

2 —%0464(33—9:’)%—@&’1112[%83—%82]64(1'—9:’)—%a2a’2H454(1’—x’)

3 %Vzazé‘*(x—x’)+aa’H2[%—283+%82]54(x—x’)+8—§’0a2a/2H4
x6H(z—a')+aH[Z205+20,0%)6" (x—a')+22a’d H306* (x—2)

5 —2000%6 (x—a') — 2 ad H*0p6* (x—2)

—BaHV*5 (x—2') —22a*d H36* (z— 1)

7 B025Nz—a )+ 5 ad H*6 (z— )+ EaH 0" (z—2)

9| 8v20%5(z—a')+aa H[HS 02 + 1810264 (2 —a') + 160> H*6* (x — ')

10 —8000%6* (x— ') — Hlad H*0p6* (x—2') — SaH O*6* (x — ')

+58a?d H36* (x—2')

12 8025 (x—a')+Bad H*6* (x—a)

13| —UVist(x—a')—aa' HX 202 + BLo2]5" (2 —a') — 556a%a’* HAY (v — )

14 BYV2006" (w—2')+ 12 aa’ H?0p0* (z—2')

+aH[305+220°)6% (x— ')+ 2a®a H*6* (x—2)

16 —[B5+20%0(x—a") —Zad H*6* (v —a')+TaH 0pd* (x—1')

18 —[392+519%6%(x— ') +92aa H26* (x— 1)

19 B (x—a')—PaHo* (x—1')

21 —2ot(z—a)

%2 1n(a)

Table 8: Each of the tabulated terms must be multiplied by "33~

To see that primitive divergences are free of D-dependent scale factors, note
first that the two nonlocal diagrams of Figure 1, corresponding to the generic
expression (18), acquire a factor of (aa’)P~2 from the two 3-point vertices.
The D-dependence of these vertex scale factors is cancelled by scale factors

15



from the two propagators. The most singular part of each propagator is,

(50)

HP=2T(2-1) (é) -1 INCES ( 1 ) 7-1
(47)% y Ans  \aad'Az?

Less singular terms differ among the various propagators, but their scale fac-
tors all have the form (aa’)!~= x (aa’)™ necessary to cancel the D-dependence
of the vertex scale factors.

2.2.3 The Schwinger-Keldysh Result

Even though the graviton field is Hermitian, the nonlocal factors (48) and
(38-40) are neither real nor causal because the Feynman diagrams from which
they derive are in-out matrix elements rather than expectation values. We
can derive true expectation values using the Schwinger-Keldysh formalism
[13-17] which is a diagrammatic technique that is almost as simple as the
Feynman rules. These expectation values obey effective field equations that
are real and causal, albeit nonlocal [18-20].

There is no point to deriving the rules for converting the 1PI N-point
functions such as —i["*¥7](x; 2’) from in-out amplitudes to the Schwinger-
Keldysh formalism. We merely list the rules [21]:

e Spacetime points carry a + polarity.

e Because propagators have two points, each with two polarities, there
are four Schwinger-Keldysh propagators iA,y(z;z'). The ++ case is
just the Feynman propagator, whereas the —— case is its conjugate.
The —+ propagator is the free expectation value of the field at x*
times the field at 2, and the +— propagator is the free expectation
value of the reverse-ordered product.

e Fach vertex has a + polarity. The + vertices are the same as those of
the in-out formalism while the — vertices are complex conjugates.

e Every in-out 1PI N-point function gives rise to 2 N-point functions
in the Schwinger-Keldysh formalism.

e The factor of [**¥#?](z; 2’) in the linearized quantum Einstein equation
(3) is replaced by the sum of [*X/7 |(z; ), which is the same as the
in-out result, and [*X07 |(z; 2').
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e On our simple background (2), one can infer the result for [**317 |(x; 2')
from that for [*Xr?](z;2") by dropping all the local contributions of
Table 8, multiplying the nonlocal terms by —1, and converting the
coordinate interval Ax? from

(I —ie) (51)

Az’ (z;2)) = H:E— z

N Ar?_(z;2)) = Hf— f’H2 — (n—n/ +i5>2 . (52)

Implementing these rules is straightforward. First, recall that the only
dependence on the coordinate interval Az? in the nonlocal results of Tables 5,
6 and 7 comes through the integrable functions A;_s3, B and C;_5, which
were defined in expressions (38-40) and (48). We can eliminate the factors
of 1/Ax? using identities (128-136) of the Appendix. For example, the +-+
and +— versions of 2wi x A; are,

In(H?Az2.)  o? ]

2711 X Al = = § lnz(H2A$ii> -2 ln(HzAfﬁii) (53>

2
Ariy

Because the scale factors and derivatives are identical in the ++ and +—
contributions, we just need to consider differences of logarithms,

In(H?Az? ) — In(H*A22_) = 2mix0(An—r), (54)
In*(H?Az? ) — In*(H?Az%_) = 4mix0(An—r)In[H*(An*—r?)], (55)

where r = || — &’||. For example, the factors of A; on Table 5 have the
Schwinger-Keldysh correspondence,
2

A — +%{9(An—r) {m[H?(An?—r?)]—@ } . (56)

Identities (137-143) in the Appendix give the reductions needed for any of
the integrable functions A;_3, Bi_o and Ci_s.

