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We develop holographic quantum simulation techniques to prepare correlated electronic ground states
in quantum matrix-product-state (QMPS) form, using far fewer qubits than the number of orbitals rep-
resented. Our approach starts with a holographic technique to prepare a compressed approximation to
electronic mean-field ground states, known as fermionic Gaussian matrix-product states (GMPSs), with
a polynomial reduction in qubit and (in select cases gate) resources compared to existing techniques.
Correlations are then introduced by augmenting the GMPS circuits in a variational technique, which we
denote GMPS+X. We demonstrate this approach on Quantinuum’s System Model H1 trapped-ion quan-
tum processor for one-dimensional (1D) models of correlated metal and Mott-insulating states. Focusing
on the 1D Fermi-Hubbard chain as a benchmark, we show that GMPS+X methods faithfully capture the
physics of correlated electron states, including Mott insulators and correlated Luttinger liquid metals,
using considerably fewer parameters than problem-agnostic variational circuits.
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As quantum computers have begun to achieve the scale
and reliability required to surpass classical computations
on certain theoretically contrived tasks such as random
quantum circuit sampling [1–3], it is natural to ask how
best to apply their computational abilities to problems of
technological and scientific interest. The quantum simu-
lation of molecules and materials is a promising target
application, where there are theoretical grounds to expect
exponential quantum computational advantage [4] in cer-
tain types of quantum dynamics, with prospective applica-
tions to nonequilibrium electron transport, quantum reac-
tive scattering, and the dynamics of strongly coupled field
theories. An important prerequisite to computing dynamics
in physical applications is to first prepare a good approx-
imation to the ground or thermal state of a correlated
electron system. In variational approaches, a key goal is to
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use physically inspired circuit ansatzes to reduce the num-
ber of variational parameters and simplify the optimization
landscape. Matrix-product states (MPSs) [5] provide a
compact parameterization of many physically important
quantum states since the memory and complexity of MPS
calculations are controlled by the extent of spatial cor-
relations and entanglement, encoded by the matrix size
(“bond dimension”) χ . A growing body of work [6–13] has
begun to extend the efficient data compression afforded by
classical MPS techniques to the quantum domain, using
quantum memories with approximately log2 χ qubits to
represent the bond space of a MPS, and quantum cir-
cuits interleaved with partial measurement to implement
its tensors. By exploiting mid-circuit measurements and
qubit reuse (MCMR) [7], a quantum MPS (QMPS) sim-
ulation of a d-dimensional systems can be performed
with effectively (d − 1) dimensions’ worth of qubits, earn-
ing the moniker “holographic simulation” [7,14]. Early
demonstrations of holographic QMPS [6,7,9] and their
higher-dimensional quantum tensor network (QTNS) gen-
eralizations [11,12] have focused on simple spin models.
However, more realistic molecular and material models
contain fermionic electrons, which commonly exhibit quite
entangled (e.g., metallic) ground states even for weak
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interaction strengths, and whose Hamiltonians have more
complex qubit representations.

Because many correlated electron states are adiabati-
cally connected to Gaussian (e.g., mean-field) states, we
first describe how to prepare holographically Gaussian
MPS (GMPS) as a QMPS. We start from a classical
construction of Fishman and White [15] that naturally
compresses Gaussian fermionic states in GMPS form. A
key aspect of this compression is that, unlike other mean-
field preparation techniques, it exploits the near-area-law
nature of the ground state to parametrically reduce qubit
and gate resources. We present numerical evidence that
this holographic GMPS method gives a polynomial reduc-
tion in the number of qubits (and in certain cases, gates)
compared to standard quantum algorithms. Next, using the
one-dimensional (1D) Fermi-Hubbard chain as a bench-
mark, we show that augmenting the mean-field GMPS
state with shallow circuits (which we refer to as GMPS+X)
enables more accurate variational preparation of corre-
lated electron ground states with far-fewer parameters than
problem-agnostic ansatzes, a key component for scaling up
QMPS methods to solve larger and more classically chal-
lenging models. We implement the GMPS and GMPS+X
methods on Quantinuum’s system model H1 trapped-ion
quantum processor, demonstrating that the resource reduc-
tions enable the faithful simulation of systems with up
to 16 orbitals using minimal error mitigation. Finally, we
explore extending the GMPS compression to two dimen-
sions, where we show that the required qubit resources
continue to be asymptotically optimal, and discuss the
potential advantages of this method for simulating corre-
lated topological phases.

I. QUANTUM MATRIX PRODUCT STATES

Here, we briefly recap the holographic simulation with
QMPS. Interested readers may find a more detailed expo-
sition in Ref. [7]. Holographic simulation with QMPS is
based on the MPS representation:

|�〉 =
∑

n1...nL

�TAn1An2 . . . |n1n2 . . . nL〉, (1)

where nx ∈ {1, 2, . . . d = 2Np } label the orbital occupation
numbers of the Np different physical spin or orbital “fla-
vors” at position x, Anx is a χ × χ matrix for each nx
label, and � is a χ -dimensional vector that determines
the left-boundary conditions. Two-dimensional (2D) and
three-dimensional (3D) systems can also be treated in this
framework by treating the system as a 1D stack of (d − 1)-
dimensional cross sections. In this case, χ must scale
exponentially in the cross-section area for area-law states.

Properties of any MPS in right-canonical form (RCF)
[16] can be measured on a quantum computer by imple-
menting its transfer matrix as a quantum channel [17]

acting on Np = log2 d “physical” qubits and Nb = log2 χ

bond qubits [7]. The bond vector � is prepared by acting
on the bond qubits plus optional ancilla with a unitary U�.
Each tensor A is then embedded into a larger block uni-
tary operator UA acting on a reference initial state, |0〉, of
the physical qubits: An

ij = 〈n|p ⊗ 〈i|bUA|0〉p ⊗ |j 〉b where
subscripts p and b, respectively, denote physical and bond
qubits. Then, the physical qubits can be measured in any
desired basis (without measuring the bond qubits). The
process is then repeated for each site in sequence from
left to right until the measurement is completed. As for
any quantum algorithm, repeated statistical sampling of
these measurements must be used to estimate the expec-
tation values of observables. In this way, one can measure
any product operator of the form

∏L
x=1 Ox, which forms a

complete basis for general observables. To summarize, the
QMPS procedure for sampling an observable of the form
〈ψ | ∏L

x=1 Ox|ψ〉 is as follows:

1. Prepare the bond qubits in a state corresponding to
the left-boundary vector �.

2. Reset the physical qubit for site [x = 0] in a fixed
reference state |0〉.

3. Perform a quantum circuit representing UA at site
[x], entangling the physical and bond qubits.

4. Measure the physical qubit in the eigenbasis of Ox
and weight the measurement outcome by the corre-
sponding eigenvalue of that observable. The bond-
qubit register now corresponds to bond connecting
sites x and x + 1.

5. Repeat steps 1–4 for x = 1 . . . L, and discard the
bond qubits [18].

Since the physical qubits for site x are reset and reused
as physical qubits for site x + 1, this QMPS procedure
saves the total number of qubits to be used and enables
a small quantum processor to achieve quantum simulation
tasks with a bigger size than its available number of qubits.
Moreover, the entanglement spectrum of the bond qubits
in between sites x and x + 1 coincides with the bipar-
tite entanglement spectrum of the physical MPS at that
entanglement cut, further enabling measurement of non-
local entanglement observables, as recently demonstrated
experimentally for near-critical spin chains [7].

