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Abstract. Most recently, the tools of geometric deep learning (GDL)
and, in particular, graph neural networks emerge as a promising new
alternative in unsupervised anomaly detection problems where the data
exhibit a sophisticated nonlinear dependence structure such as various
geospatial surveillance systems. However, prevailing GDL-based meth-
ods for anomaly detection tend to exhibit limited capabilities to capture
multiscale spatio-temporal variability which is ubiquitous in many appli-
cations, particularly, related to biosurveillance and biothreats. Motivated
by the problem of assessing COVID-19 severity, we develop a novel ap-
proach to unsupervised anomaly detection in spatio-temporal data by
fusing the notion of GDL with the emerging direction of persistent ho-
mologies and topological data analysis. In particular, our key idea is to
bolster the GDL performance by leveraging the complementary insight
on the intrinsic multiscale data organization which topological descrip-
tors can provide. We also go one step further and show how our ideas
at the interface of topological and geometric deep learning can be used
not only for detection but for prediction of future anomalies. We show
the utility of the new approach to detecting, forecasting and interpreting
risks in COVID-19 clinical severity, measured in terms of hospitalization
rates, in three U.S. states: California, Texas, and Pennsylvania.

Keywords: Anomaly Detection · Geometric Deep Learning · Persistent
Homology · COVID-19

1 Introduction

Efficient identification of data instances which differ noticeably from the ex-
pected baselines is the core behind such diverse tasks as combating money laun-
dering on blockchain, river water-quality monitoring, and defending information
systems against breaches of cybersecurity. With a long history in robust statis-
tics and continually emerging new types of threats, anomaly detection remains
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one of the most actively developing fields at the nexus of machine learning and
statistical sciences. Efficient detection of anomalies in dynamic settings such as
biological and cyber threats is further exacerbated, first, by the limited or even
non-existing records of labeled attack examples and, second, by a sophisticated
dependence structure among entities of the underlying time-evolving object. For
instance, transmission of many pathogens exhibit complex spatio-temporal inter-
actions with atmospheric conditions, and moreover, pathogenicity of biothreats
mat vary across spatial and temporal scales [28,29,32,41].

To address the first challenge, anomaly detection is often viewed as an unsu-
pervised problem. Among some most widely used unsupervised tools for anomaly
detection are Connectivity-based Outlier Factor (COF) [42] and Influenced Out-
lierness (INFLO) [23]. However, such approaches tend to focus on linear relation-
ships among system entities, and as a result, show limited ability to account for
early warning signals induced by nonlinear interactions exhibited by most com-
plex real-world systems. Various deep learning (DL) tools such as variational
autoencoders (VAE) [25], Long short-term memory (LSTM) [31], and Genera-
tive adversarial Networks (GANs) [26] partially mitigate this problem and are
found to be promising approaches for anomaly detection in high-dimensional
settings.

However, such DL methods are restricted in their ability to learn multiple
types of interactions among system entities in dynamic settings, e.g., georefer-
encing. As such, in the last couple of years, there has been a spike of interest in
bringing the tools of Graph Neural Networks (GNNs) [10] and other methods of
geometric deep learning (GDL) to anomaly detection tasks [18]. Indeed, GDL
offers a systematic framework for learning non-Euclidean objects such as graphs
and manifolds, and hence, GDL allows us for more flexible modeling of com-
plex interactions among entities in a broad range of complex data structures,
including multivariate time series and dynamic networks.

Our goal here is to further enhance this emerging GDL direction in anomaly
detection and to bolster its performance by leveraging the power of data topo-
logical (or shape) descriptors. By topological descriptors, we broadly understand
data characteristics that are preserved under continuous transformations such as
bending, twisting, and stretching. In turn, a few most recent studies show that
integration of topological summaries of time-evolving structures such as spatio-
temporal processes into DL, either in a form of a topological layer or as additional
data attributes, can noticeably improve forecasting performance [12,13,47]. This
phenomenon can be explained by the complementary information on the under-
lying intrinsic system organization at multiple scales which topological descrip-
tors (or more precisely, tools of persistent homology) can deliver. Motivated
by biothreat applications where variation of pathogenicity is ubiquitous across
spatio-temporal scales, we believe that integration of topological summaries into
GNNs may enhance not only anomaly detection performance but bring an in-
valuable insight about various hidden mechanisms behind anomaly formation. To
investigate this hypothesis, we consider anomaly detection in COVID-19 clinical
severity, measured in terms of hospitalization rates, in three U.S. states: Cali-
fornia, Texas, and Pennsylvania, Moreover, we make a step forward in not only
detecting the existing anomalies but forecasting the future anomalies. While as-
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sessing future anomalous patterns is the core behind proactive risk mitigation,
especially, in healthcare analytics such as during COVID-19 pandemic, to the
best of our knowledge, neither GDL nor any other DL tools have ever been used
for spatio-temporal forecasting of anomalies.