2.3 The 4-Point Contribution

The previous discussion concerned the two nonlocal diagrams of Figure 1,
and the local counterterms needed to renormalize them. There are also finite
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local contributions from the 3rd diagram. It derives from the 42 4-graviton
interactions given in equation (4.1) of [9]. One connects two of the graviton
fields to the external legs and then replaces the remaining two fields by
graviton propagator. The procedure is tedious and we shall content ourselves
with simply sketching it and giving the final result.

As an example we reduce the first of the 42 interactions,

2

S) = % /de aP2h2h g " (57)

where a comma denotes differentiation and the trace of the graviton field is
h = h%, = n*h,s. We first take variational derivatives of the action integral
with respect to hy,(z) and h,,(z’) as in expression (15),

2'5251 K,z

— MV 00 ) D—-271 B8 0.cD .
6h’NV(I)6h’po—(xl) 32/)7 n { 86 [2& h a(z)h 5(17)0 10 ([L’ €T )i|

+4aD_2haa(x)hﬁw(x)@ez'(s[)(ZE—CE,) —4¢’ [aD_zhaa(x)hﬁﬁ,e(ff)wD(I_CE,)}

+2aD_2haa79(:c)h5679(x)] iéD(:c—:c’)}. (58)

Now compute the expectation value of the T*-ordered product, which amounts
to replacing the remaining two graviton fields of each term by the appropriate
coincident (and sometimes differentiated) propagator,

1025, ”> K2

(ol ) - e { ool

x@‘gz'cSD(:z—:z')] +4aP 2 x 0gi[aaABﬁ}(:E; ')

x %0z —z") —40° {aD_z

oDz —a') % a;,z[aaﬁﬁ}(x; x’)} 20D 2Pz —a') x aga'%[aaﬁﬁ](x; x’)}. (59)
Finally, we express the tensor structure using the 21 basis tensors of Table 1,
't = (ﬁw—(wo(suo) (ﬁpa_épofs(jo) ; (60)

- [orl-ocl-forleos]

The coincidence limits of the three propagators which appear in the gravi-
ton propagator (23) are,
k

iAA(x;:L’):k[—wcot(%)—lﬂln(a)} L iBp(@e) = — 5, (62)
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k L. HP2T(D-1)

(D—2)(D—-3) ’ (4m)z T(%)

iAc(z;x) =

(63)

Note that only the undifferentiated A-type propagator is ultraviolet divergent
in dimensional regularization. The undifferentiated A-type propagator is
also the only way to get a factor of In(a). First derivatives of coincident
propagators are all finite,

Oaila(z;2')| = aHkS®, | OniAp(z;a))  =0=0,iAc(z;2")|
) ) (64)
Mixed second derivatives are also finite,

_ D—1

0a03iAA(2; 1) L= <T)kH29a6 ; (65)
, 1

OaOhiAp(z; ) = kaﬂgag , (66)
, 2

0a05iAc (s 2") L= —mkH2gaﬁ : (67)

i | Nonzero contributions to iT% (z;2’) from the 4-point diagram

1 —8a?H?(0y+2aH )0y6* (x —a')

2 8a? H*(Op+2aH )9yd* (x—a')

3 —8a*H?[V?+aHdy+3a*H?|6*(z—2')
5 1602 H2(9y+ 20 H)6* (z—a)

9 16a* H*V254 (z —2)

10 —16a>H?0y0* (x—2')

13 —72a* H 6 (x —2')

14 —16a®H36* (x —2')

16 8a?H?*6* (z—1')

18 —16a*H?6*(z—2')

x21n(a)
3272 -

Table 9: Each of the tabulated terms must be multiplied by
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Note that all primitive contributions have factors of a”~2, a?~! or aP”.

The counterterms which absorb ultraviolet divergences possess the very same
dependence on a so renormalization engenders no finite factors of In(a) the
way it did for the nonlocal diagrams of expression (49). It does produce
factors of In(H/u) but we report only the In(a) contributions in Table 9.

2.4 Anomalous Local Contributions

Our result for the renormalized self-energy consists of the local contributions,
collected in Tables 8 and 9, plus the nonlocal contributions of Tables 5, 6
and 7. The nonlocal contributions obey the Ward identity, just as did the
noncoincident, D = 4 result [7] from which they were inferred. However,
it turns out that the local contributions do not. It is possible that the
missing terms are associated with contributions from the first two (nonlocal)
diagrams of Figure 1 in which an A-type propagator is undifferentiated and
the derivatives on the other propagator are contracted into one another,

ka” 72 X iAq(zy2) x 00, iA(z;2) X ka'"7? . (68)

In that case the contracted derivatives would produce a delta function not
recovered by the noncoincident, D = 4 result [7],

iSD (. 1

0N (2 = _“5;;”7_293) + 0( AID_Q) . (69)
It is also possible that the Feynman rules need to include contributions from
the functional measure factor. A fully dimensionally regulated calculation
would seem to be necessary to resolve this. One should also re-examine the
contribution from a loop of massless, minimally coupled scalars [22] to see
if it shows similar anomalous local contributions. In the meantime, we can
proceed with the nonlocal contributions because it turns out that the local
contributions do not affect the potentials as strongly at late times and large
distances.

3 The Effect on the Force of Gravity

In this section we solve the effective field equations (3) to find one loop cor-
rections to the gravitational response to a point mass. Our first step is to
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specialize the general equation (3) appropriately for a perturbative deter-
mination of the potentials. We next compute the source terms induced by
integrating the one loop self-energy against the classical potentials. We close
the section by solving for the leading one loop corrections at late times and
large distances.

