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We characterize the variational power of quantum circuit tensor networks in the representation of

physical many-body ground states. Such tensor networks are formed by replacing the dense block unitaries

and isometries in standard tensor networks by local quantum circuits. We explore both quantum circuit

matrix product states and the quantum circuit multiscale entanglement renormalization Ansatz, and

introduce an adaptive method to optimize the resulting circuits to high fidelity with more than 104

parameters. We benchmark their expressiveness against standard tensor networks, as well as other common

circuit architectures, for the 1D and 2D Heisenberg and 1D Fermi-Hubbard models. We find quantum

circuit tensor networks to be substantially more expressive than other quantum circuits for these problems,

and that they can even be more compact than standard tensor networks. Extrapolating to circuit depths

which can no longer be emulated classically, this suggests a region of advantage in quantum expressiveness

in the representation of physical ground states.
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I. INTRODUCTION

Advances in digital quantum computing have led to

renewed interest in quantum circuit (QC) representations of

many-body states. For this purpose, it is crucial to under-

stand the representational power and trainability of differ-

ent circuit architectures. Out of the many possible

architectures, one promising choice is circuits derived from

tensor network states used in classical simulations of

quantum states with limited entanglement. Because of

the close connections between tensor networks and quan-

tum circuits, and the significant numerical experience using

them in classical simulations, they provide a natural setting

to define the boundary between classical and quantum

capabilities for quantum simulation. The simplest measure

of the classical complexity of a tensor network is the tensor

bond dimension. Consequently, one can construct a tensor

network that is hard to simulate classically by devising a

quantum circuit that maps to a tensor network with a very

large bond dimension, in a small number of circuit

elements. For example, one can construct quantum circuits

that generate tensors with bond dimensions exponential in

the circuit depth. This is the idea behind “deep” or quantum

circuit tensor networks which have been of interest for

different applications of quantum devices [1–7]. Further,

when combined with midcircuit measurements and qubit

reuse, some of these methods allow simulation of large-

scale quantum systems with few physical qubits [4,8,9].

However, constructing a class of states that is hard to

represent classically is not sufficient to advance the

simulation of physical systems. In the context of physical

quantum many-body states, we must address additional

questions. (i) Are sparsely parametrized quantum “circuit”

tensor networks capable of representing physical states

more efficiently than the “dense” tensor networks (i.e..

where all elements of the tensors can be independently

varied) traditionally used in classical simulation? (ii) And

for this task, what are the optimal circuit architectures and

optimization protocols? The answers have potential impli-

cations not only for quantum simulations, but also for

classical simulations with tensor networks. For example, an

affirmative answer to (i) would suggest that it may some-

times be better to classically simulate with the quantum

circuit tensor network directly, rather than via the classical

dense tensor network, so long as the circuit depth and
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tensor values support efficient classical contraction and/or

approximation.

Some work to answer questions (i) and (ii) has already

appeared, such as in Refs. [10–13]. In this work, our focus

is on establishing the variational power of quantum tensor

networks to capture quantum many-body ground states.

This is an application where traditional dense tensor net-

works do well, and is thus in some sense the hardest test for

quantum circuit tensor networks to pass. We focus in

particular on understanding the resources (e.g., number of

variational parameters) required, optimization strategies,

and influence of circuit architecture on the results. Because

of the large number of numerical experiments required, we

will mainly focus on one-dimensional quantum many-body

states, although we present suggestive findings on two-

dimensional problems also. As we shall demonstrate, with

careful optimization strategies, quantum circuit tensor

networks are very expressive, and in some cases even

more expressive than classical dense tensor networks. This

suggests a regime where a quantum advantage in the sense

of expressivenessmay be observed in physical ground-state

simulations.

The structure of the paper is as follows. We first

introduce quantum circuit tensor networks, review the

mapping between two common tensor networks, the matrix

product state and the multiscale entanglement renormali-

zation Ansatz (MERA) [14], to block unitary circuits [4,7],

and introduce different architectures for the local unitary

representations. We also provide some intuition regarding

the expressiveness of different structures of quantum circuit

Ansätze. We then examine optimization strategies for such

circuits. We next carry out a detailed comparison between

the quantum circuit tensor networks, classical dense tensor

networks, and reference circuit classes studied in the

literature, to evaluate their variational efficiency and power,

for both energies and correlation functions. We finish with

a discussion of our findings in the context of computational

quantum advantage.

II. TENSOR NETWORKS AND QUANTUM

CIRCUITS

A. Canonical form of the matrix product state

A matrix product state (MPS) [15–17] is a tensor

network consisting of a tensor for each site, connected

by bonds in a one-dimensional geometry. It is represented

diagrammatically by

ð1Þ

where each square tensor denotes a D ×D × d-
dimensional tensor. The open bonds index the

d-dimensional physical Hilbert space of the site. (For

example, if d ¼ 2, we can identify each site with a qubit.)

The connected “virtual” bonds of dimensionD then control

the number of parameters and thus the variational power of

the MPS (or more physically, the maximum bipartite

entanglement at each bipartition in the network).