The key novelty and contributions of this paper are summarized as follows:

– We are the first to integrate topological descriptors within GDL for anomaly
detection tasks. Our Tlife-GDN model with a fully trainable topological layer
within GNN shows competitive performance against existing state-of-the-
art approaches and allows improving tractability of the latent mechanisms
behind emergence of anomalies.

– This is the first paper to address the problem of future anomaly forecasting
with GDL, which is the key behind developing proactive risk mitigation
strategies.

– This is the first approach to assess evolution of existing and future spatio-
temporal anomalies in COVID-19 clinical severity, measured in terms of
hospitalization rates.

2 Related work

Anomaly Detection in Time-Evolving Processes Traditional tools for
this task include Principal Component Analysis [39] and K Nearest Neighbors
(KNN) [5]. Most recently, there has been suggested a number of approaches
that leverage topological descriptors for anomaly detection within statistical
algorithms. For instance, [22] proposes to detect change points in topological
summaries of the observed data instead of analyzing the observed data directly,
as in prevailing tools. In turn, [43] considers topological summaries as a sup-
plement to observed data as the input for arrhythmia detection. Finally, [27]
and [33] propose anomaly detection in Ethereum blockchain graphs based on
assessing similarity among the topological summaries of the data at adjacent
time snapshots.

Most recently, DL tools emerge as powerful alternatives to address anomaly
detection in spatio-temporal processes. Among such notable DL approaches are
Autoencoders (AE) of [2] based on the idea of reconstruction errors; Deep Au-
toencoding Gaussian Model (DAGMM) of [48] which expands AE with the Gaus-
sian Mixture Model, and Variational Autoencoders (VAE) of [25] with regular-
ized encoding’s distribution. Furthermore, inspired by the Support Vector Data
Description (SVDD) [35], [34] proposes a Deep Support Vector Data Descrip-
tion (DEEP-SVDD) for anomaly detection tasks which is capable of learning the
nodes’ representation and hypersphere center of the data simultaneously.

Finally, in the last couple of years, there has been a spike of interest in
bringing the power of GNNs to anomaly detection tasks on spatio-temporal data
[30]. For instance, most recently [14] proposes a Graph Neural Network-Based
Anomaly Detection tool based on the approach of graph attention mechanism
with location embedding and structure learning. Although all those methods
intend to discover the hidden relationships between system entities, to our best
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knowledge, there exists no GNN which have explored the power of topological
data descriptors for enhancing anomaly detection in time-evolving processes.

Different from the anomaly detection task, anomaly prediction is the task
of recognizing future abnormal instances relative to the currently recorded data
patterns. The problem of anomaly prediction is noticeably more challenging due
to elevated uncertainty of forecasting and, while playing a key role in efficient and
proactive management of emergency preparedness, remains largely understudied.
Previous works in this filed include applications of machine learning tools like
Support Vector Machines (SVMs) [45] and epsilon-Support Vector Regression
(ε-SVR) [6] in software programs [4], water pipeline [46]. However, to the best
of our knowledge, neither the utility of GNNs nor DL tools, in general, has been
explored before for anomaly prediction in conjunction with analysis of time-
evolving processes.
COVID-19 Severity Prediction Many recent studies have analyzed the risk
factors for the severe acute respiratory syndrome coronavirus 2 (i.e., SARS-CoV-
2, the virus which causes COVID-19). For example, [8] examines the possible cor-
relation between obesity and COVID-19 clinical severity by surveying patients
in a hospital, while [7] considers the linkage between anticancer therapy and
COVID-19. More generally, [16] reviews the factors in demographics, comorbidi-
ties, hypoxia and radiographic features that might worse COVID-19 outcomes.
However, the majority of the COVID-19 severity research focuses on the patients’
clinical features rather than on the severity in a certain geographical area.

