
O2O-Afford: Annotation-Free Large-Scale
Object-Object Affordance Learning

Kaichun Mo1, Yuzhe Qin2, Fanbo Xiang2, Hao Su2, Leonidas Guibas1

1Stanford University 2UCSD

https://cs.stanford.edu/~kaichun/o2oafford

Abstract: Contrary to the vast literature in modeling, perceiving, and understand-
ing agent-object (e.g. human-object, hand-object, robot-object) interaction in
computer vision and robotics, very few past works have studied the task of object-
object interaction, which also plays an important role in robotic manipulation and
planning tasks. There is a rich space of object-object interaction scenarios in our
daily life, such as placing an object on a messy tabletop, fitting an object inside
a drawer, pushing an object using a tool, etc. In this paper, we propose a unified
affordance learning framework to learn object-object interaction for various tasks.
By constructing four object-object interaction task environments using physical
simulation (SAPIEN) and thousands of ShapeNet models with rich geometric diver-
sity, we are able to conduct large-scale object-object affordance learning without
the need for human annotations or demonstrations. At the core of technical con-
tribution, we propose an object-kernel point convolution network to reason about
detailed interaction between two objects. Experiments on large-scale synthetic data
and real-world data prove the effectiveness of the proposed approach.

Keywords: Object-object Affordance, Vision for Robotics, Large-scale Learning

1 Introduction

We humans accomplish everyday tasks by interacting with a wide range of objects. Besides mastering
the skills of manipulating objects using our fingers (e.g. grasping [1]), we must also understand the
rich space of object-object interactions. For instance, to put a book inside a bookshelf, not only
do we need to pick up the book by our hand, to place it, we still have to figure out possible good
slots — the distance between the two shelf boards must be larger than the book height, and the slot
should afford the book at a suitable pose. For us humans, we can instantly form such understanding
of object-object interactions after a glance of the scene. Theories in cognitive science [2] conjecture
that this is because human beings have learned certain priors for object-object interactions based on
the shape and functionality of objects. Can intelligent robot agents acquire similar priors and skills?

While there is a plethora of literature studying agent-object interaction, very few works have studied
the important task of object-object interaction. In an earlier work, Sun et al. [3] proposed to
use Bayesian network to model human-object-object interaction and performed experiments on a
small-scale (six objects in total) labeled training data with relative motions of humans and the two
objects. Another relevant work by Zhu et al. [4] studied the problem of tool manipulation, which
is an important special case of object-object interaction, and proposed a learning framework given
RGB-D scanned human and object demonstration sequences as supervision signals. Both works
modeled object-object interaction in a small scale and trained the models with human annotations or
demonstrations. In contrary, we propose a large-scale solution by learning from simulated interactions
without any need for human annotations or demonstrations.

In this paper, we consider the problem of learning object-object interaction priors (abbreviated as
the O2O priors for brevity). Particularly, in our setup, we consider an acting object that is directly
manipulated by robot actuators, and a 3D scene that will be interacted upon. We are interested in
encoding and predicting the set of feasible geometric relationships when the acting object is afforded
by objects in the scene along accomplishing a certain specified task. One important usage of our

5th Conference on Robot Learning (CoRL 2021), London, UK.

ar
X

iv
:2

10
6.

15
08

7v
2

[c
s.

C
V

]
25

O
ct

20
21

https://cs.stanford.edu/~kaichun/o2oafford

pl
ac
em

en
t

fit
tin
g

pu
sh
in
g

(a) (b) (c) (d)

st
ac
ki
ng

(a) (b) (c) (d)

Figure 1: The O2O-Afford Framework and Tasks. For a given object-object interaction task (i.e.
placement, fitting, pushing, stacking), our method takes as inputs a 3D acting object point cloud (a)
and a partial 3D scan of the scene/object (b), and outputs an affordance prediction heatmap (c) that
estimates the likelihood of the acting object successfully accomplishing the task at every pixel. At
the test time, one may easily sample a position from the heatmap to perform the action (d).

O2O priors is to reduce the search space for downstream planning tasks. For example, to place a big
object inside a cabinet having a few drawers with various sizes, the O2O priors may rule out those
small drawers without any interaction trials and identify the ones big enough for the motion planners.
Then, for the identified drawers, the O2O priors may further propose where the acting object could be
placed by considering other factors, such as collision avoidance with existing objects in the drawers.

Next, we introduce how we encode the O2O priors. We formulate a per-point affordance labeling
framework (Fig. 1) that unifies representations for various kinds of object-object interaction tasks.
Given as input the acting object in different geometry, orientations and sizes, along with a partial 3D
scan of an existing scene, we produce a point-wise affordance heatmap on the scene that measures
the likelihood for each point on the scene point cloud of successfully accomplishing the task.

The affordance labels for supervision are generated by simulating the object-scene interaction
process. Using the SAPIEN physical simulator [5] and large-scale 3D shape datasets [6, 7], we
build up a large-scale learning-from-interaction benchmark that covers a rich space of object-object
interaction scenarios. Fig. 1 illustrates the four diverse tasks we use in this work, in which different
visual, geometric and dynamic attributes are essential to be learned for accurately modeling the task
semantics. For example, to place a jar on a messy table, one need to find a flat tabletop area with
enough space considering the volume of the jar; to fit a mug inside a drawer, the size and height of
the drawer has to be big enough to contain the mug; etc.

As a core technical contribution, we propose an object-kernel point convolution network to reason
about detailed geometric constraints between the acting object and the scene. We perform large-scale
training and evaluation over 1,785 shapes from 18 object categories. Experiments prove that our
proposed method learns effective features reasoning about the contact geometric details and task
semantics, and show promising results not only on novel shapes from the training categories, but also
over unseen object categories and real-world data.

In summary, our contributions are:

• we revisit the important problem of object-object interaction and propose a large-scale
annotation-free learning-from-interaction solution;

• we propose a per-point affordance labeling framework, with an object-kernel point convolu-
tion network, to deal with various object-object interaction tasks;

• we build up four benchmarking environments with unified specifications using SAPIEN [5]
and ShapeNet [6, 7] that covers various kinds of object-object interaction tasks;

• we show that the learned visual priors provide meaningful semantics and generalize well to
novel shapes, unseen object categories, and real-world data.