The individual tensors in a MPS are not in unique

correspondence with a given quantum state due to gauge

degrees of freedom: the state is invariant under insertion of

a gauge matrix and its inverse G;G−1 between two tensors

(along a virtual bond). To fix the gauge degrees of freedom,

a MPS can be recast into a canonical form [18]. In

canonical form, the tensors satisfy additional isometric

or normalization constraints, but for a (normalized) MPS,

this imposes no loss of representational power. A simple

algorithm to obtain the canonical form is to perform a

sequence ofQR (LQ) decompositions of the tensors; doing

this from left to right (right to left) brings an arbitrary MPS

into left (right) canonical form [19]. For example, the right

canonical form of the MPS in Eq. (1) can be represented by

the following diagram:

where every square tensor with arrows is an isometric

tensor. The isometric condition is satisfied for contractions

performed on the incoming bonds , where the left-

hand side of the equality is the identity matrix. The

isometric constraint fixes the gauge freedom up to permu-

tations of bond indices. In a similar way, the right canonical

form is defined by tensors which satisfy an isometric

condition , while a “mixed canonical form” [central

to the density matrix renormalization group (DMRG) [20]]

is obtained by combining left and right canonical forms

around a given central site, with the central tensor satisfying

the condition . When the tensors in a canonical MPS

satisfy isometric conditions, the MPS is an example of an

“isometric” tensor network [21,22]. The number of inde-

pendent variational parameters in a canonical MPS of

length L, with all elements real, scales asymptotically as

∼L ×Dð3D − 1Þ=2. We refer to these standard MPSs as

“dense”MPS (DMPS), since the tensors assume their most

flexible parametrization, in contrast to the “sparse”

parametrization by a quantum circuit used later. Because

of the close relationship between the standard MPS

formulation and the DMRG, we will sometimes use the

term DMRG.

B. Quantum circuit MPS

Given the canonical form of the MPS, the mapping to a

block unitary quantum circuit follows a simple procedure

[4,7,23]. This is because isometric tensors can be viewed as

arising from the application of a unitary tensor to a partial

set of inputs. Concretely, the steps are as follows. (i) The
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virtual bonds of dimension D (thick lines) are viewed as q
qubit bonds (aggregate dimension D ¼ 2q). Graphically,

this is the relation . (Note that, following standard

MPS conventions, the arrows on these diagrams indicate

right canonical form, and are opposite to the execution-time

direction in the associated quantum circuit). (ii) The iso-

metric tensors are viewed as columns of a block unitary

matrix with one fixed output qubit (denoted by a black dot,

here assuming d ¼ 2), i.e., . This mapping

generates the MPS via a block unitary circuit, where each

block unitary is a matrix of dimension dD × dD.

In the above mapping, the variational space of normal-

ized states generated by the block unitary circuit and the

standard dense MPS are exactly the same. However, we can

imagine replacing the block unitary by a local circuit of

two-qubit gates of given depth. One can then create a block

unitary that acts on a set of q qubits, using as few as OðqÞ
two-qubit gates. This allows us to generate an entangled

state that lives in the variational space of a D ¼ 2q DMPS,

with as few as OðqÞ variational parameters per site. We

refer to a MPS where the block unitary is encoded as a local

circuit as a “quantum circuit MPS” (QMPS).

There is much freedom to choose the structure of the

local circuit. Here, we explore several local circuit struc-

tures. (i) A brick-wall circuit, denoted graphically as

with densely connected nearest-neighbor two-body unitary

gates (circle tensors ). Throughout, colors visually

distinguish different circuit layers, but each gate of a given

color implements a distinct gate. For the brick-wall circuit,

we refer to a layer of even gates and a layer of odd gates as

two layers, thus the above circuit has a circuit depth of

τ ¼ 6. In a brick-wall circuit, correlations spread slowly

with increasing τ, as the effective correlation length ξ grows

linearly with circuit depth ξ ∼ τ. (ii) A ladder circuit, for

example,

where we label the circuit above as depth τ ¼ 4.

Correlations propagate more efficiently in this structure:

with τ ¼ 1, the first and last qubits are already correlated.

(iii) A MERA structure,

which represents a binary MERA [24] with depth τ ¼ 5.

Properties of MERA circuits in general are discussed more

in the section below. Note that here, however, the MERA

structure is only being used for the local circuit (i.e., a

MERA quantum circuit, rather than a quantum circuit

MERA) and globally, the Ansatz is still a QMPS. An

example of the final circuit structure of the QMPS using a

local brick-wall circuit is shown in Fig. 1. Corresponding

figures for QMPS with local ladder and MERA circuits are

shown in Fig. 12.

Overall, the variational power of the QMPS Ansatz is

determined by three factors: (i) number of qubits q on

which each block unitary circuit acts (placing the QMPS in

the variational space of a dense MPS with D ¼ 2q), (ii) the

number of gates in the local circuit, (iii) the internal

structure of the local circuit. Note that the number of

gates in each layer differs between the local circuit

structures; thus τ should not be directly compared

between the different structures. Instead, the number of

gates (or equivalently, variational parameters) asymptoti-

cally behaves as∼1

2
τLðqþ1Þ,∼τLðqþ1Þ, and∼2τLðqþ1Þ

for the brick-wall, ladder, and MERA structures,

(a)

(b)

FIG. 1. Schematic representation of a matrix product state and

its quantum circuit in (a) right canonical form for a system with

L ¼ 12 (or equivalently 12 qubits). The square tensors represent

isometric tensors. (b) A quantum circuit MPS with four bond

qubits (q ¼ 4) and a local brick-wall circuit structure with depth

τ ¼ 4. The circle tensors are two-qubit unitary gates, while the

black tensors denote register qubits initialized in the j0i state.

Note that the arrows associated with the MPS and quantum circuit

MPS follow the tensor network convention rather than the circuit

convention; i.e.. they are in the opposite direction of circuit-

execution time.
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respectively. In the numerical simulations, we refer to these

three kinds of QMPS circuits as QMPS-B, QMPS-L, and

QMPS-M, respectively.