Two notable studies on spatio-temporal anomaly detection in conjunction
with COVID-19 are [19] and [24] who consider topological data analysis (TDA)
and the deep hybrid autoencoder networks for assessing daily new cases, re-
spectively. Furthermore, [36–38] consider various GDL and LSTM models, cou-
pled with topological descriptors for tracking COVID-19 hospitalizations and
number of cases, but do not address the problem of spatio-temporal anomaly
detection in COVID-19 clinical severity. As such, spatio-temporal anomalies in
COVID-19 clinical severity and, particularly, anomalies in hospitalization rates
remain largely under-explored. To the best of our knowledge, there exists no cur-
rent method assessing risk scoring in COVID-19 clinical severity using GNNs
or TDA based on hospitalization data. Our paper aims to take advantage of
GNNs with topological descriptors to improve the performance and tractability
of the unsupervised spatio-temporal anomaly detection and anomaly prediction
for COVID-19 hospitalization rates.

3 Preliminaries on Persistent Homology

Persistent homology (PH) is a methodology under the framework of topological
data analysis, which aims to study the most inherent shape characteristics of
the observed data. The PH machinery is applicable to a broad range of data
types, e.g., point clouds in Euclidean spaces, images, graphs, and more generally,
objects in metric spaces. Here, we primarily focus on shape characteristics of
the graph G generated from spatio-temporal time series6 [9, 11]. The approach
6 Generation details are available in Algorithm 1
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consists of the three main steps. First, we convert G into a filtration of graphs
G1 ⊆ G2 ⊆ . . . ⊆ Gk = G. We can now track evolution of various patterns in this
graph filtration, which ought to reveal the underlying structure of G at different
scales. Second, to make the tracking process systematic and efficient, we build
a simplicial complex C on top of G and, as such, our graph filtration is now
associated with a nested sequence of complexes C (G1) ⊆ C (G2) ⊆ . . . ⊆ C (Gn).
That is, we can now compute simplicial homologies and record which shape
characteristics, for example, connected components, loops, and cavities, appear
in the filtration of complexes. In particular, we say that a topological feature is
born at ib if C (Gib) is the complex where we first observe it. In turn, we record
death of a topological feature at jd if this feature is last seen in C (Gjd). The longer
the lifespan jd − ib of the topological feature is, the likelier this feature contains
important structural information on G. Features with longer lifespans are also
said to persist, while features with shorter lifespans are sometimes referred to
as topological noise. Finally, in our third step, we summarize all the extracted
topological features in a form of a multi-set D = {(ib, jd) ∈ R2|ib < jd}, called
persistence diagram (PD). Since lifespan jd − ib ≥ 0, all points in D are in the
half-space on or above y = x. Finally, there exists multiple options to construct
graph filtrations [20]). For instance, consider a continuous function f : V → R
acting on nodes of G and a sequence of non-negative scales ξ1 < ξ2 < . . . < ξn.
Then, we can define the corresponding simplicial complex as Ci = {σ ∈ C :
maxv∈σ f(v) ≤ ξi}. Similarly, filtration can be defined as E of G. In this paper,
we consider the weight rank clique filtration [40] and Vietoris-Rips abstract
simplicial complexes [15], due to their computational benefits.

Since D is a multi-set, we cannot directly feed it into DL framework. As
such, we use its vectorized representation, i.e., persistence image (PI) [1]. To
construct PI, we first map D to an integrable function ρD : R → R2, which is
referred to as the persistence surface and which is given by sums of weighted
Gaussian functions centered at each point in D. We then integrate ρD over each
grid box to obtain PI such that the value of each pixel z is given by

PI(z) =
∫∫
z

∑
µ∈T (D)

g(µ)

2πδxδy
e
−
(

(x−µx)2

2δ2x
+

(y−µy)2

2δ2y

)
dydx. (1)

Here T (D) is the transformed PD D (i.e., T (x, y) = (x, y−x)), g(µ) is a weighting
function, where µ = (µx, µy) ∈ R2), while µx and δx and µy and δy are the mean
and the standard deviation of the Gaussians in x and y direction, respectively.

