
U-ASK: A Unified Architecture for kNN Spatial-KeywordQueries
Supporting Negative Keyword Predicates

Yongyi Liu
University of California, Riverside

Riverside, California
yliu786@ucr.edu

Amr Magdy∗
University of California, Riverside

Riverside, California
amr@cs.ucr.edu

ABSTRACT
Spatial keyword queries have been popular in the research commu-
nity for over a decade due to the explosive growth in user-generated
data and its prime applications in different domains. kNN queries
make a major category of spatial keyword queries that is heavily
studied. However, the expressiveness of existing kNN queries is
limited in supporting negative keyword predicates, e.g., find tweets
with keywords “Chipotle” but NOT “Chipotle sauce”, which have
prime applications. In addition, existing architectures suffer from
a lack of generality for different types of kNN queries. This pa-
per proposes U-ASK; a Unified Architecture for Spatial-Keyword
query supporting negative keyword predicates. U-ASK includes
an indexing framework named TEQ (Textual-Enhanced Quadtree)
and a query processor POWER (Parallel bOttom-up search With
incrEmental pRuning) that handle various forms of kNN spatial
keyword queries with negative keyword predicates. The experi-
mental evaluation on real tweet datasets demonstrates up to 30×
faster runtime compared to the state-of-the-art algorithms.

CCS CONCEPTS
• Information systems→ Top-k retrieval in databases.

KEYWORDS
Spatial-keyword Query Processing, Spatial-Textual Indexing

ACM Reference Format:
Yongyi Liu and Amr Magdy. 2022. U-ASK: A Unified Architecture for kNN
Spatial-Keyword Queries Supporting Negative Keyword Predicates. In The
30th International Conference on Advances in Geographic Information Systems
(SIGSPATIAL ’22), November 1–4, 2022, Seattle, WA, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3557915.3560975

1 INTRODUCTION
The rich applications of spatio-textual objects have motivated
immense research on spatial-keyword search to build efficient

∗This work is partially supported by the National Science Foundation, USA, under
grants IIS-1849971, SES-1831615, and CNS-2031418.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9529-8/22/11.
https://doi.org/10.1145/3557915.3560975

indexing frameworks and low-latency query processing algo-
rithms [3, 4, 6, 14, 16, 17, 20, 24–26, 28, 32, 35, 36, 39–43]. Spatio-
textual objects, i.e., objects with both spatial and textual descrip-
tions, are being generated in numerous numbers due to the ad-
vancement of geo-tagging techniques and social networking ser-
vices. Examples of such objects include Points of Interest (POIs),
e.g., Steakhouse in Manhattan, NYC, social media posts, e.g., geo-
tagged tweets from Twitter. Such objects are being utilized in ap-
plications as disparate as POIs search [7, 27, 45], analyzing users’
preference [44, 47], identifying trending topics [1, 30, 31, 34], crime
prevention [18], and foodborne illness analysis [33].

A major category of spatial-keyword queries includes kNN
queries that are two types [8]: (1) Top-k kNN queries that rank
objects based on both spatial and textual relevance to query pa-
rameters, and (2) Boolean kNN queries that rank objects based on
only spatial distance. In both cases, kNN queries involve multiple
keywords that are combined through two famous conjunctions:
(a) AND, e.g., find tweets near Riverside, CA that mention “fire” AND
“evacuation”, and (b) OR, e.g., find tweets near Riverside, CA that
mention “party” OR “painting”. However, such conjunctions are not
enough to handle all the potential applications of spatial-keyword
queries. For example, in our collaboration with food scientists on
analyzing social media data to early signal foodborne illness out-
breaks using Chipotle Mexican Grill restaurants as a use case [2], we
obviously suffered from noisy results that deteriorated the whole
analysis. In specific, posting spatial-keyword queries with keywords
such as “Chipotle” and sick to filter out relevant tweets generates
immense noise in the results that mention phrases such as “chipotle
sauce”, “that’s sick”, “sick of this show”, etc. Such noise has repre-
sented themajority of the results, so we ended up putting significant
human efforts in filtering out relevant data to provide a high-quality
analysis.

To enrich the filtering capabilities of spatial keyword search,
supporting negative keyword predicates is essential to provide
customized search with high flexibility. For the above example, we
need to post queries that find tweets with keywords “Chipotle” but
NOT “chipotle sauce”, and queries that find tweets with keywords
“sick” but NOT “that’s sick” or “sick of”, for instance. Such queries
cannot be supported using existing techniques. To the best of our
knowledge, negative keyword predicates are only supported in [5].
However, the work in [5] has two limitations. First, the keywords
in negative keyword predicates are considered a bag of words,
meaning it cannot deal with phrases with a sequence of words
such as “chipotle sauce” or “that’s sick”. Instead, “chipotle” “sauce”
are considered as two separate words, which is not semantically
correct in our motivating application and produces misleading
results. Second, [5] supports only Boolean kNN spatial-keyword

https://doi.org/10.1145/3557915.3560975
https://doi.org/10.1145/3557915.3560975

queries, so their proposed model cannot be generalized to support
top-k kNN spatial-keyword queries, unlike our work that supports
the two types of kNN queries.

This paper proposes U-ASK; a unified architecture to support the
two types of kNN spatial-keyword queries with different types of
conjunctions:AND,OR, andNOT conjunctions, all in a single frame-
work. Therefore, U-ASK allows the system administrator to use a
single module to support the two types of kNN spatial-keyword
queries with flexible conjunctions. This is highly favorable from
a system builder perspective to maintain a single system asset
that supports a variety of queries efficiently. U-ASK consists of
an indexing framework TEQ (Textual-Enhanced Quadtree) and a
query processing algorithm POWER (Parallel bOttom-up search
With incrEmental pRuning) with its variants to serve various kNN
spatial-keyword queries with flexible constraints. TEQ provides an
efficient hybrid index for spatial-textual objects where the quadtree
structure is used to index objects spatially and the inverted textual
index is used to index the keywords. With TEQ, the query processor
can efficiently and precisely locate the objects with great similarity
to the query by first identifying the cell with great spatial prox-
imity and then accessing the textual inverted lists corresponding
to the query keywords. POWER and its variants utilize the TEQ
index to perform parallel spatial-keyword queries with low latency.
Furthermore, to the best of our knowledge, POWER and its vari-
ants are the first kNN spatial-keyword query processing techniques
that harness the full potential of multi-core parallelization to speed
up the search. The reason is that existing major query process-
ing algorithms have a strong dependency among different steps,
which makes them hard to parallelize. The experimental results
show that our algorithm provides up to 30× faster compared to the
state-of-the-art techniques. Our contributions are summarized as
follows:

• We propose two novel kNN spatial-keyword query prob-
lems: Top-k kNN Query with Negative keyword predicates
(TKQN), and Boolean kNN Query with negative keyword
predicates (BKQN) .

• We introduce a Unified Architecture for Spatial-Keyword
query with negative keyword predicates (U-ASK) that in-
cludes indexing components TEQ, and query processing
algorithms POWER with its variants to handle TKQN and
BKQN queries.

• We conduct extensive experimental evaluation on real
datasets that shows the superiority of our techniques com-
pared to the state-of-the-art literature.

The rest of this paper is organized as follows: Section 2 presents
the related work. Section 3 formally defines the problem. Sec-
tions 4 details the TEQ indexing framework. Section 5 demonstrates
the query processing algorithms for TKQN and BKQN. Section 6
presents the experimental evaluation and Section 7 concludes the
paper.

2 RELATEDWORK
Spatial-keyword queries are heavily studied in the literature in two
categories: fundamental spatial keyword queries [12–16, 23, 24, 28,
29, 36, 38, 41–43] and variations of fundamental spatial keyword
queries [3, 4, 6, 9, 11, 17, 20, 25, 26, 32, 35, 39, 40, 46]. Fundamental

spatial-keyword queries include kNN queries [14, 16, 24, 28, 36, 41–
43], which return the k objects that are the most relevant to the
query, and range queries [12, 13, 15, 23, 29, 38], which return all
the objects satisfying the query constraints within a specific spatial
range. Variations of fundamental queries include moving spatial
keyword queries [25, 39, 40], group spatial-keyword queries [3, 4,
6, 17, 20, 32], and spatial skyline queries [26, 35]. Our focus in this
paper is kNN queries. Existing kNN spatial-keyword queries can
be categorized into top-k kNN queries and Boolean kNN queries
depending on how the spatial and textual attributes are involved in
the top-k ranking.

Boolean kNN Queries [14, 16, 24, 24, 28, 36, 41–43] rank the
spatio-textual objects based on the spatial distance between the
objects and the query and the textual predicate serves as a Boolean
filter. The textual predicates could be based onAND conjunction [16,
24, 36, 41, 43] where each resulting object must include all the query
keywords, or OR conjunction [43] where each resulting object must
include at least one query keyword. Felipe et al. proposed IR2-
Tree [16] which incorporates textual signature, i.e., keyword bitmap,
into R-Tree [22] nodes for efficient filtering. Tao et al. introduced
Spatial Inverted Index (SI-index) [36] that builds an R-Tree for
each textual inverted list with a low storage cost. IL-QuadTree
proposed in [41] builds a linear quadtree [21] for each keyword and
searches multiple trees during the query. Hong et al. [24] proposed
an optimization based on IL-QuadTree that requires traversing
only one quadtree, regardless of the number of query keywords,
by assigning a priority score to each keyword and visiting the tree
corresponding to the query keyword that has the highest priority.
Cary et al. [5] proposed Spatial Keyword Index (SKI) that could
support AND, OR, and NOT conjunctions at the same time by the
efficient usage of bitmap. However, it cannot handle the negative
keyword phrases as detailed before.