2 Related Works
Learning from Interaction. Annotating training data has always been a heavy burden for supervised
learning tasks. In robotics community, there has been growing interest in scaling up data collection
via self-supervised interaction. This approach has been widely used to learn robot manipulation
skills [8, 9, 10, 11], facilitate object representation learning [12, 13, 14], and improve the result of
perception tasks, e.g. segmentation [15, 16], pose estimation [17]. However, collecting interaction

2

experience by a real robot is slow and even unsafe. A surrogate solution is physical simulation.
Recent works explore the possibility of using data collected from simulation to train perception
model [18, 19, 20]. By leveraging the interactive nature of physical simulation, researchers can also
train network to reason object dynamics, e.g. mass [21], force [22], stability [23]. Benefits from the
large-scale ShapeNet [6, 7] models, we can collect various type of interaction data from simulators.

Agent-Object Interaction Affordance. Agent-object interaction affordance describes how agents
may interact with objects. The most common kind is grasping affordance. Recent works [24, 25,
26, 27, 28] formulate grasping as visual affordance detection problems that anticipate the success
of a given grasp. An affordance detector predicts the graspable area from image or point cloud for
robot grippers. Other works [29, 30, 31, 32] extend contact affordance from simple robot gripper to
more complex human object interaction. However, most of the works require additional annotation as
training data [24, 25, 29]. Recently, it was shown that visual affordances can also be reasoned from
human demonstration videos in a weakly-supervised manner [33, 34]. Recent works [35, 36, 37]
proposed automated methods for large-scale agent-object visual affordance learning.

Object-Object Interaction Affordance. Very few works have explored learning object-object
interaction affordance. Sun et al. [3] built an object-object relationship model and associated it with
a human action mode. It shows that the learned affordance is beneficial for downstream robotic
manipulation tasks. Another line of works on object-object affordance focus on one particular object
relationship: tool manipulation [4], object placement [38], pouring [39], and cooking [40]. However,
all these works are performed on a limit number of objects. Most of these works also require human
annotations or demonstrations. In our work, we conduct large-scale annotation-free affordance
learning that covers various kinds of object-object interaction with diverse shapes and categories.

3 Problem Formulation
For every object-object interaction task, there are two 3D point cloud inputs: a scene partial scan
S ∈ Rn×3, and a complete acting object point cloud O ∈ Rm×3, with center c ∈ R3, 1-DoF orientation
q ∈ [0,2π) along the up-direction and an isotropic scale α ∈ R. The two point clouds are captured
by the same camera and are both presented in the camera base coordinate frame, with the z-axis
aligned with the up direction and the x-axis points to the forward direction. The output of our
O2O-Afford tasks is a point-wise affordance heatmap A ∈ [0,1]m for every point in the scene point
cloud, indicating the likelihood of the acting object successfully interacting with the scene at every
position. Fig. 1 shows example inputs and outputs for four different tasks.

4 Task Definition and Data Generation
As summarized in Fig. 1, we consider four object-object interaction tasks: placement, fitting, pushing,
stacking. While placement and stacking are commonly used in manipulation benchmark [41, 42,
43, 44], the fitting and pushing tasks are also interesting for bin packing [45] and tool manipulation
applications [46]. One may create more task environments depending on downstream applications.
Although having different task semantics and requiring learning of distinctive geometric, semantic,
or dynamic attributes, we are able to unify the task specifications to share the same framework.

4.1 Unified Task Environment Framework

Task Initialization and Inputs. Each task starts with creating a static scene, including one or many
randomly selected ShapeNet models and a possible ground floor. Some objects in the scene may have
articulated parts with certain starting part poses, depending on different tasks. The scene objects may
be fixed to be always static (e.g. when we assume a cabinet is very heavy), or dynamic but of zero
velocity at the beginning of the simulation (e.g. for an object on the ground to be pushed). In all
cases, a camera takes a single snapshot of the scene to obtain a scene partial 3D scan S as the input
to the problem. Fig. 2 (a) illustrate example initialization scenarios in the four task environments.
To interact with the scene, we then randomly fetch an acting object and initialize it with random
orientation and size. We provide a complete 3D point cloud O, in the same camera coordinate frame
as the scene point cloud, as another input to the problem.

O2O Priors Parametrization. For each task T, we define the O2O priors of an acting object O
interacting with a scene geometry S as a per-point affordance heatmap AT ∈ [0,1]m over the scene
point cloud S ∈ Rm×3. For each point pi ∈ S, we predict a likelihood ai ∈ [0,1] of the acting object O

3

pl
ac

em
en

t
fit

tin
g

(a) Initialization (b) Interaction Start (c) Interaction End (d) Applicable/Possible

pu
sh

in
g

(a) Initialization (b) Interaction Start (c) Interaction End (d) Applicable/Possible

st
ac

ki
ng

Figure 2: Task Environment Specifications and Trajectory Illustrations. For each task environ-
ment, from left to right, we respectively show the static scene for initialization (a), the state of objects
at the beginning of interaction (b), the state of objects at the end of interaction (c), as well as the
applicable (green+blue) and possible (blue) regions (d). We mark the interacting positions p in blue
circles and track the moving object centers c using red dots. The white arrows used in (b) indicate the
object trajectory moving directions: forward direction for pushing; gravity direction for others.

successfully interacting with the scene S at position pi following a parametrized short-term trajectory
τT(pi), which is a hard-coded task-specific trajectory with the acting object center initialized at
ci = pi + rT(O). Here, rT(O) ∈ R3 is a task-specific offset that also depends on the acting object
O. Fig. 2 (b) illustrates the starting states of the acting and scene objects, where red dots track the
object centers ci’s and blue circles mark the interacting position pi’s, from which one may imagine
the offsets ri = ci− pi for different tasks. We will define the task-specific offsets in Sec. 4.2.

Simulated Interaction Trajectory. For each interaction trial, we execute a hard-coded short-term
trajectory τT(pi) to simulate the interaction between the acting object O and the scene objects S at
positition pi. Every motion trajectory is very short, e.g. taking place within < 0.1 unit length, so that
it can be preceded by long-term task trajectories, to make the learned visual priors possibly useful for
many downstream tasks. The white arrows in Fig. 2 (b) show the trajectory moving directions – the
forward direction for pushing and the gravity direction for the other three environments. The executed
hard-coded trajectories are always along straight lines, though the final object state trajectories may
be of free forms due to the object collisions. Fig. 2 (c) present some example ending object states.