Graph Neural Network-Based Anomaly Detection The GDN architec-
ture addresses the structure learning process with graph neural networks and
combines it with attention weights to detect anomaly. The GDN model learns
the vector embedding for each location during the training process and uses the
similarity between vectors to build the connection relationships. The observed
data at time t is s(t). When the size of the sliding window is w, the input x(t) is
x(t) =

[
s(t−w), s(t−w+1), · · · , s(t−1)

]
. Based on the learned graph structure, the
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aggregated representation of node is computed as

z
(t)
i = ReLU(αi,iWx

(t)
i +

∑
j∈N (i)

αi,jWx
(t)
j ), (2)

where W is a weighted matrix, x(t)
i is the input feature of node i, N (i) denotes

the neighbors of node i from structure learning, and αi,j is attention coefficient.
Then the GDN model [14] utilizes the representation of the node i, i.e., z(t)i

and embeds the corresponding vector vi to predict the current value. Lastly,
GDN generates the anomaly score and identify anomaly.

4 Topological Lifespan Graph Neural Network-Based
Anomaly Detection Approach(Tlife-GDN)

Problem Statement Mathematically, the anomaly detection problem can be
formulated as follows. Let s(t) be records (e.g., COVID-19 hospitalizations) from
N locations, where t = {1, 2, . . . , T}. Let l(t) be the binary anomaly status
at time t, e.g., l(t) = 0 represents a normal behaviour, whilst l(t) = 1 when
some abnormality occurs. Let G(t) = (V,E, ω(t)) be a weighted connectivity
network among locations s(t), with node set V = {v1, v2, . . . , vN}, i.e., each node
represents a location, edge set E ∈ V ×V and the non-negative symmetric edge-
weight matrix ω(t) with entries {ω(t)

ij }1≤i,j≤N . In this paper, we focus on two
problems: 1) current anomaly prediction and 2) forecasting of future anomalies.

Problem 1:To learn a mapping function H({s(t)}T−1t=1 , {G(t)}
T−1
t=1 ) which maps

the records to a binary anomaly output l(t).

Problem 2: Given an ahead horizon h, our goal is to learn a mapping function
H({s(t)}T−1t=1 , {G(t)}

T−1
t=1 ) which maps the records to a binary anomaly output

l(t+h).
In order to capture the complex topological features of the spatio-temporal

data, we construct dynamic networks, and extract the n-dimensional features
in the form of persistence diagram and vectorize the persistence diagram to
obtain persistence image. Then, we integrate the persistence image into the GNN
framework for detection of existing anomalies and prediction of future anomalies.

4.1 Topological Features of Dynamic Networks

Topological features provide a way to systematically describe the graph struc-
ture and track the evolution of hidden patterns of data. In this paper, we make
use of lifespans of those topological features from different nodes in the dynamic
network. Specially, with records {s(t)i }Ni=1, we calculate the L1 distance matrix
H(t) of record values {s(t)i }Ni=1 to build connections between locations (e.g., coun-
ties) as shown in Algorithm 1. The locations with close values are considered to
have similar patterns. In our study, the counties with similar COVID-19 cases
rate may have similar geometric structure information regarding the COVID-19
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Algorithm 1 Topological Features from Dynamic Networks

1: INPUT: Location Records {s(t)i }
N
i=1, t = {1, 2, . . . , T}

2: OUTPUT: Topological summaries
3: for t← 1 : T do
4: for i← 1 : N − 1 do
5: for j ← i+ 1 : N do
6: Compute H

(t)
ij = |s(t)i − s

(t)
j |

7: Keep only bottom-m values in H(t)

8: Compute ω(t)(e) = 1−Ht/max(H(t))
9: Generate G(t) based on ω(t)(e)

10: Apply persistent homology on dynamic networks G = {G(t)}Tt=1 for different di-
mensions and generate persistence diagram(PD) for each timestamp t

11: Apply equation 1 in section 3 to generate persistence image (PI) from PD

transmission, empty ICU beds and hospitalization severity. We take the lowest-
m values in the connection matrix, where m is a predefined number based on
the dataset. Then, we generate an edge weight matrix ω(e) by taking 1 minus
the standardized H(t) and get its corresponding weighted graph G(t). The next
step is to use persistent homology to track the invariant structure features, and
compute a persistence diagram (PD) for each network G(t) and its corresponding
lifespan information. Finally, we generate the vectorized represented persistent
image (PI) defined in Section 3 as the topological features from the location’s
dynamic networks.