Top-k kNN Queries [14, 24, 28, 41, 42] rank the spatio-textual
objects based on both spatial and textual relevance to the query
parameters. Compared to Boolean kNN query, top-k kNN query is
more flexible because the importance of spatial proximity and tex-
tual proximity could be adjusted by a weighting factor in different
applications. Cong et al. [14] proposed IR-Tree, which equips each
node in the tree with aggregate textual information and then ap-
plies a top-down best-first search to fetch the top-k results. Zhang
et al. proposed RCA [42] that models the spatio-keyword query as
a top-k aggregation query and applies inverted index and Z-order
mapping to index textual and spatial dimensions, respectively.

Distinguished from all existing work, our work efficiently pro-
cess both Boolean kNN query and top-k kNN query. Moreover,
we incorporate negative keyword predicates into the above two
types of queries to provide flexible queries and enrich their filtering
capabilities to serve a wide variety of applications.

3 PROBLEM DEFINITION
In this section, we formally define Top-k kNN Query with Negative
keyword predicate (TKQN) and Boolean kNN Query with Negative
keyword predicate (BKQN).

A spatio-textual object 𝑜 is a triple 𝑜 = (𝑜.𝑖𝑑, 𝑜 .𝑙𝑜𝑐, 𝑜 .𝑡𝑥𝑡) where
𝑜.𝑖𝑑 is the unique identifier of the object, 𝑜.𝑙𝑜𝑐 is the location of 𝑜 ,

i,e, latitude and longitude, and 𝑜.𝑡𝑥𝑡 is the textual description of
𝑜 that consists of a sequence of strings. We refer the weight of a
keyword𝑤 ∈ 𝑜.𝑡𝑥𝑡 , 𝑠 (𝑜.𝑤), as the relative keyword frequency of𝑤 ,
which is computed as the count of𝑤 in 𝑜.𝑡𝑥𝑡 divided by the size of
𝑜.𝑡𝑥𝑡 . 𝑠 (𝑜.𝑤) can also be computed using other measures such as
TF-IDF, which does not affect our query processing as long as the
weight of a keyword in an object does not change with changing
the query parameters and remains static in the database. We will
refer to spatio-textual object as object when there is no ambiguity.

Top-k kNN with Negative keyword predicates (TKQN) query
𝑞𝑡 is a quintuple:

𝑞𝑡 = (𝑞𝑡 .𝑙𝑜𝑐, 𝑞𝑡 .𝑝𝑜𝑠, 𝑞𝑡 .𝑛𝑒𝑔, 𝑞𝑡 .𝜆, 𝑞𝑡 .𝑘)

Where 𝑞𝑡 .𝑙𝑜𝑐 is the location, i.e., latitude and longitude, of the
query, 𝑞𝑡 .𝑝𝑜𝑠 is a set of positive keywords, 𝑞𝑡 .𝑛𝑒𝑔 is a set of negative
phrases, each is a sequence of one or more keywords, 𝑞𝑡 .𝜆 is a
weighting factor, 𝜆 ∈ [0, 1], that adjusts the importance of spatial
proximity and textual proximity of the query results, and 𝑞𝑡 .𝑘 is
an integer. Additionally, we use 𝑞𝑡 .𝑛𝑒𝑔𝐿𝑒𝑛 to denote the average
length of the negative phrases in 𝑞𝑡 .𝑛𝑒𝑔.

Query 𝑞𝑡 returns k objects 𝑜𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , so that:
(1) 𝑜𝑖 .𝑡𝑥𝑡

⋂
𝑞𝑡 .𝑝𝑜𝑠 ≠ ∅, i.e., 𝑜𝑖 includes at least one query posi-

tive keywords, (2) 𝑞𝑡 .𝑛𝑒𝑔𝑃ℎ ⊈ 𝑜𝑖 .𝑡𝑥𝑡 ∀𝑞𝑡 .𝑛𝑒𝑔𝑃ℎ ∈ 𝑞𝑡 .𝑛𝑒𝑔, i.e., 𝑜𝑖
does not include any of the negative phrases, and (3) 𝑜𝑖 is top-k
ranked according to 𝑠𝑐𝑜𝑟𝑒 (𝑜𝑖 , 𝑞𝑡) that combines the spatial and
textual relevance of 𝑜𝑖 to 𝑞𝑡 . Formally,

𝑠𝑐𝑜𝑟𝑒 (𝑜𝑖 , 𝑞𝑡) = 𝑞𝑡 .𝜆 ∗ 𝑠𝑐𝑜𝑟𝑒𝑠 (𝑜𝑖 , 𝑞𝑡) + (1−𝑞𝑡 .𝜆) ∗ 𝑠𝑐𝑜𝑟𝑒𝑡 (𝑜𝑖 , 𝑞𝑡) (1)

𝑠𝑐𝑜𝑟𝑒𝑠 (𝑜𝑖 , 𝑞𝑡) measures the spatial proximity between 𝑜𝑖 and 𝑞𝑡 ,
which is computed as one minus the Euclidean distance between
𝑜𝑖 and 𝑞𝑡 divided by the maximum pair-wise distance in the space,
i.e., 𝑑𝑖𝑠𝑡𝑀𝑎𝑥 . Formally,

𝑠𝑐𝑜𝑟𝑒𝑠 (𝑜𝑖 , 𝑞𝑡) = 1 − 𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑞𝑡)
𝑑𝑖𝑠𝑡𝑀𝑎𝑥

𝑠𝑐𝑜𝑟𝑒𝑡 is the textual proximity between 𝑜𝑖 and 𝑞𝑡 and it is
computed as the sum of the weights of all keywords 𝑤 ∈
{𝑜𝑖 .𝑡𝑥𝑡

⋂
𝑞𝑡 .𝑝𝑜𝑠}. Formally,

𝑠𝑐𝑜𝑟𝑒𝑡 (𝑜𝑖 , 𝑞𝑡) =
∑

𝑤∈𝑜𝑖 .𝑡𝑥𝑡
⋂
𝑞𝑡 .𝑝𝑜𝑠 𝑠 (𝑜𝑖 .𝑤)

Example. Table 1 shows examples of spatio-textual objects. Sup-
pose 𝑞𝑡 is a TKQN instance with 𝑞𝑡 .𝑙𝑜𝑐 = (36.95,−120.89), 𝑞𝑡 .𝑝𝑜𝑠 =
{𝐶ℎ𝑖𝑝𝑜𝑡𝑙𝑒}, 𝑞𝑡 .𝑛𝑒𝑔 = {[𝐶ℎ𝑖𝑝𝑜𝑡𝑙𝑒 𝑠𝑎𝑢𝑐𝑒], [𝐶ℎ𝑖𝑝𝑜𝑡𝑙𝑒 𝑔𝑟𝑖𝑙𝑙]}, 𝑞𝑡 .𝜆 =

0.5, 𝑞𝑡 .𝑘 = 1. 𝑜2 and 𝑜4 cannot be valid candidates for 𝑞𝑡 because
they include either Chipotle sauce or Chipotle grill. 𝑜3 and 𝑜5 cannot
be a valid candidate as well because they do not include Chipotle.
The remaining objects are 𝑜1 and 𝑜6 and they both have the same
textual proximity 1

6 . 𝑜6 will be returned as the result because 𝑜6 is
closer to 𝑞𝑡 , and thus has a higher spatial proximity.

Boolean kNN Query with Negative keyword predicates
(BKQN) query 𝑞𝑏 is a quintuple:

𝑞𝑏 = (𝑞𝑏 .𝑙𝑜𝑐, 𝑞𝑏 .𝑎𝑛𝑑, 𝑞𝑏 .𝑜𝑟, 𝑞𝑏 .𝑛𝑒𝑔, 𝑞𝑏 .𝑘)

Table 1: Spatio-Textual Objects

id loc txt

o1 (34.05, -118.24) I go to Chipotle very often
o2 (31.95, -120.89) Chipotle sauce is on discount
o3 (40.71, -74.01) I enjoyed BBQ grill
o4 (37.77, -122.41) Chipotle grill has really good taste
o5 (33.44, -112.07) had a good time in BBQ grill
o6 (38.05, -120.16) the Chipotle incident had huge impact

Where 𝑞𝑏 .𝑙𝑜𝑐 is the query location, i.e., latitude and longitude
of the query, 𝑞𝑏 .𝑘 is an integer, 𝑞𝑏 .𝑎𝑛𝑑 and 𝑞𝑏 .𝑜𝑟 are two sets of
keywords, and 𝑞𝑏 .𝑛𝑒𝑔 is a set of phrases.