3.1 Equations for the Potentials

The linearized stress-energy for a static point mass is,
STGTLY (v) = 87GMad® (%) . (70)
The gravitational response to such a source is given by four scalar potentials,

I{hoo = -2V¥ s Hh()i = —&Q s I{hij = _261J(I) - 2028])( . (71)

We can derive an equation for ¥ from the sum of the 4 = 0 = v and the
spatial trace,

[DOOPU+Dkkp”] khypo(z) = —2Dp¥(z) = 871G Mad® (7)
+ / d4:):’{ [OOZP"] (z;2")+ ['szm} (z; :E')}/{hpa(x’) , (72)

where Dy is the kinetic operator of a conformally coupled scalar (9). The
1= 0,v =1 components give an equation for €,

DinUI{hpa — %DBQ(I’) =0+ /d41'/ [0i2p0:| (ZIZ’, l.’)nhpa(l‘,) . (73)

And the equation for y and ¥ — & is,
[W_aijpkkw} khpe = —0"F Dax + 67 DA(¥—B) =0
 fata{ [75r]wsat)=09 [10 (s ity 0 (7

where D, is the kinetic operator of a massless, minimally coupled scalar (5).

Although equations (72-74) are correct, they cannot be solved exactly
because we only possess one loop results for the graviton self-energy. This
means we must develop perturbative solutions,

U =W+ &2 + Wy + ..., (75)

21



and so on for the other potentials. The zeroth order solutions are,

o) = @) = Q) =xel@) =0 (76)

It is only these zeroth order potentials that appear on the right hand side of
equations (72-74). If we use the symbol T"(z;z") to stand for just the one
loop contribution to the graviton self-energy then the one loop correction to
¥ is given by,
—2DpkK*W, () = / d%:'{ [9¢T1+3¢T2+3(¢T3+¢T4)+¢Tl3}
+ [3(iT7+iT8) +iT12+(iT16+iT17)] v+ iT21V’4} x —2Wo(z') . (77)
The equations for €2; and y; are,
Dpr*Qy(x) = / d%’{ [3iT6+iT10+z’T15] + iT19V’2} x —2Wo(2),  (78)
Dr*x(z) = — / d%:’{ [3¢T8+¢T12+¢T17} + iT21V’2} x —2Wo(z') . (79)
And the equation for the gravitational slip is,
Dar? [\Ifl(x)—cbl(:c)} . / d%’{ [6¢T1+2¢T2+2¢T3}
+ [22’T7+3iT8+z'T12+iT17] v+ ¢T21v’4} x —2Wq(2) . (80)
3.2 Performing the Source Integrations

From equation (77) we see that W, is sourced by various combinations of
the Schwinger-Keldysh coefficient functions multiplied by zero, one or two
powers of V'? acing on —2W(x'). Having a factor of V'* simplifies the source
integration enormously because,

_ 8TGMS (o)

V"% x =20y (2) = " (81)
a
The V'* source comes entirely from T2} = 3;‘% X As. Table 10 gives the

combination which multiplies V2.
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Operator Factor
—12aa' H?*&? + Sad'(a—a')H?0y — 8a’a’* H* Ay
—18a%a’” H*9, By
—12a3a’> HS (&
2ad H2R+ad (a—a')H?0y— 3L a*a* H* Ay
3—?}a2a’2H480+4a2a’2(a—a’)H5 B,
—2a3a’® HS Cy
—(205 —%19%)9?+9(a—a')HOy0? — 2L aa’ H?0* As
—In(a)(£0; - 1L 0%)— 1 In(a)a® H* 5t (Ax)

Table 10: Contributions for 3(iT7"+iT®)+iT 2+ (iT*+iT'7). Each tabulated term must
be multiplied by .

These V'? source integrations can be evaluated exactly, for example,

32;3/ At [-8aa HJ A (5 ) %/53@)
= W/ dn'a {ln[H2(AT}2—T2)] —1}, (82)
i
:W{m (Hr+ ) ln(HH—i)%—:;%[ (HH%)n]

21 Hr—i\n 1\
— ) = (=) b 83
+3lGrst) - (=0T} e
However, all that really matters for us is the limiting form for aHr > 1 with
Hr <« 1,

2

3273

87GM& ()

/

/d4 '[—8a2a”* HY Ay (2; ') %

a
2GMrK*H3a? In(Hr)
202 :

(84)
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Operator Factor
—4ad’ H*0f +28a%a’> H*0} +24a%a’* (a—a' ) H? 0y + 564>’ H* A
2a%a’> H*93 — 602" (a—a' ) HP 0} —52a3a’® HO9, By
100L30L/3H682 Ch
Daa H204+%ad (a—a')H? O3+ %L a%a’* H 02 Ay
—24a2a"*(a—a')H"dy— 16a3a’3[-[6
8a2a”” H193 —9a%a"* (a—a') H?03 +34a%a’”® HO0, B,
—9a3a’3H68§ Cy
— (505 +3030°+20")0* + 2 (a—d') H (05 +20%) 0,0 As
taa H?(BL02+41802) 9% + W/ (a—a') HP0p0% + 22 a2a’> HAD?
—In(a) (295 + 030 +20*) +1In(a)a® H* (220} +3319?) 5 (Ax)
—96In(a)a® H30y+486 In(a)a* H*

Table 11: Contributions for 9T +3i%2+3(iT3+iT*)+iT'3. Each tabulated term must

be multiplied by 3'2‘%

Table 11 gives the combination of coefficient functions contributing to
W, (n,7) which carry no factors of V'>. These terms cannot be evaluated
exactly, but there is no problem getting them in the limit aHr > 1 and