4.2 Tlife-GDN Architecture

With the spatio-temporal dataset s(t) (where t = {1, 2, . . . , T}), we capture
the topology features PI defined in Section 4.1. Then we train our topology-
based GDN to capture the hidden structure between different locations. Equation
3 shows the implementation of persistence image PI(t−1) in the graph neural
networks framework

z
(t)
i = ReLU

(
(αi,iWx

(t)
i +

∑
j∈N (i)

αi,jWx
(t)
j )Q(t)

)
, (3)

where z(t)i denotes the latent representation of the node i at timestamp t. Q(t) ∈
Rd is the topological representation from the CNN based model (where d is the
length of embedding vector for each location), which is formulated as Q(t) =

fcnn(PI(t−1)), where fcnn is a CNN-based model and PI(t−1) denotes the PI for
the network at (t−1) timestamp. Then, we add the latent nodes’ representation
into the graph detection network architecture to predict the location’s value. For
anomaly detection/prediction, we use the loss function and error score as

LMSE =
1

T − w

T−h∑
t=w+1

∥∥∥ŝ(t+h) − s(t)
∥∥∥2
2
, Erri(t+ h) =

∣∣∣s(t)i − ŝ
(t+h)
i

∣∣∣ , (4)
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Fig. 1: Architecture overview of the Tlife-GDN model, where
(G(t−w), . . . ,G(t−2),G(t−1)) and (s(t−w), . . . , s(t−2), s(t−1))> ∈ RN×F×w de-
note all graph structures and values of all features for each node over w time
slices, respectively.

where h is the prediction window and h = 0 correspond with the detection task.
For both detection and prediction tasks, the anomalousness score at time t is the
maximal score across locations A(t) = maxi ai(t) where ai(t) is the standardized
error score.

The overall architecture is shown in Figure 1. The intuition here is to com-
bine the topological features along with the records (e.g., COVID-19 hospital-
ization rates) as the input for the topology-based GDN model. At timestamp
t, we generate PIs for the latest timestamp t− 1, as the topological summaries
and use a CNN-based model to learn its representation. With the enriched in-
put data, we use equation 3 to get the latent node’s representation. Although
different DL methods have been proposed to improve the anomaly detection ac-
curacy, PIs have not been incorporated into this task. Furthermore, regrading
COVID-19 spreading, topological summaries can help the learning grasp on the
persistent hidden features behind the progression process caused by environ-
mental or social-demographic variables. As a result, Tlife-GDN model extracts
the complex spatio-temporal dependence properties which are inaccessible with
other GDL tools.

5 Experiment

5.1 Datasets, experiment setup and evaluation metrics

We conduct experiments on 5 datasets: COVID-19 records in Texas (TX), Cali-
fornia (CA) and Pennsylvania (PA), Curiosity Rover on Mars (MSL) and Water
Distribution (WADI). Table 1 summarize the properties of each dataset. The
daily records for COVID-19 cases and hospitalizations come from CovidActNow
project7 and Johns Hopkins University8. These data sources contain COVID-
19 time series from official state and county websites. We take 2 per thousand
people as the anomaly threshold for hospitalization rate at state level. New
7 Available at https://covidactnow.org/?s=24821397
8 Available at https://github.com/CSSEGISandData/COVID-19
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Table 1: Summary of the datasets. The anomaly rate is the ratio of true anomaly
in the testing set.
Statistics MSL WADI TX CA PA

Number of Variables 28 128 252 56 61
Training Size 1565 1784 200 200 200
Testing Size 500 577 175 175 175
Anomaly rate 20.24% 5.55% 56.57% 30.86% 31.42%

cases rate at county level, which indicates the spread of COVID-19, is used
for training and prediction. The Curiosity Rover on Mars (MSL) is an expert-
labeled telemetry anomaly data which originally comes from Incident Surprise,
Anomaly (ISA) [21]. The reports assists in reducing the risk of the unexpected
events which influence the post lunch operations. In our study, we use a public
available sub-set9. The anomaly ratio in the MSL test dataset is 78.13%, to make
the data more balanced, we use the first 500 observations, which has anomaly
ratio 20.24%. Water Distribution (WADI) is a sensor-based dataset derived from
a distribution system comprising numerous pipelines10 [17]. Here, a test with size
16 days is conducted, with 14 days under normal operation which are used as
training data and 2 days under controlled attack scenarios which is our test set.