Query 𝑞𝑏 returns k objects 𝑜𝑖 so that: (1) 𝑜𝑖 is among spa-
tial k nearest neighbors of 𝑞𝑏 .𝑙𝑜𝑐 , (2) 𝑞𝑏 .𝑎𝑛𝑑 ⊂ 𝑜𝑖 .𝑡𝑥𝑡 , i.e., 𝑜𝑖 in-
cludes all keywords 𝑤𝑎 ∈ 𝑞𝑏 .𝑎𝑛𝑑 , (3) 𝑜𝑖 .𝑡𝑥𝑡

⋂
𝑞𝑏 .𝑜𝑟 ≠ ∅, i.e., 𝑜𝑖

includes at least one keyword 𝑤𝑜 ∈ 𝑞𝑏 .𝑜𝑟 , and (4) 𝑞𝑏 .𝑛𝑒𝑔𝑃ℎ ⊈
𝑜𝑖 .𝑡𝑥𝑡 ∀𝑞𝑏 .𝑛𝑒𝑔𝑃ℎ ∈ 𝑞𝑏 .𝑛𝑒𝑔, i.e., 𝑜𝑖 does not include any of the nega-
tive phrases.

Example. Suppose 𝑞𝑏 is a BKQN instance with 𝑞𝑏 .𝑙𝑜𝑐 =

(34.25,−111.89), 𝑞𝑏 .𝑎𝑛𝑑 = {𝑔𝑟𝑖𝑙𝑙} , 𝑞𝑏 .𝑜𝑟 = {𝐶ℎ𝑖𝑝𝑜𝑡𝑙𝑒, 𝐵𝐵𝑄},
𝑞𝑏 .𝑛𝑒𝑔 = {𝑠𝑎𝑢𝑐𝑒}, 𝑞𝑏 .𝑘 = 1. Objects 𝑜3, 𝑜4, 𝑜5 in Table 1 satisfy
the textual predicates specified by 𝑞𝑏 . Since 𝑜5 is the closest to 𝑞𝑏 ,
the query returns 𝑜5 as the result.

4 TEQ INDEXING
This section introduces the Textual-Enhanced Quadtree (TEQ) in-
dex. Unlike all existing indexes, TEQ is distinguished in several
aspects. First, TEQ is designed to effectively support negative key-
word predicates. Such predicates are challenging as it introduces a
counter-intuitive logic to the search process. In other words, the
algorithm does not search for the presence of certain keywords,
like in regular search, but the absence of these keywords, which
is counter-intuitive. Second, TEQ is a parallelization-friendly in-
dex that enables parallel query processors to effectively consume
its content. To this end, it uses a quadtree structure that ensures
dynamic adaptation for cell content based on the data distribu-
tion to improve work-load balance in the parallel setting. Also,
non-overlapping index cells ensure independence on processing
cells in parallel. Third, TEQ efficiently supports both types of kNN
spatial-keyword queries (top-k and Boolean queries) by storing
both Boolean inclusion and weights of keywords in data objects.
The rest of this section details the index structure and construction.

4.1 TEQ Index Structure
TEQ is a memory-resident hybrid index that combines the strength
of quadtree for spatial partitioning and the strength of inverted
index for efficient keyword organization. In specific, each quadtree
leaf cell𝑛 of TEQ includes four indexing components:𝑛.𝑙𝑡𝑝 ,𝑛.𝑛𝑒𝑖𝑔ℎ,
𝑛.𝑖𝑡𝑖 , and 𝑛.𝑜𝑏𝑖 that serve different purposes as follows:

(1) 𝑛.𝑙𝑡𝑝 is the file name that acts as a location table pointer,
which points to a hash file on disk that stores the mapping between
𝑜.𝑖𝑑 and 𝑜.𝑙𝑜𝑐 for each object 𝑜 in 𝑛. Figure 1 shows that the location
of 𝑜1 is (−76.1, 150.2). The location table is used to achieve 𝑂 (1)
access for the locations of objects in leaf cell 𝑛.

Figure 1: TEQ Leaf Cell Structure

(2) 𝑛.𝑛𝑒𝑖𝑔ℎ is the list of spatially-neighboring cells of 𝑛. This list
enables incrementally exploring a wider spatial range during query
processing.

(3) 𝑛.𝑖𝑡𝑖 is the inverted textual index that is realized as a
hashtable whose key is a keyword𝑤 and the value is a quadruple
< 𝑤.𝑠𝑖𝑧𝑒,𝑤 .𝑚𝑎𝑥,𝑤 .𝑙𝑖𝑠𝑡𝑃𝑡𝑟,𝑤 .𝑠𝑒𝑡𝑃𝑡𝑟 > interpreted as follows:

• 𝑤.𝑠𝑖𝑧𝑒 is the number of objects that include𝑤 in the leaf cell
𝑛. For example, the word pizza appears 150 times (Figure 1).

• 𝑤.𝑚𝑎𝑥 is the maximum possible weight of the keyword 𝑤
among all the objects in cell 𝑛.

• 𝑤.𝑙𝑖𝑠𝑡𝑃𝑡𝑟 is the file name that acts as a pointer to the file
that stores the inverted list of the keyword 𝑤 . As shown
in Figure 1, the inverted list stores < 𝑜.𝑖𝑑, 𝑠 (𝑜.𝑤) > for each
object 𝑜 in cell 𝑛 that includes𝑤 , where 𝑠 (𝑜.𝑤) is the weight
of𝑤 as defined in Section 3. The list is sorted in descending
order according to the weight. An inverted list is considered
frequent if its file size is greater than the disk page size, e.g.,
1MB, otherwise it is considered infrequent. Each frequent
inverted list is stored in a separate file. Infrequent inverted
lists are combined to make up files of the page size. The
intuition is to minimize the number of I/Os to fetch the
inverted lists corresponding to certain query keywords.

• 𝑤.𝑠𝑒𝑡𝑃𝑡𝑟 is the file name that points to the file that stores
the set of object ids in cell 𝑛 that includes 𝑤 and the set is
named inverted set. Different from inverted list, inverted set
stores only the ids but not the weights, which serves a faster
search under Boolean filtering conditions. Similar to lists,
each inverted set is also categorized into either frequent or
infrequent depending on the file size compared to the disk
page size. Frequent sets are stored in separate files while
infrequent sets are combined.

(4)𝑛.𝑜𝑡𝑖 is the object text index, realized as a hashtable that stores
object id 𝑜.𝑖𝑑 as a key and a pointer to the file storing the object full
text 𝑜.𝑡𝑥𝑡 . Each file that stores 𝑜.𝑡𝑥𝑡 is set to the page size and stores
multiple textual descriptions corresponding to multiple objects. For

example, in Figure 1, the textual description for 𝑜1 and 𝑜2 are stored
in Textual1.bin.

4.2 TEQ Index Construction
Building TEQ indexing goes through two passes over the dataset.
Constructing the index in two passes improves the indexing scal-
ability, so even commodity machines with limited memory size
could efficiently index large-sized datasets. The first pass builds the
spatial indexing component. So, it inserts all the objects into the
quadtree to shape its structure, builds the neighboring list 𝑛.𝑛𝑒𝑖𝑔ℎ
for each leaf cell 𝑛, and builds the location table pointer 𝑛.𝑙𝑡𝑝 . The
second pass builds the textual indexing component. So, it builds
the inverted textual index 𝑛.𝑖𝑡𝑖 and the object text index 𝑛.𝑜𝑡𝑖 . The
rest of this section details each pass.

4.2.1 First Pass. Initially, all the objects are loaded from the disk
and inserted into the quadtree in small-sized batches. In this pass,
we store only 𝑜.𝑙𝑜𝑐 and 𝑜.𝑖𝑑 for each object 𝑜 in the main memory.
Object locations are used in splitting quadtree cells when they
have full capacity into four sibling leaf cells where each has a
quarter of the parent’s spatial area. Also, locations are used to
redistribute objects over the new leaf cells after the split. The textual
descriptions for the objects are ignored, due to the limited memory,
to be processed in the second pass. Each leaf cell 𝑛 dynamically
maintains its neighboring leaf cells 𝑛.𝑛𝑒𝑖𝑔ℎ during the splitting. A
neighboring cell of 𝑛 is any cell that shares a spatial border with 𝑛
even if it is not a sibling cell. After inserting all objects, the location
table for each leaf cell is constructed. For each leaf cell𝑛, we traverse
all the objects and insert them into a hashtable. Then, the hashtable
is flushed to a file on disk and its pointer is maintained in 𝑛.𝑙𝑡𝑝 .

4.2.2 Second Pass. As the first pass places all the objects in leaf
cells, the second pass builds the textual indexing components, 𝑛.𝑖𝑡𝑖
and 𝑛.𝑜𝑡𝑖 , for each leaf cell 𝑛. We read the objects of 𝑛 from the disk.
Then, two hashtables are initialized. The first hashtable is 𝑛.𝑖𝑑𝑇𝑜𝑖𝑛𝑣
whose key is 𝑜.𝑖𝑑 and the value is an empty inverted list. The second
is 𝑛.𝑜𝑡𝑖 that stores the mapping between 𝑜.𝑖𝑑 and 𝑜.𝑡𝑥𝑡 as discussed

in Section 4.1. Then, for each object 𝑜 , the textual description 𝑜.𝑡𝑥𝑡
is inserted into 𝑛.𝑜𝑡𝑖 . Meanwhile, keywords of 𝑜.𝑡𝑥𝑡 are extracted
using standard techniques. For each keyword𝑤 , the weight 𝑠 (𝑜.𝑤)
is computed as the relative term frequency, which is the keyword
count in 𝑜.𝑡𝑥𝑡 divided by the total number of keywords in 𝑜.𝑡𝑥𝑡 .
Other weighting functions can be used as well, as long as it is an
invariant score, without impacting our proposed techniques. 𝑤
is inserted into the corresponding inverted list in 𝑛.𝑖𝑑𝑇𝑜𝑖𝑛𝑣 along
with its weight. After all the objects are processed, for each keyword
in 𝑛.𝑖𝑑𝑇𝑜𝑖𝑛𝑣 , we sort the corresponding inverted list based on the
weight in descending order. We form the inverted set of objects
from the inverted list by storing only object ids. The𝑤.𝑚𝑎𝑥 is set as
the max weight in the inverted list, and𝑤.𝑠𝑖𝑧𝑒 is set as the number
of entries in the list. The file names that point to the inverted list and
the inverted set are stored as𝑤.𝑙𝑖𝑠𝑡𝑃𝑡𝑟 and𝑤.𝑠𝑒𝑡𝑃𝑡𝑟 , respectively.
Finally, the quadruple < 𝑤.𝑠𝑖𝑧𝑒,𝑤 .𝑚𝑎𝑥,𝑤 .𝑙𝑖𝑠𝑡𝑃𝑡,𝑤 .𝑠𝑒𝑡𝑃𝑡 > is then
inserted into 𝑛.𝑖𝑡𝑖 as the value corresponding to keyword𝑤 . This
process is repeated for each keyword and for each cell 𝑛 until the
whole index is constructed.