II. MODELS AND OBSERVABLES

We focus on quasi-1D Fermi-Hubbard (FH) models,
which we write in the form

HFH = −t
∑

σ ,〈r,r′〉
c†

r,σ cr′,σ + U
2

∑

r

nr (nr − 1)− μN , (2)

where c†
r,σ creates an electron at site r = (x, y) with z com-

ponent of spin σ ∈ {↑, ↓}, 1 ≤ x, y ≤ Lx,y ,
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nr = ∑
σ c†

rσ crσ , N = ∑
r nr, t is the hopping strength, U

is the onsite Hubbard interaction, and μ is the chemical
potential. We measure three types of observables, single-
particle equal-time Green’s functions (also known as
one-electron density matrices), G, and connected density-
density and spin-spin correlators, Cnn and CSS:

Gr,σ ;r′,σ ′ = 〈c†
r,σ cr′,σ ′ 〉,

Cnn(r, r′) = 〈nrnr′ 〉 − 〈nr〉〈nr′ 〉,
CSS(r, r′) = 〈Sz

rSz
r′ 〉 − 〈Sz

r〉〈Sz
r′ 〉,

(3)

where Sz
r = 1/2

∑
σ ,σ ′ c†

r,σ σ
z
σσ ′cr,σ ′ .

To simulate fermionic systems, one needs to encode
the physical fermionic orbital creation and annihilation
operators into bosonic qubit degrees of freedom. A vari-
ety of encodings are available. Throughout this work,
we adopt the Jordan-Wigner (JW) encoding, which is
natural for quasi-1D settings, with the convention that
orbitals are ordered first by spin {↑, ↓}, then by ascend-
ing y position, and finally by ascending x position. We
remark that the holographic representation in principle
enables (Appendix F) one to reduce the maximal length
of JW strings that one needs to measure in variational
calculations from approximately Ld → Ld−1, reducing the
impact of measurement errors in computing long-distance
correlation functions.

III. COMPRESSING GAUSSIAN STATES AS QMPS

We begin by briefly reviewing the classical MPS
algorithm to construct a MPS representation of Gaussian
fermion states, and explain how to recast the resulting
GMPS as a QMPS.

A. Compressed Gaussian MPS

The ground state of a noninteracting fermion Hamil-
tonian with No orbitals: H = ∑No

i,j =1 c†
i hij cj is fully char-

acterized by its No × No single-particle Green’s func-
tion: Gij = 〈c†

i cj 〉 (generalizations to non-number conserv-
ing Hamiltonians are discussed in Appendix E), which
has highly degenerate eigenvalues of either 0 or 1 and
whose eigenvectors correspond to unoccupied or occu-
pied orbitals, respectively. Green’s function is preserved
by any unitary transformation acting separately on the
(un)occupied subspaces. The compression scheme of
Ref. [15] exploits this freedom by progressively disentan-
gling well-localized degrees of freedom in blocks of B
adjacent sites, where B is chosen to be sufficiently large to
achieve target infidelity, ε. Starting with the upper-left B ×
B block of G, one finds the eigenvector of this sub-block
whose eigenvalue is closest to either 0 or 1 and performs a
series of 2 × 2 (single-particle) unitary rotations that move

this eigenvector to the first site of the block. The proce-
dure is iterated for the remaining (No − 1)× (No − 1) sites
until Green’s function is approximately diagonalized.

The composition of all the basis rotations in the
above procedure produces an No × No unitary, u† =
(
∏(B−1)(No−B/2)
α=1 uα)†, consisting of a ladder of 2 × 2 single-

particle unitaries labeled by ordered index α, which
approximately diagonalizes the Green’s function. Alterna-
tively, read in reverse, the inverse transformation u approx-
imately converts a product state of (un)occupied sites into
the entangled ground state of h. These single-particle (size
n × n) operations can be converted into a circuit acting on
the many-particle Hilbert space (of size 2n) by replacing
each 2 × 2 unitary, uα , by an equivalent two-qubit gate:

Uα = exp

⎡

⎣
∑

ij

c†
i (log u)ij cj

⎤

⎦ = exp

⎡

⎣
∑

ij

σ+
i (log u)ij σ−

j

⎤

⎦,

where in the second line we use the fact that the rota-
tion always occurs between neighboring sites and therefore
does not involve a Jordan-Wigner string.

Crucially, the resulting ladder circuit U = ∏
α Uα can

be interpreted as a QMPS with bond dimension χ = 2B

by chopping it into diagonal causal slices (see Fig. 1),
and interpreting the qubit lines entering the bottom of the
slice as physical qubits and those entering the side as bond
qubits. We refer to the resulting MPS as a GMPS to distin-
guish it from generic non-Gaussian (Q)MPS of the same
bond dimension.

Whereas an arbitrary Gaussian state can be prepared by
a ladder circuit acting on No qubits with O(N 2

o ) two-qubit
gates (see, for example, Refs. [19,20]), the compressed
GMPS ground state requires O(NoB) two-qubit gates act-
ing on O(B) qubits (if implemented holographically). The
efficiency of this compression, therefore, depends on the
block size B required to accurately approximate the state in
question. Empirical numerical evidence and entanglement-
based arguments indicate that GMPS for ground states of
local Hamiltonians in 1D systems of length L and for target
error threshold ε = 1 − 1/L

∑
i,j |G(GMPS)

ij − Gij | requires
block size (equivalently number of qubits) B ∼ log ε−1 for
a gapped state or B ∼ log L log ε−1 for a gapless metallic
state. In Sec. V below, we extend these results to 2D sys-
tems, and find that generically B scales with the bipartite
entanglement entropy S(L):

B ∼ S(L) ∼
{

L log ε−1 gapped
L log L log ε−1 Fermi surface

(4)

[21]. We conjecture that similar scalings with L → L2

hold in 3D (e.g., this follows straightforwardly from the
1D results for translation-invariant systems). This result
holds even for topologically nontrivial Chern band insula-
tors that have an obstruction to forming a fully localized
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(a) (b) (c)

FIG. 1. Compressing Gaussian fermion states as QMPS—(a) holographic QMPS implementation (top) of the GMPS circuit (bot-
tom) for approximately preparing compressed Gaussian fermion states. (b)–(c) Experimental implementation of holographic GMPS
algorithm for a spinless two-leg ladder at half-filling. (b) (Real part of) Green’s function, Re G

[
r = (0, 0), r′ = (x, y)

]
with exper-

imental data (orange dots with 1σ error bars from 1000 measurement shots per point), noisy circuit simulations with one-qubit and
two-qubit gate depolarizing parameters p1q = 10−3 and p2q = 5 × 10−3, respectively (dashed orange line), and exact values (solid blue
line). (c) Connected part of density-density correlators Cnn(r, r′) with r = (x1, 0) and r′ = (x2, y), with y = 0 data shown as solid lines
(theory) and triangles (experiment), and y = 1 data shown as dashed lines (theory) and circles (experiment), respectively. Each point
represents 5600 measurement shots. Statistical error bars in (c) are included, but smaller than plot symbols.

Wannier basis. Combined with holographic simulation
methods using mid-circuit measurement and reuse, this
method dramatically reduces the number of qubits required
(Ld−1B versus Ld) to implement the GMPS on a quantum
computer.