We conduct our experiments using a Google colab sever with Intel(R) Xeon(R)
CPU @ 2.20GHz, 52 GB RAM, K80,T4 and P100 graphic cards. All models are
trained under ADAM optimizer with learning rate 1× 10−6 and no decay rate.
We perform 10 runs, train the models using 100 epochs, and use early stopping of
10. For GDN and Tlife-GDN, we use 128 as the length of embedding vectors and
the number of neurons for all datasets. For COVID-19 anomaly prediction, we
set similar setting of parameters as in the detection task and set the prediction
window h to 7, and the validation ratio to 0.2.

To evaluate the performance of anomaly detection, we use the metrics: F1-
Score (F1) and the area under the receiver operating characteristic curve (AUC).
As the anomaly score range and the way to choose a suitable threshold is differ-
ent from method to method, in order to keep the comparison fair for different
detection baselines, we set the threshold to be the one which maximizes F1 score
for all baselines. The scores above the threshold are considered as anomaly. Our
source codes are publicly available in Github11

5.2 Experimental Results

Are persistent images really helpful for COVID-19 anomaly detection
and prediction? The anomaly detection results for COVID-19 datasets in TX,
CA, and PA are shown in Table 2. For all baselines, we take the average value

9 Available at https://github.com/d-ailin/GDN/tree/main/data/msl
10 Further details at https://itrust.sutd.edu.sg/testbeds/water-distribution-wadi/ [3].
11 https://github.com/ZhiweiZhen/Tlife-GDN
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Table 2: Average F1 and AUC scores on COVID-19 datasets in 10 runs. For each
metric, the best result is highlighted in yellow.
Model TX CA PA

F1 AUC F1 AUC F1 AUC

PCA [39] 0.570 (< 0.0001) 0.739 (< 0.0001) 0.550 (< 0.0001) 0.498 (< 0.0001) 0.536 (< 0.0001) 0.498 (< 0.0001)
KNN [5] 0.640 (< 0.0001) 0.757 (< 0.0001) 0.767 (< 0.0001) 0.663 (< 0.0001) 0.631 (< 0.0001) 0.570 (< 0.0001)
AE [2] 0.729 (0.0001) 0.739 (0.0002) 0.550 (0.0022) 0.498 (0.0010) 0.534 (0.0023) 0.495 (< 0.0001)
DAGMM [48] 0.525 (0.0171) 0.710 (0.0422) 0.680 (0.0697) 0.6390 (0.0422) 0.875 (0.0443) 0.533 (0.0443)
VAE [25] 0.565 (0.0050) 0.519 (0.0016) 0.535 (0.0059) 0.484 (0.0026) 0.531 (0.0032) 0.516 (< 0.0001)
DEEP-SVDD [34] 0.675 (0.0156) 0.739 (0.0122) 0.776 (0.0129) 0.436 (0.0189) 0.960 (0.0242) 0.492 (0.0112)
GDN [14] 0.754 (0.0352) 0.742 (0.0122) 0.928 (0.0015) 0.743 (0.0008) 0.994 (0.0013) 0.975 (0.0002)
Tlife-GDN 0.767 (0.0374) 0.759 (0.0092) 0.962 (0.0020) 0.754 (0.0006) 0.995 (0.0220) 0.976 (0.0001)

for F1 score and AUC score in 10 runs, and the standard deviation is shown in
parenthesis. From the result, we can see that Tlife-GDN outperforms all baselines
across both F1 score and AUC on all 3 states. The topological features extracted
from the counties tend to improve the detection performance through comparing
Tlife-GDN with GDN model (which is the best baseline). In addition, Table 2
also indicates that integrating topological summaries into GDN model will not
increase standard deviation of F1 score and AUC score. Furthermore, Figure
2 shows the box-plot of AUC score for Tlife-GDN and GDN, from which we
conclude that Tlife-GDN exhibits high stability.
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Fig. 2: Box plot of AUC scores in 10 runs from Tlife-GDN and GDN in (a) Texas
(b) California (c) Pennsylvania.