5 QUERY PROCESSING
In this section, we present U-ASK query processor to handle two
types of kNN spatial-keyword queries; TKQN and BKQN queries
as defined in Section 3. The query processor works in a parallelized
master-worker paradigm that computes partial query results in
worker nodes and then aggregates the final results in a master
node. Our realization for a parallel node here is an application-
level parallel thread. However, our distributed query processing
framework could be easily extended to multi-machine distributed
environments. The rest of this section introduces the high-level
query processing framework, followed by details of processing both
TKQN and BKQN queries.

Query processing framework. Our query processor works
on a unified framework for both TKQN and BKQN queries. Both
queries rank the answer objects based on some ranking function, ei-
ther pure spatial ranking (BKQN) or spatio-textual ranking (TKQN).
In addition, both queries filter out negative keyword predicates that
are not supported in any existing work. So, given a query location
𝑞.𝑙𝑜𝑐 , the query processor divides finding the top-k objects into
multiple top-k sub-searches. While each sub-search is performed
locally in an index leaf cell using a parallel worker node, a global
top-k list is being aggregated by a master node to find the final
answer.

The master node initially locates the index cell where the query
location 𝑞.𝑙𝑜𝑐 lies. Then, the cell is inserted into a priority queue
𝑃 with a priority distance zero. Then, a set of worker nodes are
initiated to process cells in 𝑃 in priority order. The master node
dequeues an index cell 𝑛 from 𝑃 , and assigns it to one of the inactive
worker nodes. Then, it inserts the neighboring cells of 𝑛 (𝑛.𝑛𝑒𝑖𝑔ℎ)
into 𝑃 with priority score equals the spatial distance from the query
location 𝑞.𝑙𝑜𝑐 . The worker node finds a list of local top-k objects in
𝑛, 𝐿𝑛 , and sends it back to the master node. This process repeats
for each index cell in 𝑃 . The master node keeps a global top-k list
𝐿. The local top-k lists 𝐿𝑛 are merged into the global top-k list 𝐿.
The process terminates when one of two conditions are satisfied.
First, all index cells in 𝑃 are processed. Second, the best cell in 𝑃

cannot beat the current global top-k objects, i.e., the best priority
score of any remaining object is worse than the 𝑘𝑡ℎ object in 𝐿.
The best priority score of the remaining objects is computed as
𝑞.𝜆 × 𝑆 + (1 − 𝑞.𝜆) where 𝑆 is the spatial score computed according
to the minimum distance between 𝑞.𝑙𝑜𝑐 and the top cell in 𝑃 .

Each worker node searches the top-k objects locally depending
on the query type, either TKQN or BKQN, as detailed in the rest of
the section. The global top-k list 𝐿 is aggregated from local lists 𝐿𝑛
in a straightforward way. 𝐿 is implemented as a priority queue with
the top-k ranking score as a priority score. For each local list 𝐿𝑛 ,
the master node iterates over all objects. An object 𝑜 is inserted in
𝐿 with its priority score only if it is among the top-k scored objects
maintained so far. Otherwise, 𝑜 is ignored.

The rest of this section details the processing of TKQN and BKQN
based on the described query processing framework.

5.1 TKQN Processing
This section presents the query processing algorithm POWER (Par-
allel bOttom-up search With incrEmental pRuning) to process
TKQN query based on the described master-worker query pro-
cessing framework.

Each worker node performs a local top-k search in an index cell
𝑛. First, we load 𝑛’s the Location Table 𝑛.𝐿𝑇 into a memory buffer
using 𝑛.𝑙𝑡𝑝 if it is not already loaded. 𝑛.𝐿𝑇 stores the locations of
all objects in 𝑛, which are frequently accessed during the query pro-
cessing. Thus, buffering 𝑛.𝐿𝑇 in the main memory greatly reduces
the I/O cost for retrieving the objects’ locations. The memory buffer
uses the Least Recently Used (LRU) policy for buffer management.

POWER is based on the TA algorithm [19] that performs a best-
first search on sorted lists. TA algorithm retrieves the first entry
in each sorted list in each iteration, and aggregates the score of
each visiting entry by performing a random access to the other
lists. The aggregated score is then used to update the top-k results.
The algorithm keeps track of the upper bound score of unvisited
entries by accumulating the first unvisited entry from each sorted
list. If the upper bound score is less than the 𝑘𝑡ℎ score from the
top-k results, then the remaining entries have no chance of being a
top-k candidate and the searching process terminates.

TKQN query ranks its results based on two attributes, spatial and
textual attributes. TEQ index already stores keyword inverted lists
sorted by the textual weight, which can be accessed by 𝑛.𝑖𝑡𝑖 . How-
ever, the spatial ordering depends on the query location 𝑞.𝑙𝑜𝑐 . So,
POWER sorts all objects within a cell 𝑛 on the fly based on the spa-
tial distance from the query location 𝑞.𝑙𝑜𝑐 . The objects are inserted
into a priority queue based on a normalized spatial score, in the
range [0, 1] as a priority score. The normalized spatial score has the
same range as the textual weight. This priority queue facilitates in-
cremental retrieval of the closest objects with small overhead. Then,
POWER works on a set of sorted lists, one spatially-ordered list
and a set of textually-ordered lists, each list corresponds to one key-
word in 𝑞.𝑝𝑜𝑠 . While retrieving objects in ascending order of score
based on the TA algorithm, the keyword predicates are evaluated on
each retrieved object 𝑜 . In TKQN, keyword predicates include both
positive keyword predicates, represented by 𝑞.𝑝𝑜𝑠 , and negative
keyword predicates, represented by 𝑞.𝑛𝑒𝑔. For the positive keyword
predicates, POWER checks if the textual description 𝑜.𝑡𝑥𝑡 includes

any of the keywords in the set 𝑞.𝑝𝑜𝑠 . For the negative keyword
predicates, POWER checks if 𝑞.𝑛𝑒𝑔𝑃ℎ ⊂ 𝑜.𝑡𝑥𝑡 ∀𝑞.𝑛𝑒𝑔𝑃ℎ ∈ 𝑞.𝑛𝑒𝑔.
Negative phrases,𝑞.𝑛𝑒𝑔𝑃ℎ, are checked in ascending order of length,
i.e., the number of words in the phrase. The reason is that shorter
phrases have a higher probability of occurrence. For a specific neg-
ative phrase 𝑞.𝑛𝑒𝑔𝑃ℎ, POWER first checks if 𝑜.𝑡𝑥𝑡 includes all the
words in 𝑞.𝑛𝑒𝑔𝑃ℎ by looking up the inverted sets corresponding to
the different keywords in 𝑞.𝑛𝑒𝑔𝑃ℎ using 𝑛.𝑖𝑡𝑖 . This works as a quick
and efficient filter to eliminate irrelevant candidates early. If at least
one keyword from 𝑞.𝑛𝑒𝑔𝑃ℎ is not included in 𝑜.𝑡𝑥𝑡 , then it is clear
that 𝑜.𝑡𝑥𝑡 does not include 𝑞.𝑛𝑒𝑔𝑃ℎ. Otherwise, further verification
is needed. In this case, an I/O request is sent to retrieve 𝑜.𝑡𝑥𝑡 by
using 𝑛.𝑜𝑡𝑖 to further examine whether the whole 𝑞.𝑛𝑒𝑔𝑃ℎ ⊂ 𝑜.𝑡𝑥𝑡 .
If 𝑜 includes any of the negative phrases in 𝑞.𝑛𝑒𝑔, it will not be
considered a valid candidate.

Despite the optimizations of POWER algorithm, it is still slow
because it builds a list (priority queue) of distances for all objects
in each index cell on the fly, which is computationally expensive.
Such list cannot be pre-computed because it depends on the query
location, which varies with every query. To alleviate such high
cost, we further extend POWER with textual and spatial pruning
strategies that significantly reduce the query processing cost, yet,
still ensure exact query results. The rest of the section proposes
two variants of POWER, POWER with Textual pruning (POWER-T)
and POWER with Spatial pruning (POWER-S).