B. Trapped-ion GMPS implementation

To demonstrate the feasibility of this approach for near-
term hardware, we prepare an entangled metallic ground
state of a spinless noninteracting two-leg ladder described
by Eq. (2) without spin, and with Lx = 8, Ly = 2, U = 0,
and N = 8 electrons (half-filling). This system has the
same number of degrees of freedom of a spinful Lx = 8
FH chain that we are ultimately interested in, but avoids the
trivial decoupling of spin species that arises in mean-field
ground states of the FH chain. The QMPS representation
of the compressed GMPS is implemented on Quantin-
uum’s System Model H1 trapped-ion quantum computer
utilizing six trapped-ion qubits corresponding to block size
B = 2 × 3, sufficient to reduce the theoretical compres-
sion error below 1%. Using only a simple error-mitigation
scheme based on postselecting data with the correct total
electron number (see Appendix D for details), we achieve
close to a quantitative agreement (within statistical error
bars) between the experimental correlation functions and
their theoretical values (see Fig. 1).

IV. CORRELATED ELECTRON MODELS

Since noninteracting fermion systems permit effi-
cient classical simulation, the GMPS technique is not
directly useful on its own. However, holographic QMPS

approximations to mean-field states can be helpful starting
points for approximating correlated ground states either
by (i) adiabatic evolution to a correlated system in the
same phase as the mean-field state (using efficient holo-
graphic time-evolution methods [7]), or (ii) reducing the
complexity of variational state preparation by providing
a good initial guess. Here, we focus on the variational
approach (ii) and show that relatively simple variational-
circuit extensions of the GMPS circuit, which we refer
to as GMPS+X methods, provide good approximations to
interacting fermion ground states of a spinful FH chain
[Eq. (2) with Ly = 1]. Since this model can be exactly
solved by Bethe-Ansatz methods, it provides a convenient,
high-precision benchmark of these techniques. We imple-
ment two different GMPS+X ansatzes, which we refer
to as GMPS+J and GMPS+U, respectively, and compare
their performance against a problem-agnostic ansatz where
the QMPS tensors are generated by a brickwork circuit
of general (number-conserving) two-qubit gates. In each
of the GMPS+X approaches, we first construct a GMPS
circuit corresponding to the Hartree-Fock (HF) ground
state. At half-filling (ν = 1/2, one electron per site), the
HF ground state has antiferromagnetic (AFM) order with
order parameter: N = ∑

j (−1)j 〈Sz
j 〉 �= 0. The long-range

AFM order is, of course, an artifact of the HF approx-
imation, and the true ground state has only power-law
decaying AFM correlations due to strong quantum fluc-
tuations. We also consider one-third-filling (ν = 1/3, two
electrons per three sites), where we use a HF ground-
state solution that is a nonmagnetic Fermi gas, and the
true ground state is a correlated Luttinger liquid with
spin-charge separation.
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A. Variational ansatzes

Here we introduce and briefly describe the different vari-
ational approaches considered (see Fig. 2), and compare
their performance through numerical simulations. Addi-
tional details on the construction and implementation of
circuits for each ansatz can be found in Appendix C.

a. GMPS+J ansatz The GMPS+J ansatz is specific to
half-filling (ν = 1/2), where the charge degrees of free-
dom are gapped, and the low-energy fluctuations of the FH
chain are approximately described by a Heisenberg spin-
1/2 chain. Roughly speaking, we can think of the GMPS
circuit as transforming from the sites of a spin-1/2 chain
to the Wannier orbitals for the Mott-insulating FH chain.
With this picture in mind, we can build in spin correlations
by adding variational layers before the GMPS circuit, such
that the GMPS circuit produces an entangled state of the
Wannier-orbital spins, rather than a simple Neél product
state [Fig. 2(a)]. Specifically, we choose a single varia-
tional circuit layer that is equivalent (up to a basis change)
to that used in Ref. [7] to approximate the Heisenberg spin-
chain ground state as a QMPS using a single bond qubit
(see Appendix C for details). We see that this ansatz per-
forms best at half-filling and large U, where the FH chain
can be well approximated by a spin chain. The chief advan-
tage of this ansatz is that it is very compact, requiring only
a single variational parameter per site.

b. GMPS+U ansatz The GMPS+U ansatz [Fig. 2(b)]
simply augments each of the Gaussian fermion gates

in the GMPS circuit with a non-Gaussian gate
e−i/2(θiZ⊗Z+αiZ⊗1+βi1⊗Z) with variational parameters
{θi,αi,βi} chosen independently for each GMPS gate, i.
These non-Gaussian operations make the GMPS+U gates
into a general number-conserving gate (with some param-
eters fixed by the GMPS representation of the HF state).
We see that this ansatz is more flexible than the GMPS+J
method, and can achieve reasonable results over a broad
range of fillings and interaction strengths, albeit at the cost
of introducing additional variational parameters nvar =
3NS(B − 1), where NS = 2 denotes the number of spin
components. We show that this also implies that the rep-
resentational power of the GMPS+U ansatz increases with
B, and give evidence that this enables the ansatz to be
scaled to achieve the arbitrary desired variational accuracy
(Fig. 4).

c. Brick QMPS ansatz Finally, we compare the
GMPS + U approaches to a problem-agnostic QMPS
whose tensors are generated by a brickwork circuit [see
Fig. 2(c)] of arbitrary (charge-conserving) two-qubit gates.
In this approach, the circuit parameters are not constrained
except by symmetry. Specifically, we enforce charge con-
servation by demanding the circuits commute with the
total Sz of the physical and bond qubits, resulting in five
variational parameters per gate [22].

B. Comparison of variational approaches

Figure 3 shows numerical results for the relative error
ε = (E − Eexact)/|Eexact| between the variational energy E,

n1,↑ n1,↓ n2,↑ n2,↓

c†
↑|0〉 c†

↓|0〉

. . .
. . .

(a)

=
Zθ1

X
X

θ
3

Zθ2

(b)

Z
Z

θ
4

Y
Y

θ
3

Zϕ

(a) (b) (c)

ZZθ

FIG. 2. Variational circuit architectures for correlated electron problems—the GMPS+X approaches augment the GMPS circuit
preparing the Hartree-Fock ground state with non-Gaussian gates that build in correlations either by (a) GMPS+J: introducing an
extra QMPS layer with an extra bond qubit (gray dashed box) or by (b) GMPS+U: generalizing the GMPS gates (blue boxes) to
include non-Gaussian operations, ZZθ = e− i

2 θZ⊗Z and Zφ = e− i
2 φZ . Here we draw the GMPS+X circuits only for block size B = 3

(the implemented circuits have twice this block size, B = 6 to include spin). (c) A problem-agnostic brick QMPS ansatz consisting of
a brickwork of general number-conserving two-qubit gates. Here, for any Hermitian operator O, Oθ denotes a gate corresponding to
unitary u[Oθ ] = e−iθO/2.
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(b)

QMPS

(a)

FIG. 3. Comparison of variational approaches to the Fermi-Hubbard chain—relative error in energy of (a) half-filling (b) (1/3)-filling
Fermi-Hubbard chain for various variational approaches compared to the exact ground state of the corresponding Fermi-Hubbard chain.
Variational approaches include two types of GMPS+X circuits: GMPS + J and GMPS + U that augment the GMPS with B = 6 for
the Hartree-Fock ground state with additional variational circuitry, and a problem-agnostic QMPS ansatz with two bond qubits and
four layers of brick circuit (brick QMPS) (see Appendix B for details of circuit ansatzes). The GMPS+U simulations are performed
for an L = 18 site chain, whereas the brick QMPS and DMRG calculations are performed for an infinite chain. For comparison to
classical methods, we include the mean-field (MF) solution, and DMRG results with bond dimension 25 that provide a lower bound
on the achievable energy with nb = 5 bond qubits (nb = B − 1 in general) used in the GMPS+U approach. The number of variational
parameters per (spinful) site are, respectively, 1 (GMPS+J), 30 (GMPS+U), 80 (brick QMPS), and 1024 (DMRG with χ = 25).