C. Quantum circuit MERA

Another commonly used tensor network is the MERA.

This is a tensor network state where the tensors are

arranged to introduce bipartite entanglement at multiple

scales. In this Ansatz, isometric tensors perform coarse

graining while unitary disentanglers are applied to remove

short-range entanglement at the different length scales. We

show a binary form of MERA in Fig. 2(a) with unitary

disentanglers and isometric coarse-graining tensors

distinguished by different colors in each layer. We refer to

the standard form of MERAwhere all tensors are assumed

dense as dense MERA (DMERA).

Since MERAs are isometric tensor networks by con-

struction, like in the MPS canonical form, a quantum circuit

MERA (i.e., a circuit whose global structure is derived from

the MERA), i.e., QMERA, can be straightforwardly

obtained by decomposing both the block isometric and

unitary tensors into local circuits with a finite depth τ and

given internal structure as already discussed. A graphical

illustration of a QMERA is shown in Fig. 2(b). An

important difference between a QMERA and a QMPS is

the presence of a structured set of long-range unitary gates.

In 1D, this allows the QMERA to capture critical entan-

glement beyond the area law with only a polynomial

number of gates [25].

Similarly to the QMPS, the variational power of the

QMERA Ansatz is determined by three factors: i.e., q, the
number of gates, and the internal structure of local circuits.

In this work, we only consider QMERA with local brick-

wall circuits as depicted in Fig. 2(b) [26], which we refer to

as QMERA-B in the numerical studies.

D. Global quantum circuit Ansatz

To place the performance of the quantum circuit tensor

networks in context, we also consider global brick-wall and

ladder circuit Ansätze, as depicted in Fig. 3. These are

referred to as QC-B and QC-L in the numerical stud-

ies below.

E. Properties of different quantum circuit Ansatz

All the above Ansätze are universal approximators in the

sense that with sufficient numbers of parameters (for

example, controlled by q and τ in the quantum circuit

tensor networks) they can represent any state. Certain types

of ground state might be more compactly represented by

one Ansatz than another, but it is difficult to make general

statements without numerical studies, as performed below.

However, here we briefly provide some intuition into the

relationship between circuit structure and expressivity, and

the connection between the different Ansätze.

(a)

(b)

FIG. 2. (a) A binary MERA wave function for L ¼ 32 qubits

and (b) its quantum circuit, i.e., QMERA, where the local

quantum circuit is chosen to have a brick-wall structure with

q ¼ 2 and τ ¼ 2. The different layers of the MERA are shown in

different colors.

(a)

(b)

FIG. 3. Global quantum circuits with (a) brick-wall and

(b) ladder structures. Execution time flows from top to bottom.

HAGHSHENAS, GRAY, POTTER, and CHAN PHYS. REV. X 12, 011047 (2022)

011047-4



We start with the relationship between the global

quantum circuits and quantum MPS. Both the global

brick-wall and ladder circuits can be directly transcribed

into QMPS by grouping gates into block unitaries (Fig. 4).

QC-B and QC-L circuits with τ layers map to QMPS with

q ¼ τ − 1 and q ¼ τ block unitaries, respectively. Each

block unitary has the sparsest possible entangled para-

metrization with τ gates arranged in a ladder structure, with

the ladder ascending in the opposite direction to the

ascending direction of the QMPS block unitaries. In fact,

the only difference between the global brick-wall and

global ladder circuits when viewed from their correspond-

ing QMPS is that the QC-B block unitaries overlap on only

q − 1 qubits rather than the usual q qubits. This choice of

nonmaximal overlap is what gives rise to the specific brick-

wall light cone, where correlations cannot spread as quickly

as in a general QMPS or a global ladder circuit.

Mapping QC-B and QC-L to QMPS reveals that the

circuit structures prioritize reaching block unitaries of large

size q (large MPS bond dimension D ¼ 2q) at the expense

of accurately representing each unitary, as each block

unitary is only minimally connected. If we assume, as

seems likely, that the part of the dense MPS variational

space of bond dimension D ¼ 2q required to represent a

large variety of quantum ground states of physical interest

is not fully captured by these minimal local circuits, then

QC-B and QC-L do not efficiently cover the variational

space. One can see the influence of the block unitary circuit

depth most dramatically in the expectation values of

operators acting on the leftmost site in the QMPS diagram

in Fig. 4(a). Because of the circuit ordering, such expect-

ation values depend only on the parametrization of the first

block unitary. In the QC-B and QC-L Ansätze one improves

the leftmost local expectation values by increasing the sizes

(q) of the block unitaries, simultaneously increasing the

block unitary circuit depth and global circuit depth.

In the more general form of the QMPS, τ and q can be

independently varied. Thus, QMPS is a superset of QC-B

or QC-L and is more expressive, although the balance

between τ and q will be problem specific. The question is

then whether the local circuit depth can be significantly

reduced from that required to exactly parametrize a block

unitary over q qubits, which is exponential in q. There is
room for optimism, as there are other powerful variational

states which map to sparse parametrizations of dense

MPS. For example, correlator product states [27–30],

entangled plaquette states [31,32], and neural network

quantum states [33] can be viewed as variational states

parametrized by nonunitary gates. These can map to dense

MPS with large D (for example, capturing volume law

scaling of entanglement with a polynomial number of

variational parameters). However, numerical studies have

shown that the number of variational parameters required

in these Ansätze for physical ground state problems can be

fewer than in a dense MPS [27].

