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Abstract. In this work, we tackle the problem of active camera localiza-
tion, which controls the camera movements actively to achieve an accurate
camera pose. The past solutions are mostly based on Markov Localiza-
tion, which reduces the position-wise camera uncertainty for localization.
These approaches localize the camera in the discrete pose space and are
agnostic to the localization-driven scene property, which restricts the
camera pose accuracy in the coarse scale. We propose to overcome these
limitations via a novel active camera localization algorithm, composed
of a passive and an active localization module. The former optimizes
the camera pose in the continuous pose space by establishing point-wise
camera-world correspondences. The latter explicitly models the scene
and camera uncertainty components to plan the right path for accurate
camera pose estimation. We validate our algorithm on the challenging
localization scenarios from both synthetic and scanned real-world indoor
scenes. Experimental results demonstrate that our algorithm outperforms
both the state-of-the-art Markov Localization based approach and other
compared approaches on the fine-scale camera pose accuracy. Code and
data are released at https://github.com/qhFang/AccurateACL.

1 Introduction

The problem of camera localization is to estimate the accurate camera pose in a
known environment. Such a problem is of great importance in many computer
vision and robotics applications [55,56,57,28]. The research efforts in the past
decades have been mostly devoted to camera localization in a passive man-
ner [42,30,48,11,10,4,5,53], which predicts the camera pose from the provided
RGB/RGB-D frame. However, the passive localization approaches become unsta-
ble and fragile when they run into many well-known localization challenges, such
as repetitive objects [23] and textureless regions [8].

To resolve the aforementioned issues, the ability of active camera movement
has been deployed in a set of works [21,24,29,15], also known as active camera
localization. Three critical questions need to be answered to solve such a problem:
1) How to locate: how to localize the camera for the most accurate camera pose. 2)
Where to go: the camera is initialized at an unknown position in the environment,
∗ Equal contribution; ordered alphabetically.
† Corresponding authors.
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where it should move for accurate active localization. As there are numerous
localizable positions in the continuous camera pose space, the problem of active
localization becomes highly ambiguous and difficult to solve. 3) When to stop:
the agent is unaware of its ground truth camera pose, hence when it should
decide to stop the camera movement.

Due to the difficulties raised by these questions, there has been very little
research in this field. Most active localization works are inspired by Markov
Localization [9], a passive localization approach that takes random actions to
reduce camera uncertainty within a 2D discrete belief map by Bayesian filter-
ing. To decide camera movements, the early research of active localization [21]
handcrafts greedy heuristics to minimize the camera uncertainty in the coming
step, while the recent work [15] deploys a policy network to directly estimate
the camera movement for higher localization accuracy via reinforcement learn-
ing. These approaches have dominated the active localization field in the past
few decades. However, they still suffer from a few drawbacks that make them
prohibitive for practical applications: 1) Camera localization in the coarse-scale
discrete pose space. The localization accuracy relies on the predefined resolution
of the 2D discrete belief map (40cm, 90◦ [15]), which is usually unsatisfactory for
many practical applications. Pursuing fine-scale accuracy (5cm, 5◦) would result
in significantly increased state space, which is both memory and computation
inefficient, and not scalable to large environments and continuous camera pose
space. 2) Camera movement agnostic to localization-driven scene uncertainty.
The past approaches control the actions mainly based on the camera uncertainty,
without considering the localization-driven scene uncertainty information much.
Scene uncertainty is an intrinsic scene property, which is small for geometry- and
texture- rich regions and large for repetitive and textureless regions (common
localization challenges). Scene uncertainty serves as the important guidance for
camera movements towards the localizable scene region, and ignorance of such
information limits the localization accuracy.

To overcome the limitations exhibited in the existing approaches, we propose
a novel active camera localization algorithm solved by reinforcement learning for
accurate camera localization. Our algorithm consists of two functional modules,
the passive localization module and the active localization module. The former
passive module answers the “How to locate” question, and estimates the step-wise
camera pose in the entire episode. It abandons localization in the discrete pose
space, instead learns to predict the world coordinates from the single RGB-D
frame, and optimizes the instant camera pose in the continuous pose space via the
established camera-world coordinate correspondences. The latter active module
consists of the scene uncertainty and camera uncertainty components that answer
the “Where to go” and “When to stop” questions separately. The scene uncertainty
component explicitly models the localization-driven scene properties and instant
localization estimations in the scene, hence it aims to guide the camera movement
towards the localizable region. The camera uncertainty component explicitly
models the quality of camera pose estimations, and determines the adaptive stop
condition for the camera movement.
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We validate our algorithm on both the synthetic and scanned real-world
indoor scenes. Experimental results demonstrate that our proposed algorithm is
able to achieve very high fine-scale camera pose accuracy (5cm, 5◦) compared to
the Markov Localization based approach and other baselines. Benefited from the
proposed scene uncertainty and camera uncertainty components, our algorithm
learns various intelligent behaviors.

2 Related Work

Passive localization. The past camera localization approaches are mostly
passive. They can be separated into two categories, which mainly differ in the
input that comes from a single frame or a sequence of frames.

