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Simulating the dynamics of interacting quantum systems is a 
foundational problem in quantum science, underlying the 
computation of electronic and optical characteristics of mate-

rials and microelectronic devices, prediction of chemical reaction 
kinetics, and even shedding light on the development of the early 
Universe. Early exploration of quantum dynamics has already 
yielded fundamental insights into the quantum underpinnings of 
thermodynamics and quantum chaos1 (and their alternatives2), as 
well as uncovered striking classes of universal behaviour and critical 
phenomena in the structure of quantum many-body entanglement. 
Unfortunately, simulating quantum dynamics with classical com-
puters is also a notoriously difficult problem, generically requir-
ing resources scaling exponentially in either size or evolution time 
of the simulated system. By contrast, it has been known, for some 
time, that quantum computers can simulate quantum dynamics 
with resources (qubit number and circuit depth) scaling only poly-
nomially3. For this reason, quantum dynamics simulation is widely 
regarded as a likely candidate for the first realization of practical 
quantum advantage4.

Large-scale quantum simulations of simple models have been 
achieved in special-purpose quantum simulation platforms5–7, but 
modelling realistic materials and processes will require universal, 
fully programmable quantum computers. At present, however, such 
computers have small quantum memories (qubit numbers); even as 
they surpass the scale of ~50 qubits necessary to provide a quan-
tum advantage in principle, much larger systems will be needed to 
simulate systems of typical physical interest, such as complex mol-
ecules or bulk materials. Recently, a variety of quantum simulation 
algorithms based on quantum tensor-network methods have been 

developed8–16 that afford substantial resource savings when simulat-
ing systems with less than maximal entanglement. Especially when 
combined with opportunistic mid-circuit measurements and reuse 
of qubits during a quantum computation10, quantum tensor-network 
algorithms enable the simulation of systems with far more quantum 
degrees of freedom than can be directly mapped onto the qubits 
available in hardware. When implemented on quantum computers 
with enough qubits to prohibit classical simulation, such algorithms 
may open an immediate path to quantum advantage in large-scale 
simulations of complex chemicals and materials.

In this work, we use Quantinuum’s H1-1 and H1-2 trapped-ion 
quantum processors (some data in this paper were taken when 
model H1 quantum computers were operated by Honeywell 
Quantum Solutions) to implement the first experimental dem-
onstration of the tensor-network-inspired holographic quantum 
dynamics simulation (holoQUADS) algorithm10, which we use to 
simulate an initially entangled infinite-size spin system evolving 
under chaotic quantum dynamics. Our results demonstrate that 
the fidelities and mid-circuit measurements and qubit-reuse capa-
bilities of the Quantinuum devices enable quantum tensor-network 
methods to perform accurate quantum dynamics simulations of 
large-scale many-body systems.

With conventional Hamiltonian simulation techniques, simulat-
ing the dynamics of a system of size L requires O(L) qubits, and 
the achievable simulation time t is limited by gate fidelities. By 
interchanging resource scaling involving space (qubit number) 
and time (circuit depth), holoQUADS enables the time evolu-
tion of arbitrarily large systems up to time t set by the number of 
available qubits, independent of L, thereby allowing for the study 
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of large systems approaching the ‘thermodynamic’ limit (L → ∞) 
of interest to physicists. Moreover, holoQUADS leverages a com-
pact representation of dynamics starting from initial correlated 
states, such as low-energy states of many-body Hamiltonians, 
requiring only (roughly) one additional qubit per unit of bipartite 
entanglement in the initial state. These initial correlated states can 
be analytically determined, through classical simulation, or using 
existing quantum algorithms, for example, quantum variational  
algorithms17.

Taken together, these features ensure that qubit resources are 
not only much lower than with conventional methods but also are 
optimally utilized: time evolution of a state with initial entangle-
ment entropy S0 generically produces entanglement bounded by 
S(t) ≲ S0 + ct (c is a model-dependent constant)18. Since holoQUADS 
requires one qubit per bit of initial entanglement plus an additional 
number of qubits linear in t to enact the time evolution, resulting 
in a total qubit scaling N ∼ S(t), we see that every qubit is allocated 
directly towards the classically hard feature of time evolution in 
many-body quantum systems: the growth of entanglement.