and the exact ground-state energy Eexact, for different vari-
ational QMPS ansatzes at fillings ν = 1/2, 1/3 and various
interaction strengths 1 ≤ U ≤ 6. These are additionally
compared to the HF approximation and a classical density
matrix renormalization group (DMRG) calculation with
bond dimension χ = 25, equivalent to the bond dimen-
sion for the nb = 5 bond qubits needed for the GMPS+X
approaches. Since DMRG effectively converges to near-
optimal results in these types of simple 1D problems, the
DMRG calculation can be viewed as an effective lower
bound on the performance of variational circuit ansatzes

4 6 8 10
B

10−3

10−2

10−1

(E
−

E
ex

a
ct

)/
| E

ex
a
ct

|

U = 2, ν = 1/2

FIG. 4. Scaling of the GMPS+U method when changing block
size B—variational energy of GMPS+U ansatz for the Fermi-
Hubbard chain at half-filling with U = 2 converges rapidly
(approximately exponentially over the range of parameters
explored) with block size B, which suggests that this method can
be used to achieve the arbitrary desired accuracy.

with nb ≤ 5 bond qubits. We note that, while the DMRG
energy error is significantly lower than the variational
QMPS results in this example, (i) this relies crucially on
the tractability of 1D DMRG calculations, which does not
extend to more complicated problems in 2D, and (ii) we
show that the GMPS+U method can be readily scaled to
achieve comparable accuracy with far-fewer variational
parameters (see Fig. 4).

To obtain a scalable variational ansatz, it is critical
to reduce the number of variational parameters per site,
nvar, required to achieve a desired accuracy. Optimiz-
ing complex variational circuits with large nvar is gener-
ically a classically difficult (nonlinear, nonconvex, and
high-dimensional) problem and creates significant sam-
pling overhead for measuring energies and gradients on
quantum devices. The complexity of the ansatzes ranges
from nvar = 1 for GMPS+J, nvar = 24 for GMPS+U, and
nvar = 80 for the brick QMPS, to nvar = χ2 = 1024 for
DMRG. We note that, while we present simulation results
for a finite number (L = 18) of spinful sites, the algorithm
complexity presented scales (empirically) efficiently in
L, and for the parameters explored this L is sufficiently
large to accurately capture the thermodynamic limit (see
Fig. 5).

In general, we observe that the GMPS+X techniques
offer a significant reduction in the number of variational
parameters nvar required to achieve a given accuracy. At
ν = 1/2, the simplest ansatz, GMPS+J already achieves sig-
nificant improvement over the mean-field results despite its
extreme simplicity. Moreover, the GMPS+U ansatz outper-
forms the brick QMPS variational circuits across the entire
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L

0.001
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0.040
(E

−
E
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)/
|E

ex
a
ct

| U = 2
U = 4
U = 6

FIG. 5. Scaling of the GMPS+U ethod when changing system
size L—the relative error in energy versus the total length L of
spinful sites for the FH model at U = 2, 4, 6 and ν = 1

2 and fixed
block size B = 6.

ν, U parameter space explored, despite having significantly
lower nvar.

The GMPS+U ansatz can be scaled to achieve higher
accuracy by changing the block size B (which also adjusts
the number of variational parameters for building in cor-
relations). Empirically, in the range of B explored, we
find that this allows one to adjust the complexity of the
ansatz to achieve a desired target error rate. To explore
the scalability, we focus on the weak Mott-insulating
regime (U = 2, ν = 1/2) where the GMPS+U error in Fig. 2
is large, yet interactions are still important. Here, we
observe a rapid decay of error with block size, that fol-
lows an approximately exponential trend ε ∼ e−cB with
c ≈ 0.7 over the range of B explored. We note that the
mean-field GMPS compression error is already very low
at B = 4, and attribute the improvement with B to the
more flexible variational ansatz better capturing multipar-
ticle correlations. At the largest block sizes, B = 10, the
GMPS+U technique achieves performance equal to the
classical χ = 32 DMRG despite having over an order of
magnitude fewer variational parameters (nvar = 54 versus
1024). These results show that the GMPS+U approach
can achieve high precision and scalable performance for
simulating strongly correlated electron models with far-
fewer variational parameters than problem-agnostic circuit
ansatzes.

C. Trapped-ion GMPS+X d emonstration

We implement the simplest extended GMPS version,
the GMPS+J variational ansatz, in the Quantinuum sys-
tem model H1 trapped-ion quantum processor, focusing
on the specific case of ν = 1/2 and intermediate inter-
action strength (U = 4), and for a Fermi-Hubbard chain
of length L = 6. To avoid the lengthy process of hybrid
classical quantum optimization, we perform the optimiza-
tion through classical simulation, and simply implement
the classically optimized circuit in hardware. We employ
a simple error-mitigation technique of postselecting data

(a)

(b)

FIG. 6. GMPS+J hardware implementation—for the Fermi-
Hubbard chain at half-filling with U = 4. (a) Energy density ver-
sus position in the GMPS+J ansatz (which is not explicitly trans-
lation invariant), with hopping energies shown at half-integer
(bond-centered) positions. (b) Connected spin (S) and charge
density (n) correlators show spin-charge separation with rapid
decay of charge and slower (antiferromagnetically modulated)
decay of spin correlations.

on having the correct total number of particles (see
Appendix D for details).

Figures 6(a) and 6(b), respectively, show the energy
densities (for each bond) and correlation functions for
a chain of length L = 6. Comparing to ideal (noise-
less) circuit simulations, and exact (Bethe-ansatz) results,
we find a good quantitive agreement to the experimen-
tal results within the statistical error bars from a finite
shot rate of between 400 and 1000 shots per data point
(see Table I for details on the number of measure-
ment shots, including error-mitigation postselection). In
addition to the quantitative agreement, the correlation
data shows a clear separation of spin and charge with
rapidly decaying charge correlations and longer-range spin
correlations.
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(a) (b)

(c) (d)

FIG. 7. GMPS compression resource scaling: (a)–(d) show the mean error Gerr of Green’s functions versus the GMPS compression
block size for various systems and system sizes. Gerr is defined by Gerr = ∑

i,j |Gc
i,j − Go

i,j |/V, where Go and Gc are the original and
compressed Green’s function and V is the system size. In each plot we stop at the block size when the eigenvalues cannot be improved
by increasing block size as it already reaches the limit of machine precision 10−15. (a)–(c) show the error versus the block sizes for
different Lx while Ly is fixed (to 1,6,6); (d) shows the compression error versus the block sizes for different Ly with Lx = 50. The insets
of (a),(b),(d) show the Gerr versus 1/Lx or 1/Ly . The inset of (c) shows the Gerr versus the block size rescaled by log(Lx).