Many of the above points also apply to the QMERA, in

particular, the potential for sparse circuit representation of

the unitaries and isometries arising in the dense MERA. In

addition, the special geometric structure of the MERA

means that in 1D it spreads correlations while capturing

logarithmic corrections to the entanglement law. This is an

important formal distinction from the other quantum circuit

structures considered here, although its importance for

capturing the energies and correlation functions of finite

systems in numerical studies must be established

empirically.

III. NUMERICAL OPTIMIZATION STUDIES

A. Algorithms

The first question to answer in a numerical assessment

of the variational power of an Ansatz is how to optimize it.

In this section, we investigate how to optimize the

quantum circuit tensor network and global circuit

Ansatz considered in this work, by optimizing the param-

eters of the two-body unitary gates . We assume each

two-body unitary is a general SO(4) unitary (i.e., real-

valued unitary) with a six-dimensional variational space

[34]. We use two optimization algorithms: (i) a local

“DMRG-like” optimization, where we sweep through the

unitary gates , optimizing them one at a time while

holding the others fixed, and (ii) a global gradient-based

optimization, where all variational parameters are updated

at the same time. In the local optimization scheme, a

linearization of the problem, similar to the one used in

MERA optimizations [24], is used to find locally optimal

gates. In the global gradient-based scheme, the global

gradient [i.e., the first-order derivative with respect to all

variational parameters ] is analytically

calculated by automatic differentiation as supported in

quimb [35]. The energy is computed via exact contraction

[36] of either a matrix product operator representation of

the Hamiltonian (MPS) or a sum of local terms (MERA).

The unitary constraints are enforced by differentiating

through a function that maps the gate parameters to a

(a) (b)

FIG. 4. Mapping from global quantum circuit Ansatz to QMPS

for the (a) brick-wall and (b) ladder structures. Grouping the gates

in the global Ansatz (top) defines block unitaries in the QMPS

(bottom). Execution time flows from top to bottom.

VARIATIONAL POWER OF QUANTUM CIRCUIT TENSOR … PHYS. REV. X 12, 011047 (2022)

011047-5



unitary matrix. The cost-function minimization is then

performed using either the conjugate gradient (CG)

or limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS-B) algorithms [37,38]. The algorithms are

stopped once the relative change in energy is less than

10−8. The above choice of gradient descent algorithms can

be modified if the gradient is susceptible to sampling

noise (see Sec. V for a theoretical discussion of sampling

overhead); for example, stochastic gradient methods or

gradient with momentum methods may be preferred.

However, in our limited studies, the different choices of

gradient descent methods reach the same minimum, and

thus do not impact our studies of expressivity. For some

examples of quantum circuit tensor network optimization

with sampling noise, see Ref. [39].

B. Model Hamiltonians

We choose to study the 1D Heisenberg and Fermi-

Hubbard models:

HH ¼ J
X

i

S⃗i · S⃗iþ1;

HFH ¼ −t
X

i;σ

ðc†iσciþ1σ þ H:c:Þ þ U
X

i

c†i↑ci↑c
†

i↓ci↓

− μ
X

iσ

c†iσciσ;

where S⃗ are spin-1=2 operators and c†σ; cσ are spin-1=2
fermionic creation and annihilation operators, respectively.

For the Heisenberg model we use J ¼ 1, and for the

Hubbard model we use t ¼ 1, U ¼ 3, and μ ¼ U=10. In
both cases, the ground states are gapless in the thermody-

namic limit with algebraically decaying correlation func-

tions, although in practice we will simulate finite chains

with open boundary conditions.

C. Local optimization versus global optimization

We first compare local DMRG style optimization versus

global gradient-based optimization for the infidelity cost

function F̄ ¼ 1 − jhΨjψij, where jΨi is the ground-state

wave function of the model and jψi is the Ansatz state. jΨi
is obtained by the standard DMRG algorithm using a dense

MPS of sufficiently large bond dimension (D ∼ 400) so that

any error in jΨi is negligible. When F̄ ¼ 0, then the circuit

Ansatz is identical to the ground-state wave function.

The result of minimizing F̄ for the different Ansatz and

optimization methods is shown in Fig. 5. We show data

from the quantum circuit MPS with a brick-wall local

Ansatz (QMPS-B) (L ¼ 24, q ¼ 4, τ ¼ 6) and global

brick-wall quantum circuit (QC-B) (L ¼ 16, τ ¼ 6) as

representative examples. We find that in all cases, the

local DMRG style optimization converges to the local

minimum faster than the global gradient-based optimiza-

tion using either the CG or L-BFGS-B algorithms. In

addition, we find that in all cases, the L-BFGS-B algorithm

converges more quickly than the CG algorithm. However,

we also see that both the speed of convergence as well as

the final converged result have some dependence on the

initial guess. As observed in Fig. 5, given a suitable initial

guess, the global gradient-based optimization eventually

converges to a slightly lower minimum than that found by

the local DMRG optimization.

D. Initial guess

The dependence of the optimization on the initial guess

is well known in quantum circuit optimization, where poor

initial guesses can sometimes give rise to exponentially

small gradients (the barren plateau problem [40–44]). We

can see a related problem in our circuits. To illustrate this,

we show results from optimizing the energy cost function

E ¼ minhψ jHjψi; jψi ∈ qTN (quantum tensor network)

and we report the relative energy error δE ¼ E=Eexact −

1 versus iteration number in Fig. 7 for several example

(a)

(b)

FIG. 5. The influence of the choice of optimization method.