HoloQUADS algorithm. HoloQUADS10 simulates the time evolu-
tion of correlated initial states expressed as matrix product states 
(MPSs). For this work, we consider MPS of a half-infinite system 
with translationally invariant tensors over a two-site unit cell, which 
can be written as

|ψ0⟩ =
∑

σ1 ,σ2 ,···∈{↑,↓}
ℓ
T
N

(σ1 ,σ2)
N

(σ3 ,σ4)
· · · |σ1σ2σ3σ4 · · · ⟩ . (1)

Here |σ1σ2…〉 is the eigenstate of all Pauli operators σz
i  with eigenval-

ues σi; N  are rank-four tensors, that is, χ × χ matrices for each spin 
configuration (σi, σi+1); ℓ is a vector specifying the left-boundary 
condition; and bond dimension χ controls the amount of entan-
glement present in the state (very roughly, to capture a state with 
bipartite entanglement S, one needs χ ≈ eS). As originally discussed 
elsewhere19, any MPS can be realized as a quantum circuit where 
tensors N  are implemented by a unitary UN  acting on a pair of ‘sys-
tem’ qubits (representing a pair of neighbouring spins) initialized to 

|0〉, and nb = ⌈log2χ⌉ ‘bond’ qubits that represent the χ-dimensional 
bond space. Following the language used elsewhere12, we refer 
to MPS prepared this way on a quantum processor as quantum  
MPS (qMPS).

Although a length-2L section of the half-infinite qMPS described 
above naively requires nb + 2L qubits to represent, mid-circuit mea-
surements and qubit reuse allows us to ‘holographically’ represent it 
using only nb + 2 qubits10,20 (Fig. 1b). An MPS evolving in time under 
the influence of a one-dimensional (1D) quantum circuit with lay-
ers of gates acting on neighbouring qubits also admits a holographic 
representation (Fig. 1). Due to the causal ‘light-cone’ structure of 
the quantum circuit and the qMPS initial state, the measurement 
results at the top (larger t) of the circuit are only affected by a subset 
of qubits at the bottom (smaller t). The circuit can, therefore, be 
executed going from left to right in slices bounded by the orange 
dashed lines shown in Fig. 1a,d, where in each slice, two qubits 
are reset for later reuse. Simulating t layers of nearest-neighbour 
time evolution of the MPS with bond dimension χ (equation (1)) 
with holoQUADS requires nb + t + 2 qubits (nb = ⌈log2χ⌉), giv-
ing a logarithmic resource reduction compared with classical 
tensor-network techniques (which require memory scaling polyno-
mially with χ and exponentially in t). Note that the scaling is inde-
pendent of L; therefore, holoQUADS can be used to time evolve 
an arbitrarily large section of a half-infinite qMPS. Moreover, the 
size-2L subsystem simulated by holoQUADS can span multiple 
depth-t light cones of width 2t + 1, which allows for the measure-
ment of correlation functions separated by distances r > 2t + 1 
(which can be non-zero due to the correlations present in the initial  
qMPS state).

Chaotic circuit dynamics benchmark. As the first demonstration 
of holoQUADS, we focus on the dynamics of the self-dual kicked 
Ising (SDKI) model21,22. In this model, a spin chain evolves under an 
Ising interaction and integrability-breaking longitudinal field h and 
is periodically ‘kicked’ by a transverse (X) field:

H(t) =
∑

i

(

π

4 σ
z
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Fig. 1 | Holographic simulation of the kicked Ising model. a, Schematic of the SDKI model evolution (t = 2 Floquet periods) and its quantum circuit 
implementation (t = 4), which stroboscopically alternates between Ising interactions plus z field and π/2 ‘kicks’ by a transverse (x-axis) field. The green 
squares are dual-unitary gates, and the blue rectangles represent site tensors for the initial correlated MPS, |ψ0〉. b, |ψ0〉 is holographically prepared as a 
qMPS implemented by unitary gates (shown in detail in c) and mid-circuit measurements and resets (here qMPS measurements are shown in the  
σz basis). For holoQUADS, measurements are postponed until after the time evolution (as shown in a). d, The same state preparation and time evolution 
redrawn as a holographic quantum circuit using mid-circuit measurements and qubit recycling (holoQUADS algorithm).
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Here σi are Pauli operators on site i of length-2L spin chain. For 
h ≠ 0, the SDKI is non-integrable23, exhibiting the chaotic and ther-
malizing behaviour generically expected for non-integrable quan-
tum dynamics. Moreover, recent analytical techniques enable the 
exact calculations of many of its properties22–24, rendering it a pow-
erful benchmark for the performance of holoQUADS.