Applicable and Possible Regions. For every simulated interaction trial, we randomly pick p over the
regions where the task is applicable and possible to succeed. Some scene points may not be applicable
for a specific task. For example, for the stacking task, only points on the ground are applicable since
we have to put the acting object on the floor for the scene object to stack over. Among applicable
points, we only try the positions that are possible to be successfully interacted and directly mark
the impossible points as failed interactions. For example, impossible points include the positions
whose normal directions are not nearly facing upwards for the placement and fitting tasks. Fig. 2 (d)
illustrate example applicable and possible masks over the input scene geometry.

Metrics and Outcomes. For each interaction trial, the outcome could be either successful or failed,
measured by task-specific metrics. The metric measures if the intended task semantics has been
accomplished, by detecting state changes of the acting and scene objects during the interaction and at
the end. For example, in Fig. 2 (c), the fitting example shows that the drawer will be driven to close
to check if the acting object can be fitted inside the drawer. See Sec. 4.2 for detailed definitions.

4.2 Four Task Environments

Placement. Each scene is initialized with a static root object (e.g. a table) with 0∼15 movable small
item objects randomly placed on the root object to simulate a messy tabletop. The root object may
have articulated parts, which are initialized to be closed or of a random starting pose with equal
probabilities. The acting object is another small item object to be placed. All points are applicable on
the scene, but only the positions with normal directions that are close enough to the world up-direction
are possible. For the acting object center at start, we have an up-directional offset rz = sz/2+0.01,
where sz is the up-directional object size, so that the acting object is 0.01 unit length away from
contacting the intended interaction position p. The motion trajectory is along the gravity direction.
The metric for success is: 1) the acting object has no collision at start; 2) the acting object finally
stays on the countertop; and 3) the acting object drops off stably with no big orientation change.

4

Deccritic

1

PointNet++

3

 3

fg

PointNet++

Encscene

Encobject
Interpolate

Object-kernel
Feature Query

n

 m

f1

f2

 m
f2

f1

n m

k

Copy

PointNet

Convobject

 m

f3

 k MLP k

Duplicate

Duplicate

(k Seed Points)

f1f2
fg f1

Copy Seed Point Features

S FS

O FO

 k

FO FS|O

FS|O

Aseed

Ascene

Figure 3: Network Architecture. Taking as inputs a partial 3D scan of the scene S (dark blue) and a
complete 3D point cloud of acting object O (dark red), our network learns to extract per-point features
on both inputs, correlate the two point cloud feature maps using an object-kernel point convolution,
and finally predict a point-wise affordance heatmap over the scene point cloud.

Fitting. The scene contains only one static root object with articulated parts (e.g., doors, drawers). At
least one articulated part is randomly opened, while the other parts may be closed or randomly opened
with equal probabilities. The acting object is a small item object to be fitted inside the drawer or shelf
board. All points except the countertop points are applicable, since placing the item on countertop is
concerned by the placement task. The positions with normal directions close enough to the world
up-direction are possible. The starting acting object center and the motion trajectory are the same as
in the placement task. Besides the three criteria for placement, there is one additional checking point
for the metric: the door or drawer can be closed containing the acting object without being blocked.

Pushing. The scene object is dynamically placed on an invisible ground, initialized with zero velocity,
and guaranteed to be stable by itself. There is no part articulation allowed in this task. The acting
object is a small item object to push the scene object. All points on the scene are applicable and
possible. The starting acting object center has offsets rx =−sx/2−0.1,rz = sz/2+0.02 where sx and
sz are respectively the forward-directional and up-directional object sizes. The acting object moves
along the forward-direction to push the scene object. The metric for success is: 1) the acting object
has no collision at start; 2) there is a big enough motion of the scene object; 3) the actual moving
direction is within 30◦ aligned with the forward-direction; and 4) the scene object does not topple.

Stacking. We first place a dynamic acting object stably with zero velocity on a visible ground. Then,
we pick a second item as the scene object to stack over the acting object. We simulate the stacking
interaction that drops the scene object on top of the acting object. For the cases that the two objects
finally touch each other and stay stably on the ground, we consider a stacking task based on the final
two object states. The scene object is initialized at the final stably stacking pose. All points on the
ground are applicable and possible. The acting object center has an up-directional offset rz = sz/2,
where sz is the up-directional object size. The metric for success is that the acting object has no big
pose (center+orientation) change before and after the stacking interaction.

5 Method for Affordance Prediction
We propose a unified 3D point-based method, with an object-kernel point convolution network, to
tackle the various O2O-Afford tasks. Though very simple, this method is quite effective and efficient
in reasoning about the detailed geometric contacts and constraints.

5.1 Network Architecture
Fig. 3 illustrates the proposed pipeline. We describe each network module in details below.

Feature Extraction Backbones. We employ two segmentation-version PointNet++ [47] to extract
per-point feature maps for the two input point clouds. We first normalize them to be zero-centered.
For the 3D partial scene S ∈ Rn×3, we train a Encscene PointNet++ to extract per-point feature map
FS ∈ Rn× f1 . For the 3D acting object O ∈ Rm×3, we use another Encobject PointNet++ to obtain
per-point feature map FO ∈ Rm× f2 and a global feature for the acting object Fg ∈ R fg .

Object-kernel Point Convolution. Our O2O-Afford tasks require reasoning about the contact
geometric constraints between the two input point clouds. Thus, we design an object-kernel point

5

convolution module that uses the acting object as an explicit object kernel to slide over a subsampled
scene seed points and performs point convolution operation to aggregate per-point features between
the acting object and the scene inputs. This design shares a similar spirit to the recently proposed
Transporter networks [48], but we carefully curate it for the 3D point cloud convolution setting. One
may think of a naive alternative of simply concatenating two point clouds together at every seed point
and training a classifier. However, this is computationally too expensive due to several forwarding
passes over the two input points clouds with the acting object positioned at different seed locations.

