
AdaAfford: Learning to Adapt Manipulation
Affordance for 3D Articulated Objects via

Few-shot Interactions

Yian Wang1,2⋆, Ruihai Wu1,2⋆, Kaichun Mo3⋆

, Jiaqi Ke1,2, Qingnan Fan4, Leonidas Guibas3

, and Hao Dong1,2,5†

1 CFCS, CS Dept., PKU
2 AIIT, PKU

{yianwang,wuruihai,kjq001220,hao.dong}@pku.edu.cn
3 Stanford University

{kaichun,guibas}@cs.stanford.edu
4 Tencent AI Lab

fqnchina@gmail.com
5 Peng Cheng Lab

https://hyperplane-lab.github.io/AdaAfford

Abstract. Perceiving and interacting with 3D articulated objects, such
as cabinets, doors, and faucets, pose particular challenges for future
home-assistant robots performing daily tasks in human environments.
Besides parsing the articulated parts and joint parameters, researchers
recently advocate learning manipulation affordance over the input shape
geometry which is more task-aware and geometrically fine-grained. How-
ever, taking only passive observations as inputs, these methods ignore
many hidden but important kinematic constraints (e.g., joint location
and limits) and dynamic factors (e.g., joint friction and restitution),
therefore losing significant accuracy for test cases with such uncertain-
ties. In this paper, we propose a novel framework, named AdaAfford,
that learns to perform very few test-time interactions for quickly adapt-
ing the affordance priors to more accurate instance-specific posteriors.
We conduct large-scale experiments using the PartNet-Mobility dataset
and prove that our system performs better than baselines. We will release
our code and data upon paper acceptance.

1 Introduction

For future home-assistant robots to aid humans in accomplishing diverse every-
day tasks, we must equip them with strong capabilities perceiving and interact-
ing with diverse 3D objects in human environments. Articulated objects, such as
cabinets, doors, and faucets, are particularly interesting kinds of 3D shapes in

⋆ Equal contribution
† Corresponding author.

ar
X

iv
:2

11
2.

00
24

6v
5

[c
s.

C
V

]
28

Ju
l2

02
2

https://hyperplane-lab.github.io/AdaAfford

2 Y. Wang et al.

our daily lives since agents can interact with them and trigger functionally im-
portant state changes of the objects (e.g., push closed the drawer of the cabinet,
rotate the handle and pull open the door, turn on/off the water from the faucet
by rotating the switch). However, because robots need to understand more se-
mantically complicated part semantics and manipulate articulated parts with
higher degree-of-freedoms than rigid objects, it remains a very important yet
challenging task to perceive and interact with 3D articulated objects.

Many previous works have investigated the problem of perceiving and inter-
acting with 3D articulated objects. Researchers have been pushing the state-
of-the-arts on segmenting articulated parts [32,42], tracking them [30,35], and
estimating joint parameters [34,40], enabling robotic systems [23,2,33] to success-
fully perform sophisticated planning and control over 3D articulated objects.

Input
Shape

Previous
Work

Ours

Bigger friction coefficient

(a) (c)

Different Joint Position

Pu
sh

in
g

1

0.75

0.5

0.25

0

Pu
lli

ng

(b)

Fig. 1. For robotic manipulation over 3D articulated objects (a), past works [18,36]
have demonstrated the usefulness of per-point manipulation affordance (b). However,
only observing static visual inputs passively, these systems suffer from intrinsic ambigu-
ities over kinematic constraints. Our AdaAfford framework reduces such uncertainties
via interactions and quickly adapts instance-specific affordance posteriors (c).

More recently, beyond recognizing the articulated parts and joints, researchers
have been proposing learning more task-aware and geometrically fine-grained
manipulation affordance over input 3D geometry. Where2Act [18], the most re-
lated to our work, learns densely labeled manipulation affordance heatmaps over
3D input partial scans of articulated objects, as illustrated in Fig. 1 (b), by per-
forming self-supervised trial-and-error interaction in a physical simulator. There
are also many other works leveraging similar dense affordance predictions over
3D scenes [21] and rigid objects [17]. Such densely labeled affordance predictions
over 3D data provide more geometrically fine-grained actionable information and
can be learned task-specifically given different manipulation actions, showing
promises in bridging the perception-interaction gaps for robotic manipulation
over large-scale 3D data across different tasks.

However, taking only a single-frame observation of the 3D shape as input
(e.g., a single 2D image, a single partial 3D scan), these methods systematically

AdaAfford 3

fail to capture many hidden but important kinematic or dynamic factors and
therefore predict inaccurate affordance heatmaps, similar to Fig. 1 (b), by aver-
aging out such uncertainties. For example, given a fully closed cabinet door with
no obvious handle as shown in Fig. 1 (top-row), it is uncertain if the door axis is
on the left or right side, which significantly affects the manipulation affordance
predictions. Other kinematic uncertainties include joint limits (e.g., push inward
or pull outward for a door) and types (e.g., slide or rotate to open a door). Be-
sides, various dynamic or physical parameters (e.g., part mass, joint friction)
are also unobservable from single-frame inputs but largely affect manipulation
affordance. For example, with increasing friction coefficient for a cabinet drawer
(Fig. 1, bottom-row), robots would be able to push the inner board.

