PHYSICAL REVIEW LETTERS 128, 150504 (2022)

Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer
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The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a
mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits,
thereby achieving dramatic resource savings when simulating quantum systems with limited entanglement.
We experimentally demonstrate a significant benefit of this approach to quantum simulation: the
entanglement structure of an infinite system—specifically the half-chain entanglement spectrum—is
conveniently encoded within a small register of “bond qubits” and can be extracted with relative ease.
Using Honeywell’s model HO quantum computer equipped with selective midcircuit measurement and
reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly
in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding

the bond-qubit register.
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Of the many applications considered for near-term
quantum computers, the simulation of strongly correlated
quantum systems stands out for being useful, hard
classically, and tolerant of at least some imperfections
(nature is, after all, a noisy place). Yet even in simulating
quantum systems, a problem so well tailored to quantum
computing that it is often credited with initiating the field,
solving classically hard problems of real utility remains
stubbornly out of reach. Part of the difficulty is that—
unlike the outputs of random unitaries [1,2]—states of
physical quantum systems are highly structured, which the
best classical algorithms exploit; quantum advantage may
well require quantum algorithms that can similarly exploit
this structure. Notable recent progress has been made
along these lines, with quantum algorithms designed
around various classical tensor-network methods [3-11].
Here, we demonstrate for the first time a remarkable
feature of these algorithms: in addition to inheriting
considerable resource savings from their classical pre-
cursors, they also provide a remarkably direct encoding of
the entanglement structure in states they represent. The
latter point is especially enticing, as many-body entangle-
ment entropy offers valuable information-theoretic
insights into the structure of complex quantum matter
that cannot be captured by local correlations [12,13];
understanding its structure sheds light on the quantum
foundations of thermodynamic entropy [14], thermaliza-
tion and quantum chaos [15], and even perhaps the
geometry of space-time itself [16]. Moreover, universal
scaling features of entanglement [17], such as central
charge and its higher dimensional analogs, have
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entanglement-based interpretations and serve as finger-
prints of critical phenomena.

A key technical challenge in running many such algorithms
is the necessity to perform selective midcircuit measurement,
reset, and reuse (MCMR) of qubits during a quantum circuit.
Long recognized as a crucial ingredient for scalable quantum
computation, this ability and other closely related capabilities
have been realized in several quantum computing platforms
[18-20]. Trapped ions in particular afford several convenient
and high-fidelity approaches, including dynamic spatial
isolation [18,21,22], shelving [23], and dual-species quantum
logic gates [24-26]. Until very recently [27-29], however,
MCMR had not been implemented on commercial quantum
computing hardware.

In this Letter, we use a trapped-ion quantum computer
equipped with MCMR [Fig. 1(a)] to implement an efficient
quantum algorithm for extracting the near-critical entan-
glement entropy of correlated spin chains. We apply this
algorithm to the transverse-field Ising model (TFIM)
[30], and are able to clearly and quantitatively observe
the divergence of bipartite entanglement entropy upon
approaching the quantum phase transition separating its
ordered and disordered phases.

In its simplest incarnation, the algorithm we employ
involves one “system qubit,” one “bond qubit,” and
repeated applications of the process shown in Fig. 1(b):
(1) reset the system qubit, (2) apply a unitary entangling
operation between the system qubit and bond qubit, and
(3) measure the system qubit. More generally, an n,-qubit
bond register propagates spatial correlations of an arbitrary
bond dimension y = 2" matrix product state (MPS)
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FIG. 1. Using Honeywell’s HO quantum computer described in
Ref. [29] and shown in (a), we execute a state-preparation
algorithm for arbitrary matrix-product states (MPS) (b). (c) The
algorithm consists of repeatedly entangling a single system qubit
(gray) with a register of logy “bond” qubits (purple) in order to
encode a bond dimension y MPS (here we show the case of y = 2,
which requires a single bond qubit). The spatial extent of the MPS
is encoded in the temporal extent of the algorithm, with properties
of the nth site corresponding to the measurement record of the
system qubit prior to reset at the nth iteration.

through time, and each successive (in time) measurement of
the system qubit extracts local information about the next
adjacent site in the spatial extent of the MPS [Fig. 1(c)],
from which we reconstruct an experimental estimate of
its energy. Moreover, the reduced density matrix of the
bond qubit after the jth iteration encodes the reduced
density matrix of the half-chain containing sites up to and
including j. The number of bond qubits n,;, determines the
accessible MPS bond dimension y, which grows exponen-
tially as y = 2", enabling an extremely rapid convergence
of results in the number of available bond qubits. Our data
show that even for n;, = 2 the divergence of entanglement
entropy at the phase transition is quite sharply resolvable.
Quantum MPS.—Matrix product states are an ansatz
designed to efficiently capture the properties of 1D systems
with limited entanglement [31], and have been employed
extensively in classical simulations of 1D and quasi-2D
quantum systems [32]. An MPS of a half-infinite system
with translationally invariant tensors [33] can be written

W) = > La(Vanve® ooy ). (1)
01,a1,...