Concretely, on the scene partial point cloud input S ∈ Rn×3, we first sample k seed points
{p1, p2, · · · , pk} ⊂ S using Furthest Point Sampling (FPS). Then, we move the acting object point
cloud O ∈ Rm×3, as an explicit point query kernel, over each of the sampled seed point pi to query a
scene feature map FS|O,pi ∈ Rm× f1 over the acting object points O. In more details, for each point
o j ∈ O, we query the scene feature at the position oi

j = o j + pi using the inverse distance weighted
interpolation [47] in the scene point cloud S ∈Rn×3 with feature map FS ∈Rn× f1 . We query t nearest
neighbor points {e1,e2, · · · ,et} ⊂ S to any o (i, j omitted for simplicity), and compute FS|o with

FS|o =
∑

t
l=1 wlFS|el

∑
t
l=1 wl

,wl =
1

‖o− el‖2
, l = 1,2, · · · , t, (1)

where FS|el
∈ R f1 is the computed scene feature at point el . We aggregate all interpolated scene

features {FS|oi
j
∈ R f1} j over the acting object points {oi

j} j=1,2,··· ,m to obtain a final feature map

FS|O,pi ∈ Rm× f1 at every scene seed point pi.

Concatenating the acting object feature map FO ∈ Rm× f2 and the interpolated scene feature map
FS|O,pi ∈R

m× f1 , we obtain an aggregated feature map FSO|O,pi ∈R
m×(f1+ f2) at every scene seed point

pi. We then implement the object-kernel point convolution Convobject using PointNet [49] to obtain
seed point features FSO|pi ∈ R f3 . The PointNet is composed of a per-point Multilayer Perceptron
(MLP) transforming every individual point feature and a final max-pooling over all m points.

Point-wise Affordance Predictions. For each scene seed point pi, we aggregate the information of
the computed object-kernel point convolution feature FSO|pi ∈R

f3 , the local scene point feature FS|pi ∈
R f1 , and the global acting object feature Fg ∈ R fg , and feed them through Deccritic, implemented as
an MLP followed by a Sigmoid activation function, to obtain an affordance labeling api ∈ [0,1], with
bigger value indicates higher likelihood of a successful interaction between the acting object and
the scene at pi. After computing the per-point affordance labeling for the k subsampled seed points,
we interpolate back to all the locations in the scene point cloud, using the inverse distance weighted
average, to obtain a final per-point affordance labeling Ascene ∈ [0,1]n.

5.2 Training and Loss
The whole pipeline is trained in an end-to-end fashion, supervised by the simulated interaction trials
with successful or failed outcomes. The scene and acting objects are selected randomly from the
training data of the training object categories. We equally sample data from different object categories
to address the data imbalance issue. We empirically find that having enough positive data samples (at
least 20,000 for task) are essential for a successful training. We train individual networks for different
tasks and use the standard binary cross entropy loss. We use n = 10000, m = 1000, k = 1000, t = 3,
and f1 = f2 = f3 = fg = 128 in the experiments. See supplementary for more training details.

6 Experiments
We use the SAPIEN physical simulator [5], equipped with ShapeNet [6] and PartNet [7] models, to
do the experiments. We evaluate our proposed pipeline and provide quantitative comparisons to three
baselines. Experiments show that we successfully learned visual priors of object-object interaction
affordance for various O2O-Afford tasks, and the learned representations generalize well to novel
shapes, unseen object categories, and real-world data.

6.1 Data and Settings
Our experiments use 1,785 ShapeNet [6] models in total, covering 18 commonly seen indoor object
categories. We randomly split the different object categories into 12 training ones and 6 test ones.
Furthermore, the shapes in the training categories are separated into training and test shapes. In total,

6

pl
ac

em
en

t
fit

tin
g

Test Shapes from Training Categories Shapes from Test Categories

pu
sh
in
g

st
ac
ki
ng

Figure 4: Qualitative Results. For each of the tasks, we show examples of our network predictions.
Left two examples show test shapes from the training categories, while two right ones are shapes
from the test categories. In each pair of result figures, we draw the scene geometry together with
the acting object (marked with red dashed boundary) on the left, and show our predicted per-point
affordance heatmaps on the right.

F-score (%) AP (%)

placement
B-PosNor 62.1 / 81.7 60.5 / 78.2
B-Bbox 80.9 / 90.6 90.5 / 94.5
B-3Branch 63.8 / 77.1 69.8 / 82.3
Ours 81.4 / 90.0 91.1 / 95.2

fitting
B-PosNor 45.4 / 59.3 46.8 / 66.7
B-Bbox 69.5 / 79.5 80.1 / 80.6
B-3Branch 48.2 / 56.9 47.1 / 60.7
Ours 73.6 / 80.3 80.1 / 86.3

F-score (%) AP (%)

pushing
B-PosNor 31.9 / 34.9 37.0 / 35.5
B-Bbox 33.2 / 35.0 39.2 / 37.6
B-3Branch 35.2 / 36.6 42.2 / 36.4
Ours 35.5 / 40.3 46.9 / 43.1

stacking
B-PosNor 79.3 / 77.9 79.9 / 76.5
B-Bbox 85.7 / 83.2 87.7 / 87.2
B-3Branch 87.3 / 84.8 90.8 / 88.2
Ours 89.6 / 87.5 91.7 / 90.8

Table 1: Quantitative Evaluations. We compare to three baselines B-PosNor, B-Bbox, and B-
3Branch. In each entry, we report evaluations over test shapes from the training categories (before
slash) and shapes in the test categories (after slash). Higher numbers indicate better performance.

there are 867 training shapes from the training categories, 281 test shapes from the training categories,
and 637 shapes from the test categories. During training, all the networks are trained on the same
split of training shapes from the training categories. We then evaluate and compare the methods by
evaluating on the test shapes from the training categories, to test the performance on novel shapes
from known categories, and the shapes in the test categories, to measure how well the learned visual
representations generalize to totally unseen object categories. See supplementary for more details.

6.2 Baselines and Metric
We compare to three baseline methods B-PosNor, B-Bbox, and B-3Branch. B-PosNor replaces the
per-point scene feature with 3-dim position and 3-dim ground-truth normal, while B-Bbox uses a
6-dim axis-aligned bounding box extents to replace the acting object geometry input. We compare
to these two baselines to validate that the extracted scene features contain more information than
simple normal directions and that object geometry matters. B-3Branch implements a naive baseline
that employs two PointNet++ branches to process the acting object and scene point clouds as well as
an additional branch taking as input the seed point position. Comparison to this baseline can help
illustrate the necessity of correlating the two input point clouds. We use a success threshold 0.5 and
employ two commonly used metrics: F-score and Average-Precision (AP).