In this paper, we propose a novel framework AdaAfford learning perform very
few test-time interactions to reduce such kinematic or dynamic uncertainties and
fastly adapts the affordance prior predictions to instance-specific posteriors given
a novel test shape. Our system learns a data-efficient strategy that sequentially
samples very few uncertain or interesting locations to interact, as the interacting
grippers illustrated in Fig. 1 (b), according to the current affordance predictions
and past interaction trials (we begin with the affordance prior predictions of
Where2Act [18] and zero interaction history). The interaction outcomes, each of
which includes the interaction location, direction, and the resulting part motion,
are then observed and incorporated to produce posterior affordance predictions,
as illustrated in Fig. 1 (c), by a proposed fast-adaptation mechanism. We set
up a benchmark for experiments and evaluations using the large-scale PartNet-
Mobility dataset [20] and the SAPIEN physical simulator [37]. We use in total
972 shapes from 15 object categories and conduct experiments for several action
types, and randomly sample the kinematic and dynamic parameters for the 3D
articulated objects in simulation. Experiments show our method can successfully
and efficiently adapt manipulation affordance to novel test shapes with as few as
one to four interactions. Quantitative evaluation further proves the effectiveness
of our proposed approach.

In summary, our main contributions are the following. 1) we point out and
investigate an important limitation of the methods that learn densely labeled
visual manipulation affordance – the unawareness of hidden yet important kine-
matic and dynamic uncertainties; 2) we propose a novel framework AdaAfford
that learns to perform very few test-time interactions to reduce uncertainties and
quickly adapt to predicting an instance-specific affordance posterior; 3) we set
up a large-scale benchmark, built upon PartNet-Mobility [20] and SAPIEN [37],
for experiments and evaluations, and results demonstrated the effectiveness and
efficiency of the proposed approach.

2 Related Work

Visual Affordance on 3D Shapes. Affordance [9] suggests possible ways for
agents to interact with objects. Many past works have investigated learning
grasp [29,15,26,13,11] and manipulation [21,27,17,18,36,39] affordance for robot-
object interaction, while there are also many works studying affordance for hand-

4 Y. Wang et al.

object [12,4,17,41,3], object-object [31,46,19], and human-scene [8,16,25,21] in-
teraction scenarios. Among these works, researchers have proposed different rep-
resentations for visual affordance, including detection locations [29,15], parts [17],
keypoints [27], heatmaps [21,18], etc. In this work, we mostly follow the settings
in [18] for learning visual affordance heatmaps for manipulating 3D articulated
objects. Different from previous works that infer possible agent-object visual
affordance heatmaps passively from static visual observations, our framework
leverages active interactions to efficiently query uncertain kinematic or dynamic
factors for learning more accurate instance-adaptive visual affordance.

Fast Adaption via Few-shot Interactions. Researchers have explored various ap-
proaches [45,7,28,44,5] for fast adaption via few-shot interactions. Many past
works have also designed interactive perception methods to figure out object
mass [14], dynamic parameters [38,1,6,10], or parameters for known models [43].
Different from these studies proposing general algorithms for policy adaptation
or figuring out explicit system parameters for rigid objects, we focus on designing
a working solution for our specific task of learning visual affordance heatmaps for
manipulating 3D articulated objects with special designs on predicting geometry-
grounded interaction proposals and interaction-adaptive affordance predictions.

3 Problem Formulation

Given as input a single-frame 3D partial point cloud observation of an articu-
lated object O ∈ RN×3 (e.g., lifted from a depth scanner with known camera
intrinsics), the Where2Act framework [18] directly outputs a per-point manip-
ulation affordance heatmap A ∈ [0, 1]N , where higher scores indicate bigger
chances for being interacted with to accomplish a given short-term manipulation
task (e.g., pushing, pulling). Additionally, a diverse set of gripper orientations
{Rp

1, R
p
2, · · · |R

p
i ∈ SO(3)} is proposed at each point p ∈ O suggesting possible

ways for robot agents to interact with, each of which also associated with a suc-
cess likelihood spi ∈ [0, 1]. No interaction is allowed at test time in Where2Act
and a fixed set of system dynamic parameters is used across all shapes.