5.1.1 POWER-T. POWER-T focus on textual pruning, while skip-
ping the difference in the spatial score in the early search since the
objects from the same leaf cell are close in space, thus have close
spatial scores. The general idea of POWER-T is to first identify k
candidate objects based on TA algorithm [19] applied to the textual
inverted lists within an index cell 𝑛. The 𝑘𝑡ℎ score is marked as
the lower bound 𝑠𝑐𝑜𝑟𝑒𝑘 . Then POWER-T sequentially visits the re-
maining objects from the textual inverted lists using TA algorithm
with spatial score computed using the 𝑛.𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝑆𝑐𝑜𝑟𝑒 , i.e.,
the spatial upper bound score of the cell, until in some iteration, the
score of an object is less than 𝑠𝑐𝑜𝑟𝑒𝑘 . Then the remaining objects
can be safely pruned without further exploration. The intuition is,
the objects in the same leaf cell 𝑛 are close in space and have a close
spatial score. Thus, the textual score plays a more important role
in determining the top-k. POWER-T is detailed as follows.

Initially, POWER-T performs the TA algorithm on the textual in-
verted lists corresponding to the words in 𝑞.𝑝𝑜𝑠 to find the initial k
feasible objects. In each iteration, the first object 𝑜 that has the great-
est score is retrieved from the textual inverted list. Then POWER-T
evaluates the keyword predicates, both positive and negative key-
word predicates, in the same way described in the original POWER
algorithm. If 𝑜 does not violate any negative keyword predicates,
𝑠𝑐𝑜𝑟𝑒 (𝑜, 𝑞) is computed (based on Equation 1), through aggregating
𝑜’s spatial and textual scores from the location table and different
textual inverted lists, respectively. To speed up aggregation from
textual inverted lists, we build a corresponding hashtable on the
fly for each inverted list, with object id as a key and textual score
as a value. Note that the initial k feasible objects we identify have
promising textual scores, since they are incrementally retrieved
from the textual inverted lists with textual scores sorted in descend-
ing order. The spatial scores of these objects, however, have no

guarantees. Even though, the spatial score plays a less important
role because the objects within the same leaf index cell are spatially
close and thus have close spatial score.

After the initial k feasible objects are identified, POWER-T con-
tinues to perform TA algorithm on the sorted textual inverted lists.
In each iteration, POWER-T retrieves the best object 𝑜 following
TA algorithm and places 𝑜 in a list 𝑙 . POWER-T keeps track of and
updates the textual upper bound score 𝑡𝑢𝑝𝑝𝑒𝑟 , which is computed
to be the sum of the first unvisited entry from each textual inverted
list. 𝑡𝑢𝑝𝑝𝑒𝑟 monotonically decreases in each iteration because the
objects in the inverted textual lists with high scores are being pro-
cessed incrementally. The spatial upper bound score, denoted as
𝑛.𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 , is computed as the score corresponding to
the minimum distance between 𝑞.𝑙𝑜𝑐 and the cell 𝑛. At some itera-
tion, when 𝑞.𝜆×𝑛.𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑+(1−𝑞.𝜆)×𝑡𝑢𝑝𝑝𝑒𝑟 ≤ 𝑠𝑐𝑜𝑟𝑒𝑘 ,
the search could be terminated and the remaining unvisited objects
could be safely eliminated because their upper bound score is less
than the pruning score 𝑠𝑐𝑜𝑟𝑒𝑘 . POWER-T computes 𝑠𝑐𝑜𝑟𝑒 (𝑜, 𝑞) for
all the objects in the list 𝑙 , which are the objects that cannot be
pruned and need further examination, and updates the top-k results
accordingly.

5.1.2 POWER-S. POWER-S uses a similar approach to POWER-T
but differs in that it focuses on applying spatial pruning instead
of textual pruning. The general idea of POWER-S is to visit the
objects incrementally by their distance to 𝑞.𝑙𝑜𝑐 , while ignoring the
textual scores and using the maximum textual score instead, until
the terminating condition is satisfied.

Similar to POWER, retrieving the objects incrementally based on
the distance to 𝑞.𝑙𝑜𝑐 puts a high computational cost on POWER-S
because 𝑞.𝑙𝑜𝑐 varies for each query 𝑞. So, the distances to 𝑞.𝑙𝑜𝑐 are
computed and sorted on the fly and cannot be precomputed as the
textual scores. POWER-S accelerates this procedure by dividing
each leaf cell into smaller equal-sized blocks with each block in-
cluding a portion of the objects during the indexing. POWER-S
retrieves the blocks of the leaf cell and places all the blocks into a
priority queue with priority score equals to the minimum distance
to 𝑞.𝑙𝑜𝑐 .

Similar to POWER-T, POWER-S first retrieves the initial k feasi-
ble objects and computes a lower bound score. POWER-S retrieves
an entry from the priority queue in each iteration. If the entry is a
block, then we put all the objects within the block into the priority
queue with priority score equals to the distance between each object
to 𝑞.𝑙𝑜𝑐 . Otherwise, the entry is an object 𝑜 and POWER-S evaluates
the keyword predicates on 𝑜.𝑡𝑥𝑡 in the same way described before.
POWER-S repeats above in each iteration until the initial k feasible
objects are identified. Then POWER-S denotes the pruning score
as the minimum score 𝑠𝑐𝑜𝑟𝑒𝑘 .

After the initial k feasible objects are identified, POWER-S
keeps retrieving entries in each iteration. If the entry is an ob-
ject 𝑜 that satisfies the keyword predicates, then we place 𝑜 in
a list 𝑙 . POWER-S keeps track of the spatial upper bound score
𝑠𝑢𝑝𝑝𝑒𝑟 , which is the spatial score of the first unvisited object
in the priority queue. The textual upper bound score, denoted
as 𝑛.𝑡𝑒𝑥𝑡𝑢𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 , is computed as the sum of the first
object in each textual inverted list, which can be accessed by
𝑤.𝑚𝑎𝑥 for each keyword 𝑤 through 𝑛.𝑖𝑡𝑖 . 𝑛.𝑡𝑒𝑥𝑡𝑢𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑

is truncated to 1 if it is greater than 1. At some iteration, when
𝑞.𝜆×𝑠𝑢𝑝𝑝𝑒𝑟 +(1−𝑞.𝜆)×𝑛.𝑡𝑒𝑥𝑡𝑢𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 ≤ 𝑠𝑐𝑜𝑟𝑒𝑘 , the search
is terminated and the remaining unvisted objects could be safely
eliminated because their upper bound score is less than the prun-
ing score 𝑠𝑐𝑜𝑟𝑒𝑘 . Then POWER-S computes 𝑠𝑐𝑜𝑟𝑒 (𝑜, 𝑞) for all the
objects in 𝑙 , which are the objects that cannot be pruned and need
further examination, and updates the top-k results accordingly.

For large 𝑞.𝜆 values, the spatial score is more important in Equa-
tion 1 and vice versa. Ideally, a good approach is to set a threshold
in the query processor so that when 𝜆 is greater than the threshold,
POWER-S is invoked and when 𝜆 is smaller than the threshold, then
POWER-T is invoked to adapt the appropriate pruning criteria. We
experimentally explore the best threshold value in Section 6.2.1.

5.2 BKQN Processing
This section proposes POWER-BF query processing algorithm to
process BKQN query as defined in Section 3. POWER-BF still works
on the samemaster-worker paradigm that is introduced for POWER,
POWER-T, and POWER-S. However, the original POWER algorithm
and its variants cannot be applied as is for BKQN query as it does not
use textual score in ranking as in TKQN query. In addition, BKQN
has both AND and OR conjunctions in their keyword predicates,
which is not the case in TKQN.

The worker node in POWER-BF initializes a priority queue with
priority score equals to the spatial distance to the query location
𝑞.𝑙𝑜𝑐 to store all the objects that satisfy the textual predicates. The
worker first considers the AND predicate and sorts the AND key-
words 𝑤 ∈ 𝑞.𝑎𝑛𝑑 based on 𝑤.𝑠𝑖𝑧𝑒 in ascending order. Then, the
worker starts from the AND keyword𝑤 with minimum𝑤.𝑠𝑖𝑧𝑒 , and
takes the intersection and stores the results in a set 𝑠𝑎𝑛𝑑 . This is
because intersecting in ascending order results in the minimum
number of comparisons. After all the AND keywords are consid-
ered, if 𝑠𝑎𝑛𝑑 is not empty, then the worker starts to process the
OR words from 𝑞.𝑜𝑟 . The worker creates a new set 𝑠𝑜𝑟 , to take the
union of the set for each 𝑤 ∈ 𝑞.𝑜𝑟 , regardless of the order. Then,
the worker takes the intersect of 𝑠𝑎𝑛𝑑 and 𝑠𝑜𝑟 to produce a new set
𝑠 . For each object 𝑜 ∈ 𝑠 , 𝑜 satisfies the 𝑞.𝑎𝑛𝑑 and 𝑞.𝑜𝑟 constraints.
After that, the worker evaluates negative keyword predicates in
the same way described for other POWER variants. If 𝑜 satisfies
the negative keyword predicates, it is inserted in the priority queue.
Finally, the worker node returns the top-k objects from the priority
queue to the master node as the local top-k results.

6 EXPERIMENTAL EVALUATION
This section presents extensive experimental evaluation of U-ASK
framework including its TEQ indexing and the different variants
of POWER algorithm. Section 6.1 presents the experimental setup.
Sections 6.2 present the performance evaluation for the different
parameters and framework components. Section 6.3 and Section 6.4
compare the proposed algorithms against the state-of-the-art under
TKQN and BKQN, respectively.