For single-frame camera localization, one trend focuses on direct camera
pose estimations by retrieving the most similar database image for the pose
approximation of a reference image [38,2,37,44] or directly regressing the camera
pose through neural networks [26,25,50,7]. The other trend is indirect pose
estimation that employs a two-step procedure, where the first step is to regress
the 3D scene coordinates from the input RGB/RGB-D observation, and the
second step takes a RANSAC based optimization to produce the final camera
pose. The popular scene coordinate regression approaches are implemented as
a decision tree [42,30,48,11,10] or a convolution neural network [4,5,53]. These
approaches builds structure-based knowledge in a more explicit way, and performs
better than image retrieval on small- or middle- scale environments.

For temporal camera localization, one trend focuses on extending PoseNet
to the time domain [16,46,34,52], whose performance is however limited by the
image retrieval nature of PoseNet, as pointed out by [39]. The other more popular
trend assumes a uniform belief of the current camera pose, and leverages Bayesian
filtering to iteratively maximize the belief until a certain stop condition is reached.
According to the representations of the belief, these approaches can be separated
into Kalman Filter [17,36,58], Markov Localization [20,22] and Monte-Carlo
localization [45,18]. Most active localization approaches are developed based on
Markov Localization, which characterizes the belief as a 2D discrete map grid and
the belief is maximized when the camera randomly navigates in the environment.
However, Markov Localization suffers from expensive computation due to the
huge state space for step-wise comparison.

Active localization. The pioneering work in active localization is active
Markov Localization [9], which adopts the greedy strategy for action selection
to reduce the camera pose uncertainty. This work inspires a few followups
[24,29]. However, as the problem of active localization is highly ambiguous, the
traditional approaches mostly fall into shortsighted solutions. Thanks to the
rapid development of reinforcement learning, active neural localization (ANL)
[15] firstly learns a policy model to seek a more accurate solution from visual
observations. All the above approaches benefit from Markov Localization, yet also
suffer from the limited discrete camera pose space and ignorance of scene-specific
localization knowledge, as discussed in the Introduction session.
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Navigation. Visual navigation [40,1,14] aims at reaching a specific target
with the guidance of points (PointNav), images (ImageNav), semantics (ObjNav),
etc. In contrast, active visual localization targets reaching an accurate camera pose.
As there are numerous localizable poses, the problem becomes highly ambiguous
and more difficult to solve [15]. On the other hand, localization is an essential
module in a navigation system, where active localization algorithms could be
adopted in a navigation pipeline to further improve its performance.

3 Approach

3.1 Task Setup

Initializing the camera at an unknown position and orientation in an environment,
the problem of active camera localization is to control the camera movement
actively towards a better place to obtain an accurate camera pose. Such a task
provides us with two inputs. 1) A sequence of RGB-D frames along with the
corresponding ground truth camera poses, denoted as {I(i)basis, C

(i)
basis}mi=1, where m

is the number of frames, following previous works [42,30,48,11,10]. Such a posed
RGB-D stream can be easily obtained by the SLAM system [31] with visual
odometry and loop closure and roughly covers the scene. It provides the basis for
both passive and active localization. 2) The instant RGB-D frame I(t) obtained
during active localization.

The entire procedure of our framework is as follows. With the initial RGB-D
frame I(0), the passive localization module estimates the current camera pose
Ĉ(0), and the active localization module estimates the next action for camera
movement and then obtains a new RGB-D frame. Such a process is iterated
until the active localization module decides to stop the movement, and the final
camera pose is chosen as the estimated camera pose at the last step. The entire
framework is shown in Figure 1. We also refer readers to Algorithm 1 in the
supplementary material for the entire procedure.

3.2 Passive Localization Module

The passive localization module answers the “How to locate” question. Instead
of localizing the camera in the discrete pose space within a grid-based map
as previous approaches [21,15], we propose to optimize the camera pose in the
continuous pose space through a passive localizer. We adopt the state-of-the-art
approach, decision tree [11], to achieve this purpose thanks to its online adaption
ability in novel scenes. We briefly describe it below1.

A decision tree, denoted as DT , takes a 2D image pixel I(t)j sampled from
the captured RGB-D frame I(t) as input, and performs hierarchical routing to
estimate the index of one leaf node DT (i), which consists of a set of 3D scene

1 Note we do not consider the implementation of passive localizer as our technical
contribution, yet focus on how to make the best use of it for the entire task.
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Passive 
Localizer

Current RGB-D frame 𝑰(𝒕)

3D scene model 
𝑫𝒔𝒄𝒆𝒏𝒆

Current camera pose 
෡𝑪(𝒕)

a) Passive localization module b) Active localization module
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Policy 
Network

History camera poses
{෡𝑪(𝒕−𝑵𝒇), …, ෡𝑪(𝒕−𝟏)}
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𝒎
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Fig. 1. The full pipeline of our algorithm. a) Given the current RGB-D frame, the
passive localizer estimates its camera pose, then b) the policy network takes the scene
and camera uncertainty component to estimate the next action for camera movement,
and the camera uncertainty component determines when to stop the movement. The
3D scene model is fused from the posed RGB-D stream, and further combined with
the estimated current and history camera poses to construct the camera and scene
uncertainty components.

points {Pdt,k}k∈Ωdt,DT (i)
, where Ωdt,DT (i) is the index set of 3D points belonging

to the leaf node DT (i) and Pdt,k is back-projected in the world space with the
posed RGB-D stream {I(t)basis, C