V. RESOURCE SCALING OF GMPS
COMPRESSION IN 2D

While the GMPS method was originally developed for
1D systems, one can straightforwardly extend it to higher
dimensions, by adopting an approach similar to that of
2D DMRG where a 2D system of length Lx and width
Ly is considered as a stack of Lx “slices,” or similarly
by treating a 3D system as a stack of 2D cross sections.
Focusing on 2D (we expect similar results to hold in 3D),
we empirically investigate the resource scaling required
to implement GMPS representations of three important
classes of states (see Fig. 7):

1. A topologically trivial 1D band insulator (Ly=1)
is constructed from the Su-Schreifer-Heeger (SSH)
model with Hamiltonian HSSH = −t

∑N−1
j =1(

1 + (−1)j δ
)

c†
j cj +1 + h.c. with δ = 1/2.

2. A topologically nontrivial Chern insulator is con-
structed from the ground state of a square lattice
π -flux tight-binding model of Ref. [23], with param-
eters t1=1, t2=1, and the periodic boundary condition
in Ly direction (to avoid gapless chiral edge states
along the cylinder).

3. A two-dimensional metal with a Fermi surface from
an isotropic tight binding is constructed from the
ground state of a square lattice tight-binding Hamil-
tonian H = ∑

〈i,j 〉(−tc†
i cj + h.c.) where 〈〉 denotes

the neighboring sites, with the periodic boundary
condition in Ly direction.

We measure the quality of the GMPS approximation via
the mean error in the entries of Gij and focus on the regime
where the eigenvalues obtained in the GMPS approxima-
tion can be improved until machine precision by using
larger block sizes. In each case, we provide numerical
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evidence that the block size required for the GMPS com-
pression scheme follows that expected by the entanglement
structure of these states, namely to achieve error ε requires
B ∼ Ly log (1/ε) for both topological and trivial insulat-
ing states, and B ∼ Ly log Lx log (1/ε) for metals, which
is consistent with B ∼ S(Lx, Ly), where S(Lx, Ly) is the
half-system bipartite entanglement entropy.

The Chern insulator result may initially seem surprising
since the nonzero Chern number provides a fundamental
obstruction to forming a localized Wannier basis, and at
first glance, the GMPS algorithm may appear to be con-
structing such a basis. However, we note two points. First,
the quasi-1D GMPS circuit structure only has locality
along x, whereas the Chern obstruction forbids only simul-
taneous localization in both x and y directions. Specif-
ically, the projection of the spatial coordinate into the
orbitals of a Chern band (X̂ , Ŷ) fails to commute [X , Y] ∼
C where C is the Chern number. Second, we see the
GMPS circuit with B ∼ log Lx is accurate even for met-
als with Fermi surfaces where the Wannier orbitals have
algebraic decay in space. This indicates that the GMPS cir-
cuit cannot simply be understood as a mapping to a strictly
local Wannier basis. Technically, the unitary basis trans-
formation implemented by the GMPS circuit is an upper
triangular matrix and can produce long-range tails in the
later entries.

One significant consequence of this result is that it
implies a polynomial advantage of QMPS techniques for
simulating correlated Chern insulators compared to stan-
dard quantum simulation protocols (e.g., using adiabatic
state preparation). Assuming that the numerically estab-
lished trends shown in Fig. 7 hold, then by leveraging
(i) standard rigorous results about adiabatic evolution [24]
and trotterizing continuous time evolution into circuit
evolution [25,26], and (ii) previously analyzed [7] and
experimentally feasible [10] methods for holographically
implementing time evolution, we can establish an upper
bound on the qubit and gate resources required to prepare a
correlated Chern insulator (CI). Specifically, the number of
gates required to prepare a noninteracting CI ground state
via the GMPS method is g ∼ BLx ∼ LyLx ∼ L2. Further,
any correlated CI with integer Chern number is adiabat-
ically connected to the noninteracting limit, and hence
can be reached with constant-depth local time evolution,
that can be implemented with constant qubit overhead
via holographic time evolution [7]. This GMPS+adiabatic-
preparation approach has no free variational parameters
and hence this performance bound does not rely on any
assumption about the efficiency of optimizing variational
circuits. By contrast, adiabatic state preparation of the
Chern insulator from an unentangled product state would
inevitably require crossing through a phase transition since
the product state and Chern insulator are topologically
distinct phases (here we assume that the adiabatic evolu-
tion is performed with a local Hamiltonian). If this phase

transition is continuous (second order) with dynamical
critical exponent z, then the minimal gap is � ∼ 1/Lz,
which requires gate count approximately L2/�2 ∼ L2+2z.
For physical transitions, z ≥ 1, which places a bound g ∼
L4 for standard adiabatic preparation. Crossing a first-order
transition would require much longer (exponential-in-L)
adiabatic time.

Lastly, we remark that while we focus on 2D systems
here, going to higher dimensions does not add any qualita-
tively new ingredients, and we expect the trend to continue
in 3D, i.e., that the number of qubits in the GMPS con-
tinues to scale like the bipartite entanglement through a
cross-section slice in all dimensions. For example, we can
trivially confirm this expectation for the special case of
translationally invariant systems with periodic boundary
conditions in x, y and arbitrary boundary conditions in
z, which can be reduced to a decoupled set of approxi-
mately LxLy 1D systems along z for each kx, ky , each of
which can be compressed into a GMPS with a constant
(gapped systems) or approximately log Lz scaling of qubits
(metals).

VI. DISCUSSION

In this work, we introduced and experimentally demon-
strated holographic approaches to prepare ground states
of correlated electron systems. The efficient preparation
of gapped and gapless mean-field ground states as QMPS
(obtained by our QMPS adaptation of the GMPS compres-
sion scheme of Fishman and White), in conjunction with
holographic time-evolution algorithms [7], formally estab-
lishes that QMPS with efficient circuit resources (i.e., scal-
ing polynomially with system size) can accurately capture
any state that is continuously connected to a mean-field
fermion state (possibly via a continuous phase transition).
This includes most phases of matter relevant to practi-
cal material simulations, such as metals, correlated triv-
ial and topological insulators, magnets, superconductors,
density-wave states, etc.

Compared to standard adiabatic state-preparation pro-
tocols, the combination of the holographic approach,
QMPS encoding, and Gaussian compression bring impor-
tant advantages that are already apparent in the mean-field
state preparation. For example, for gapped Hamiltoni-
ans, the holographic QMPS encoding offers a polynomial
reduction in qubit resources (from q ∼ Ld to q ∼ Ld−1),
and for 2D topological systems with nontrivial Chern num-
ber further allows a polynomial reduction in gate count
(from g ∼ L4 to g ∼ L2) [27]. Similarly, compared to the
Givens rotation approach used in recent hardware demon-
strations of Hartree-Fock ground-state preparation [20],
which required q ∼ L qubits and g ∼ L2 gates, QMPS
constructed via GMPS compression require only q ∼
log L log ε−1 and g ∼ L log L log ε−1, achieving a poly-
nomial reduction in both resources [28]. Previously, the
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most efficient Gaussian state-preparation protocol was the
fermionic fast Fourier transform (FFFT), which similarly
uses g ∼ L log L [29] gates; however, unlike the GMPS
technique, the FFFT is restricted to translation-invariant
(plane-wave-like) states and requires long-range gates that
spoil the holographic savings in qubit number (and may be
costly to implement in many architectures). The source of
the efficiency of Gaussian compression is the exploitation
of the near-area-law entanglement behavior of physical
gapped and gapless ground states. Retaining this structure
in the QMPS then allows for compact preparation of near-
area-law interacting ground states. We demonstrate this
here by preparing ground states of interacting 1D fermion
Hamiltonians, including those with extended power-law
ground-state correlations in Gij , using GMPS+X circuits
adapted from the mean-field circuits.