(a) The infidelity F̄ versus iteration number for the global

brick-wall Ansatz QC-B with L ¼ 16, τ ¼ 6, optimized by CG,

L-BFGS-B, and local methods. The solid and dashed lines

represent two different initial starting states, chosen from a

uniform random distribution for the tensors. (b) The same plot

for a QMPS-B with L ¼ 24; q ¼ 4; τ ¼ 4. The targeted wave

function is the ground state of Heisenberg model HH.

HAGHSHENAS, GRAY, POTTER, and CHAN PHYS. REV. X 12, 011047 (2022)

011047-6



circuits. We see in the top panel [Fig. 7(a)] that when

starting from a random initial guess for the global QC-B

Ansatz, we converge to the same relative error for two

different circuit depths τ ¼ 8 and τ ¼ 10, despite the

significantly larger number of variational parameters for

τ ¼ 10 versus τ ¼ 8.

To improve the initialization of larger circuits, we use

optimized gates obtained from a shallow circuit to initialize

gates at larger circuit depth. The heuristic for this adaptive

initialization method is summarized as follows: (i) optimal

gates are obtained from a random initial guess for a low

depth circuit τ0, (ii) the initial guess for the Ansatz with

depth τ > τ0 is given by the optimized gates (from previous

calculations) for τ ≥ τ − τ0 and the identity operator for

τ < τ − τ0, respectively (measuring depth from the register

qubits) (see Fig. 6 for an explicit example), (iii) small

random perturbations to all gates in the Ansatz are applied

to avoid getting stuck in a local minimum, (iv) for a circuit

Ansatz with larger depth, we repeat steps (ii) and (iii).

Empirically, it is found that a gradual increase of the circuit

depth by 2–6 layers works well, i.e., τ − τ0 ¼ 2–6. The

identity perturbation strength is also chosen to be of the

same order as the local unitary gradient norm.

In Fig. 7(a), we show that optimizing the global QC-B

Ansatz with τ ¼ 10 starting from optimal gates from τ ¼ 8

(a)

(b)

(c)

FIG. 7. The role of the initial guess in the optimization. (a) The

relative error of the ground-state energy δE (of Heisenberg model

HH) as a function of iteration number for a global brick-wall

quantum circuit (QC-B) with depth τ. When the τ ¼ 10 Ansatz is

initialized from the optimized τ ¼ 8 parameters, we obtain a

better minimum than from a random initial guess. Notice that

when using a random initial guess the Ansatz optimization can get

stuck in a poor minimum, as seen by the τ ¼ 8 (random) and

τ ¼ 10 (random) results, which obtain the same minimum. (b) A

better initialization procedure using optimized circuit parameters

from smaller depths guarantees that the relative error decreases

monotonically when increasing circuit depth τ. (c) Similar plot

for a QMPS Ansatz with q ¼ 4. We similarly find the relative

error drops monotonically when increasing τ using initial guesses

from a smaller τ Ansatz (good), while initializing from random

guesses (rand) results in optimizations which terminate at poor

minima. Reference data from dense MPS (DMRG) also shown.

(a)

(b)

FIG. 6. Adaptive initialization of a QC-B circuit with (a) τ ¼ 6

from an optimized smaller circuit (b) with τ ¼ 4. The gray gates

denote identity operators with some small random perturbations.

Note that execution time flows from top to bottom (opposite to

the arrow direction).
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indeed results in a lower relative error. In Fig. 7(b), we plot

the results of optimizing the QC-B Ansatz with different τ

[each initialized in the manner above, using lower depth

circuits as shown in Fig. 6(c)], which shows that we can

now achieve a systematic decrease in the relative error δE
as a function of increasing τ. Notice that in all cases, it is

necessary to first perform many iterations to bring the

Ansatz out of the local minimum generated by the smaller τ

guess, before one observes a significant drop in the relative

error. Similar results are shown for the QMPS-B Ansatz

with fixed q ¼ 4 and increasing τ for the local circuit

(brick-wall Ansatz) in Fig. 7(c); we similarly see that we

can achieve a systematic decrease in the relative error when

increasing τ. Indeed, as we increase τ in the QMPS-B

Ansatz, we obtain results that approach the dense MPS

(DMRG) result with bond dimensionD ¼ 2q ¼ 16. As this

is the lower bound for the variational energy of any QMPS

with q ¼ 4, our optimization heuristic using adaptive

initialization thus fully realizes the variational power of

the quantum circuit tensor network.

IV. VARIATIONAL POWER OF QUANTUM

CIRCUIT TENSOR NETWORKS,

DENSE TENSOR NETWORKS,

AND GLOBAL QUANTUM CIRCUITS

A. Energies

Using the above optimization strategies, we can now

systematically characterize the variational power of the

different Ansätze discussed in this work for ground-state

representation. As the measure of expressiveness, we use

the relative energy error δE as a function of the number of

variational parameters. (Related measures have been

recently used to compare different variational wave func-

tions [45].) The various Ansätze are optimized using the

global gradient scheme with the L-BFGS-B algorithm,

while the dense MPS results are obtained by the DMRG

algorithm. The largest parametrized circuit Ansätze corre-

spond to the following: (i) for QMPS-B and QMERA-B,

the number of bond qubits and local circuit depths are

q ¼ 8, τ ¼ 32 and q ¼ 4, τ ¼ 8, respectively, and (ii) for

the global circuit ansatz QC-B and QC-L, the largest circuit

depths are τ ¼ 14 and τ ¼ 9, respectively. Despite the large

number of circuit parameters, we find that the optimization

heuristics work to high accuracy, if sufficient iterations are

used. For example, the smallest relative energy errors we

find using the QMPS Ansatz are 10−6 and 10−4 for the

Heisenberg and Fermi-Hubbard models with L ¼ 32,

respectively, using ∼106–7 iterations.