(t)
basis}mt=1. Then it randomly samples a 3D scene

point from the distribution fitted from {Pdt,k}k∈Ωdt,DT (i)
to establish the 2D-3D

correspondence between the camera and world space. With correspondences
obtained for many such input pixels, it infers the ranked camera pose hypotheses
via pose optimization over the correspondences, and determines the camera pose
Ĉ(t) for the input frame I(t) by iteratively discarding the worse pose hypotheses
until the last one left. The parameters of the decision tree lie in the split node
determining the routing strategy. They are pre-trained on the 7-Scenes dataset
[42] and require no further finetuning. In novel scenes, only the leaf nodes are
adaptively refilled online with the posed RGB-D stream2. The 3D scene model
Dscene is further constructed by fusing the posed RGB-D stream and the basis to
generate the camera and scene uncertainty component for the active localization
module.

3.3 Active Localization Module

In the vast literature of passive camera localization, two important factors have
been studied widely for accurate localization. The first is camera uncertainty,
which indicates the confidence of camera pose estimations, and determines which
camera pose to keep for localization [42,11,6]. The second is scene uncertainty,
which refers to the effectiveness of each scene region for accurate localization.

2 Please refer to [11] for more implementation details of the decision tree.
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For example, the passive localization approaches are able to achieve almost
100% camera pose accuracy (5cm, 5◦) in scenes with small uncertainties, such
as the texture- and geometry- rich scenes [42,47], yet underperform when there
exhibit the scene regions with large uncertainties, such as textureless regions
and repetitive objects [8], which are all the common localization challenges. We
consider that both camera uncertainty and scene uncertainty are also necessary
for accurate active localization, while the focus of most active localization works
lies in camera uncertainty. Our active localization module consists of the scene
uncertainty and camera uncertainty components, which answer the “Where to
go” and “When to stop” questions separately.

Scene Uncertainty Component Scene uncertainty is an intrinsic localization-
driven scene property, and we describe such property from two perspectives, where
the camera is located and what underlying part of the scene is observed are more
effective for accurate localization. To model the above information, we propose the
camera-driven scene map and world-driven scene map. They answer the “Where to
go” question, and guide the camera movement towards scene regions with smaller
uncertainties by combining the scene uncertainty property and the estimated
camera properties (pose/world coordinate). The scene uncertainty property is
purely determined by the scene model Dscene and the passive localization module,
hence pre-computed and invariant to the active localization process, while the
estimated camera properties are instantly computed from the captured RGB-D
frame during the camera movements.

Camera-driven scene map: The camera-driven scene map M
(t)
cd at time

step t is represented in the form of the 2D top-view orthographic projection
of the 3D scene model Dscene, and visualized in Figure 2. It consists of three
components, position-wise uncertainty value Ucd, camera pose estimations of the
current and history frames F (t)

cd_c, F
(t)
cd_h. The scene map M

(t)
cd is computed as the

position-wise concatenation of the three components and thus of size X × Y × 3,
where X, Y are the map size,

M
(t)
cd = Concat{Ucd, F

(t)
cd_c, F

(t)
cd_h} (1)

To filter out the invalid camera positions, we initialize all the map channels as
the binary traversable map where the traversable and obstacle positions are filled
with 0 and −1 separately, and only update the values at traversable positions.

The uncertainty channel Ucd describes the probability of successful passive
localization at each valid camera position in the scene map. To be specific, for each
valid camera position, we render RGB-D frames along Ncd uniformly sampled
camera directions with the scene model Dscene, and estimate the corresponding
camera poses via the passive localization module. The position-wise uncertainty
value Ucd,i is inversely proportional to the camera pose accuracy (within λcd cm,
λcd degrees) averaged over all the rendered RGB-D frames,

Ucd,i = 1− 1

Ncd

∑
j∈[1,Ncd]

A(j) (2)
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Fig. 2. Left: visualization of the different channels in both the camera-driven and
world-driven scene maps. The value range of F (t)

cd_c and F
(t)
cd_h is scaled into [0, 1] for

better visualization with the color bar. Right: we render two first-view images with
rich (green camera) or poor (blue camera) geometry and texture details, which are
consistent with the uncertainty values shown in Ucd and Uwd.

where A(j) is the binary camera pose accuracy for the jth frame.
The current camera pose estimation channel F (t)

cd_c indicates where the camera
is located in the scene map estimated from the current RGB-D frame I(t). As
the camera pose is estimated in the orientation-aware continuous space, and
not compatible with the orientation-agnostic discrete scene map, to minimize
this gap, we simply discretize the camera pose and project it onto the 2D scene
map by only considering its translation on the horizontal plane. However, the
estimated camera pose formulated in this way is nothing but a single point shown
in the scene map, and tends to be overwhelmed by its blank neighborhood via the
common convolution operations. To highlight the importance of the camera pose
information in the 2D map, we draw a distance map centered on the discretized
camera position via distance transform [3] as F

(t)
cd_c. For the history camera pose

estimation channel, we obtain the estimated camera positions in the 2D scene
map for the last Nf frames (I(t−Nf ), ..., I(t−1)) same as the current channel,
and draw a distance map centered on the history camera positions via distance
transform as F

(t)
cd_h.