Natural targets for follow-on work include tackling
higher-dimensional systems via 2D or 3D QMPS or QTNS
techniques, exploring alternative fermion-to-qubit encod-
ings that are well suited to QTNS methods, and explor-
ing QTNS-based embedding techniques [30] to simulate
realistic material models with complex (e.g., long-range)
interactions.

Given the importance of noise and errors in near-term
implementations, it will further be important to system-
atically assess the impact of gate errors on GMPS-based
circuit ansatzes. For example, related work on holo-
graphic multiscale entanglement renormalization ansatzes
(MERA) suggests that holographic algorithms possess an
intrinsic degree of noise resilience [31]. For QMPS circuits
describing gapped 1D systems, one expects a spectral gap
in the MPS transfer matrix, such that perturbing the cir-
cuits weakly with gate errors, would lead to a small, finite
correction to the QMPS steady-state properties even in the
limit of infinitely long systems (L → ∞). Exploring the
systematic dependence of this noise susceptibility for dif-
ferent physical types of states is a potentially interesting
target for future work, and the analytic tractability of free-
fermion systems may provide a tractable set of examples to
explore the systematic dependence of noise sensitivity of
QMPS based on the entanglement structure of the ground
state being approximated.
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APPENDIX A: QUANTINUUM QCCD
ARCHITECTURE

Hardware implementations are performed on Quantin-
uum’s System Model H1 trapped-ion quantum proces-
sor [32], which uses a quantum charge-coupled device
(QCCD) architecture, based on a Quantinuum-fabricated
planar chip trap operating with three parallel gate zones
and ten qubit ions. One-qubit (1q) gates implement π/2
rotations about an arbitrary axis in the σ xy plane. The
native entangling two-qubit gate is a Mølmer-Sørensen
gate wrapped with single-qubit dressing pulses to achieve
a phase-insensitive operation uMS = exp[−iπ4 Z ⊗ Z] [32].
The one-qubit gates and two-qubit gates have typical aver-
age infidelities (determined by randomized benchmarking
techniques) of ε1q ≈ 10−4 and ε2q ≈ 2 − 5 × 10−3.

Due to the large sampling overhead and relatively low
clock speed of the QCCD device, we chose to perform
only part of the holographic variational quantum eigen-
solver algorithms on the quantum device. Namely, in all
cases, we performed the variational optimization of circuit
parameters through classical simulations and implemented
only the optimized circuit in hardware. While this proce-
dure does not address the effect of hardware noise on the
variational optimization (nor allow for possible variational
cancellation of coherent errors), it nevertheless allows one
to test how realistic hardware errors affect the achievable
variational errors with different circuit types.

APPENDIX B: DETAILS OF GMPS CIRCUIT
IMPLEMENTATIONS

In the GMPS compression algorithm, a basis trans-
formation specified from the eigenvector of the Green’s
function block transfers the least entangled states to the
first site of the block. The corresponding basis transfor-
mation is decomposed into a series of nearest-neighbor
two-site gates, which rotate the Green’s function block into
the occupation basis. The circuit and gate parameters are
obtained from the eigenvectors.

Rotating the first site to the eigenvector (v1, v2, . . . , vB−1,
vB) requires (B − 1) two-site gates in total. The first gate
acts on site (B − 1, B) and is labeled as VB−1. VB−1 satisfies
vTVB−1 = (v1, . . . v′

B−1, 0). In general the gate Vi satisfies
(v1, . . . v′

i+1, 0, . . . 0)TVi = (v1, . . . , v′
i , 0, . . . 0) and it takes
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the form:

Vi = V(θi) =
(

cos θi − sin θi exp (iφi)

sin θi exp (−iφi) cos θi

)
.

(B1)

When Green’s function is real, φ = 0 and θB−1 =
tan−1(vB/vB−1), thus the gate Vi takes the same form as
in Ref. [15] When Green’s function is complex in cer-
tain cases (like in Chern insulators), the eigenvectors are
also complex thus the extra phase factor φ becomes nec-
essary. The entries of Green’s function are updated once
the gate acts on it. The next gate acts on (B − 2, B − 1)
and so on. This procedure gives us VB−1, VB−2,. . . ,V1.
The total unitary transformation is VB1 = VB−1VB−2 · · · V1.
Acting this on Green’s function G yields the transformed
Green’s function V†

B1
GVB1 with n1 ≈ 0 or 1. The proce-

dure is repeated for sites 2,. . . B + 1 to obtain VB2 . For
the last few sites, the block size becomes the number of
the remaining sites. In the end we obtain the total unitary
transformation V = VB1VB2 · · · VBN−1 .

APPENDIX C: VARIATIONAL CIRCUIT
ARCHITECTURES

This subsection details the architecture for the varia-
tional circuits shown in Fig. 2. This includes two types of
GMPS+X circuits that augment the GMPS Hartree-Fock
circuit with additional variational circuits:

(i) the GMPS+J ansatz (where “H” stands for “Heisen-
berg”) depicted in Fig. 2(a) geared towards large-U
and half-filling, and

(ii) the GMPS+U ansatz [Fig. 2(b)], which is agnostic
to filling and U (although it tends to perform best at
large or small U), and

(iii) a problem-agnostic brick circuit [Fig. 2(c)], which
can achieve high accuracy, but at the cost of intro-
ducing a comparatively large number of variational
parameters.

1. GMPS+J

The GMPS+J ansatz exploits the physical picture
that the half-filled Fermi-Hubbard model behaves like a
Heisenberg spin chain at large Us, by introducing a varia-
tional “pre-entangling” circuit before the GMPS circuitry
[Fig. 2(a)] using a single extra bond qubit and layer of vari-
ational gates to build in quantum fluctuations of the AFM
spin texture in the Hartree-Fock ground state. The aim is to
emulate a QMPS state of the electron spins without altering
the charge state. In our approach, we encode each spin-
ful fermion site into two qubits whose computational basis
encodes the particle occupation number of the up and down
spin orbitals: |n↑, n↓〉. The input state to the GMPS circuit
is simply a product state of Fermi-Hubbard sites with a sin-
gle particle on each site, and with spin alternating between

up and down. To entangle the spin degrees of freedom on
different sites without affecting their charge, we employ a
basis transformation using a CNOT gate, which corresponds
to the following map:

|n↑, n↓〉 −→ |flavor, 2PF − 1〉 :

|0, 0〉 −→ |0, 0〉
|0, 1〉 −→ |0, 1〉 (C1)

|1, 0〉 −→ |1, 1〉
|1, 1〉 −→ |1, 0〉.

In the transformed basis the second qubit encodes the even
and odd fermion parity PF = (−1)n↑+n↓ . The flavor qubit’s
interpretation depends on the value of PF . When PF is odd,
there is a single electron per site and the first qubit’s Pauli
operators correspond to the electron spin operator, e.g.,
Z1 = c†

sσ
z
ss′cs′ (and similarly for Y, Z). While our initial

states always have odd fermion parity, for completeness,
we mention that for even fermion parity the “flavor” qubit
encodes the occupation number of a spin-singlet Cooper
pair created by c†

↑c†
↓.