6.3 Results and Analysis
Table 1 shows the quantitative evaluations and comparisons. It is clear to see that our method performs
better than the three baselines in most entries. We visualize our network predictions in Fig. 4, where
we observe meaningful per-point affordance labeling heatmaps on both test shapes from the training
categories and shapes in unseen test categories. For placement, the network learns to not only find

7

pl
ac
em

en
t

fit
tin
g

pu
sh
in
g

st
ac
ki
ng

Figure 5: Results on Real-world Data. From left to right: we respectively show the scene geometry
(a partial 3D scan from the camera viewpoint), the acting object (a complete 3D point cloud), the
interaction snapshot (to illustrate the poses and sizes of the objects), and our point-wise affordance
predictions. We scan noisy 3D partial scenes using an iPad Pro and choose acting objects from the
YCB Dataset [50] in the placement and fitting examples, while evaluating over three Google Scanned
Objects [51, 52, 53] in the rest. In the fitting case, only the predictions within the microwave are
desired since the network is trained and expected to be tested over clean single scene objects.

F-score (%) AP (%)

placement Ablated 82.2 / 91.3 90.0 / 95.3
Ours 81.4 / 90.0 91.1 / 95.2

fitting Ablated 68.0 / 78.3 77.8 / 84.2
Ours 73.6 / 80.3 80.1 / 86.3

pushing Ablated 34.9 / 38.6 40.5 / 39.5
Ours 35.5 / 40.3 46.9 / 43.1

stacking Ablated 82.6 / 80.4 87.2 / 83.5
Ours 89.6 / 87.5 91.7 / 90.8

Table 2: Ablation Study. We compare to an ab-
lated version that removes the computed object-
kernel point convolution features FSO|pi .

Figure 6: Result Analysis. Our network predic-
tions are sensitive to the acting object size (top-
row) and orientation (bottom-row) changes.

the flat surface, but also avoid collisions from the existing objects. We observe similar patterns for
fitting, with one additional learned constraint to find two shelves with enough height. For pushing,
one should push an object in the middle to cause big enough motions and at the bottom to avoid
toppling. For stacking, our network successfully learns where to place the acting object on the ground
for the scene object to stack over. See supplementary for more results.

We also perform an ablation study in Table 2 to prove the effectiveness of the proposed object-kernel
point convolution. We further illustrate in Fig. 6 that our network predictions are sensitive to the
acting object size and orientation changes. In the top-row fitting example, increasing the size of
the mug reduces the chance of putting it inside the drawer, as the drawer cannot be further closed
containing a big mug. For the bottom-row placement example, we observe some detailed affordance
heatmap changes while we rotate the cuboid-shaped acting object.

We directly try to apply our network trained on synthetic data to real-world 3D scans. Fig. 5 and
Fig. F.9 in the supplementary shows some qualitative results. We observe that, though trained on
synthetic data only, our network transfers to real-world collected data to reasonable degrees.

7 Conclusion
We revisited the important but underexplored problem of visual affordance learning for object-object
interaction. Using state-of-the-art physical simulation and the available large-scale 3D shape datasets,
we proposed a learning-from-interaction framework that automates object-object interaction affor-
dance learning without the need of having any human annotations or demonstrations. Experiments
show that we successfully learned visual affordance priors that generalize well to novel shapes,
unseen object categories, and real-world data.

Limitations and Future Works. First, our method assumes uniform density for all the objects.
Future works may annotate such physical attributes for more accurate results. Second, we train
separate networks for different tasks. Future study could think of a way for joint training, as many
features may be shared across tasks. Third, there are many more kinds of object-object interaction
that we have not included in this paper. People may extend the framework to cope with more tasks.

8

Acknowledgements

This research was supported by NSF grant IIS-1763268, NSF grant RI-1763268, a grant from the
Toyota Research Institute University 2.0 program1, a Vannevar Bush faculty fellowship, and gift
money from Qualcomm. This work was also supported by AWS Machine Learning Awards Program.

References
[1] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic grasping of novel objects using vision. The

International Journal of Robotics Research, 27(2):157–173, 2008.

[2] R. E. O’Donnell, A. Clement, and J. R. Brockmole. Semantic and functional relationships
among objects increase the capacity of visual working memory. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 44(7):1151, 2018.

[3] Y. Sun, S. Ren, and Y. Lin. Object–object interaction affordance learning. Robotics and
Autonomous Systems, 62(4):487–496, 2014.

[4] Y. Zhu, Y. Zhao, and S. Chun Zhu. Understanding tools: Task-oriented object modeling,
learning and recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2855–2864, 2015.

[5] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H. Wang, et al.
Sapien: A simulated part-based interactive environment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11097–11107, 2020.

[6] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[7] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su. Partnet: A large-scale
benchmark for fine-grained and hierarchical part-level 3d object understanding. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 909–918, 2019.

[8] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In 2016 IEEE international conference on robotics and automation (ICRA), pages
3406–3413. IEEE, 2016.

[9] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data collection. The International Journal
of Robotics Research, 37(4-5):421–436, 2018.

[10] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking: Experiential
learning of intuitive physics. arXiv preprint arXiv:1606.07419, 2016.

[11] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta. The curious robot: Learning visual
representations via physical interactions. In European Conference on Computer Vision, pages
3–18. Springer, 2016.

[12] Z. Xu, J. Wu, A. Zeng, J. B. Tenenbaum, and S. Song. Densephysnet: Learning dense physical
object representations via multi-step dynamic interactions. arXiv preprint arXiv:1906.03853,
2019.

[13] K. Zakka, A. Zeng, J. Lee, and S. Song. Form2fit: Learning shape priors for generalizable as-
sembly from disassembly. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 9404–9410. IEEE, 2020.

[14] L. Yen-Chen, A. Zeng, S. Song, P. Isola, and T.-Y. Lin. Learning to see before learning to act:
Visual pre-training for manipulation. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 7286–7293. IEEE, 2020.

1Toyota Research Institute (”TRI”) provided funds to assist the authors with their research but this article
solely reflects the opinions and conclusions of its authors and not TRI or any other Toyota entity.

9

[15] D. Pathak, Y. Shentu, D. Chen, P. Agrawal, T. Darrell, S. Levine, and J. Malik. Learning
instance segmentation by interaction. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 2042–2045, 2018.