World-driven scene map: The world-driven scene map M
(t)
wd at time step

t is represented in the form of the 3D point cloud sampled from the scene model
Dscene, and visualized in Figure 2 from the top view for better comparison with
the camera-driven scene map. It consists of four components, the x, y, z world
coordinates of the scene points Pwd, point-wise uncertainty value Uwd, world
coordinate estimations of the current and history frames F (t)

wd_c, F
(t)
wd_h. The scene

map M
(t)
wd is computed as the point-wise concatenation of the four components
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and thus of size Nwd_p × 6 (with Nwd_p points and 6 channels),

M
(t)
wd = Concat{Pwd, Uwd, F

(t)
wd_c, F

(t)
wd_h} (3)

The uncertainty channel Uwd describes the effectiveness of each observable
scene point to the successful passive localization, and the point-wise uncertainty
value is highly related to the viewpoint where the scene point is observed. To
compute the uncertainty value, we first render Nwd_r RGB-D frames that are
randomly positioned and oriented within the traversable region. We associate
each 3D scene point Pwd,i with an index set of 2D image pixels Ωwd,i that can
be back-projected to it as follows,

Ωwd,i = {j|∀j ∈ Ωwd_r, ∥Pwd_r,j − Pwd,i∥ < λwd} (4)

where Ωwd_r is the index set of all the image pixels in the Nwd_r rendered frames,
Pwd_r,j is the 3D point in the world space back-projected from the pixel j in
Ωwd_r, and λwd is a threshold and measured in centimeters.

Then for each 2D pixel, we evaluate its uncertainty value Uwd_r,j as the
estimation quality of the passive localizer, which in our case is the routing quality
of the decision tree and adapted from the common measurement for the camera
pose evaluation [42,10]. To be specific, Uwd_r,j is computed as a binary value
that judges if its back-projected 3D point Pwd_r,j is close to any 3D point in its
routed leaf node of the decision tree,

Uwd_r,j =

{
0 (mink∈Ωdt,DT (j)

∥Pwd_r,j − Pdt,k∥) < λwd

1 otherwise
(5)

where Ωdt,DT (j) is the index set of the 3D points Pdt,k in the leaf node DT (j)
where the pixel j is routed. Then the uncertainty value of each 3D scene point
Uwd,i is averaged over the ones of its associated 2D pixels,

Uwd,i =
1

Nwd,i

∑
j∈Ωwd,i

Uwd_r,j (6)

where Nwd,i is the size of the index set Ωwd,i.
The current world coordinate estimation channel indicates where the world

coordinates back-projected from the current RGB-D frame using the estimated
camera pose are located on the scene point cloud, hence is computed as the
point-wise binary value that describes if each scene point is occupied by at least
one back-projected world coordinates. To be specific, for each scene point Pwd,i,
its binary value F

(t)
wd_c,i is outputted by an indicator function based on the

unidirectional Chamfer distance from the estimated world coordinates to the
scene point,

F
(t)
wd_c,i =

{
0 (min

l∈Ω
(t)
f

∥Pwd,i − P
(t)
f,l ∥

2
2) < λwd

1 otherwise
(7)

where Ω
(t)
f is the index set of 3D points P

(t)
f,l back-projected from the current

frame I(t) with the estimated camera pose Ĉ(t).
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The history world coordinate estimation channel is simply averaged over the
last Nf frames. Specifically, F (t)

wd_h,i is computed as,

F
(t)
wd_h,i =

1

Nf

∑
t′∈[1,Nf ]

F
(t−t′)
wd_c,i (8)

Analysis of scene uncertainty: We visualize the computed uncertainty
channel in both the camera-driven and world-driven scene maps in Figure 2. The
uncertainty value denotes how much the valid camera positions and observable
scene points are uncertain to successful camera localization. For a better under-
standing of the computed uncertainty values, we also render two first-view images
with the green and blue cameras separately in the scene. The blue camera cap-
tures an image with poor texture and geometry, which is a common localization
challenge, correspondingly, its camera position and observed scene points in the
uncertainty channel all contain very large uncertainties. On the other hand, The
green camera observes an image with rich texture and geometry, which is usually
easy for accurate localization, correspondingly, its camera position and observed
scene points mostly contain small uncertainties. The above observation further
validates the design of the proposed scene uncertainty component.

Camera Uncertainty Component Camera uncertainty is an intrinsic camera
property, which represents the quality of the current camera pose estimation
during camera movements. The camera uncertainty component answers the
“When to stop” question, and hence determines the adaptive stop condition for
active movements. Ideally, the camera uncertainty value should be computed by
directly comparing the estimated camera pose with the ground truth camera
pose, which is however absent during active movements. To alleviate the above
difficulty, instead of directly dealing with the camera pose, we propose to calculate
the camera uncertainty value by comparing the captured depth observation that
represents the ground truth camera pose and the depth image projected from
the 3D scene model Dscene with the estimated camera pose Ĉ(t). To be specific,
given the observed depth and projected depth images, we first back-project the
two images into the point clouds in the camera space with the known camera
intrinsic parameters. Then we leverage the recent colored point cloud registration
approach (Colored ICP) [32] to register the two point clouds and estimate the
relative camera pose between them. When the two point clouds are roughly
aligned, the adopted ICP approach is able to achieve very tight point cloud
alignment. Therefore, the estimated relative pose indicates how far the current
camera pose estimation Ĉ(t) is to the ground truth, and is treated as the camera
uncertainty component U

(t)
cu ∈ R2.