Here, o indexes a set of basis states on site j, the Vg/} are
tensors with bond indices @, # € {1,2, ..., y} (with y being
the bond dimension of the MPS), and L is a vector
determining the left-boundary conditions. We restrict our
attention to qubits as the physical degrees of freedom, in
which case the physical indices take values ¢; = 0, 1 [34].
The MPS can be drawn schematically as in Fig. 2(a), where
each tensor is a box with a leg for each index, and joined
legs imply tensor contraction of the associated indices.
Any MPS can be generated as a quantum circuit by
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FIG. 2. Quantum MPS. The tensors of a matrix product state
(a) can be embedded in unitary matrices (b) in order to generate
the MPS as the output of a quantum circuit (c). By executing any
desired measurements as soon as possible, the system qubit
representing site n can be reset and reused as the system qubit on
site n + 1, leading to an equivalent circuit with just a single
system qubit (d). Entanglement entropy of the MPS across a
bipartition (dashed vertical line in the figures) becomes entan-
glement entropy of the bond qubits immediately after crossing
that partition (e), as future gates cannot affect the state prior to the
partition.

embedding the tensors [35] in unitary matrices U as vy =
((e] ® (B))U(]0) ® |)) [see Fig. 2(b)], in which case the
generating circuit involves a bond register interacting
sequentially with the system qubits one by one,

[¥) = UspUip(-- ®10), ® [0);) ® L), (2)

as shown in Fig. 2(c). As pointed out in Refs. [4-6], the
sequential structure of the circuit in Fig. 2(c) enables any
qubit to be sampled at the circuit output prior to the next
qubit being gated, and therefore the entire circuit output can
be sampled by repeatedly measuring, resetting, and reusing
a single system qubit, as in Fig. 2(d).

Any MPS is equivalent to a quantum channel defined on
the bond indices, which get reinterpreted as labeling states
in a fictitious bond Hilbert space [36]. In the method just
described for generating an MPS with one system qubit, the
bond Hilbert space is explicitly realized by the bond-qubit
register, and the process of initializing the system qubit,
gating it with the bond qubit register, and then ignoring
it (tracing it out) is precisely the unitary embedding
(Stinespring dilation) of this bond-space quantum channel.
A convenient consequence of this equivalence is that the
bipartite entanglement spectrum induced by cutting an
infinite chain into two halves A and B, i.e., the eigenvalues
of py = Trg(|¥)(¥|), can be extracted from the steady
state of this quantum channel [37]. The relationship
between the entanglement spectrum of an MPS and the
steady state of its associated channel is readily apparent in
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the unitary embedding employed here. The infinite MPS
case is well approximated by the half-infinite MPS we
generate if we place the cut sufficiently far from the left
boundary and then trace out the right (or left) half, as in
Fig. 2(a). Figure 2(d) shows the state preparation scheme
used here with the equivalent cut. Because the left half of
the chain is fully formed immediately after the bond qubits
reach the point in the circuit corresponding to the biparti-
tion (dashed line), its entanglement entropy can only result
from entanglement between it and the bond qubits, and
can be extracted at that point without ever building the right
half of the state. By the symmetry of entanglement spectra
across the cut, the spectra of p,4 is then identical to that of
the bond-qubit register at this point, as shown in Fig. 2(e).

Demonstration—As an example of the MPS preparation
technique and entanglement entropy extraction, we use
Honeywell’s model HO QCCD trapped-ion quantum com-
puter [29] to construct MPS approximations to the ground
state of the transverse-field Ising model (TFIM), with
Hamiltonian

H==Y (Z;Zj.1 +X)). (3)

For transverse-field strengths 4 > 1 the TFIM ground state
is disordered with respect to the Z, symmetry of the
Hamiltonian, while for 4 < 1 the ground state spontane-
ously breaks that symmetry, and these phases are separated
by a continuous quantum phase transition. When approach-
ing the transition from either side, the entanglement
entropy diverges logarithmically [38], reflecting the diver-
gent correlation length and serving as a sensitive probe of
the phase transition [39].