[16] A. Eitel, N. Hauff, and W. Burgard. Self-supervised transfer learning for instance segmentation
through physical interaction. In 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 4020–4026. IEEE, 2019.

[17] X. Deng, Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, and D. Fox. Self-supervised 6d object
pose estimation for robot manipulation. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 3665–3671. IEEE, 2020.

[18] Z. Fang, A. Jain, G. Sarch, A. W. Harley, and K. Fragkiadaki. Move to see better: Towards
self-supervised amodal object detection. arXiv preprint arXiv:2012.00057, 2020.

[19] J. Yang, Z. Ren, M. Xu, X. Chen, D. Crandall, D. Parikh, and D. Batra. Embodied visual
recognition. arXiv preprint arXiv:1904.04404, 2019.

[20] M. Lohmann, J. Salvador, A. Kembhavi, and R. Mottaghi. Learning about objects by learning
to interact with them. arXiv preprint arXiv:2006.09306, 2020.

[21] J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum. Galileo: Perceiving physical object
properties by integrating a physics engine with deep learning. Advances in neural information
processing systems, 28:127–135, 2015.

[22] M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum, C. Finn, and J. Wu. Reasoning
about physical interactions with object-oriented prediction and planning. arXiv preprint
arXiv:1812.10972, 2018.

[23] W. Li, S. Azimi, A. Leonardis, and M. Fritz. To fall or not to fall: A visual approach to physical
stability prediction. arXiv preprint arXiv:1604.00066, 2016.

[24] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. The International
Journal of Robotics Research, 34(4-5):705–724, 2015.

[25] J. Redmon and A. Angelova. Real-time grasp detection using convolutional neural networks. In
2015 IEEE International Conference on Robotics and Automation (ICRA), pages 1316–1322.
IEEE, 2015.

[26] L. Montesano and M. Lopes. Learning grasping affordances from local visual descriptors. In
2009 IEEE 8th international conference on development and learning, pages 1–6. IEEE, 2009.

[27] Y. Qin, R. Chen, H. Zhu, M. Song, J. Xu, and H. Su. S4g: Amodal single-view single-shot se
(3) grasp detection in cluttered scenes. In Conference on robot learning, pages 53–65. PMLR,
2020.

[28] M. Kokic, D. Kragic, and J. Bohg. Learning task-oriented grasping from human activity datasets.
IEEE Robotics and Automation Letters, 5(2):3352–3359, 2020.

[29] T.-T. Do, A. Nguyen, and I. Reid. Affordancenet: An end-to-end deep learning approach for
object affordance detection. In 2018 IEEE international conference on robotics and automation
(ICRA), pages 5882–5889. IEEE, 2018.

[30] L. Yang, X. Zhan, K. Li, W. Xu, J. Li, and C. Lu. Cpf: Learning a contact potential field to
model the hand-object interaction. arXiv preprint arXiv:2012.00924, 2020.

[31] E. Corona, A. Pumarola, G. Alenya, F. Moreno-Noguer, and G. Rogez. Ganhand: Predicting
human grasp affordances in multi-object scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5031–5041, 2020.

[32] H. Kjellström, J. Romero, and D. Kragić. Visual object-action recognition: Inferring object
affordances from human demonstration. Computer Vision and Image Understanding, 115(1):
81–90, 2011.

10

[33] K. Fang, T.-L. Wu, D. Yang, S. Savarese, and J. J. Lim. Demo2vec: Reasoning object affordances
from online videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2139–2147, 2018.

[34] T. Nagarajan, C. Feichtenhofer, and K. Grauman. Grounded human-object interaction hotspots
from video. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 8688–8697, 2019.

[35] T. Nagarajan and K. Grauman. Learning affordance landscapes for interaction exploration in 3d
environments. In NeurIPS, 2020.

[36] P. Mandikal and K. Grauman. Learning dexterous grasping with object-centric visual affor-
dances. In IEEE International Conference on Robotics and Automation (ICRA), 2021.

[37] K. Mo, L. Guibas, M. Mukadam, A. Gupta, and S. Tulsiani. Where2act: From pixels to actions
for articulated 3d objects. In International Conference on Computer Vision (ICCV), 2021.

[38] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to place new objects in a scene. The
International Journal of Robotics Research, 31(9):1021–1043, 2012.

[39] M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter. Learning to pour with a robot arm
combining goal and shape learning for dynamic movement primitives. Robotics and Autonomous
Systems, 59(11):910–922, 2011.

[40] Y. Sun. Ai meets physical world–exploring robot cooking. arXiv preprint arXiv:1804.07974,
2018.

[41] J. A. Haustein, K. Hang, J. Stork, and D. Kragic. Object placement planning and optimization
for robot manipulators. arXiv preprint arXiv:1907.02555, 2019.

[42] M. P. Deisenroth, C. E. Rasmussen, and D. Fox. Learning to control a low-cost manipulator
using data-efficient reinforcement learning. In Robotics: Science and Systems VII, volume 7,
pages 57–64, 2011.

[43] A. H. Quispe, H. B. Amor, and H. I. Christensen. A taxonomy of benchmark tasks for robot
manipulation. In Robotics Research, pages 405–421. Springer, 2018.

[44] R. Li, A. Jabri, T. Darrell, and P. Agrawal. Towards practical multi-object manipulation using
relational reinforcement learning. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 4051–4058. IEEE, 2020.

[45] F. Wang and K. Hauser. Stable bin packing of non-convex 3d objects with a robot manipulator.
In 2019 International Conference on Robotics and Automation (ICRA), pages 8698–8704. IEEE,
2019.

[46] J. Stüber, C. Zito, and R. Stolkin. Let’s push things forward: A survey on robot pushing.
Frontiers in Robotics and AI, 7:8, 2020.

[47] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. In Advances in neural information processing systems, pages 5099–5108,
2017.

[48] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, et al. Transporter networks: Rearranging the visual world for robotic
manipulation. arXiv preprint arXiv:2010.14406, 2020.

[49] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 652–660, 2017.

[50] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa, P. Abbeel, and A. M.
Dollar. Yale-cmu-berkeley dataset for robotic manipulation research. The International Journal
of Robotics Research, 36(3):261–268, 2017.