6.1 Experimental Setup
We evaluate U-ASK’s TEQ indexing and the query processing un-
der different queries, i.e., TKQN with POWER, POWER-T, and

Table 2: Evaluation Parameters Values

Parameter Values

Dataset Size (million) 2, 4, 6, 8, 10
Number of Threads 1, 2, 4, 8
Buffer Size (MB) 50, 100, 150, 200, 250, 300

|𝑞.𝑝𝑜𝑠 | 1 ,2 ,3, 4, 5
|𝑞.𝑛𝑒𝑔 | 1, 2, 3, 4, 5

𝑞.𝑛𝑒𝑔𝐿𝑒𝑛 1, 2, 3, 4, 5
𝑞.𝜆 0, 0.1, 0.3, 0.5, 0.7 ,0.9 , 1

𝑞.𝑘 (TKQN) 5, 10, 50, 100, 500, 1000, 5000, 10000
𝑞.𝑘 (BKQN) 10, 30, 50, 70, 90

|𝑞.𝑎𝑛𝑑 | 1, 2, 3, 4
|𝑞.𝑜𝑟 | 1, 2, 3, 4

POWER-S, and BKQN with POWER-BF. Our algorithms are com-
pared against the state-of-the-art for both TKQN and BKQN queries.
The state-of-the-art algorithm that solves the closest problem to
TKQN is RCA [42]. RCA uses a best-first search paradigm to support
the top-k kNN spatial-keyword query and index locations using
Z-order curves. We modify RCA to support TKQN problem. When
an object is considered as a candidate in the top-k objects by RCA,
the algorithm evaluates the negative keyword predicates using the
same approach discussed for POWER.

The state-of-the-art algorithm that solves the closest problem
to BKQN is SKI [5]. SKI handles the Boolean kNN that supports
a conjunction of AND, OR, and negative keyword predicates by
performing a best-first search on an R-Tree [22] of objects with
bitmap stored in the intermediate nodes. It uses negative keyword
predicates that are bags-of-words, so the sequence of the phrase is
ignored. We modify SKI to support BKQN queries as follows. The
negative keyword predicates are evaluated in R-tree leaf nodes by
reading the textual description of all objects and checking for nega-
tive phrases. This is because the bitmap can be used for individual
words but not phrases.

Evaluation dataset. Our evaluation uses 10 millions tweets col-
lected from Twitter APIs [37]. We compose subsets of sizes ranging
from 2 millions to 10 millions tweets. Each tweet includes an id,
a location, i.e., latitude and longitude, and a textual description,
which matches the definition of spatio-textual objects in Section 3.

Query workload and parameters. Out of real tweets, we gen-
erate queries as follows. We extract the top frequent phrases with
different lengths, e.g., burger, pizza hut, chipotle mexican grill. For
a TKQN query 𝑞𝑡 , the 𝑞𝑡 .𝑙𝑜𝑐 is generated as a random point in
the space, 𝑞𝑡 .𝑝𝑜𝑠 is randomly selected from single-word phrases,
𝑞𝑡 .𝑛𝑒𝑔 is randomly selected from phrases of corresponding length
(𝑞𝑡 .𝑛𝑒𝑔𝐿𝑒𝑛), and 𝑞𝑡 .𝜆 is randomly chosen from a set of values that
span the whole range [0, 1]. For a BKQN query𝑞𝑏 ,𝑞𝑏 .𝑙𝑜𝑐 and𝑞𝑏 .𝑛𝑒𝑔
are generated in the same way as TKQN query workload. 𝑞𝑏 .𝑜𝑟
and 𝑞𝑏 .𝑎𝑛𝑑 words are randomly selected from phrases of various
sizes, depending on the sizes |𝑞𝑏 .𝑜𝑟 | and |𝑞𝑏 .𝑎𝑛𝑑 |. The parameter
values of our evaluation is shown in Table 2, the default values are
emphasized in boldface.

6.2 Parameter Tuning
Appendix A evaluates parameters of TEQ index due to its stability
for different parameters. The rest of this section evaluates the query
processing parameters.

6.2.1 𝜆 value. Figure 2 shows different values for a threshold on
𝜆 value in TKQN query. If 𝜆 is less than the threshold, the query
processor uses POWER-T, otherwise, it uses POWER-S. The intu-
ition is that small values of 𝜆 give higher importance for textual
scores, which gives an advantage for textual pruning of POWER-T.
However, Figure 2 shows that the optimal query latency is achieved
when the threshold is 1. This means in all cases, POWER-T out-
performs POWER-S, even with large 𝜆 values. The reason for such
behaviour is twofold. First, POWER-S incrementally visits the ob-
jects based on the distance to the query but gives no guarantee on
whether each visited object includes at least one query positive key-
words, whereas each object visited by POWER-T includes at least
one query keywords so it produces more relevant candidate objects
faster. Second, TEQ organizes the objects in a quadtree structure
that adapts to the spatial distribution of the data. This means the
objects within the same leaf cell have relatively close spatial prox-
imity and thus have close spatial scores with regard to a specific
query due to how quadtree organizes objects. On the other hand,
different objects within the same leaf node might have significantly
different textual scores. The greater difference in textual scores and
less difference in spatial scores lead to the fact that pruning based
on textual dimension is more efficient and prunes more objects.

6.2.2 Buffer size. The buffer size is the maximum memory used
to buffer the Location Table of index leaf cells. Figure 3 shows
that the query latency decreases when the buffer size increases
as expected. In addition, small buffer size of 200 MB is enough to
achieve a great trade-off between memory usage and query latency
of a few milli-seconds. This shows the scalability and affordability
of POWER algorithms even on commodity hardware.

6.2.3 Number of Threads. Figure 4 shows the effect of the num-
ber of threads. For small k, i.e., k < 100, multi-threading does not
demonstrate a clear advantage. This is because when k is small, the
bottleneck is in I/O, which cannot be accelerated with more com-
puting cores. When k is large, heavy computation is required and
the bottleneck is CPU, which is accelerated using more computing
cores. We apply single-threaded version of our algorithms for small
k, i.e., k < 100, and multi-threaded version for large k.

6.3 TKQN Query Evaluation
Section 6.2 shows that POWER-T outperforms POWER and
POWER-S in all cases. The key strength of POWER-T is gener-
ating more relevant candidate objects from textual inverted lists
and naturally prunes irrelevant objects that do not include any
query keyword. This section compares POWER-T against RCA [42]
to solve TKQN queries under different settings.

6.3.1 The effect of query keywords. Figure 5a shows the query
latency of POWER-T compared to RCA under different number of
positive query keywords 𝑞.𝑝𝑜𝑠 . The runtime of RCA increases as
the number of positive keywords increases whereas the runtime of
POWER-T remains stable at around 5 ms for different |𝑞.𝑝𝑜𝑠 | values.

POWER-T significantly outperforms RCA with up to 3.8× speedup
thanks to its effective pruning techniques, efficient object retrieval
through TEQ index structure, andmain-memory buffering of spatial
locations. On the other hand, RCA is slower than POWER-T because
visiting objects either with high spatial scores or high textual scores
enlarges the search scope. The method lacks the mechanism to
efficiently identify the objects that have both promising spatial and
textual scores at the same time, which degrades its performance.

The experiment shows the query latency of POWER-T com-
pared to RCA under different number of negative phrases |𝑞.𝑛𝑒𝑔 |
(Figure 5b) and different number of keywords in each negative
phrase 𝑞.𝑛𝑒𝑔𝐿𝑒𝑛 (Figure 5c). The query latency of both algorithms
increases as |𝑞.𝑛𝑒𝑔| or 𝑞.𝑛𝑒𝑔𝐿𝑒𝑛 increases. This is because the in-
creasing of |𝑞.𝑛𝑒𝑔| or 𝑞.𝑛𝑒𝑔𝐿𝑒𝑛 incurs more I/Os to load the inverted
sets corresponding to the negative keywords. At the same time, it
also results in longer latency when evaluating negative keyword
predicates. In all cases, POWER-T significantly outperforms RCA
and it is up to 5.25× faster. The reason behind the good performance
is similar to the one explained above.

6.3.2 The effect of weighting factor. With larger 𝜆, the spatial
score becomes more important than the textual score in Equation 1
and vice versa. When 𝜆 is 0 or 1, the TKQN query falls into the
extreme cases as the ranking purely depends on either spatial prox-
imity or textual relevance. Figure 5d shows that POWER-T outper-
forms RCA in all cases with up to 19× speedup. Even in extreme
cases, POWER-T still has great performance due to its efficiency
and effectiveness in locating objects with promising scores.

6.3.3 The effect of k. Figure 5e shows the effect of 𝑞.𝑘 , i.e., the an-
swer size. POWER-T is up to 13.5× faster than RCA. The runtime of
both POWER-T and RCA increaseswhen k increases. POWER-T per-
forms significantly better than RCA under larger k because larger k
results in heavier computation on CPU, which is perfectly handled
in the multi-threading master-worker architecture in POWER-T.

6.3.4 The effect of dataset size. Figure 5f shows the effect of
different dataset sizes. POWER-T still outperforms RCA in all cases
and it is up to 3.4× faster. With increasing dataset sizes, the query
latency of POWER-T grows significantly slower than RCA, which
shows the great scalability of POWER-T to handle large-sized
datasets.