The quantum computer operates with up to six qubits
and two gate zones (see Ref. [29] for a detailed description
of the quantum computer architecture and operations).
Each qubit is encoded in the states |1(0)) = |F = 1(0),
my = 0) of the S}, ground-state hyperfine manifold of a
7lYb+ jon, with F and my quantum numbers of the
total internal angular momentum and its projection along
a =5 G applied magnetic field, respectively. Qubit ions are
cotrapped with an equal number of '3®¥Ba™ ions, which are
used to sympathetically cool the motion of the qubits
during a quantum circuit without impacting their logical
state. All laser-based operations (gates, measurement, and
reset) are carried out in the two gate zones shaded blue and
orange in Fig. 1(a). The ions are stored in either Ba-Yb or
Ba-Yb-Yb-Ba crystals, with single-qubit gates (average
fidelity ~99.97%) performed on the former and two-qubit
gates (average fidelity =99.2%) on the latter. Arbitrary
connectivity of two-qubit gates is achieved by physically
rearranging the qubits between the various crystals into
suitable pairs prior to gating the pairs within each crystal.

For the present demonstration, it is crucial that the
system qubit can be selectively measured and reset in

the middle of a circuit without impacting the bond qubits,
which encode the MPS and its entanglement structure. Both
reset and measurement involve applying resonant light
either on a cycling transition (measurement) or to optically
pump |1) — |0) (reset) [40], and even a single resonant
photon scattered by a bond qubit causes an error on that
qubit. To avoid such crosstalk, qubits that are measured or
reset in the middle of a circuit are temporarily isolated
[18,21,22] from all other qubits by at least 110 pm during
the reset process, whereas the reset beams have an effective
1/€? radius of ~25 ym. MCMR crosstalk is further sup-
pressed by using independent electrode control to push
unmeasured qubits off the trap axis, inducing micromotion
due to the rf trapping potential. This motion effectively
causes the measurement and reset laser to appear phase
modulated in the frame of the unmeasured qubits, displac-
ing a large fraction of the already low laser intensity into
off-resonant sidebands. Detailed analysis of the measure-
ment and reset crosstalk in this system can be found in
Ref. [41], but for our purposes it suffices to know that the
average infidelity induced on spectator qubits due to reset
(measurement) crosstalk is <4 x 107#(2 x 1073).

In order to demonstrate the state preparation method
and the extraction of entanglement entropy, we classically
optimize MPS approximations to the TFIM ground state
over a range of A and decompose their unitary embeddings
into our native gate set. In principle, scaling these tech-
niques to bond dimensions outside the reach of classical
MPS optimization should be possible by utilizing para-
metrized circuits and feeding energy estimates from the
quantum computer into a classical optimization routine
[6,42]. We first perform a scan across the phase transition
for a y = 2 MPS, which requires only a single bond qubit.
Since the quantum computer has two gate zones we
generally run 2 parallel copies of the state preparation
scheme. While our goal is to extract entanglement entropy
from the bond-qubit register, preparation of the bond qubit
steady state by MPS channel iteration automatically pro-
vides an opportunity to sample local correlation functions
along the way (after sufficient channel iterations to con-
verge to bulk values, but prior to destructive measurement
of the bond-qubit register). Utilizing identical circuits to
those run for entanglement entropy measurements at bond
dimension y = 2, we make sequential measurements of the
system qubit in subsequent bases X, Z, Z, as shown in
Fig. 3(a). For j — 1 iterations of the circuit block shown in
the black-dashed box in Fig. 3(a), this procedure provides
sufficient data to estimate both (X;) and (Z;,,Z;,,), which
(by discrete translational invariance) allows us to recon-
struct (H) for large enough j. In practice, we always choose
J sufficiently large that boundary-induced errors are well
below anticipated shot noise [43]. The results of these
energy estimates for 5000 total shots per value of 1 are
shown in Fig. 3(b), and are in good agreement with the
exact ground-state energy of the infinite TFIM.