We benchmark the performance of the QMPS, QMERA,

and global QC Ansatz versus the dense MPS (DMRG) and

dense MERA for the 1D Heisenberg and Fermi-Hubbard

models with L ¼ 32 (2D results are discussed in a later

section). The key findings are as follows. (i) Comparing

dense MPS with QMPS, we find that for an equivalent

number of variational parameters, QMPS achieves lower

energies than the dense MPS [see Figs. 8(a) and 8(d)] in

both the Heisenberg and Fermi-Hubbard models.

(ii) Similarly, comparing dense MERA with QMERA,

we find that for an equivalent number of variational

parameters, QMERA achieves lower energies than dense

MERA. Taken together with the previous statement, this

implies that the appropriate quantum circuit tensor net-

works are more compact and expressive than their tradi-

tional dense counterparts for these problems. In particular,

the worst case possibility, that one requires an exponential

number of gates to accurately parametrize the local block

unitary, does not apply to these physical ground states.

(iii) Such expressiveness is not shared by the global brick-

wall and ladder circuits [Figs. 8(b) and 8(e)] which are

consistently less expressive than the QMPS. This is

consistent with the theoretical analysis in Sec. II E, which

identifies QC-B and QC-L as constrained versions of the

QMPS with minimal parametrizations of the block uni-

taries. (iv) QMPS is somewhat more expressive than

QMERA [Figs. 8(c) and 8(f)]. This suggests that the formal

ability to capture logarithmic corrections (which exist in the

thermodynamic limit of the 1D Heisenberg model) is

unimportant either for the energy or at the system size

considered.

Empirically, we can also summarize the data by fitting

the relative error to the inverse polynomial δEðnÞ ∼ an−b,

where n is the number of variational parameters. As shown

in Fig. 8 in the log-log plot, this form fits all the Ansätze

reasonably well, with some small systematic deviations, for

example, in the case of DMRG at larger n. A linear fit to the

log-log data yields an estimate of a and b, as shown in

Table I, where b gives the asymptotic scaling for large n.

These results further support the findings above: in the

large n limit, the QMPS Ansatz is the most expressive

Ansatz and outperforms the dense MPS, while QMERA

outperforms the dense MERA, with both also outperform-

ing the global brick-wall and ladder Ansätze. We see that

the brick-wall local circuit structure for QMPS yields a

better overall performance than local ladder or MERA

structures (see also the Appendix). The QMERA Ansatz

performs similarly to the dense MPS algorithm in both

models with bQMERA ≈ bDMPS. The ratio bQMPS=bQMERA

and bQMPS=bDMPS is ∼1.3 in both models. Earlier studies

of scale-invariant MERA and infinite MPS have found a

similar ratio, bMPS=bMERA ∼ 1.2 [46]. Finally, depending

on the model, either QC-B or QC-L performs better:

bQC-B < bQC-L (bQC-B > bQC-L) for the Heisenberg

(Fermi-Hubbard) models, respectively.

B. Correlation functions

We next study how faithfully the different Ansätze

capture correlation functions of the Heisenberg and

Fermi-Hubbard models. We use the spin-spin correlation
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function, defined as hS⃗0 · S⃗ri − hS⃗20i (Heisenberg and

Fermi-Hubbard) as a representative example.

In Fig. 9, we show errors in the correlation function

δCðrÞ (relative to numerically exact data) for the various

Ansätze. In Fig. 9(a) (Heisenberg model), we see that

QMPS-B with q ¼ 4, τ ¼ 16 produces the same algebrai-
cally decaying correlation function as a dense MPS with
D ¼ 16 over the full distance range of r < 22, despite
having fewer variational parameters. In Fig. 9(b) (Hubbard
model), we similarly find that QMPS-B with q ¼ 5, τ ¼ 30

produces a similar quality correlation function to the dense
MPS with D ¼ 32, but again with fewer variational
parameters. These results are consistent with the greater
expressiveness of the quantum circuit tensor network
relative to its dense counterpart.
In both models, we see that increasing either τ or q leads

to an improvement of the correlation function. However,
neither is a dominant factor for convergence. For example,
in the Heisenberg model, we find that using a QMPS-B
with q ¼ 5, τ ¼ 14 provides a lower relative error com-
pared to q ¼ 4, τ ¼ 18, despite having fewer variational
parameters, but a QMPS-B with q ¼ 8, τ ¼ 4 performs
similarly to q ¼ 4, τ ¼ 5, despite having a large number of
variational parameters. Thus a balanced choice of q, τ is
needed to obtain the best result.

TABLE I. Scaling coefficients ða; bÞ in the form δE ∼ an−b for
the various Ansätze in the Heisenberg and Fermi-Hubbard

models. The asymptotic behavior of the relative error δE at large

n is controlled by b.