6.4 BKQN Query Evaluation
This section evaluates the performance of POWER-BF to solve
BKQN queries. We compare POWER-BF against SKI [5] under dif-
ferent parameter settings. As Table 2 shows, the k value in BKQN
is set to smaller values compared to TKQN. This is because BKQN
places more requirement on the textual predicates and the corre-
sponding resulting set is smaller.

6.4.1 The effect of AND keywords. Figure 6a shows the effect
of |𝑞.𝑎𝑛𝑑 |, i.e., the size of AND keywords set. POWER-BF signifi-
cantly outperforms SKI in all cases and achieves up to 34.8× better
latency compared to SKI. The reason behind the good performance
is that POWER-BF is able to precisely locate the objects that have
promising scores by utilizing the TEQ index. With increasing num-
ber of AND keywords, the latency of POWER-BF remains stable

10
0

10
1

10
2

10
3

0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9 1

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

Threshold

POWER-S w/ POWER-T

Figure 2: The Effect of 𝜆 Threshold

10
0

10
1

10
2

10
3

50 100 150 200 250 300

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

Buffer Size (MB)

POWER
POWER-S
POWER-T

Figure 3: The Effect of Buffer Size

10
0

10
1

10
2

5
1
0

5
0

1
0
0

5
0
0

1
0
0
0

5
0
0
0

1
0
0
0
0

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

q.k

POWER-T-ThreadNo1
POWER-T-ThreadNo2
POWER-T-ThreadNo4
POWER-T-ThreadNo8

Figure 4: The Effect of Number of
Threads

0

5

10

15

20

1 2 3 4 5

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

|q.pos|

POWER-T
RCA

(a) Number of positive words

0

5

10

15

20

25

1 2 3 4 5

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

|q.neg|

POWER-T
RCA

(b) Number of negative phrases

0

5

10

15

20

25

1 2 3 4 5

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

q.negLen

POWER-T
RCA

(c) Length of negative phrases

0

5

10

15

20

0 0.1 0.3 0.5 0.7 0.9 1

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

q.λ

POWER-T
RCA

(d) Weighting factor 𝜆

100

200

300

400

500

5
1
0

5
0

1
0
0

5
0
0

1
0
0
0

5
0
0
0

1
0
0
0
0

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

q.k

POWER-T
RCA

(e) k

0

15

30

45

60

2 4 6 8 10

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

Dataset Size (million)

POWER-T
RCA

(f) Dataset Size

Figure 5: TKQN Query Evaluation

while SKI latency decreases. This is because with more keywords,
more sub-trees in SKI could be eliminated during the query process-
ing without further exploration by looking up the bitmap, which
reduces the query processing time.

6.4.2 The effect of OR keywords. Figure 6b shows the effect of
|𝑞.𝑜𝑟 |, i.e., the size ofOR keywords set. POWER-BF still significantly
outperforms SKI in all cases with up to 29.1× speedup for utilizing
the TEQ index effectively. The latency of SKI increases when the
number of OR keywords increases because more objects become
candidates, while POWER-BF latency is almost stable.

6.4.3 The effect of negative phrases. Figure 6c and Figure 6d
show that POWER-BF outperforms SKI under different number of
negative phrases and different number of keywords in each negative

100

200

300

400

1 2 3 4

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

|q.and|

POWER-BF
SKI

(a) Number of AND words

100

200

300

400

1 2 3 4

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

|q.or|

POWER-BF
SKI

(b) Number of OR words

100

200

300

400

1 2 3 4

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

|q.neg|

POWER-BF
SKI

(c) Number of negative phrases

100

200

300

400

1 2 3 4

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

q.negLen

POWER-BF
SKI

(d) Length of negative phrases

100

200

300

400

500

10 30 50 70 90

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

q.k

POWER-BF
SKI

(e) k

150

300

450

600

750

900

2 4 6 8 10

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

Dataset Size (million)

POWER-BF
SKI

(f) Dataset Size

Figure 6: BKQN Query Evaluation

phrase, respectively. POWER-BF is still much faster than SKI, up to
31.1×. Both the runtime of POWER-BF and SKI remain stable as
the size of 𝑞.𝑛𝑒𝑔 changes.

6.4.4 The effect of k. Figure 6e shows the effect of the answer size
𝑞.𝑘 . Latency of both POWER-BF and SKI increases as 𝑞.𝑘 increases
because more computation is involved. However, POWER-BF is
still significantly faster with up to 30.7× compared to SKI.

6.4.5 The effect of dataset size. Figure 6f shows that increasing
the dataset size increases latency of both POWER-BF and BKQN.
POWER-BF achieves up to 30.4× faster than SKI. The latency of
POWER-BF grows much slower than SKI, which demonstrates the
significant scalability of POWER-BF on large-sized datasets.

7 CONCLUSION
This paper proposes a unified framework U-ASK to support kNN
spatial-keyword queries, both top-k and Boolean queries, with neg-
ative keyword predicates. We define TKQN and BKQN queries that
extend traditional queries with negative keyword predicates to max-
imize the expressiveness of spatial keyword queries. To support
the new queries, we propose a hybrid TEQ index and several query
processing algorithms that employ a master-worker paradigm to
exploit the index content and provide highly efficient query latency.
Our experimental evaluation on real datasets has shown superior
performance for all our algorithms with an order of magnitude
faster runtime compared to the state-of-the-art algorithms. Be-
sides the superior performance, our proposed framework supports
various queries types simultaneously using a unified underlying
architecture, which is favorable for system administrators.

REFERENCES
[1] J. Benhardus and J. Kalita. Streaming trend detection in twitter. International

Journal of Web Based Communities, 9(1):122–139, 2013.
[2] U. C. Bureau. Food Poisoning at Chipotle, 2021.

https://abcnews.go.com/US/wireStory/chipotle-agrees-record-25-million-
fine-tainted-food-70271636.

[3] X. Cao, G. Cong, T. Guo, C. S. Jensen, and B. C. Ooi. Efficient processing of
spatial group keyword queries. ACM Transactions on Database Systems (TODS),
40(2):1–48, 2015.

[4] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial keyword querying.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data, pages 373–384, 2011.

[5] A. Cary, O. Wolfson, and N. Rishe. Efficient and scalable method for process-
ing top-k spatial boolean queries. In International Conference on Scientific and
Statistical Database Management, pages 87–95, 2010.

[6] H. K.-H. Chan, C. Long, and R. C.-W. Wong. Inherent-cost aware collective spatial
keyword queries. In International Symposium on Spatial and Temporal Databases,
pages 357–375, 2017.

[7] J. Chen andW. Jiang. Context-aware personalized POI sequence recommendation.
In International Conference on Smart City and Informatization, pages 197–210,
2019.

[8] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query processing:
An experimental evaluation. Proceedings of the VLDB Endowment, 6(3):217–228,
2013.

[9] L. Chen, X. Lin, H. Hu, C. S. Jensen, and J. Xu. Answering why-not questions on
spatial keyword top-k queries. In 2015 IEEE 31st International Conference on Data
Engineering, pages 279–290. IEEE, 2015.

[10] L. Chen, S. Shang, C. Yang, and J. Li. Spatial keyword search: a survey. GeoInfor-
matica, 24(1):85–106, 2020.

[11] L. Chen, J. Xu, X. Lin, C. S. Jensen, and H. Hu. Answering why-not spatial
keyword top-k queries via keyword adaption. In 2016 IEEE 32nd International
Conference on Data Engineering (ICDE), pages 697–708. IEEE, 2016.

[12] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in geographic
web search engines. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 277–288, 2006.

[13] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel. Text vs. space:
efficient geo-search query processing. In Proceedings of the 20th ACM international
conference on Information and knowledge management, pages 423–432, 2011.

[14] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most relevant
spatial web objects. Proceedings of the VLDB Endowment, 2(1):337–348, 2009.

[15] N. Cui, J. Li, X. Yang, B. Wang, M. Reynolds, and Y. Xiang. When geo-text meets
security: privacy-preserving boolean spatial keyword queries. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 1046–1057, 2019.

[16] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In
2008 IEEE 24th International Conference on Data Engineering, pages 656–665, 2008.

[17] Deng, Ke and Li, Xin and Lu, Jiaheng and Zhou, Xiaofang. Best keyword cover
search. IEEE Transactions on Knowledge and Data Engineering, 27(1):61–73, 2014.

[18] K. Domdouzis, B. Akhgar, S. Andrews, H. Gibson, and L. Hirsch. A social media
and crowdsourcing data mining system for crime prevention during and post-
crisis situations. Journal of Systems and Information Technology, 2016.

[19] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
Journal of computer and system sciences, 66(4):614–656, 2003.

[20] Y. Gao, J. Zhao, B. Zheng, and G. Chen. Efficient collective spatial keyword query
processing on road networks. IEEE Transactions on Intelligent Transportation
Systems, 17(2):469–480, 2015.

[21] I. Gargantini. An effective way to represent quadtrees. Communications of the
ACM, 25(12):905–910, 1982.

[22] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Pro-
ceedings of the 1984 ACM SIGMOD international conference on Management of
data, pages 47–57, 1984.

[23] R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (SK)
queries in geographic information retrieval (GIR) systems. In 19th International
Conference on Scientific and Statistical Database Management (SSDBM 2007), pages
16–16, 2007.

[24] H.-J. Hong, G.-M. Chiu, and W.-Y. Tsai. A single quadtree-based algorithm for
top-k spatial keyword query. Pervasive and Mobile Computing, 42:93–107, 2017.