11

[51] G. Research. Threshold ramekin white porcelain. https://fuel.ignitionrobotics.org/
1.0/GoogleResearch/models/Threshold_Ramekin_White_Porcelain, 2020.

[52] G. Research. Room essentials salad plate turquoise. https://fuel.ignitionrobotics.
org/1.0/GoogleResearch/models/Room_Essentials_Salad_Plate_Turquoise,
2020.

[53] G. Research. Us army stash lunch bag. https://fuel.ignitionrobotics.org/1.0/
GoogleResearch/models/US_Army_Stash_Lunch_Bag, 2020.

[54] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J. Engel, R. Mur-Artal, C. Ren,
S. Verma, et al. The replica dataset: A digital replica of indoor spaces. arXiv preprint
arXiv:1906.05797, 2019.

[55] R. Martı́n-Martı́n, C. Eppner, and O. Brock. The rbo dataset of articulated objects and interac-
tions, 2018.

[56] G. Research. Threshold porcelain teapot whit. https://fuel.ignitionrobotics.org/1.
0/GoogleResearch/models/Threshold_Porcelain_Teapot_White, 2020.

A More Data Details and Visualization

In Table A.3, we summarize our data statistics. In Fig. A.7, we visualize our simulation assets from
ShapeNet [6] and PartNet [7] that we use in this work.

There are two kinds of object categories: big heavy objects Cheavy and small item objects Citem.
In our experiments, Cheavy include cabinets, microwaves, tables, refrigerators, safes, and washing
machines, while Citem contains baskets, bottles, bowls, boxes, cans, pots, mugs, trash cans, buckets,
dispensers, jars, and kettles. For the placement and fitting tasks, we use the object categories in Cheavy
to serve as the main scene object. And, we use the Citem categories as the scene objects for the other
two task environments, as well as employ them as the acting objects for all the four tasks. Some
objects may contain articulated parts. For the objects in Cheavy, we sample a random starting part
pose that is either fully closed or randomly opened to random degree with equal probabilities. For the
acting objects, we fix the part articulation at the rest state during the entire simulated interaction.

B More Details on Settings

For the physical simulation in SAPIEN [5], we use the default setting of frame rate 500 frame-per-
second, solver iterations 20, standard gravity 9.81, static friction coefficient 4.0, dynamic friction
coefficient 4.0, and restitution coefficient 0.01. The perspective camera is located at a random position
determined by a random azimuth [0◦,360◦) and a random altitude [30◦,60◦], facing towards the center
of the scene point cloud with 5 unit length distanced away. It has field-of-view 35◦, near plane 0.1,
far plane 100, and resolution 448×448. We use the Three-point lighting with additional ambient
lighting. The scene point cloud S samples n = 10,000 points using Furthest Point Sampling (FPS)
from the back-projected depth scan of the camera.

Train-Cats All Basket Bottle Bowl Box Can Pot
Train-Data 867 77 16 128 17 65 16
Test-Data 281 43 44 5 18 5

Mug Fridge Cabinet Table Trash Wash
134 34 272 70 25 13
46 9 73 25 10 3

Test-Cats All Bucket Disp Jar Kettle Micro Safe
Test-Data 637 33 9 528 26 12 29

Table A.3: Dataset Statistics. Our experiments use 1,785 ShapeNet [6] models in total, covering
18 commonly seen indoor object categories. We use 12 training categories, which are split into 867
training shapes and 281 test shapes, and 6 test categories with 637 shapes that networks have never
seen during training. In the table, disp, micro, wash, and trash are respectively short for dispenser,
microwave, washing machine, and trash can.

12

https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Threshold_Ramekin_White_Porcelain
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Threshold_Ramekin_White_Porcelain
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Room_Essentials_Salad_Plate_Turquoise
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Room_Essentials_Salad_Plate_Turquoise
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/US_Army_Stash_Lunch_Bag
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/US_Army_Stash_Lunch_Bag
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Threshold_Porcelain_Teapot_White
https://fuel.ignitionrobotics.org/1.0/GoogleResearch/models/Threshold_Porcelain_Teapot_White

Basket Bottle Bowl Box Can Kitchen Pot

Mug Refrigerator Cabinet Table Trash Can Washing Machine

Bucket Dispenser Jar Kettle Microwave Safe

Te
st

 C
at

eg
or

ie
s

Tr
ai

ni
ng

 C
at

eg
or

ie
s

Figure A.7: Data Visualization. We visualize one example shape in our simulation assets for each
of the 18 object categories we use in this paper. Twelve of them are training object categories while
the other six are test categories. We mark with underscore the object categories in Cheavy that are
assumed to be static (heavy).

C More Details on Networks

For the feature extraction backbones Encscene and Encobject, we use the segmentation-version Point-
Net++ [47] with a hierarchical encoding stage, which gradually decreases point cloud resolution by
several set abstraction layers, and a hierarchical decoding stage, which gradually expands back the
resolution until reaching the original point cloud with feature propagation layers. There are skip links
between the encoder and decoder. We use the single-scale grouping version of PointNet++. The two
PointNet++ networks do not share weights.

More specifically, for Encscene, we use four set abstraction layers with resolution 1024, 256, 64 and
16, with learnable Multilayer Perceptrons (MLPs) of sizes [3, 32, 32, 64], [64, 64, 64, 128], [128, 128,
128, 256], and [256, 256, 256, 512] respectively. There are four corresponding feature propagation
layers with MLP sizes [131, 128, 128, 128], [320, 256, 128], [384, 256, 256], and [768, 256, 256].
Finally, we use a linear layer that produces a point-wise 128-dim feature map for all scene points. We
use ReLU activation functions and Batch-Norm layers.

For Encobject, we use three set abstraction layers with resolution 512, 128, and 1 (which means
that we extract the global feature of the acting object O), with learnable MLPs of sizes [3, 64, 64,
128], [128, 128, 128, 256], and [256, 256, 256, 256] respectively. There are three corresponding
feature propagation layers with MLP sizes [131, 128, 128, 128], [384, 256, 256], and [512, 256, 256].
Finally, we use a linear layer that produces a 128-dim feature for every point of the acting object, and
use another linear layer to obtain a 128-dim global acting object feature. We use ReLU activation
functions and Batch-Norm layers.