Hr < 1. Consider the example,

K> 2GM
327r3/d4 '[56a’a’® HY Ay (z; ') x — o
_ _7GM/€2H4a382/d4x,a’29(An ')
83 | Z+2||
7GM112H4 30?2 ;2 2 9(7‘—7") O(r'—r)
= 52 /d a / dr'r . + 7 }

x{ln[Hz(An —7“’2)} — 1} :

2774392
—>7GMKHaaO/d"2/ dr'r"? ln H2(A77 )]—1}>
i

2m2r

24

{1n [H2(An2—r’2)] . 1} . (85)

(86)
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TGMr?H?a® In*(a)
— — .

w2y

(88)

When all the ¥, source contributions are included, the leading late time
result is,

B 3GM~k*H*a*[In*(a) — In(Hr)]

m2ar

—2Dpr*U| — + O(a?) . (89)

Operator Factor

12aa’ H?03 —4ad (a—2a") H392 —12a%a’> H* 0y +8a2a’* (a—2a’) HP Ay

10020’ HA92 —4a?ad”* (a+d')dy—12a3a”* HO B

4a3a’> H89, C

—Yaad 0208 —ad' (Ya—2a ) H?02 —4a’a* H' 0o+ 6a%a*(a—a')H?|| A,
5a%a? H'03 —6a%a’” (a—a') H?9y—12a%a’* HO By

6a3a’> H%9, C,

(202 —20%)000°++0*(83a/ 0} —4ad®+54a'0*) H As

—%aa' H*0y0* +ad' (Ba—Ta' ) H30?

In(a)[(205—120%)00+aH (L0 +1320%) — 286> H?9y— 484> H?] || §*(Ax)

Table 12: Contributions for 3i76+iT'°+iT1%. Each tabulated term must be multiplied
2
by 3§ﬂ3 '

Equation (89) shows a source term for ¥; which grows like a®; we ignore
sources with fewer factors of a. Table 12 gives the combinations of coefficient
function which contribute to €; and involve no factors of V’2. There is an
additional source involving i7" x V'2. When the various source integrations
are evaluated, and the late time form taken, the result is no contributions of
order a?,

Dpr*Q — 0+ 0(ad?) .. (90)

Table 13 gives the Q; source contributions which contain no factors of V'2,
There is an additional contribution involving i72'V’?>. When the source
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integrations are performed the result is,
GM#r?H?a*[5—1In(16)]

Dar*x1 = — S0 +O(a®) . (91)
Operator Factor
—8aa' H*93 —8aa’” H?0y+8a’a’* H* Ay
—12a%a’* H*9y By
—4a3a’* HO Cy
tad H?03 —Yaa* H?0p+Sa?a”® H! Ay
%aza’2H480—4a2a’3H5 By
—2a3a/* HS Cy
— (1502 —10%)0* —9a’ H 9,0 — 5aa H*0* As
—In(a)($0; —2£06%)—36In(a)aHdy—121n(a)a® H? | §*(Az)

Table 13: Contributions for 3iT8+iT*2+iT'7. Each tabulated term must be multiplied
2

by 35773 :

Tables 14 and 15 give the source combinations for the gravitational slip which

contain no factor of V'? and one factor of it, respectively. When the i72! x V*
contribution is added, the leading late time result is,
Mr?H*a*[41n*(a)—3In(H

Dar? [\111 - cpl] _ GMw A aiin (@) =3In(H)} | ey (gg)

m2ar

3.3 Solving for the Potentials

Equations (89), (90), (91) and (92) determine 1-loop corrections to the var-
ious potentials. It would be straightforward to express the potentials as
integrals over the sources because we possess the exact Green’s functions for
Dy and Dp,

, 1 [o(An—Ar
Galz; o) = ‘E{W
1 6(An—Ar)

Ar ad Ar

+ H29(An—Ar)} , (93)
Gp(z;2') = (94)
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Operator Factor

8a2a* H O3 +16aa’” H? 0y +48a>a’® HO Ay

—4ada”* H02 —24aa” H%0, B,

4a*a’® HOO? Cy

6aa' H204+ 3L a’a’ H?03 +46a%a* H*02 — 16a°a* H?0y— 16a°a’ || A,
—24a2a”* H*} —6a’a’* HO O} + 524’ H%0, B,

—18aa* HO? Cy

(B8 — 107 2) 0 1 20 (07 +207) 00P +ad H2(3E R+ BP)? | A,
+%a2a’H38002 +56a2a’* H1H?

In(a)[(2802 — 197 0%)0P 1 B0 H (38 +20)0y+a® H2 (BB 3R+ 220%) || 6%(Aur)
+ 8206 H30+176a* H*]

Table 14: Contributions for 671 4+2iT2+2iT3. Each tabulated term must be multiplied
2
by 3;71’3 :

Operator Factor
—8aa' H*93 —8aa"* H*0y —8a*a’® H* Ay
—12a%a* H*9y— 4a3a’* H? By
—8a3a/> HS Cy
%aa’Hzﬁg—aa’(%—?’a—l—l—;a')HS@O—%azaﬂﬂ‘l Ay
%—8a2a’2H480+2a2a’2(a—2a’)H5 By
0 Cy
— (52— 19292 + (2a—9d')HDy0* — L aa’' H?0* As
—In(a)(2 02 —120%) -2 In(a)aHdy— 4 In(a)a®H? | §*(Az)