Ansatz Heisenberg, ða; bÞ Hubbard, ða; bÞ

QMPS-B (20,4.0) (9,1.9)

QMPS-L (14,3.1) (10,1.9)

QC-B (4,1.4) (4.4,1.0)

QC-L (8,2.2) (0.4,0.5)

QMERA-B (15,3.1) (6.0,1.4)

DMPS (DMRG) (15,2.9) (8.0,1.5)

DMERA (3.5,1.2) (0.8,0.6)

(a) (b) (c)

(d) (e) (f)

FIG. 8. Comparing the variational power of quantum circuit tensor networks (QMPS, QMERA), dense tensor networks (DMPS and

DMERA), and global quantum circuits (QC). We show the relative energy error δE versus the number of variational parameters in the

Ansatz for the Heisenberg (a)–(c) and Fermi-Hubbard (d)–(f) models with L ¼ 32. Indices B and L stand for brick-wall and ladder. (a),

(b) Comparison between QMPS with local brick-wall and ladder circuits with DMRG and QC with brick-wall and ladder structures. The

largest circuit depth used for QC-B (L) and QMPS-B (L) with q ¼ 5 is τ ¼ 14 (9). (c) The performance of QMERA-B versus QMPS-B

and DMERA. The largest parameter sets used for the QMERA-B Ansatz correspond to q ¼ 4, τ ¼ 8. (d)–(f) The same comparison for

the Fermi-Hubbard model. The largest circuit depths for QMPS-B with q ¼ 8 and QMERA-B with q ¼ 3 are τ ¼ 32 and τ ¼ 12,

respectively.
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In Fig. 9(c), we show the QMERA-B, QC-L, and QC-B

correlation functions alongside the QMPS-B correlation

functions. One expects that QMPS-B will accurately

reproduce short-range correlations (up to the MPS corre-

lation length) while QMERA should perform better at long

distances. Quantitatively, we find that QMPS-B (q ¼ 4,

τ ¼ 12 and δE ¼ 6 × 10−5) indeed provides a lower

relative error at short distances, while QMERA-B (with

q ¼ 3, τ ¼ 10 and δE ¼ 3 × 10−4) with a similar number

of variational parameters is more accurate at longer dis-

tances (r > 15). In addition, QMPS with q ¼ 4, τ ¼ 5

outperforms QC-L with a similar number of parameters,

especially at short distances. At long range, QMERA-B

with q ¼ 2, τ ¼ 6 is clearly better than QC-L, while at short

distances it is comparable. Overall, QMPS and QMERA

thus appear to provide more faithful representations of the

correlation functions than the general quantum circuit

Ansatz, again reinforcing the need to balance the spreading

of entanglement and the accuracy of the local block unitary

representation. In addition, the improved entanglement

spreading structure of the QMERA is detected in the

correlation functions, even though it is not represented

in the energy metric of the previous section.

C. Two-dimensional systems

We have also carried out a limited set of studies on a two-

dimensional Heisenberg model using the QMPS Ansatz

made in a traditional snake through the two-dimensional

lattice as depicted in Fig. 10. In two-dimensional systems, it

(a)

(b)

FIG. 10. Schematic representation of (a) a snake DMPS and

(b) its quantum circuit (QMPS) used in the two-dimensional

simulation of Heisenberg model with L ¼ 6 × 6 sites. The

QMPS-B shown has four bond qubits q ¼ 4 with depth τ ¼ 4.

(a) (b) (c)

FIG. 9. Relative error in the spin-spin correlation function as a function of distance r. Panels (a) and (c) are for the Heisenberg model,

while panel (b) is for the Fermi-Hubbard model (both L ¼ 32). Both QMPS and QMERA use a local brick-wall circuit (QMPS-B,

QMERA-B). In (a), the QMPS with q ¼ 4, τ ¼ 16 has fewer parameters than the DMPS with D ¼ 16, while in (b), the QMPS with

q ¼ 5, τ ¼ 30 has fewer parameters than the DMPS with D ¼ 32. In (c), the QC-L Ansatz has a comparable numbers of parameters to

the QMERA-B and QMPS-B with q ¼ 2, τ ¼ 6 and q ¼ 4, τ ¼ 5, respectively. QMPS-B (q ¼ 4, τ ¼ 12) and QMERA-B (q ¼ 3,

τ ¼ 10) have comparable numbers of variational parameters. QC-B correlation functions are generally worse than those from the above

Ansatz.

FIG. 11. Comparison between QMPS and DMPS for the two-

dimensional Heisenberg model on a 6 × 6 lattice.
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is well known that a traditional dense MPS (arranged as a

snake) requires an exponentially large bond dimension in

the system width to represent area law ground states. Since

states with exponentially large bond dimension can be

reached by QMPS with a polynomial circuit depth, one

might expect a larger expressivity difference between

QMPS and DMPS in 2D. The relative energy error δE
is plotted as a function of the number of parameters in

Fig. 11, and the corresponding fit of the relative error

δEðnÞ ∼ an−b is shown in Table II. From both of these, we

indeed find that the expressivity gap between QMPS and

DMPS is greater in 2D, with bQMPS=bDMPS ¼ 1.4 in 1D,

but bQMPS=bDMPS ¼ 2.3 in 2D. Of course, in two and more

dimensions, the possible choices of circuit architecture are

richer, with many types of isometric tensor networks to

explore beyond the QMPS [21,22,47,48].

V. DISCUSSION OF QUANTUM ADVANTAGE

Our numerical results clearly show that for ground states

of some commonly considered physical models, there is a

quantum advantage in the expressivity of quantum circuit

tensor networks versus the traditionally employed classical

dense tensor networks. The difference in scaling of the

achieved accuracy as a function of the number of param-

eters suggests that the advantage in expressiveness will

persist into a regime where the circuits can no longer be

contracted efficiently classically. Assuming standard tensor

networks are the best classical representation for these

problems, this means that in the high accuracy regime,

quantum circuit tensor networks may have the (theoretical)

potential to achieve quantum advantage also in terms of

computational cost.