As illustrated in Fig. 1a, the time-evolution operator of the SDKI 
model, namely, Ut = T {e−i

∫ t
0 H(s)ds

}, can be recast (at discrete times 
t ∈ Z and up to boundary terms in time) as a 1D quantum circuit 
consisting of alternating even–odd layers of two-qubit gates as23,24

U = (u+ ⊗ u−)e−i π
4 (σx

⊗σx
+σy

⊗σy
)(v− ⊗ v+). (3)

Here u+ = e−iσzei π
4 σxe−i π

4 σy
, u− = ei π

4 σxe−i π
4 σy, v− = ei π

4 σye−ihσz and  
v+ = ei π

4 σy
 are single-qubit rotations. For any single-qubit uni-

taries u±, v±, this gate satisfies a special dual-unitary prop-
erty23,24: U†U = = Ũ†Ũ , where the dual Ũ  of a two-qubit 
gate U is defined by a reshuffling of indices, namely, 
⟨k| ⊗ ⟨l| Ũ |i⟩ ⊗ |j⟩ = ⟨j| ⊗ ⟨l|U |i⟩ ⊗ |k⟩.

Dual-unitary circuits can be interpreted as circuits that gener-
ate time evolution in both time and space. Many of their proper-
ties, such as spectral form factors and entanglement spectra, spread 
of local operator correlations, and out-of-time ordered correlators, 
can be analytically computed for special initial conditions: either 
infinite-temperature states23 or ‘exactly solvable’ MPSs25 of the form 
shown in equation (1) with

N

(σ,σ′
)

i,j = ⟨j| ⊗
〈

σ
′
∣

∣W |i⟩ ⊗ |σ⟩ (4)

defined by a generic unitary matrix W ∈ U(2χ). Although the 
dual-unitary property is clearly fine-tuned and results in some 
peculiar features that do not survive generic perturbations, such 

as correlations spreading at the maximum possible velocity, 
dual-unitary circuits (for example, for h ≠ 0 in the SDKI model) 
are typically non-integrable and exhibit generic features of chaos, 
ergodicity and thermalization26,27. This combination of striking fea-
tures and solvability make the SDKI model an important minimal 
model of quantum dynamics and, for our purposes, a useful bench-
mark for dynamical simulation. Another study25 derived the exact 
thermodynamic-limit expressions for equal-time two-point correla-
tion functions of Pauli operators. Following that work, we consider 
the smoothed correlation functions

Cαβ(r, t) = 1
4L

∑2L

j=1

∑

δ=0,1
⟨ψ t|σ

α
j σ

β

j+r+δ|ψ t⟩, (5)

for which the sum over δ removes the even–odd effect, making the 
correlations easier to visually interpret. Here |ψt〉 is the wavefunc-
tion after the tth layer of the circuit (Fig. 1a).

Implementation on a trapped-ion quantum processor. We imple-
ment holoQUADS of the SDKI model for a section with 2L = 32 sites 
of a half-infinite chain on Quantinuum’s H1-1 trapped-ion quantum 
processor (Fig. 2), using between three and eleven 171Yb+ hyper-
fine qubits, depending on the number of simulated circuit layers  
(Table 1). Note that there is no strict limitation on L, since holo-
QUADS (as implemented here) simulates a half-infinite chain, and 
larger L would simply have incurred marginally longer run times 
on the quantum computer (scaling linearly with L). However, cor-
relations outside the 32-site measurement window are negligible 
for the initial correlation length and evolution time accessible 
with currently available qubit numbers. Note that Table 1 shows 
the resources required for our holoQUADS experiments after a 
circuit identity was used to reduce the number of two-qubit gates 
(Supplementary Information).