Table 15: Conztributions for 2iT7+3iT8 +4iT'2 +4T17. Each tabulated term must be
multiplied by =5—.
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However, this would be overkill because the various sources are only known
for late times. It is better instead to change the temporal variable from
n to the scale factor a, and then extract a factor of —a*H? from the two
differential operators,

& oV
A2 2 7 v
Dy = ~a'H|a Aoy g~ — ;] (95)
& 9 V2
. Arr2) 2 -
Dy = ~a'H?|a g thag- +2- — ;] (96)

The advantage of this form is that the temporal differential operators inside
the brackets neither increase nor decrease number of scale factors, while the
effect of the spatial derivatives is sub-dominant at late times. It is therefore
trivial to invert D4 and Dp to the leading late time form for the relevant
sources,

Dusle) = it OO UT) o

. fla) — _[ozln2(a)2—|;fln(Hr)] | (98)
DBg(a) — —CL4H2 % [7 In (a)_al_fln(HT)] 7 (99)
[271n*(a) 4 01n(a) In(Hr)] .

ar

— g(a) — (100)

Applying expression (100) to equations (89) and (90) gives,

2113 2
K20 (0, 1) — 2GM{_4GH In°(a) N 12GH?In(a) ln(Hr)} (o)
ar T m

K*Q(n,r) — 0. (102)

And the last two potentials come from using expression (98) to invert D, in
equations (91) and (92),

, 2GM ([~5+1n(16)]G

Khanr) — ——{ = (103)
2112 2

(U —0y) — 2GM{16GH In*(a)  12GH ln(Hr)} | (104
ar ™ s
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4 Epilogue

As long as the two points do not coincide, z* # 2'*, no regularization is
needed for the 1-loop graviton self-energy —i[**¥r7](x;2’). In section 2 of
this paper we exploited an old, unregulated computation of the graviton
contribution to the graviton self-energy [7] to infer the fully renormalized
result. Our answer is expressed as a sum (11) of 21 coefficient functions
T'(z;2'), multiplied by basis tensors listed in Table 1. Our results for the
renormalized coefficient functions are expressed in Tables 5, 6, 7, 8 and 9, as
derivative operators and functions of the two scale factors, acting on §*(x—z")
and seven nonlocal functions A; 5 3(x; 2'), By 2(x; 2') and C o(x; 2'), which are
defined in expressions (137-143).

Although the nonlocal contributions obey the Ward Identity away from
coincidence, there is a local obstacle proportional to In(a)d*(z — 2’). This
obstacle might originate from anomalous contributions (68) to the first two
diagrams of Figure 1. Such diagrams would contribute In(a)dé*(x — 2’) terms
which we would not be able to recognize from the unregulated, noncoincident
result. It is also possible that we have missed some exotic, local contribu-
tions to the Feynman rules associated with the functional measure factor or
time-ordering. More work is required to resolve this issue, and we believe a
good venue for this study is the much simpler contribution to —i[*%r7](z; 2")
arising from a loop of massless, minimally coupled scalars [22]. Fortunately,
the missing local terms do not make leading order contributions to the grav-
itational potentials.

In section 3 we applied our result to work out the gravitational response
to a static point mass (70) at 1-loop. Because the graviton self-energy was
computed in a fixed gauge, we had to solve the effective field equations using
the same gauge fixing functional [3,4]. This resulted in there being four scalar
potentials (71), instead of the usual two. Our final results for the leading
late time forms of the four potentials were given in equations (101), (102),
(103) and (104). Of particular interest are the Newtonian potential and the
gravitational slip,

I %{1 + SGﬂﬂz [— In*(a) + 31n(a) ln(Hr)] ¥ } . (105)
V-3 i—y{ojugim [41n2(a)—31n(H7')] +} (106)

It is interesting to compare the effect of graviton contributions to the
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Newtonian potential (105) with that from a loop of massless, minimally cou-
pled scalars [23],

Varvcs —

M H? 11
¢ {1 - Cfow [g In(a) +31n(aHr)] +} . (107)
In both cases the 1-loop correction reduces the gravitational potential, but
gravitons induce two additional factors of In(a). The same pattern is evident
for the gravitational slip, which gets two factors of In(a) from gravitons but
none at all from scalars [23]. Similarly, the 1-loop correction to the gravi-
ton mode function is enhanced by In*(a) [12], but is not affected at all by
scalars [24]. We therefore conclude that loops of inflationary gravitons con-
tribute more strongly than matter loops by two large logarithms. It is also
noteworthy that graviton loop corrections to gravity are much strong than
graviton loop corrections to fermions [25-27], to electrodynamics [28-32], and
to massless, minimally coupled scalars [33-35]. The key difference seems to
be that graviton loop corrections to gravity can involve two graviton propa-
gators whereas graviton corrections to other fields involve only one.

The appearance of very large logarithms in graviton loop corrections im-
plies the breakdown of perturbation at late times and large distances. It
has been difficult to devise a resummation procedure because these loga-
rithms derive from two sources: the “tail” part of the graviton propagator
and logarithmic ultraviolet divergences of the form (49) [36]. This led to
the speculation that resummation might be accomplished by combining a
variant of Starobinsky’s stochastic formalism [37,38] with a variant of the
renormalization group. This speculation was recently confirmed in the con-
text of nonlinear sigma models on a nondynamical de Sitter background [39],
which possess the same kinds of derivative interactions as quantum gravity
and exhibit the same mixture of “tail” and ultraviolet logarithms. The tech-
nique has been applied to explain graviton loop corrections to the exchange
potential of a massless, minimally coupled scalar [35], and strenuous efforts
are underway to devise similar explanations for the collection of large gravi-
ton logarithms that have been patiently accumulated by direct computation
over the course of two decades.