In addition, for the traditional anomaly detection problem, we utilize Tlife-
GDN and GDN (i.e., the best baseline) to predict future anomalies and verify
the significance of topological features. Figure 3 shows that Tlife-GDN achieves
a better performance on TX and CA. On PA, both GDN and Tlife-GDN per-
form well. We can see that the complex hidden topological relationships between
counties have a profound impact on future hospitalization anomalies as it may
contain the information about the COVID-19 transmission at that moment.
What is the performance of Tlife-GDN on MSL and WADI datasets?
To verify the value added by topological summaries for different types of anomaly
detection problems, we also evaluate the performance of our Tlife-GDN model
on MSL and WADI datasets. The results are shown in Table 4. We find that
Tlife-GDN outperforms all baselines in terms of both F1 score and AUC score
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Table 3: Average precision, recall, and F1 score on COVID-19 datasets for one-
week ahead anomaly prediction in 10 runs based on GDN and Tlife-GDN.
Model TX CA PA

F1 AUC F1 AUC F1 AUC

GDN 0.728 (0.0647) 0.762 (0.0521) 0.869 (0.0353) 0.940 (0.1028) 0.927 (0.0398) 0.994 (0.0315)
Tlife-GDN 0.741 (0.0321) 0.765 (0.0198) 0.894 (0.0265) 0.962 (0.0374) 0.927 (0.0379) 0.993 (0.0452)

for WADI. For MSL, Tlife-GDN achieves the best result in F1 score and also
competitive result in AUC.

Table 4: Average F1 and AUC scores on MSL and WADI datasets in 10 runs. For
each metric, the best result is highlighted in yellow.The results from Tlife-GDN
is highlighted in blue if there is improvement compared to GDN.

Model MSL WADI

F1 AUC F1 AUC

PCA 0.151 (< 0.0001) 0.533 (< 0.0001) 0.120 (< 0.0001) 0.504 (< 0.0001)
KNN 0.109 (< 0.0001) 0.664 (< 0.0001) 0.119 (< 0.0001) 0.475 (< 0.0001)
AE 0.152 (< 0.0001) 0.553 (0.06187) 0.120 (< 0.0001) 0.503 (0.02546)
DAGMM 0.361 (0.0549) 0.631 (0.0708) 0.289 (0.0250) 0.603 (0.0603)
VAE 0.120 (0.2210) 0.553 (0.2317) 0.148 (0.1376) 0.503 (0.0557)
DEEP-SVDD 0.337 (0.0555) 0.665 (0.1003) 0.100 (0.0483) 0.477 (0.0019)
GDN 0.407 (0.0125) 0.496 (0.0267) 0.356 (0.0745) 0.785 (0.0632)
Tlife-GDN 0.419 (0.0198) 0.563 (0.1054) 0.371 (00319) 0.797 (0.0480)

Possible linkage between detection results and environment In this
study, we also explore the impact of topological features on the detection results.
We investigate the timestamps where Tlife-GDN achieves the accurate anomaly
detection performance compared with GDN. We believe that those timestamps
may share some similarity in terms of environmental variables. Figure 3 shows
the Aerosol Optical Depth (AOD) values, a measure of light extinction by aerosol
in the atmospheric column above the earth’s surface [44], in TX and CA when-
ever Tlife-GDN outperforms GDN at county level. In addition, Fig. 3 suggests
that topological features can improve the ability of non-anomaly detection when
AOD is low and help detect anomalies when AOD is high. Furthermore, we can
find that the hospitalization rate can be well reflected by the AOD values, which
can be used to define anomalies in the anomaly detection task.

6 Conclusion

In this paper, we introduce a new topology-based graph neural network, i.e.,
Tlife-GDN to detect and predict anomaly. The experimental results show that
Tlife-GDN provides more accurate detection and prediction for COVID-19 hos-
pitalization anomalies in Texas, California, and Pennsylvania, which is critical
to forecast pandemic trend, announce travel warnings and help local govern-
ment prepare potential waves in advance. In the future, we can take pre-existing



12 Zhiwei Zhen et al.

(a) (b) (c) (d)

Fig. 3: Aerosol Optical Depth (AOD) values in CA and TX. The color goes from
red to green as AOD increase. (a) Non-anomaly CA. (b) Anomaly CA. (c) Non-
anomaly TX. (d) Anomaly TX.

health conditions, distribution of medical resources and demographic variables
into consideration and extend the application of Tlife-GDN to anomaly regarding
network defense and national cyber security.