Zone TQ SQ SPAM

G2 99.67(5) 99.997(3) 99.72(7)

G3 99.81(3) 99.998(2) 99.74(9)

G4 99.66(5) 99.994(2) 99.73(8)

Mean 99.71(8) 99.996(3) 99.73(7)

G4 G3 G2G5 G1

171Yb+

138Ba+

a

b c

∣q0
⟩

∣q1
⟩

Cooling

Fig. 2 | Quantum computer used in this work. a, Section of the Quantinuum H1-1 segmented-electrode surface trap, showing five gate zones in purple 
(750-μm-wide ion-crystal extents and laser-beam waists are not drawn to scale). The computer operates similar to the one described elsewhere35 (except 
with the parallel-gate operation across the three central gate zones (G2–G4)), with 171Yb+ qubit ions (green) and 138Ba+ coolant ions (white) stored in either 
two-ion or four-ion crystals. Arbitrary pairing of qubits is achieved by transporting ions36–38 along the linear radio-frequency null (dashed line) 70 μm above 
the surface. b, Sympathetic ground-state cooling followed by our two-qubit, phase-insensitive Mølmer–Sørenson gate is implemented in parallel across 
G2–G4 on Yb–Ba–Ba–Yb crystal configurations. Each crystal is roughly 8 μm in extent, and the cooling and gate lasers (wavelengths, 493 and 368 nm, 
respectively) have nominal beam waists of 17.5 μm. c, Typical (that is, representative over the duration of data taking) average fidelities of single-qubit 
(SQ) gates, two-qubit (TQ) gates and combined state preparation and measurement (SPAM) undertaken via randomized benchmarking.
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The mid-circuit measurement and reset operations that enable 
holographic algorithms are performed with high fidelity by tem-
porarily separating28,29 the targeted and spectator ions from one 
another by a distance that is large (≳180 μm) compared with the 1/e2 
radius of the resonant laser beam (between 13 and 20 μm depend-
ing on the zone) used for measurement and reset30. Crosstalk is 
further suppressed by temporarily moving the spectator ions off 
the radio-frequency null, which Doppler shifts the light from reso-
nance31, resulting in crosstalk errors on spectator qubits of ≲1 × 10−3 
for resets and ≲5 × 10−3 for measurements in the worst case (that is, 
for a spectator qubit in the worst-possible location), and nearly an 
order of magnitude lower than that on average.

We prepare an initial qMPS corresponding to equation (4) 
with W = exp[−i

∑

α=x,y,zKασα
⊗ σα]. Using the circuit identi-

ties shown in Fig. 1c, we can implement tensors N  (correspond-
ing to W) as a unitary circuit by creating a Bell pair of the physical 
qubits to appropriately reorder the qubit lines. We ran nine holo-
QUADS time-evolution circuits (one for each duration t = 0, 1,…, 8 
of time evolution), in each case executing 16 ‘slices’ of holoQUADS  
(Fig. 1), resulting in a simulation of a 32-site section of the 
half-infinite MPS. The resource requirements for these circuits, such 

as the number of two-qubit gates used, are summarized in Table 1. 
Each circuit was repeated 1,000 times to reconstruct the estimates of 
correlation function Cxx(r, t). The experimental results are summa-
rized in Fig. 3, and show excellent quantitative agreement with the 
exact theoretical results in the thermodynamic limit (Fig. 3c, lines), 
which were obtained by contracting tensor-network diagrams 
described elsewhere25 using the ITensor library32. We clearly observe 
that correlations propagate with the maximum velocity along a 
sharp light cone (Fig. 3a), which is the hallmark of dual-unitary 
circuit dynamics33; furthermore, correlations decay exponentially 
along the light cone, indicating the ergodic (non-integrable) char-
acter of the dynamics (Fig. 3e). Note that the data shown in Fig. 3 
are only a slightly processed form of the raw experimental data. The 
only form of error mitigation we apply is to detect the leakage of the 
bond qubit out of the qubit-state manifold at the end of the holo-
QUADS algorithm (Supplementary Information). The results are 
post-selected on experimental trials without bond-qubit leakage, 
which amounts to neglecting less than 3% of the total data (Table 1 
provides the leakage statistics).