To ease policy learning, many previous works fix the episode length [9,24,15]
for camera movements, which is inefficient in implementation. In this work, we
propose to adaptively stop the camera movement based on the proposed camera
uncertainty component. To be specific, we consider a successful localization to
stop the camera movement when the camera uncertainty component is within
λcu cm, λcu degrees.
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Analysis of camera uncertainty: To justify the effectiveness of the camera
uncertainty component, we evaluate how close the estimated relative pose is to the
ground truth in Figure 3, which contains 4500 samples randomly collected in the
indoor scenes introduced in Section 4.1. We can observe that most samples lie on
diagonal lines, which means the relative pose estimations are accurate in general.

Fig. 3. Justification of the camera
uncertainty component. The color
bar indicates the sample number.

To be specific, when the estimated relative
poses are within 5cm, 5◦ (2362 samples), most
samples (94.14% = 2362/2509) are truly within
5cm, 5◦ compared to the ground truth (2509
samples). It means the adaptive stop condition
judged by the camera uncertainty component
is trustworthy.

Reinforcement Learning Formulation
We optimize the policy with the off-policy
learning method Proximal Policy Optimization
(PPO) [41] by maximizing the accumulated re-
ward in the entire episode. The policy network
is detailed in the supplementary material.

Reward function: We design the reward
R, consisting of a slack reward Rs and an exploration reward Re. The slack
reward punishes unnecessary steps and is defined as Rs = −0.1, which gives a
negative reward for every action performed. The exploration reward Re awards
the agent for visiting the unseen cells to avoid repeated traversal among the same
region following [54,35]. To achieve this, we maintain a 2D occupancy map with
the same map size as the camera-driven scene map, and each cell is filled with
the visit count from the episode initialization. Then Re = 0.1/v, where v is the
visit count in the currently occupied cell, whose position is obtained from the
ground truth as the reward is only employed during training. The final reward is
the summation of both rewards, R = Rs +Re.

Policy input: The input of the policy should encode the knowledge of the
sensor input and the scene, and have positive guidance for the agents to move
towards more localizable regions acknowledged by the passive localization module.
In order to achieve this goal, the policy takes the scene uncertainty and camera
uncertainty components at time step t as input {M (t)

cd ,M
(t)
wd, U

(t)
cu }.

Action space: Following the previous active localization setting [21,15], we
assume that the agent (camera) moves with the 3-DoF (Degree of Freedom)
action space within the 1-meter high 2D plane parallel to the ground. The agent
is capable of performing three actions, move forward, turn left and turn right. The
agent moves forward by 20cm, and turns left/right by 30◦. We further disturb
the actions with Gaussian noises as introduced in the supplementary material.
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4 Experiments

4.1 Experimental Setup

Data processing: We evaluate our algorithm on both the synthetic and scanned
real-world indoor scenes. To alleviate the difficulty of creating the common
localization challenges in the synthetic data, we collect 35 high-quality indoor
scenes with an average area of 40.9m2, that feature textureless walls, repetitive
pillows/drawings, etc, by design, and provide a train/test split of the scenes
(train/test: 15/20 scenes). For the scanned real-world data, we collect 5 indoor
scenes with an average area of 64.8m2 from the public Matterpot3D dataset [12]
only for evaluation. For each indoor scene, we provide a list of data as follows:
– A sequence of <RGB-D image, camera pose> pairs {I(t)basis, C

(t)
basis}mt=1 that

provides the basis for localization and roughly covers the scene.
– Instant RGB-D frame I(t) obtained during active localization.
– 100 test images in each test scene. They are randomly sampled in the scene

region of large uncertainties to increase the localization difficulty (1 meter
away from the positions of Ucd,i ≤ 0.5).
We name the synthetic dataset ACL-synthetic, and the real-world dataset

ACL-real. Our algorithm is trained only on the train split of the ACL-synthetic
dataset, and evaluated on both the test split of the ACL-synthetic dataset and
the entire ACL-real dataset. During training, the camera is initialized randomly
in the scene. During evaluation, the camera is initialized with one of the 100 test
images. More details about both datasets3 are in the supplementary material.

Training setting: The passive localizer is adapted online in novel scenes
with the posed RGB-D stream as mentioned in Section 3.2, hence only the policy
network needs to be trained in our algorithm. Following the popular camera pose
accuracy measured by 5cm, 5◦ [42,30,48,11,10,4,5,53], we set λcd = λwd = λcu = 5.
It means we encourage the agent to move to the scene region where the camera
pose estimated from the passive localization module is within 5cm, 5◦ to the
ground truth, and stop the camera movement when it believes the estimated
camera pose is within 5cm, 5◦ to the ground truth.

Evaluation metrics: The major goal of active camera localization lies in
achieving higher camera pose accuracy. We evaluate the accuracy (%) as the
proportion of successful localization episodes whose translation and rotation error
for the final camera pose is within 5cm, 5◦ by default, a fine-scale measurement
compared to 40cm, 90◦ adopted in ANL [15]. We further compute the number of
steps (#steps) taken to finish the successful localization acknowledged by the
accuracy measure. It is only a complementary metric, while we value the accuracy
most. We limit all the approaches with a maximum step length of 100.