It is well known that classical modified gravity models also correct the
force of gravity [40], and can induce nonzero gravitational slip [41,42]. One
is therefore led to wonder if our results (105) and (106) could be reproduced
by some local, metric-based model. The answer seems to be no because the
only stable, local, invariant and metric-based modification of gravity is f(R)

ar
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gravity [43]. However, the modified force induced by these models on de
Sitter background depends only on the combination aHr [40], and cannot
reproduce the distinct In*(a) and In(a) In(Hr) terms of our result (105). It
should also be noted that neither the scalar nor the tensor amplitudes in
these models experience secular growth after horizon crossing [44], unlike the
In*(a) dependence we found previously [12].

We close by commenting on the gauge issue. On flat space background the
graviton self-energy is known to be highly gauge dependent [45]. Because the
H — 0 limit of our result agrees with the flat space limit, our de Sitter gravi-
ton self-energy must inherit this gauge dependence. The large logarithms we
have found all derive from terms which carry factors of H?, and their gauge
dependence is not known, although indications from gravity plus electromag-
netism suggest that there is some [32]. A procedure has been developed for
removing this gauge dependence [46], which has been successfully applied on
flat space background to graviton loop corrections to the massless, minimally
coupled scalar [46], and to electromagnetism [47]. The massless, minimally
coupled scalar exchange potential ha been identified as the simplest venue
for generalizing this technique to de Sitter background [35], and it is hoped
that a result will be available later this year. Based on flat space background
experience [46,47], we expect that the elimination of gauge dependence will
not eliminate large graviton logarithms but might change their numerical
coefficients.
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5 Appendix: Derivative Identities

This Appendix summarizes the various derivative identities we employ to con-
vert the unregulated results of Tables 3 and 4 to the renormalized Schwinger-
Keldysh results of Tables 5, 6, 7 and 8.
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5.1 Extracting Derivatives

We begin with the relations needed to write each term as derivatives acting
on the four fundamental expressions,

2
S AR A6 A 105

Terms with large inverse powers of Az? all reach ﬁ,
An? _ [ dy _8382+ o1 | An? _ [8382_ ot } 1 (109)

Axt? 1930 6452 581%(2): A11'4 AAxlo ; 3284 11536 Ax?

AA;O B [FOQ_ T v Ag?S T (A:L'4)’ (110)

2 2 2. 4
1) o omaw@) o

Terms with An?* divided fewer than six powers of Az? involve all four of the
fundamental expressions (108),

4 4 2 2
Moo B EEl).
A a3 r A 15) 1 1 1
A—Zi = %(A—%)‘ﬁ(fﬁw(@)’ (114)
BB o

The last relations we require involve fewer powers of both An and Axz?,

3 3 3 2
VB AL 2B )
A 0 1 1701 A 0o/ A 1,1
a5 aa)1la@m) A—%:§O<A—%>_§<@)’ (1)
A 0 1 A 0o (A A
2o . E-AE)-E) o
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5.2 Absorbing the Factor of In(H?Az?)

The next step is passing derivatives through the factor of In(H?Az?) that
multiplies all terms in Table 3. This is facilitated by the identities,

ao(ﬁ) xIn(H2AT?) = 0|
ag(ﬁ) xIn(H2Ax?) = 0F |
ag(ALﬂ) x In(H?Az?) = 08
ag(ALﬂ) xIn(H2Az?) = 0} |
ao(ﬁ—;) xIn(H2Az?) = 0|
ag(ﬁ—;) xIn(H2Az?) = 82
ag(ﬁ—;) xIn(H2Az?) = 8
ao(i—zz) xIn(H2Az?) = 0 |
ag(i—zz) xIn(H*Ax?) = 0F|

rin(H?Az?)7  2An
Az? * Axt’ (119)
rin(H?Az?) 2 12An?
Az? * Azt Axb 7 (120)
rin(H2Az?)7  36An  88AnR3
L Ax?2 1 AxS Azx® (121)
rin(H2Az?)7 36 528An?  800An*
A T AS T AR Aglo (122)
rAnIn(H?2Ax?)1  2An?
Ax? I Azt (123)
rAnin(H?2Ax?)1  6An 12473
I Ax? [P A A (124)
rAnin(H?Ax?)1 6 T2An*  88An?
I Ax? 1Azt AgS Ax8 {125)
rAn?In(H2Ax?) 2An?
Ax? } Azt (126)
rAn? In(H2Ax?) 10An?  12An?
Ax? }+ Azt Axb (127)

The “remainder” terms, which carry no logarithms, are combined with the
appropriate entries in Table 4, and then reduced to derivatives acting on the
fundamental expressions (108) using relations (109-118).