In the flavor and parity basis, the electron spin on each
site now maps to the state of a single qubit, and we can
apply a variational XX + YY gate

uXX +YY(θ) = exp
[
−i
θ

2
(X ⊗ X + Y ⊗ Y)

]
(C2)

between this flavor qubit and an extra bond qubit, emu-
lating the variational circuitry for a QMPS approximation
to the Heisenberg spin-chain ground state explored in
Ref. [7]. We then transform back to the original particle
occupancy basis to implement the GMPS circuit for the
Hartree-Fock ground state. The GMPS+J circuit introduces
only a single extra variational parameter per site.

2. Brick circuit QMPS

Besides the GMPS+X approaches, we also employ a
problem-agnostic variational circuit approach, which we
label by the term brick QMPS. Specifically, we fix a brick-
work circuit architecture with general particle-number con-
serving two-qubit gates (see Fig. 2) to generate the tensors
of a QMPS with χ = 24 and classically minimize 〈HFH〉
with respect to the variational parameters using quimb
[33]. The number of bond qubits and gates in this ansatz
can be arbitrarily scaled to achieve larger expressiveness.
However, this introduces a large number of variational
parameters (five parameters per two-qubit gate), which
may be difficult to train on larger problem instances (e.g.,
2D models).

Our brickwork circuit ansatz employs general particle
number-conserving two-qubit gates to enable noise mitiga-
tion based on postselecting the data on having the correct
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TABLE I. Total shots for different measurements (i = 1, 2, 3 for 1/3-filling states and i = 1, 2 for 1/2-filling states), success rate defines
the proportional of total shots kept after the noise-mitigation postselection.

Terms: c†
↑0c↑1 c†

↓0c↓1 c†
↑1c↑2 c†

↓1c↓2 c†
↑2c↑3 c†

↓2c↓3 ni↑ni↓
U ν Total shots Success rate

6 1/2 400 400 400 400 1000 58.5%
4 1/2 1000 1000 1000 66.4%
1 1/2 400 400 400 400 1000 42.1%
6 1/3 800 800 800 800 600 800 1000 42.1%
4 1/3 800 800 1000 1000 1000 1000 1000 39.1%
1 1/3 800 1000 800 1200 1000 1000 1000 29.8%

total particle number, with unitary:

U2q(γ ,φ, ζ ,χ , θ)

=

⎛

⎜⎜⎝

ei(γ+φ) 0 0 0
0 ei(−γ+φ+ζ ) sin θ e−i(χ+γ+φ) cos θ 0
0 ei(χ−γ+φ) cos θ e−i(γ+φ+ζ ) sin θ 0
0 0 0 ei(γ−φ)

⎞

⎟⎟⎠,

(C3)

where (γ ,φ, ζ ,χ , θ) are variational parameters [indepen-
dently chosen for each two-qubit gate in Fig. 2(c)].

APPENDIX D: ERROR MITIGATION

As a simple noise-mitigation method, we postselect our
data on having the correct total particle number. Since a
noiseless implementation of the circuits conserves total
particle number, any deviation from the ideal number can
only be caused by gate errors (though not vice versa). This
symmetry-based postselection gives a modest but notice-
able improvement in measuring Green’s functions and
density correlations. An example is shown in Fig. 8, com-
paring the measurement results with and without the noise
mitigation.

When all the measurements are in the Pauli-Z bases, it is
convenient to keep track of the particle number just using
the measurement results. The most straightforward way of
measuring Green’s functions 〈c†

r1cr2〉, would be to imple-
ment separate measurements of its real and imaginary parts
as Pauli strings: “...XZ...Z...ZX ...” and “...YZ...Z...ZY...”.
However, as these strings do not individually commute
with total particle number, the method would be incom-
patible with our error-mitigation scheme. Instead, we add
additional gates to map XiXj + YiYj and Zi + Zj eigen-
states to the computational basis so that the real part of G
and the total number can be simultaneously measured. This
mapping is achieved by the unitary (written in the Zi, Zj

eigenbasis):

UM =

⎛

⎜⎜⎜⎝

1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

⎞

⎟⎟⎟⎠ . (D1)

Since the state is built sequentially from left to right, per-
forming this rotation requires postponing the mid-circuit
measurement and resetting the qubit at r1 until site r2 is
reached, which requires a single extra hardware qubit com-
pared to the basic QMPS circuit without error mitigation.

APPENDIX E: GMPS FOR SUPERCONDUCTORS
AND THERMAL STATES

While Ref. [15] focused on the classical GMPS method
for ground states of real, number-conserving free-fermion
Hamiltonians, it is straightforward to generalize this
framework to general Gaussian fermion pure and mixed
states. The case of complex Hamiltonian entries is already
accounted for by the phases, φ in Eq. (B1) above. Below
we briefly sketch the generalizations for superconducting
and mixed (e.g., thermal) Gaussian states.

1. Particle non-conserving states (superconductors)

For superconducting mean-field states that do not con-
serve particle number, a standard convenient trick is to
redundantly represent N fermion orbitals using a 2N -
component Nambu operator:

ψi,s =
(

c1, . . . cN , c†
1, . . . c†

N

)T
, (E1)

where s = +1 corresponds to the particle (ci) block and
s = −1 to the hole (c†

i ) block. Denoting the Pauli matri-
ces in this particle-hole space as �τss′ , this description has
a particle-hole redundancy ψ† = τ 1ψ . The classical part
of the GMPS algorithm can then be run as normal in
this Nambu basis, except that each time one identifies an
approximate block eigenvector v with block occupation
number n close to 0 or 1, its particle-hole conjugate τ 1�v
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(a)

(b)

FIG. 8. Error mitigation. (a) To mitigate hardware errors, we
postselect on results with the correct total particle number. To
simultaneously measure total particle number and Green’s func-
tion elements 〈c†

i cj 〉, we add a basis transformation gate UM for
the corresponding qubits of Green’s functions before measur-
ing them and each qubit is measured in the Pauli-Z basis as in
Ref. [20]. In the holographic implementation, the first qubit being
measured cannot be reset and reused until both sites i, j are mea-
sured. (b) A comparison between measurement results for the
QMPS VQE method of U = 6, half-filled Fermi-Hubbard model
with (EM) and without (NoEM) the error mitigation. Details of
postselection success rate and shot counts are shown in Table I.

will also be a block eigenvector with the block occupa-
tion number 1 − n, which is equally well localized to the
block. These vectors should be simultaneously decoupled
from the rest of the system by implementing rotations VB
and τ 1VBτ

1 on G. In the many-body language the many-
body operator corresponding to single-particle rotation Vij

is eψ
†
is(log V)is,js′ψjs , which will automatically perform both VB

and τ 1VBτ
1 rotations due to the particle-hole redundancy.

2. Thermal states via purifications

It is also possible to prepare a purified version of
Gaussian mixed states via GMPS methods at the cost of
doubling the number of qubits required compared to a
pure Gaussian state. Without loss of generality, we con-
sider this method for thermal states of the form: ρ =
(1/Z)e−c†

i hij cj (where we have chosen normalization of h
such that temperature is 1, and Z normalizes trρ = 1),
since any Gaussian mixed state can be represented in this

way. We expect the compression to be effective when h is a
local Hamiltonian, since these thermal states will have an
area-law scaling of mutual information [34] and efficient
matrix-product density operator form [35].