4.2 Compared Approaches

We detail the compared approaches below.
3 Note we do not claim the contribution of the collected indoor scenes, which can be

replaced with any ones in public indoor scene datasets.
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Table 1. Numerical results evaluated with the fine-scale 5cm, 5◦ accuracy.

ACL-synthetic ACL-real

Methods Acc (%) #steps Acc (%) #steps

ANL [15] 3.25 100 3.20 100
No-movement (DecisionTree) 9.35 0 6.80 0
No-movement (DSAC) 14.90 0 7.80 0
Turn-around 25.00 12 35.20 12
Camera-descent (t+1) 61.55 22.90 61.40 26.85
Camera-descent (t+2) 55.30 22.60 59.20 25.78
Scene-descent 57.65 18.56 54.20 16.87

Ours (w/o Re&M
(t)
cd ) 67.65 17.40 70.60 19.71

Ours (w/o Re&M
(t)
wd) 66.40 16.27 67.40 18.63

Ours (w/o Re) 72.50 18.57 73.00 20.72

Ours 83.05 17.33 82.40 17.90

– No-movement. It only uses the passive localization module to estimate the
camera pose for the initial test frame. We adopt two passive localizers for
comparison, the default decision tree [11] (No-movement (DecisionTree)) and
the popular CNN-based passive localizer [4] (No-movement (DSAC)).

– Turn-around. This baseline works by turning a circle along the vertical
axis for 12 uniformly-sampled directions without any forward movement, and
stopping at the camera pose with the smallest camera uncertainty value.

– Camera-descent. It iterates over all the possible actions in the future steps
and selects the one with the smallest camera uncertainty value as the following
path, hence it moves along the camera uncertainty descent direction. It stops
when it triggers our adaptive stop condition. Depending on the number of
explored future steps (1/2 steps), we derive two baselines, Camera-descent
(t+1/t+2). We adopt beam search to implement Camera-descent (t+2) for
memory efficiency.

– Scene-descent. It assumes the estimated camera pose is roughly correct,
and computes the shortest path from the estimated camera pose to the more
localizable region (Ucd,i ≤ 0.5) in the camera-driven uncertainty channel.
Therefore, it moves along the scene uncertainty descent direction. It stops
when it finishes the traversal over the shortest path.

– ANL. Active neural localization (ANL) [15] is a state-of-the-art active local-
ization approach derived from the Markov localization. Due to the significant
requirement of memory and computation resources, its camera pose is limited
at the resolution of 20cm, 90◦ with Nvidia Tesla V100 of 32G memory in our
implementation (40cm, 90◦ in [15]).

4.3 Results

Comparison with baselines: The comparison is shown in Table 1. We analyze
the results in the synthetic indoor scenes (ACL-synthetic) first. The No-movement
baselines achieve upmost 14.90% accuracy, indicating the fact that passive local-
ization is not sufficient in our challenging localization scenarios. By enabling the
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Table 2. Numerical results evaluated with the coarse-scale 20cm, 90◦ accuracy.

ACL-synthetic ACL-real

Methods Acc (%) #steps Acc (%) #steps

Markov Loc. [20] 44.70 100 39.20 100
Active Markov Loc. [21] 44.10 100 40.00 100
ANL [15] 87.30 100 84.20 100

Ours 88.75 17.09 85.20 17.88
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Fig. 4. Plot of the localization accuracy that varies with different maximum step lengths.

rotation actions, the accuracy of the Turn-around heuristic is only 25.00% at most,
which suggests the importance of active camera movements. The Camera-descent
and Scene-descent baselines contain smarter designs based on our proposed cam-
era uncertainty and scene uncertainty components, and also significantly improve
the accuracy. Our algorithm outperforms all the approaches in the camera pose
accuracy (83.05%) with limited steps being taken. Similar phenomenons can
also be observed in the scanned real-world indoor scenes (ACL-real). We further
visualize the accuracy that progresses along the increasing maximum step length
in Figure 4, where our algorithm is consistently better than all the others.

Comparison with ANL: ANL is trained on the discrete belief map of
resolution 20cm, 90◦, which is almost the upper bound of the camera pose scale
it can achieve. Therefore, it performs poorly on the finer-scale accuracy (5cm,
5◦) as expected. Furthermore, we evaluate both ANL and our method on the
coarse-scale 20cm, 90◦ accuracy where ANL is good at, shown in Table 2. We can
see that ANL achieves significantly better results on the coarser-scale accuracy,
while our method still achieves comparable localization accuracy, with much
fewer moving steps. We also compare with Markov localization [20] and Active
Markov Localization [21] on the coarse-scale 20cm, 90◦ accuracy following [15].

Ablation study: We justify our algorithm by ablating three components,
the exploration reward Re, camera-driven scene map M

(t)
cd and world-driven

scene map M
(t)
wd. Experimentally, we observe that our algorithm benefits from all

three components.
Time analysis and intelligent behavior: It takes only 9.59s to adapt the

passive localizer in a novel scene, and 0.87s to evaluate our entire algorithm for
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d) Failure case e) Camera-driven uncertainty channel f) World-driven uncertainty channel

b) Long trajectorya) Starting from the same origin c) Initial textureless observation

Fig. 5. Qualitative results. White arrow: start position; Green arrow: end position
(successfully localized); The dots with color gradient indicate the path the agent takes.
Intelligent behaviors: a) Starting from the same location, the agent travels to various
regions for localization. b) The agent is able to travel along a long trajectory for
accurate localization. c) Initialized with a textureless image, the agent emerges the
turn around behavior for localization. Failure case: d) The agent fail to get out of a
small room. Uncertainty visualization: e) The camera-driven uncertainty channel. f)
The world-driven uncertainty channel.

a single step, where the bottleneck comes from the CPU-based implementation
of ICP [59] (0.59s), which can be further improved with more efficient GPU
implementation. Our learned intelligent behaviors are visualized in Figure 5.