Acknowledgments

This work has been supported in part by grants NSF DMS 1925346, NSF ECCS
2039701, NASA 20-RRNES20-0021, and the Department of the Navy, Office
of Naval Research under ONR award number N00014-21-1-2530. Part of this
material is also based upon work supported by (while serving at) the National
Science Foundation. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation and/or the Office of Naval
Research. The authors are grateful to Huikyo Lee, NASA’s Jet Propulsion Lab
for the motivating discussion.

References

1. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chep-
ushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: A stable
vector representation of persistent homology. JMLR 18 (2017)

2. Aggarwal, C.C.: Data Mining: The Textbook. Springer, Cham (2015)
3. Ahmed, C.M., Palleti, V.R., Mathur, A.P.: WADI: a water distribution testbed for

research in the design of secure cyber physical systems. In: CySWATER (2017)
4. Alonso, J., Belanche, L., Avresky, D.R.: Predicting software anomalies using ma-

chine learning techniques. In: IEEE NCA. pp. 163–170 (2011)
5. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In:

ECML PKDD (2002)
6. Basak, D., Pal, S., Patranabis, D.C.: Support vector regression. Neural Information

Processing – Letters and Reviews 11(10) (2007)
7. Brar, G., Pinheiro, L.C., Shusterman, M., Swed, B., Reshetnyak, E., Soroka, O.,

Chen, F., Yamshon, S., Vaughn, J., Martin, P., et al.: COVID-19 severity and
outcomes in patients with cancer: A matched cohort study. J Cl. Oncol pp. 3914–
3924 (2020)



Tlife-GDN: Detecting and Forecasting Spatio-Temporal Anomalies 13

8. Cai, Q., Chen, F., Wang, T., Luo, F., Liu, X., Wu, Q., He, Q., Wang, Z., Liu,
Y., Liu, L., et al.: Obesity and COVID-19 severity in a designated hospital in
Shenzhen, China. Diabetes care 43(7), 1392–1398 (2020)

9. Carlsson, G.: Topology and data. BAMS 46(2), 255–308 (2009)
10. Chaudhary, A., Mittal, H., Arora, A.: Anomaly detection using graph neural net-

works. In: COMITCon. pp. 346–350. IEEE (2019)
11. Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental

and practical aspects for data scientists. Frontiers in Artificial Intelligence 4 (2021)
12. Chen, Y., Segovia-Dominguez, I., Coskunuzer, B., Gel, Y.R.: TAMP-S2GCNets:

Coupling time-aware multipersistence knowledge representation with spatio-supra
graph convolutional networks for time-series forecasting. In: ICLR (2022)

13. Chen, Y., Segovia-Dominguez, I., Gel, Y.R.: Z-GCNETs: Time zigzags at graph
convolutional networks for time series forecasting. In: ICML (2021)

14. Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate
time series. In: AAAI (2021)

15. Dey, T.K., Wang, Y.: Computational Topology for Data Analysis. Cambridge Uni-
versity Press (2022)

16. Gallo Marin, B., Aghagoli, G., Lavine, K., Yang, L., Siff, E.J., Chiang, S.S., Salazar-
Mather, T.P., Dumenco, L., Savaria, M.C., Aung, S.N., et al.: Predictors of COVID-
19 severity: A literature review. Rev. in medical virology 31(1), 1–10 (2021)

17. Goh, J., Adepu, S., Junejo, K.N., Mathur, A.P.: A dataset to support research in
the design of secure water treatment systems. In: CRITIS (2016)

18. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations.
arXiv:1805.10917 (2018)

19. Hickok, A., Needell, D., Porter, M.A.: Analysis of spatiotemporal anomalies using
persistent homology: case studies with COVID-19 data. arXiv:2107.09188 (2021)

20. Hofer, C.D., Graf, F., Rieck, B., Niethammer, M., Kwitt, R.: Graph filtration
learning. In: ICML. vol. 119, pp. 4314–4323. PMLR (2020)

21. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detect-
ing spacecraft anomalies using LSTMs and nonparametric dynamic thresholding.
arXiv:1802.04431 (2018)

22. Islambekov, U., Yuvaraj, M., Gel, Y.R.: Harnessing the power of topological data
analysis to detect change points in time series. Environmetrics 31(1) (2020)

23. Jin, W., Tung, A.K., Han, J., Wang, W.: Ranking outliers using symmetric neigh-
borhood relationship. In: PAKDD. pp. 577–593. Springer (2006)
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