We follow most of the Where2Act settings except that we randomly vary the
system dynamics and allow test-time interactions over the 3D shape to reduce
kinematic or dynamic uncertainties. Our AdaAfford system proposes a few in-
teractions sequentially I = {I1, I2, · · · }. Each interaction Ii = (Oi, pi, Ri,mi)
executes a task-specific hard-coded short-term trajectory defined in Where2Act,
parametrized by the interaction point pi ∈ Oi and the gripper orientation
Ri ∈ SO(3), and observes a part motion mi. Starting from the input shape ob-
servation O1 ← O, every interaction Ii where mi ̸= 0 changes the part state and
thus produces a new shape point cloud input for the next interaction Oi+1 ̸= Oi.
Leveraging the interaction observations I, our system then adapts the per-point
manipulation affordance A predicted by Where2Act to a posterior AI ∈ [0, 1]N

that reduces uncertainties and provides more accurate instance-specific predic-
tions. For each gripper orientation Ri, we also update the success likelihood score
spi,I ∈ [0, 1] considering the test-time interactions.

AdaAfford 5

Interaction set
AAP Module

hidden
information

AIP Module

Fig. 2. Method Overview. Starting from the Where2Act [18] predicted affordance
prior A, at each timestep t = 1, 2, · · · , we recursively leverage the Adaptive Interac-
tion Proposal (AIP) module to propose a next-time interaction action ut+1 , observe
the interaction outcome mt+1, and feed through the Adaptative Affordance Prediction
(AAP) module all past few-shot interactions It together with the new one It+1 for
adapting to an affordance posterior prediction AIt+1 . The procedure iterates until the
interaction budget is reached or the AIP module decides to stop.

4 Method

Our proposed AdaAfford framework primarily consists of two modules – an
Adaptive Interaction Proposal (AIP) module and an Adaptive Affordance Predic-
tion (AAP) module. While the AIP module learns a greedy yet effective strategy
for sequentially proposing few-shot test-time interactions I = {I1, I2, · · · }, the
AAP module is trained to adapt affordance predictions from Where2Act [18]
prior A to a posterior AI observing the sampled interactions I. We iterate two
modules recurrently at test time to produce a sequence of few-shot interactions
I leading to the final affordance posterior prediction AI . During training, we
iteratively alternate the training for the two modules until a joint convergence.

Below, we first introduce the test-time inference procedure for a brief overview.
Next, we describe the input backbone encoders that are shared among all net-
works in our framework. Then, we describe the detailed architectures and system
designs of the two modules. We conclude with the training losses and strategy.

Test-time Overview. Fig. 2 presents an overview of the method. We apply a re-
current structure at test time. Starting from the affordance prediction A without
any interaction, the AIP module proposes the first action for producing the in-
teraction data I1. Then, at each timestep t = 1, 2, · · · , we feed the current set of
interactions It = {I1, · · · , It} as inputs to the AAP module and extract hidden
information zIt

∈ R128 that adapts the affordance map prediction to AIt
. The

AIP module then takes zIt
as input and proposes an action ut+1 = (pt+1, Rt+1)

composed of the interaction point pt+1 and the gripper orientation Rt+1 for
the next interaction. Performing this action in the environment, we obtain the
next-step interaction data It+1 = (Ot+1, pt+1, Rt+1,mt+1) and put it into the
interaction set It+1 ← It ∪ {It+1}. We iterate until the interaction budget has
been reached or our AIP module decides to stop. When the procedure stops at
timestep T , we output the final affordance posterior AI = AIT

.

6 Y. Wang et al.

generate
interaction

Adpative Critic
Network

Adpative Affordance
Network

Adaptive Interaction
Proposal Affordance

Network

Adaptive Interaction Proposal ModuleAdaptive Affordance Prediction Module

part motion
30 degree

Adaptive
Information

Encoder

Adaptive Interaction
Proposal Critic

Network

extract
information

Fig. 3. Network Architecure. Left: the Adaptive Affordace Prediction (AAP) mod-
ule takes as inputs the few-shot interactions I and predicts the affordance posterior AI .
Right: the Adapative Interaction Proposal (AIP) module proposes a next-step interac-
tion action ut+1 = (pt+1, Rt+1) (denote the current timestep as t) given the feature zI
extracted from the current interaction observations I.

Input Encoders. This paragraph details how we encode inputs into features as
all the encoder networks in the two modules take the same input entities (e.g.,
the shape observation O, the interaction action u) and thus share the same
architecture. We use the PointNet++ segmentation network [24] to encode the
input shape point cloud O ∈ RN×3 into per-point feature maps fO ∈ RN×128

and denote fp|O ∈ R128 as the feature at any point p ∈ O. We use Multilayer
Perceptron (MLP) networks to encode other vector inputs (e.g., the interaction
action u and the part motion m) into fa ∈ R128. The networks in the following
subsections will first encode the inputs into fp|O and fa, and then concatenate
them into fI ∈ R256. The encoders do not share weights across different modules.