5 Conclusion

In this paper, we propose a novel active camera localization algorithm, consisting
of a passive and an active localization module. The former one estimates the
accurate camera pose in the continuous pose space. The latter one learns a
reinforcement learning policy from the explicitly modeled camera and scene
uncertainty component for accurate camera localization.

Limitation and future work: Figure 5 e) demonstrates a failure case, where
the agent is initialized in a room with a small exit and large scene uncertainties.
It fails to leave the room before reaching the maximum step length. Although we
already employ a naive exploration reward to avoid repeated traversal in the same
region, a smarter design, such as frontier-based exploration [19] and long-term
goal planning [13], can be incorporated in the future for further improvement.
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Appendix

The appendix provides the additional supplemental material that cannot be
included in the main paper due to its page limit:

– Algorithm illustration
– More results.
– More analysis.
– More implementation details.
– More details of the ACL-synthetic/real datasets.

A Algorithm illustration

We summarize our proposed algorithm in Algorithm 1.
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Algorithm 1 The full pipeline of our algorithm
function Passive Loc. Module(observation I(t), posed RGB-D stream

{
I
(i)
basis, C

(i)
basis

}m

i=1
)

if initialization then
initialization ← false
Adapt the passive localizer by posed RGB-D stream

{
I
(i)
basis, C

(i)
basis

}m

i=1

Construct the scene model Dscene by fusing posed RGB-D stream
{
I
(i)
basis, C

(i)
basis

}m

i=1

Current pose estimation Ĉ(t) ← Passive localizer(I(t))

return Ĉ(t)

function Active Loc. Module(pose estimation Ĉ(t), scene model Dscene)
M

(t)
wd,M

(t)
cd ← Scene uncertainty computation({Ĉ(t), Dscene})

U(t)
cu ← Camera uncertainty computation({Ĉ(t), Dscene})

Action a(t) ← Policy network({M(t)
wd,M

(t)
cd })

return U(t)
cu , a(t)

procedure Entire Pipeline(posed RGB-D stream
{
I
(i)
basis, C

(i)
basis

}m

i=1
, accuracy threshold λcu)

t← 0
Dscene ← NULL
initialization ← true
while t < maximum step length do

Obtain the current observation I(t)

Ĉ(t) ← Passive Loc. Module(I(t),
{
I
(i)
basis, C

(i)
basis

}m

i=1
)

U(t)
cu , a(t) ← Active Loc. Module(Ĉ(t), Dscene)

if U(t)
cu is within λcu cm, λcu degrees then
break

Execute the action a(t)

t← t + 1

return Ĉ(t)

B More results

B.1 Comparison on the sparse data

The posed RGB-D stream is the basis for both passive and active localization.
To further validate the robustness of our proposed algorithm, we discard half
of the posed RGB-D stream as the sparse data for evaluation. The numerical
comparisons with the best baselines (Camera-descent/Scene-descent) on both
the sparse data and dense data (default setting in the main paper) are shown
in Table 3. We observe that all the methods achieve worse results on the sparse
data as expected, yet our approach still outperforms the other competitors.

B.2 Comparison on more real-world datasets

To further evaluate the compatibility of our method, we compare our approach
and its best competitors on 10 scenes of the real-world Gibson V2 [51] and Replica
[43] datasets besides ACL-synthetic/-real datasets in the main paper. Shown in
Table 4, our results consistently outperforms the others.

B.3 More qualitative results

In Figure 6, we show the qualitative results of the intelligent behaviors of our
algorithm on more test scenes.
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Table 3. Numerical results on both the dense and sparse data.

ACL-synthetic ACL-real

Data Methods Acc (%) #steps Acc (%) #steps

Dense

Camera-descent (t+1) 61.55 22.90 61.40 26.85
Camera-descent (t+2) 55.30 22.60 59.20 25.78
Scene-descent 57.65 18.56 54.20 16.87

Ours 83.05 17.33 82.40 17.90

Sparse

Camera-descent (t+1) 55.45 24.17 49.60 31.62
Camera-descent (t+2) 55.05 28.15 52.40 37.35
Scene-descent 19.90 6.12 41.40 22.71

Ours 82.00 20.52 76.40 22.54

Table 4. Numerical results on GibsonV2 and Replica datasets.