[25] W. Huang, G. Li, K.-L. Tan, and J. Feng. Efficient safe-region construction for
moving top-k spatial keyword queries. In Proceedings of the 21st ACM international
conference on Information and knowledge management, pages 932–941, 2012.

[26] J. Li, H. Wang, J. Li, and H. Gao. Skyline for geo-textual data. GeoInformatica,
20(3):453–469, 2016.

[27] Y. Li, J. Huang, M. Fan, J. Lei, H. Wang, and E. Chen. Personalized query auto-
completion for large-scale POI search at Baidu Maps. ACM Transactions on Asian
and Low-Resource Language Information Processing (TALLIP), 19(5):1–16, 2020.

[28] Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. Lee, and X. Wang. Ir-tree: An efficient
index for geographic document search. IEEE transactions on knowledge and data
engineering, 23(4):585–599, 2010.

[29] Y. Ma, Y. Zhang, and X. Meng. St-hbase: a scalable data management system for
massive geo-tagged objects. In International Conference on Web-Age Information
Management, pages 155–166, 2013.

[30] A. Madani, O. Boussaid, and D. E. Zegour. Real-time trending topics detection and
description from Twitter content. Social Network Analysis and Mining, 5(1):1–13,
2015.

[31] A. Magdy, A. M. Aly, M. F. Mokbel, S. Elnikety, Y. He, S. Nath, and W. G. Aref.
GeoTrend: spatial trending queries on real-time microblogs. In Proceedings of
the 24th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 1–10, 2016.

[32] A. R. Mahmood, W. G. Aref, A. M. Aly, and M. Tang. Atlas: on the expression
of spatial-keyword group queries using extended relational constructs. In Pro-
ceedings of the 24th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 1–10, 2016.

[33] A. Sadilek, H. Kautz, L. DiPrete, B. Labus, E. Portman, J. Teitel, and V. Silenzio.
Deploying nEmesis: Preventing foodborne illness by data mining social media.
In Twenty-Eighth IAAI Conference, 2016.

[34] M. S. C. Sapul, T. H. Aung, and R. Jiamthapthaksin. Trending topic discovery
of Twitter Tweets using clustering and topic modeling algorithms. In 2017 14th
international joint conference on computer science and software engineering (JCSSE),
pages 1–6, 2017.

[35] J. Shi, D. Wu, and N. Mamoulis. Textually relevant spatial skylines. IEEE Trans-
actions on Knowledge and Data Engineering, 28(1):224–237, 2015.

[36] Y. Tao and C. Sheng. Fast nearest neighbor search with keywords. IEEE transac-
tions on knowledge and data engineering, 26(4):878–888, 2013.

[37] Twitter. Twitter Developer API, 2022. https://developer.twitter.com/en/docs/twitter-
api.

[38] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual indexing for
geographical search on the web. In International Symposium on Spatial and
Temporal Databases, pages 218–235, 2005.

[39] D. Wu, B. Choi, J. Xu, and C. S. Jensen. Authentication of moving top-k spatial
keyword queries. IEEE Transactions on Knowledge andData Engineering, 27(4):922–
935, 2014.

[40] D. Wu, M. L. Yiu, and C. S. Jensen. Moving spatial keyword queries: Formulation,
methods, and analysis. ACM Transactions on Database Systems (TODS), 38(1):1–47,
2013.

[41] C. Zhang, Y. Zhang, W. Zhang, and X. Lin. Inverted linear quadtree: Efficient top
k spatial keyword search. IEEE Transactions on Knowledge and Data Engineering,
28(7):1706–1721, 2016.

[42] D. Zhang, C.-Y. Chan, and K.-L. Tan. Processing spatial keyword query as a top-k
aggregation query. In Proceedings of the 37th international ACM SIGIR conference
on research & development in information retrieval, pages 355–364, 2014.

[43] D. Zhang, K.-L. Tan, and A. K. Tung. Scalable top-k spatial keyword search. In
Proceedings of the 16th international conference on extending database technology,
pages 359–370, 2013.

[44] K. Zhao, G. Cong, Q. Yuan, and K. Q. Zhu. SAR: A sentiment-aspect-region model
for user preference analysis in geo-tagged reviews. In 2015 IEEE 31st international
conference on data engineering, pages 675–686, 2015.

[45] S. Zhao and L. Xiong. Group nearest compact POI set queries in road networks.
In 2019 20th IEEE International Conference on Mobile Data Management (MDM),
pages 106–111, 2019.

[46] K. Zheng, H. Su, B. Zheng, S. Shang, J. Xu, J. Liu, and X. Zhou. Interactive top-k
spatial keyword queries. In 2015 IEEE 31st International Conference on Data
Engineering, pages 423–434, 2015.

[47] W. Zhou andW.Han. Personalized recommendation via user preferencematching.
Information Processing & Management, 56(3):955–968, 2019.

Table 3: Index Parameters Values

Parameter Values

TEQ Cell Size 10k, 20k, 30k, 40k, 50k
TEQ Depth 5, 10, 15, 20, 25

TEQ Spatial Blocks 25, 100, 225, 400, 625

APPENDIX
A INDEX PARAMETER TUNING
This section evaluates different index parameters.

TEQ quadtree shape. The shape of the TEQ quadtree is deter-
mined by the cell size and the maximum depth of the tree. The cell
size in TEQ index is the maximum number of objects within each
leaf index cell. Figure 7 illustrates how the TEQ cell size affects the
indexing time and TKQN query latency, respectively. The result
shows that both indexing time and query latency are slightly af-
fected by the TEQ cell size. Having small cell sizes leads to more
number of leaf cells but each leaf cell takes less storage, which
achieves a trade-off compared to large-sized leaf cells. With regards
to query processing, for a specific TKQN query under smaller cell
size using either POWER, POWER-T or POWER-S, it takes less time
to find the local top-k objects from a specific leaf cell but usually
requires exploring more cells.

In all cases, POWER-T outperforms POWER and POWER-S. The
high cost of POWER comes from building the priority queue based
on distance to 𝑞.𝑙𝑜𝑐 , which requires heavy computation compared
to retrieving textual inverted lists. The high cost of POWER-S
comes from retrieving the object incrementally by the distance to
𝑞.𝑙𝑜𝑐 , which does not guarantee that the object includes at least one
query positive keyword. In fact, the objects including at least one
of the query keyword only take a small portion of all the objects.
Thus, POWER-S ends up visiting lots of objects that do not satisfy
the textual predicates. POWER-T is efficient because it prunes the
search space through textual dimension and the objects retrieved
by POWER-T include at least one query positive keywords.

The depth of TEQ index refers to the maximum depth that the
quadtree can reach. Figure 8 illustrates how the TEQ depth limit
affects the indexing time and TKQN query processing time using
POWER, POWER-S, and POWER-S. As the depth increases, the
indexing time increases and the query latency slightly decreases. In
fact, the decrease in query latency is much less than the increase in
indexing time. POWER-T still outperforms POWER and POWER-S
in all cases.

TEQ spatial blocks number. The TEQ spatial blocks number,
detailed in Section 5.1.2, refers to the number of spatial blocks fur-
ther divided from each leaf cell, which is proposed to speed up the
process of incrementally retrieving the nearest neighbor objects to
𝑞.𝑙𝑜𝑐 in POWER-S. Figure 9 illustrates the effect of the number of
spatial blocks in each leaf cell on the indexing time and query pro-
cessing time. The indexing time is slightly affected by the number
of spatial blocks. This is because the total number of mappings does
not change, regardless of the number of blocks. More blocks lead to
less number of mappings in each block and vice versa. The query
processing time for POWER-S slightly decreases as the number of

20

40

60

80

100

120

10k 20k 30k 40k 50k

I
n
d
e
x
i
n
g

T
i
m
e

(
s
)

Cell Size

TEQ

(a) Indexing Time

10
0

10
1

10
2

10
3

10k 20k 30k 40k 50k

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

Cell Size

POWER
POWER-S
POWER-T

(b) Query Latency

Figure 7: The Effect of TEQ Cell Size

20

40

60

80

100

120

140

5 10 15 20 25

I
n
d
e
x
i
n
g

T
i
m
e

(
s
)

Depth

TEQ

(a) Indexing Time

10
0

10
1

10
2

10
3

5 10 15 20 25

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

Depth

POWER
POWER-S
POWER-T

(b) Query Latency

Figure 8: The Effect of TEQ Depth

20

40

60

80

100

120

25 100 225 400 625

I
n
d
e
x
i
n
g

T
i
m
e

(
s
)

Block Number

TEQ

(a) Indexing Time

10
0

10
1

10
2

10
3

25 100 225 400 625

Q
u
e
r
y

L
a
t
e
n
c
y

(
m
s
)

Block Number

POWER
POWER-S
POWER-T

(b) Query Latency

Figure 9: The Effect of TEQ spatial blocks number

blocks increases. This is because the increasing number of blocks
results in fewer entries in the priority queue during the POWER-S
query processing, which reduces the processing time. The query
processing time for POWER and POWER-T is not affected by the
number of spatial blocks.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 TEQ Indexing
	4.1 TEQ Index Structure
	4.2 TEQ Index Construction

	5 Query Processing
	5.1 TKQN Processing
	5.2 BKQN Processing

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Parameter Tuning
	6.3 TKQN Query Evaluation
	6.4 BKQN Query Evaluation

	7 Conclusion
	References
	A Index Parameter Tuning