Finally, we note that holoQUADS is not restricted to the  
simulation of dual-unitary models. Results from a holoQUADS  

Table 1 | Experimental resources

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

No. of qubits 3 5 5 7 7 9 9 11 11

No. of SQ gates 214 273 308 360 394 454 488 556 590

No. of TQ gates 66 87 104 129 146 175 192 225 242

% leaked 3.1 1.7 2.0 1.9 2.4 3.6 3.7 1.7 2.5

The required resources and detected leakage for the nine dual-unitary holoQUADS experiments. Each column corresponds to the simulated time evolution of a half-infinite MPS for time t. For each value of 
t, the associated circuit extracts correlation functions over 32 lattice sites, which involved 32 mid-circuit measurements and qubit resets, and each circuit was repeated 1,000 times to gather statistics. The 
first row lists how many qubits were used in each experiment. The second and third rows list how many single-qubit (SQ) and native two-qubit (TQ) gates were used, respectively. The last row indicates the 
percentage of the 1,000 experimental trials that were discarded due to the detected leakage of bond qubits (Supplementary Information).
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Fig. 3 | Experimental data. a, Colour plot of equal-time spin–spin correlators Cxx(r, t) for the SDKI model with h = 0.2 starting from a qMPS with the 
parameters (Kx, Ky, Kz) = (0.30, 0.50, 1.25) explored elsewhere25, showing theoretical results (left side, r < 0) and experimental results (right, r > 0). The 
correlators exhibit two characteristic features of generic dual-unitary circuit dynamics: correlations spread with the maximum velocity along the ‘light 
cones’ of the circuit and correlations decay exponentially along the light cones. Note that the data in this plot are aggregated into bins (r ∈ {2j, 2j + 1} for 
j > 0) containing symmetry-equivalent sites to smooth and reduce statistical fluctuations. b, The same correlator for a perturbed version of the SDKI model, 
which is not dual unitary. c,d, Traces of Cxx(r, t), with data offset vertically by 0.1t for clarity, with dots showing the dual-unitary (c) and non-dual-unitary 
(d) experimental data. The error bars show the standard error due to finite sampling, and the coloured lines show the theoretical results. e, Log-linear plot 
of correlations along three different dual-unitary light-cone trajectories (the precise set of r and t values for each curve are indicated in the inset), with 
different offsets, k = 0, 1, 2, from the centre of the light cone. Each dataset shows the characteristic exponential decay of correlations along the light cone.
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experiment on the Quantinuum H1-2 device for a non-dual-unitary 
model (a perturbed version of the SDKI model with the two-qubit 
gate U = (u+ ⊗ u−)e−i π

4 α(σx
⊗σx

+σy
⊗σy

)(v− ⊗ v+) for α = 1/2), 
which agree well with theoretical predictions (determined by MPS 
numerics), are shown in Fig. 3b,d (Supplementary Information).

Discussion. Our results showcase both viability of quantum com-
puters (for solving classically hard and practically relevant models 
of many-body quantum dynamics) and the benefits of mid-circuit 
measurement and qubit reuse (for simulating complex quantum 
dynamics of large, highly correlated quantum systems using quan-
tum processors with limited qubit numbers). We emphasize that 
although we have demonstrated the holoQUADS algorithm for a 
finely tuned dual-unitary circuit, we have done so for benchmark-
ing purposes. Dual-unitary circuits admit a convenient classical 
shortcut to a solution despite worst-case (from a classical simula-
tion perspective) ballistic growth of entanglement, as well as retain-
ing many of the features expected of generic quantum dynamics. 
Our implementation of holoQUADS does not take advantage of any 
of the fine-tuned self-dual structure of these circuits, and can be 
implemented to achieve significant resource savings in any situation 
where one would like to time evolve a correlated but not maximally 
entangled initial state, which we demonstrated with a holoQUADS 
experiment on a non-dual-unitary circuit.

Although our current results can be readily simulated by classi-
cal time-evolved block decimation methods (or by directly simulat-
ing the quantum algorithm, which involved no more than 11 qubits 
in this work), the excellent agreement with the exact results at all 
the simulation times demonstrates that we are currently limited 
by our qubit numbers rather than our gate fidelities. As quantum 
hardware with comparable gate fidelities and larger qubit numbers 
becomes available, which will enable deeper time evolutions of large 
systems, we expect that quantum tensor-network methods will 
enable further progress towards the ultimate goal of outperform-
ing classical simulation capabilities on problems of direct physi-
cal relevance. Obvious targets for quantum advantage dynamics 
simulation include long-time dynamics of 1D systems for which 
the cost of classical time-evolved block decimation methods grows 
exponentially in time due to linear-in-time entanglement growth 
(Supplementary Information provides a resource estimate of a 1D 
dynamics quantum advantage experiment), the dynamics of two- 
and three-dimensional systems, which can be holographically rep-
resented as isometric tensor networks34, or the dynamics of systems 
with longer-range (for example, truncated Coulomb) interactions.
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