GibsonV2 Replica

Methods Acc (%) #steps Acc (%) #steps

Camera-descent (t+1) 57.60 23.51 67.80 19.04
Camera-descent (t+2) 51.60 25.42 69.80 26.13
Scene-descent 56.20 16.16 62.80 14.60
Ours 75.00 15.27 86.80 13.30

C More analysis

We provide more analysis of the camera uncertainty component below.
The iterative closest point (ICP) approach is based on the general assumption

that the two input point clouds are roughly aligned. When the estimated camera
pose of the current frame is far from its ground truth, such as 20cm, 20◦, the
camera uncertainty component generated by ICP becomes unstable and not
reliable to determine the adaptive stop condition. To be specific, following the
experiment of “Analysis of camera uncertainty” in the main paper, we further
summarize that when the estimated relative pose is within 20cm, 20◦ (λcu = 20),
about 83.57% (3220/3853) samples are truly within 20cm, 20◦ compared to the
ground truth, which is much smaller than 94.14% for 5cm, 5◦ (λcu = 5).

Therefore, a natural question to ask is, when evaluating the camera pose
in a coarse level, such as 20cm, 20◦, what is the best parameter value (λcu) to
determine the adaptive stop condition for the highest camera pose accuracy? In
Table 5, we compare the numerical results of our algorithm trained with different
parameter values (λcu = 5/20) and evaluated on the coarse-scale accuracy (20cm,
20◦). We observe that the camera pose accuracy is much worse with λcu = 20,
which validates the parameter selection λcu for the camera uncertainty component.
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Table 5. Numerical results of our algorithm trained with different parameter values
(λcu = 5, 20) on the ACL-synthetic dataset.

Uncertainty parameters Accuracy (20cm, 20◦)

λcu = 5 85.92
λcu = 20 49.40

D More implementation details

D.1 Policy network

The policy network takes the scene uncertainty component as input and generates
the probability of the three actions defined by the action space. The camera-
driven scene map is represented as a 3-channel 2D map M

(t)
cd , which can be

easily consumed by the convolution operation. We employ a convolution neural
network of 6 convolution layers (32-64-128-128-256-256) and 1 linear layer (64) to
extract the global feature (R64). Each convolution layer is of kernel size 3x3 and
followed by a batch normalization layer and a max pooling layer of stride 2. The
world-driven scene map is represented as a 6-channel point cloud M

(t)
wd. Inspired

by the popular point cloud processing network PointNet [33], we employ a three-
layer pointwise MLP (64-128-64) followed by a max pooling layer to extract its
global feature (R64). Finally, by concatenating all the extracted features, we use
a three-layer MLP (64-16-3) to predict the probability of the three predefined
actions.

D.2 Noise perturbation on the action space

To simulate robotic agents in a real-world condition, the action does not lead
to perfect execution, hence we add the Gaussian noise to each action. To be
specific, if the agent turns left or right, the Gaussian noise of standard deviation
(6) will be added to the rotation angle θ(t) of mean value (20); if the agent moves
forward, the Gaussian noise of standard deviation (5) will be added on the 2D
positions x(t), y(t) of mean value (30). The positions are measured in centimeters,
and the rotation angle is measured in degrees. Note the standard deviation (σ)
is actually very large considering 31.74% of sampled noises are beyond σ for the
Gaussian distribution.

D.3 Implimentation details

In our experiment, we employ the Adam [27] to optimize the network weights with
the initial learning rate of 3× 10−4. Some hyper-parameters: Ncd = 12, Nwd_r =
1000, Nwd_p = 214 = 16384, Nf = 5, X = 256, Y = 256.
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Table 6. Scene statistics of the ACL-synthetic and ACL-real dataset. We summarize
the number of scenes, scene area, max scene area, min scene area and the number of
frames in the RGB-D sequences. The unit for all areas is m2. The Area and #frames
metrics are averaged over all the scenes involved.

Scene #scenes Area Max area Min area #frames

ACL-synthetic Train split 15 37.89 49.40 25 58.00
Test split 20 43.17 75.00 26.9 54.45

ACL-real Test split 5 64.82 98.28 23.62 88.40

All 40 43.90 98.28 23.62 60.03

E More details of the ACL-synthetic/real datasets

The posed RGB-D stream in the existing camera localization datasets [42,47,49]
is usually obtained by scanning the environment with handheld sensors by human
operators, hence does not always cover the complete scene model. We design the
posed RGB-D stream in our dataset to simulate this effect. Directly visualizing
the trajectory of the posed RGB-D stream in the scene is not intuitive as it
would lose the orientation information of the camera pose, instead we choose
to visualize the scene model reconstructed from the posed RGB-D stream to
showcase how much scene region is covered by the posed RGB-D stream.

We illustrate the textured meshes of both the complete and reconstructed
scene models for the ACL-synthetic and ACL-real datasets in Figure 7, 8 and 9.
Their related statistics are shown in Table 6.



Towards Accurate Active Camera Localization 23

d) Camera-driven uncertainty channel e) World-driven uncertainty channel

b) Long trajectorya) Starting from the same origin c) Initial textureless observation

d) Camera-driven uncertainty channel e) World-driven uncertainty channel

b) Long trajectorya) Starting from the same origin c) Initial textureless observation

d) Camera-driven uncertainty channel e) World-driven uncertainty channel

b) Long trajectorya) Starting from the same origin c) Initial textureless observation

Fig. 6. Qualitative results of the intelligent behaviors learned by our algorithm.
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The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

Fig. 7. Visualization of the ACL-synthetic dataset.
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The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

Fig. 8. Visualization of the ACL-synthetic dataset.
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The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

Fig. 9. Visualization of the ACL-real dataset.
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