150504-3



PHYSICAL REVIEW LETTERS 128, 150504 (2022)

-1.0F
> -1.2}
5] Data
o —
G 4 x =2sim
—1.6} + shot noise ——
Exact —
-1.8 . , ) . . >
0.6 0.8 1.0 1.2 1.4
A
(c)
0.8 numerics = Slr =2) ﬂ
){ = 2 ......
0.6}
X = 4 —
Z —
B 04F X T OO0 e
0.2 %E’
& S. =4
0.Qk=sssm=amnos = é p—= SNz =4 }

0.6 0.8 1.0 1.2 1.4 1.6

|L;) A
(d  Bona 10) XY Z
qubits |0> U/1 UA XZY
System qubit | Q) —__}— | 0)—

FIG. 3. (a),(b) Circuits for extracting bipartite entanglement
entropy of a y =2 (a) or y =4 (b) MPS. (c) Measured
entanglement entropy for the TFIM. Open purple circles are
data taken with n, = 1, and the purple dashed line shows the
entanglement entropy of the lowest-energy MPS at y = 2" = 2.
Results using n;, = 2 are shown as filled green circles, and the
solid green line corresponds to the lowest-energy y = 4 MPS.
The black-dotted line is the exact entanglement entropy com-
puted following Ref. [46]. All error bars represent +¢ confidence
intervals obtained by bootstrapping. (a) Circuits to extract energy
estimates from a bond dimension 2 MPS. (b) Solid line is the
exact ground-state energy of the infinite-size TFIM. Experimen-
tal data (purple, 1o error bars) agrees reasonably well from deep
inside the ordered phase into the disordered phase. The gray
shaded region is a lo confidence interval from a numerical
simulation with the same shot-count as the experiment.

We extract the TFIM bipartite entanglement entropy by
running the same circuits, except instead of making
measurements on the system qubit [47] we simply extract
the bond-register density matrix p, by state tomography
after the jth iteration. Results for the entanglement entropy
Sy = —Tr(py log, p,,) are shown as open purple circles in
Fig. 3(c), and agree well with numerical calculations of the
bipartite entanglement entropy for the y = 2 MPS approxi-
mation to the ground state. At any finite bond dimension
the peak entropy will also be finite, but the y = 2 peak is
also significantly shifted toward the disordered side. This
behavior is expected and reflects the tendency for any
ansatz that limits entanglement (e.g., mean-field theory) to

overestimate a system’s inclination to order. To better
resolve the entropy divergence at the critical point, we
took more data just on the disordered side of the transition
using one additional bond qubit, giving a y =4 MPS
[circuits shown in Fig. 3(d), data shown as filled green
circles in Fig. 3(c)], and we see that the growth of
entanglement near the true critical point becomes rapidly
resolvable upon increasing the size of the bond qubit
register. For comparison, a similarly accurate estimate of
the entanglement entropy at the point nearest to the phase
transition (4 = 1.01), if achieved by directly preparing the
ground state of a large enough system to sufficiently
suppress boundary effects, would require 40 qubits.

Note that all of the data in Fig. 3 utilize zero-noise
extrapolation [44] to mitigate errors on the two-qubit gates
[43]. For the y = 4 data, we also employ a symmetry-based
selection criterion to reduce the number of measurement
settings required for tomography of the bond-qubit register.
While boundary effects can be suppressed arbitrarily by
iterating the MPS channel a larger number of times, this
comes at the cost of total run-time. To minimize run-time for
the y = 4 circuits, we let the initial state of the bond-qubit
register |L;) = W,|0) ® |0) be a function of 4, and classi-
cally optimized the unitary W to minimize the required burn
in [43]. Note that this optimization always leaves the bond
qubit in a pure state, so any measured entropy is due entirely
to the application of the MPS channel itself. While the
optimization of W, was performed classically, we emphasize
that it is not strictly necessary and was only performed to
reduce run times (by about a factor of 3 at A = 1.01 and less
further from the transition). Moreover, this optimization
could in principle be performed directly on the quantum
computer at large bond dimension using a variational
approach [9]. While the y =4 results could in principle
be continued across the phase transition into the ordered
phase, the optimal circuits in the ordered phase are consid-
erably more complex than in the disordered phase, leading to
longer circuit run times and likely invalidating the applica-
tion of our noise mitigation techniques.

Outlook.—Going forward it would be interesting to
combine quantum tensor network algorithms with qubit-
efficient schemes to measure Rényi entropies [48] in order
to access larger bond-dimension MPS. Ultimately it is
desirable to extend the present techniques to treelike or 2D
tensor networks, and to quantum analogs of MPS time-
evolution algorithms [6]; in both cases, large entanglement
entropies often impede classical tensor-network-based
simulations in practice, and quantum implementations
with more than 30 qubits may provide a significant
advantage [9,11,49,50].
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