5.3 Eliminating Inverse Powers

Reducing Table 3 according to this scheme results in a series of derivatives
acting on the product of a single factor of In(H?Az?) times the last three

terms in expression

In( H2Axz? ,

AnIn(H?Ax? ,
n ixz ) = 2mx By

An? In(H?Az? )
" A(xz ) = 2mix ()

82
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(108). The inverse powers can be eliminated using,

=+ _1n2(H2A;52)—21n(H2A:172)] , (128)

 furan). 120
83 [N 2(1.2/772 A 2 2 A 2

- _|_§ Ax <1n (H*Az*)—2In(H"Ax )+2)}



J& In?*(H?Az?) .(130)

The terms of Table 4 produce a series of derivatives acting on the four fun-
damental expressions (108). We eliminate the last three terms using,

. >’ 2N 2
<5 = 2mix Ay =+ |In(H?Ax )} , (131)
% = Omix By = —% :ln(HzAx2)] , (132)
An? _ APNE 2N 2 1 2N 2
ST = 2mixCy =+ A (n(r2a0%)-1))] +5 () . (133)

The factor of ﬁ is divergent. When combined with the appropriate coun-

terterm it gives,

]' 84 2 2 2 2 2 2-¢4 /
— — —ﬁ[ln (12A2%) —2In(p2Ax )} ~In(a) x2n%i0 (z—a') , (134)
2
= 2mix [—%Ag] —1In(a) x 27%i0* (x —2) . (135)

Note that any derivatives that act on expression (135) occur to the right of
the factor of In(a), for example,

RS o

2 (9 40 2:9254(, 1
8[AI4]—>2M><[ 4A3] In(a) x27%i0*6"(x —2') . (136)

5.4 Schwinger-Keldysh Reductions

Each of the in-out logarithms in (128-134) gives rise in the Schwinger-Keldysh
formalism to real and causal expressions for A; o3, B2 and C o,

A — +%2{9(A77—Ar) [1n[H2(An2—Ar2)]—1]} : (137)
By — —%{G(AU—AT) ln[Hz(An2—Ar2)]} : (138)

2

Cy — +%{9(An—m)(m2—mﬁ) In[H2( A= Ar?)] 1] }

+50(An—Ar) W[H* (A~ &), (139)
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Ay — +%{9(An—m)} , (140)

By — —%{H(AH—AT)} : (141)

Cy — +8—S{H(An—Ar)(Ar2—An2)} + 1Q(An—Ar) (142)
4 2 ’

Ay — +%{9(An—m) [ln[;ﬁ(An?—Ar?)]—l]} . (143)

(144)

Here Ar = ||& — 2|

References

[1] A. A. Starobinsky, JETP Lett. 30, 682-685 (1979)
[2] A. A. Starobinsky, Sov. Astron. Lett. 11, 133 (1985)

[3] N. C. Tsamis and R. P. Woodard, Commun. Math. Phys. 162, 217-248
(1994) doi:10.1007/BF02102015

[4] R. P. Woodard, [arXiv:gr-qc/0408002 [gr-qc]].

[5] J. Hiopoulos, T. N. Tomaras, N. C. Tsamis and R. P. Woodard,
Nucl. Phys. B 534, 419-446 (1998) doi:10.1016/S0550-3213(98)00528-
8 [arXiv:gr-qc/9801028 [gr-qc]].

[6] L. R. Abramo and R. P. Woodard, Phys. Rev. D 65, 063515 (2002)
d0i:10.1103/PhysRevD.65.063515 [arXiv:astro-ph/0109272 [astro-ph]].

[7] N. C. Tsamis and R. P. Woodard, Phys. Rev. D 54, 2621-2639 (1996)
doi:10.1103/PhysRevD.54.2621 [arXiv:hep-ph/9602317 [hep-ph]].

[8] L. Tan, N. C. Tsamis and R. P. Woodard, Class. Quant. Grav. 38, no.14,
145024 (2021) doi:10.1088/1361-6382/ac0233 [arXiv:2103.08547 [gr-qc]].

9] N. C. Tsamis and R. P. Woodard, Annals Phys. 253, 1-54 (1997)
d0i:10.1006 /aphy.1997.5613 [arXiv:hep-ph/9602316 [hep-ph]].

35



[10] V. K. Onemli and R. P. Woodard, Class. Quant. Grav. 19, 4607 (2002)
doi:10.1088,/0264-9381/19/17/311 [arXiv:gr-qc/0204065 [gr-qc]].

[11] V. K. Onemli and R. P. Woodard, Phys. Rev. D 70, 107301 (2004)
d0i:10.1103/PhysRevD.70.107301 [arXiv:gr-qc/0406098 [gr-qcl].

[12] L. Tan, N. C. Tsamis and R. P. Woodard, Phil. Trans. R. Soc. A380,
0187 (2021) doi.org/10.1098 /rsta.2021.0187 [arXiv:2107.13905 [gr-qc]].

[13] J.S. Schwinger, J. Math. Phys. 2, 407-432 (1961) doi:10.1063/1.1703727

[14] K. T. Mahanthappa, Phys. Rev. 126, 329-340 (1962)
d0i:10.1103 /PhysRev.126.329

[15] P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. 4, 1-11 (1963)
doi:10.1063/1.1703883

[16] P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. 4, 12-16 (1963)
doi:10.1063/1.1703879

[17] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515-1527 (1964)

[18] K. ¢. Chou, Z. b. Su, B. 1. Hao and L. Yu, Phys. Rept. 118, 1-131 (1985)
d0i:10.1016/0370-1573(85)90136-X

[19] R.  D. Jordan, Phys. Rev. D 33, 444-454  (1986)
d0i:10.1103/PhysRevD.33.444

[20] E. Calzetta and B. L. Hu, Phys. Rev. D 35, 495 (1987)
d0i:10.1103/PhysRevD.35.495

[21] L. H. Ford and R. P. Woodard, Class. Quant. Grav. 22, 1637-1647 (2005)
doi:10.1088/0264-9381/22/9/011 [arXiv:gr-qc/0411003 [gr-qc]].