We use a PointNet [49] to implement the proposed object-kernel point convolution module Convobject.
The network has three linear layers [256, 128, 128, 128] that transforms each point feature. We
use ReLU activation functions and Batch-Norm layers. Finally, we apply a point-wise max-pooling
operation to pool over the m acting object points to obtain the aggregated 128-dim feature for every
sampled scene seed point pi.

The final affordance prediction module Deccritic is implemented with a simple MLP with two layers
[384, 128, 1], with the hidden layer activated by Leaky ReLU and final layer without any activation
function. We do not use Batch-Norm for either of the two layers.

13

D More Details on Training

We collect hundreds of thousands of interaction trials in the simulated task environments for each
task. The scene and acting objects are selected randomly from the training data of the training
object categories. We equally sample data from different object categories, to address the data
imbalance issue. For a generated pair of scene S and acting object O, we then randomly pick an
interacting position pi from the task-specific possible region to perform a simulated interaction. The
task environment provides us the final interaction outcome, either successful or failed, using the
task-specific metrics described in Sec. 4.2.

Using random data sampling gives us different positive data rate for different tasks, ranging from the
lowest one 7.4% for pushing and the highest 41.2% for placement. We empirically find that having
enough positive data samples are essential for a successful training. Thus, for each task, we make
sure to sample at least 20,000 successful interaction trials. It is also important to equally sample
positive and negative data points in every batch of training.

We use batch size 32 and learning rate 0.001 (decayed by 0.9 every 5000 steps). Each training takes
roughly 1-2 days until convergence on a single NVIDIA Titan-XP GPU. The GPU memory cost is
about 11 GB. At the test time, the speed is fast (on average 62.5 milliseconds per data) since it only
requires a single feed-forwarding inference throughout the network. Testing over a batch of 64 needs
6 GB GPU memory.

E More Results

Fig. E.8 presents more results of our affordance heatmap predictions, to augment Fig. 4 in the main
paper.

F More Results on Real-world Data

Fig. F.9 presents more results testing if our learned model can generalize to real-world data, to
augment Fig. 5 in the main paper. We use the Replica dataset [54], the RBO dataset [55], and Google
Scanned Objects [51, 52, 53, 56] as the input 3D scans.

For qualitative results over the real-world scans shown in Fig. 5 in the main paper, we use an iPad Pro
to collect the real-world scans by ourselves. We first mount the camera on a fixed plane and rotate the
iPad to make the camera view 20◦ top down to the ground. We use the front structured light camera
on iPad to capture a cluttered table top and a microwave oven.

Our method is designed to learn visual priors for object-object interaction affordance. Future works
may further finetune our priors predictions by training on some real-world tasks to obtain more
accurate posterior results.

G Failure Cases: Discussion and Visualization

Fig. G.10 summarizes common failure cases of our method. See the caption for detailed explanations
and discussions.

We hope that future works may study improving the performance regarding these matters.

14

pl
ac

em
en

t
fit

tin
g

Test Shapes from Training Categories Shapes from Test Categories

pu
sh
in
g

st
ac
ki
ng

Figure E.8: More Results. We present more results of point-wise affordance heatmap predictions, to
augment Fig. 4 in the main paper. For each of the tasks, we show examples of our network predictions.
Left two examples show test shapes from the training categories, while two right ones are shapes
from the test categories. In each pair of result figures, we draw the scene geometry together with
the acting object (marked with red dashed boundary) on the left, and show our predicted per-point
affordance heatmaps on the right.

pl
ac
em

en
t

fit
tin
g

pu
sh
in
g

st
ac
ki
ng

pl
ac
em

en
t

fit
tin
g

Figure F.9: More Results on Real-world Data. From left to right: we respectively show the scene
geometry (a partial 3D scan from the camera viewpoint), the acting object (a complete 3D point cloud),
the interaction snapshot (to illustrate the poses and sizes of the objects), and our point-wise affordance
predictions. For the input 3D scene geometry scans, we use the Replica dataset [54] (the placement
examples), the RBO dataset [55] (the fitting examples), and Google Scanned Objects [52, 56] (the
scene geometry for the other two tasks). We use shapes from Google Scanned Objects [51, 52, 53, 56]
for the acting objects in the four tasks.

15

fitting placement

(a
) P

re
di

ct
in

g
U

ns
ta

bl
e

Eq
ui

lib
riu

m
(c

)
In

ac
cu

ra
te

 P
re

di
ct

io
n

 d
ue

 to
 O

th
er

 R
ea

so
ns

stacking

fitting

(b
)

In
ac

cu
ra

te
 P

re
di

ct
io

n
 d

ue
 to

 P
ar

tia
l S

ce
ne

 In
pu

ts

pushing

placement

Figure G.10: Failure Cases. We visualize common failure cases of our method, by presenting
two examples for each of the following categories: predicting unstable equilibrium (a), inaccurate
prediction due to partial scene inputs (b), and inaccurate prediction due to other reasons (c). For each
pair of results, we show the acting and scene objects on the left, with the acting object marked with red
dashed boundary, and our network prediction on the right. On the right image, we explicitly mark out
the areas for problematic predictions using red circles. In many real-world scenarios, especially for
the placement and fitting tasks, one might want to find positions for object to be put stably. However,
for the examples as shown in (a), we observe some failure cases that unstable equilibrium positions
are also predicted, though usually with smaller likelihood scores. For (b), since our network takes
as input partial 3D scanned point clouds for the scene geometry, we observe some artifacts in the
predictions due to the incompleteness of the input scene point clouds. For instances, one may also
put the object in the second drawer, besides the first drawer, in the placement example; and in the
stacking example, one cannot support the jar from the right side. Finally, there are other inaccurate
predictions in the examples as shown in (c) due to various reasons: in the fitting case, there is an
erroneous prediction that the middle of the drawer can fit the basket; and for the pushing case, the two
side areas should not be pushable. We hope future works can improve upon addressing these issues.

16

	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Task Definition and Data Generation
	4.1 Unified Task Environment Framework
	4.2 Four Task Environments

	5 Method for Affordance Prediction
	5.1 Network Architecture
	5.2 Training and Loss

	6 Experiments
	6.1 Data and Settings
	6.2 Baselines and Metric
	6.3 Results and Analysis

	7 Conclusion
	A More Data Details and Visualization
	B More Details on Settings
	C More Details on Networks
	D More Details on Training
	E More Results
	F More Results on Real-world Data
	G Failure Cases: Discussion and Visualization