The basic idea is to prepare a thermofield-double- (TFD)
type state on a doubled system with the fermion creation
operators of the system and double respectively labeled as
ci, ai (here “a” stands for ancilla). To start, consider just
a single-mode thermal state ρT = (1/Z)e−εc†c. This can be
prepared as a TFD state: |�TFD〉 = (1/

√
Z)e−εc†a/2|0〉s ⊗

|1〉a, which has the properties (i) ρT = tra|�TFD〉〈�TFD|,
and (ii) |�TFD〉 is a Gaussian fermion state that can be
approximately prepared as a GMPS acting on the doubled
{c, a} system. For multiple modes, this simply general-
izes to |�TFD〉 = (1/

√
Z)e−c†

i hij aj |0〉s ⊗ |1〉a where |0〉 is
the all-empty state, and |1〉 is the all-full state, respectively,
(as can be seen by working in the eigenbasis of hij , which
reduces to the single-mode problem above).

This Gaussian TFD (GTFD) preparation could be par-
ticularly effective as a starting point for variational thermal
state-preparation schemes based on minimizing the free
energy F = 〈H 〉 − TS where S = −trρs log ρs. Namely,
whereas computation of 〈H 〉 for a variational state is
straightforward on a quantum computer, measurements of
S for an unknown state incur exponential sampling over-
head [36,37]. However, if one starts with a GTFD state,
and adds subsequent variational circuit layers acting on the
c system alone, the entropy of the c system remains that of
the initial thermal state, which can be efficiently calculated
classically. The resulting state has a fine-tuned entangle-
ment spectrum that is the direct product of many indepen-
dent two-state systems (one per fermion orbital). Generic
thermal states instead exhibit random-matrix-type entan-
glement spectrum with level repulsion between nearby
entanglement energies. However, recent work [38] pro-
vides evidence and arguments that the fine details of the
entanglement level spacing statistics are not visible in
physical quantities of interest such as correlations of local
observables and that product-state entanglement spectrum
ansatzes are effective at reproducing such observables in
correlated thermal states.

APPENDIX F: CIRCUMVENTING
JORDAN-WIGNER STRING MEASUREMENTS

Measuring fermion correlations between distant sites
requires measuring long Jordan-Wigner strings. Errors in
measurement will generically cause such observables to
decay exponentially in distance. While this effect is minor
for moderate system sizes explored in this paper, it may
become a dominant source of error in larger-scale models.
Here, we show that in holographic QMPS simulations, it
is possible to avoid the measurement of long JW strings,
by “pulling” the strings back into the virtual bond space
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FIG. 9. Schematic representation of applying Eq. (B1) to
fermionic operator γ1,N .

of the MPS (see Appendix A of Ref. [39]) where they
largely cancel except for additional boundary terms that
can be measured by sampling results from a small number
of different QMPS contractions.

The measurement of a Jordan-Wigner string can be
simplified in the following way: first, we pull back the
Jordan-Wigner strings onto the bond space. Specifically,
for tensors that have definite fermion parity, it is always
possible to pull back the action of fermion parity operators:
PF ,i = (−1)nF ,i where nF ,i is the total number of physi-
cal fermions on site i, which appears in the JW string,
into operators acting on the input and output bonds of the
tensor:

(PF)sAij
s = P†

ikAij
s Plj , (F1)

where P is the representation of fermion parity on the bond
space. Crucially, each bond in the middle of the JW string
has a P from the tensor to its left and a P† from the tensor
to its right, which cancel, leaving only Ps at the terminal
bonds, as shown schematically in Fig. 9.

The transfer matrix with P acting on the lower leg
but not the upper leg is not a valid quantum channel,
but we can decompose it as a linear combination of a
small number of quantum channels that can be separately
measured, and then linearly combined to compute the
desired result. To this end, we introduce the following
two basic operations on the bond space. First, denote
measurement of bond-fermion parity MP:

MP = �P=1 ⊗�P=1 −�P=−1 ⊗�P=−1

= (1 + P)
2

⊗ (1 + P)
2

− (1 − P)
2

⊗ (1 − P)
2

= 1
2

[P ⊗ 1 + 1 ⊗ P] . (F2)

Implementing MP requires measuring P on the bond regis-
ter without collapsing the full bond-wave function, which

in practice can be done using an ancilla and standard phase-
kickback scheme (one of the physical qubits, which has
already been measured and is currently not active can play
this role so that the total qubit resource requirements are
unaffected).

Second, we define the operator sin((π/4)adP) where
adP◦ = [P, ◦]:

sin
(π

4
adP

)
= 1

2i

(
ei π4 adP − e−i π4 adP

)

= 1
2
(P ⊗ 1 − 1 ⊗ P) , (F3)

and each of the terms: ei(π/4)adP = e±iπP/4 ⊗ e∓iπP/4 can
be implemented simply by applying the unitary operator
e±iπP/4 to the bond-qubit register.

From these two ingredients, the desired operation of
applying P to the lower bond legs but not the upper ones
can then be written as

P ⊗ 1 = MP + 1
2i

(
eiπP/4 ⊗ e−iπP/4 − e−iπP/4 ⊗ eiπP/4) ,

(F4)

which we have just shown can be expressed as a weighted
sum of the results obtained by sampling four different
valid quantum channels that can each be implemented
holographically.

This method becomes useful in cases where mid-circuit
measurement errors are the dominant source of error (as
opposed to, say, gate errors building up in the implementa-
tion of the QMPS tensors), and becomes helpful when the
JW string is sufficiently long that its measurement error
exceeds that introduced by the extra circuitry required to
perform the MP and sin(π/4adP) operations.

APPENDIX G: ADDITIONAL DATA FOR BRICK
QMPS

In this section, we present additional simulation and
experimental data for the problem-agnostic brick circuit
QMPS for the Fermi-Hubbard chain at half-filling and
1/3-filling in Fig. 10. Noiseless simulations of the problem-
agnostic brick-circuit QMPS approach show that it can
effectively capture the ground state and correlations over
a range of U and filling factors. To minimize the impact
of errors, and reduce the implementation time for exper-
imental demonstrations of this brick circuit QMPS, we
first classically optimize the circuit parameters to minimize
the variational energy for an infinite MPS (IMPS). From
this, we classically compute the steady state of the bond-
transfer matrix and synthesize a circuit acting on the bond
qubits and one ancilla, which approximately prepares this
steady state. This circuit is then used to prepare an initial
mixed state of the bond qubits, which closely approxi-
mates their bulk steady state, allowing us to directly access
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FIG. 10. Brick QMPS method measurement data of Green’s functions and density correlations of the Fermi-Hubbard model of
different Us and fillings. Absolute value of hopping energies t〈 1

2 (c
†
i↑ci+1↑ + c†

i↓ci+1↓)〉 are shown at bond-centered coordinates with
half-integer positions x = i − 0.5, where i labels the spinful sites. On-site repulsion density correlations 〈ni↑ni↓〉 are shown at site-
centered coordinates (integer i).

the infinite system-size limit without iteratively “burning
in” the bond channel as previously done in Ref. [7]. We
note that a similar technique was employed by Ref. [6].
We emphasize that this technique is only viable for small
problem sizes where classical simulations are tractable.
This, however, may still be useful for preparing, say, a
moderate bond-dimension approximation of a correlated
ground state, which is subsequently subjected to rapidly
entangling time evolution that could not be simulated
classically.

The experimental data agrees well at larger values of U
but deviates significantly at U = 1. Since the charge corre-
lation length increases with smaller Us, we interpret these
deviations as arising from increased propagation of noise
and errors in large-correlation length QMPS.
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