[22] S. Park and R. P. Woodard, Phys. Rev. D 83, 084049 (2011)
doi:10.1103/PhysRevD.83.084049 [arXiv:1101.5804 [gr-qc]].

23] S. Park, T. Prokopec and R. P. Woodard, JHEP 01, 074 (2016)
doi:10.1007/JHEPO1(2016)074 [arXiv:1510.03352 [gr-qc]].

[24] S. Park and R. P. Woodard, Phys. Rev. D 84, 124058 (2011)
doi:10.1103/PhysRevD.84.124058 [arXiv:1109.4187 [gr-qc]].

36



[25] S. P. Miao and R. P. Woodard, Class. Quant. Grav. 23, 1721-1762 (2006)
doi:10.1088/0264-9381/23/5/016 [arXiv:gr-qc/0511140 [gr-qc]].

[26] S. P. Miao and R. P. Woodard, Phys. Rev. D 74, 024021 (2006)
doi:10.1103/PhysRevD.74.024021 [arXiv:gr-qc/0603135 [gr-qcl].

27] S.  P.  Miao, Phys. Rev. D 86, 104051  (2012)
d0i:10.1103/PhysRevD.86.104051 [arXiv:1207.5241 [gr-qc]].

(28] K. E. Leonard and R. P. Woodard, Class. Quant. Grav. 31, 015010
(2014) doi:10.1088/0264-9381/31/1/015010 [arXiv:1304.7265 [gr-qc]].

[29] D. Glavan, S. P. Miao, T. Prokopec and R. P. Woodard, Class.
Quant. Grav. 31, 175002 (2014) doi:10.1088/0264-9381/31/17/175002
larXiv:1308.3453 [gr-qc]].

[30] C. L. Wang and R. P. Woodard, Phys. Rev. D 91, no.12, 124054 (2015)
d0i:10.1103/PhysRevD.91.124054 [arXiv:1408.1448 [gr-qcl].

[31] D. Glavan, S. P. Miao, T. Prokopec and R. P. Woodard, Class. Quant.
Grav. 32, 1n0.19, 195014 (2015) doi:10.1088/0264-9381/32/19/195014
larXiv:1504.00894 [gr-qc]].

[32] D. Glavan, S. P. Miao, T. Prokopec and R. P. Woodard, Class.
Quant. Grav. 34, no.8, 085002 (2017) doi:10.1088/1361-6382/aa61da
[arXiv:1609.00386 [gr-qc]].

[33] E. O. Kahya and R. P. Woodard, Phys. Rev. D 76, 124005 (2007)
d0i:10.1103/PhysRevD.76.124005 [arXiv:0709.0536 [gr-qc]].

[34] E. O. Kahya and R. P. Woodard, Phys. Rev. D 77, 084012 (2008)
d0i:10.1103/PhysRevD.77.084012 [arXiv:0710.5282 [gr-qc]].

[35] D. Glavan, S. P. Miao, T. Prokopec and R. P. Woodard, JHEP 03, 088
(2022) doi:10.1007/JHEP03(2022)088 [arXiv:2112.00959 [gr-qc]].

[36] S. P. Miao, T. Prokopec and R. P. Woodard, Phys. Rev. D 98, no.2,
025022 (2018) doi:10.1103/PhysRevD.98.025022 [arXiv:1806.00742 [gr-

qcl.

[37] A. A. Starobinsky, Lect. Notes Phys. 246, 107-126 (1986) doi:10.1007/3-
540-16452-9.6

37



[38] A. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357-6368 (1994)
d0i:10.1103/PhysRevD.50.6357 [arXiv:astro-ph/9407016 [astro-ph]].

[39] S. P. Miao, N. C. Tsamis and R. P. Woodard, JHEP 03, 069 (2022)
doi:10.1007/JHEP03(2022)069 [arXiv:2110.08715 [gr-qc]].

[40] M. E. Soussa and R. P. Woodard, Gen. Rel. Grav. 36, 855-
862 (2004) doi:10.1023/B:GERG.0000017037.92729.69 [arXiv:astro-
ph/0308114 [astro-ph]].

[41] S. Nojiri and S. D. Odintsov, Phys. Rept. 505, 59-144 (2011)
d0i:10.1016/j.physrep.2011.04.001 [arXiv:1011.0544 [gr-qc]].

[42] S. Capozziello and M. De Laurentis, Phys. Rept. 509, 167-321 (2011)
d0i:10.1016/j.physrep.2011.09.003 [arXiv:1108.6266 [gr-qc]].

[43] R. P. Woodard, Lect. Notes Phys. 720, 403-433 (2007) doi:10.1007/978-
3-540-71013-4_14 [arXiv:astro-ph/0601672 [astro-ph]].

[44] D. J. Brooker, S. D. Odintsov and R. P. Woodard, Nucl. Phys. B 911,
318-337 (2016) doi:10.1016/j.nuclphysb.2016.08.010 [arXiv:1606.05879

[gr-qc]].
[45] D. M. Capper, Nuovo Cim. A 25, 29 (1975) doi:10.1007/BF02735608

[46] S. P. Miao, T. Prokopec and R. P. Woodard, Phys. Rev. D 96, no.10,
104029 (2017) doi:10.1103/PhysRevD.96.104029 [arXiv:1708.06239 [gr-

qc]-

[47] S. Katuwal and R. P. Woodard, JHEP 21, 029 (2020)
doi:10.1007/JHEP10(2021)029 [arXiv:2107.13341 [gr-qc]].

38