To explicitly translate the advantage in representation to

one of computation, we must consider the cost to compute

with the quantum circuit representation (on a quantum

device) versus the dense representation on a classical

device. We consider the case of MPS as an example.

The cost to contract a classical dense MPS is OðD3Þ, or
Oðn3=2Þ, where n here denotes the number of local

parameters in the block unitary. (We ignore scaling with

L here and below.) For QMPS, the cost to run the circuit to

prepare the state (assuming gates are executed sequentially)

is OðnÞ. We then imagine computing the energy by

sampling terms in the Hamiltonian; for a relative precision

δE, we require O(1=ðδEÞ2) measurements per term.

Combining these factors together with the empirical scaling

of δE with n, one finds that the cost T to compute the

energy to an accuracy of δE is T ∼ δE0.52 (classical DMPS)

and T ∼ δE2.25 (QMPS-B) in the 1D Heisenberg model,

and T ∼ δE3.1 (classical DMPS) and T ∼ δE2.9 (QMPS-B)

in the 2D Heisenberg model. A similar analysis for MERA

finds in the 1D Hubbard model T ∼ δE3.75 (classical

DMERA) and T ∼ δE2.7 (QMERA). These small polyno-

mial advantages (where they appear) are perhaps reflective

of the challenges of variational quantum algorithms, and

whether they are realizable, or persist with improved

classical techniques remains to be seen. However, it should

be noted that the asymptotic inefficiency of the quantum

algorithm stems from the steep cost associated with

sampling expectation values. Techniques that trade coher-

ence for reduced sampling, for example, reducing the

number of repetitions to as few as O( logð1=ðδEÞÞ), with
a measurement circuit depth proportional to O(1=ðδEÞ),
therefore greatly affect this analysis of computational

advantage [49].

Of course, to seize this potential advantage, one would

also need to optimize circuit parameters in this classically

intractable regime. In the case of gradient optimization,

classical algorithms obtain the gradient at the same cost as

the energy through backpropagation, but for quantum

algorithms using finite differences (for example, using

the parameter shift rule) [50,51], the energy evaluation

must be repeated OðnÞ times. In this case, the above

polynomial advantages will disappear unless coherent

expectation value techniques are used, which may be

further combined with coherent techniques for gradient

evaluation [52]. Also, we have assumed that the number of

optimization iterations needed to find the ground state

scales with δE in a comparable way in the quantum and

classical computations. While the optimization heuristics

discussed in this work successfully find accurate ground

states with a tractable number of optimization iterations, it

remains to be seen whether this scaling persists in very

large circuits.

VI. CONCLUSIONS

In this work, we studied the variational power of

quantum circuit tensor networks, and in particular, quantum

circuit matrix product states and the quantum circuit

multiscale entanglement renormalization Ansatz, for rep-

resenting the ground states of quantum many-particle

problems. As we argued, this is a problem where standard

tensor networks excel, and is thus a high bar for quantum

circuit tensor networks to meet. We found that quantum

circuit tensor networks outperform other common global

quantum circuit Ansätze in variational power, requiring far

fewer parametrized gates for a given accuracy. In fact, they

appear to be asymptotically even more expressive than the

standard tensor networks, in terms of the number of

parameters to converge to a comparable accuracy in the

variational energy and correlation functions. Our initial

TABLE II. Scaling coefficients ða; bÞ for QMPS and DMPS in

the two-dimensional Heisenberg model on a 6 × 6 lattice.

Ansatz 2D Heisenberg, ða; bÞ

QMPS-B (4.7,1.1)

DMPS (DMRG) (1.4,0.48)
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results in 2D suggest that this expressive advantage

increases in higher dimensions.

Although all simulations here were carried out classi-

cally, the difference in expressiveness of the classical and

quantum circuit tensor networks raises the possibility of

polynomial quantum advantage in the computation of

certain problems. The practical realization of such advan-

tage critically depends on both the performance of opti-

mization heuristics (such as the one proposed here) as well

as the cost of estimating expectation values on quantum

devices. However, the variational power of the quantum

circuit tensor networks provides new motivation to improve

the optimization strategies for this class of circuits. It also

provides impetus to study related types of Ansätze in the

context of classical simulations, where they may provide

the chance to improve on long-standing tensor network

paradigms.

The numerical codes were implemented in the quimb

library [35], which is freely available [53,54].
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APPENDIX: QMPS WITH

MERA LOCAL CIRCUITS

We benchmark the accuracy of the QMPS-M Ansatz by

studying the relative error δE for the Heisenberg model

HH. In general, a systematic study of the Ansatz is difficult,

as there are many controlling parameters: q; qm; τ where qm
is the number of bond qubits for the local MERA; and in

addition, there is also the choice of the internal structure of

the local MERA. To simplify things, we fix the number of

bond qubits to q ¼ 8 and use a brick-wall structure for the

MERAwith qm ¼ 3. Empirically, we find that it is difficult

to obtain converged results for QMPS-M as it easily gets

stuck in local minima. Thus, for the reported data, two

different initial states were chosen, one random and one

obtained from a smaller optimized circuit. In Fig. 13(a), we

compare QMPS-M with QMPS-B for different τ. We find

that the QMPS-B with τ ¼ 4 easily outperforms QMPS-M

with τ ¼ 4 (which has a larger number of variational

parameters). We see that increasing τ in QMPS-M from

4 to 10 only slightly improves the relative error, i.e., from

9 × 10−3 to 6 × 10−3. Overall, the complexity of this circuit

structure may require additional improvements in optimi-

zation strategy in order to realize its variational power.
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