4.1 Adaptive Affordance Prediction Module

The Adaptive Affordance Prediction (AAP) module takes as inputs few-shot in-
teractions I and predicts the affordance posterior AI . This module is composed
of three subnetworks: 1) an Adaptive Information Encoder EAAP that extracts
hidden information z ∈ R128 from a set of interactions I; 2) an Adaptive Affor-
dance Network DAAP that predicts the posterior affordance heatmap AI condi-
tioned on the hidden information z; and 3) an Adaptive Critic Network CAAP

that predicts the AAP action score sAAP
u|z ∈ [0, 1] for an action u conditioned on

the hidden information z. Here, an action is represented as u = (p,R) including
an interaction point p ∈ O and a gripper orientation R ∈ SO(3).

Adaptive Information Encoder. Given a set of interactions I = {I1, I2, · · · }
as inputs, the Adaptive Information Encoder EAAP outputs a 128-dim hidden
information representation zI (z for brevity). It first encodes each interaction
Ii using the input encoders mentioned before, and then uses an MLP network
to encode the features into a 128-dim latent code zIi representing the hidden
information extracted from Ii. As different interactions contain different amount
of hidden information, we use another MLP Network to predict an attention
score wIi ∈ R for each interaction. To get a summarized hidden information
from a set of interactions, we simply computes a weighted average over all zIi ’s

AdaAfford 7

according to the weights wIi ’s and use the resulting feature as zI . Formally, we
have zI ← (

∑
i zIi × wIi) / (

∑
i wIi).

Adaptive Critic Network. Given the object partial point cloud observation O, an
arbitrary interaction point p ∈ O, an arbitrary gripper orientation R ∈ SO(3)
and the latent code z, the Adaptive Critic Network CAAP predicts an AAP action
score sAAP

u|z ∈ [0, 1] indicating the likelihood for the success of the interaction

action u given the interaction information z. It first encodes the input {O,P,R}
using the input encoders as mentioned before and then employs an MLP network
to predict AAP action score sAAP

u|z , taking the concatenated features together

with z as inputs. A higher AAP action score sAAP
u|z for action u indicates a

higher chance for u to succeed in accomplishing the given manipulation task.

Adaptive Affordance Network. Given the input object partial point cloud O, an
arbitrary point p ∈ O, and the latent code z, the Adaptive Affordance Network
DAAP predicts an actionability score aAAP

p|z ∈ [0, 1] at point p. It first encodes the

input {O, p} using the aforementioned input encoders and then uses an MLP
network that takes the concatenated features together with z as inputs and
produces an actionability score aAAP

p|z as the output. A higher actionability score

aAAP
p|z indicates a higher chance to successfully interact on point p.

4.2 Adaptive Interaction Proposal Module

Adaptive Interaction Proposal (AIP) module proposes an action (denote the cur-
rent timestep as t) ut+1 = (pt+1, Rt+1) for the next step interaction, given the
feature z extracted from the current interaction observations I. This module
contains two networks: 1) an Adaptive Interaction Proposal Affordance Network
DAIP that predicts an AIP actionability score aAIP

p|z ∈ R indicating how likely

the next-action is worth interacting at point p, and 2) an Adaptive Interaction
Proposal Critic Network CAIP predicting an AIP action score sAIP

u|z ∈ R sug-
gesting the gripper orientation to pick for the next interaction. We leverage the
predictions of the two networks to propose the next action ut+1 = (pt+1, Rt+1).

Adaptive Interaction Proposal Critic Network. Given the input object partial
point cloud O, an arbitrary interaction point p ∈ O, an arbitrary gripper orien-
tation R ∈ SO(3), the latent code z, and the AAP action score sAAP

u|z produced

by CAAP , the AIP Critic Network CAIP predicts the AIP action score sAIP
u|z ∈ R

of u. It first encodes the inputs {O, p,R, sAAP
u|z } using the input encoders and

then uses an MLP network that takes the concatenated features together with z
as inputs and generates an AIP action score sAIP

u|z for the action u. A higher AIP
action score suggests that the action u may query more unknown yet interesting
hidden information and thus is worth exploring next.

Adaptive Interaction Proposal Affordance Network. Given the input partial shape
observation O, an arbitrary interaction point p ∈ O, the latent code z, and the
AAP actionability score aAAP

p|z at point p estimated by DAAP , the AIP Affor-

dance Network DAIP predicts the AIP actionability score aAIP
p|z ∈ R at point

8 Y. Wang et al.

p. It first encodes the inputs {O, p, aAAP
p|z } using the aforementioned input en-

coders and then employs an MLP network to predict an AIP actionability score
aAIP
p|z , taking the concatenated features together with z as inputs. A higher AIP

actionability score at p indicates more unknown yet helpful hidden information
may be obtained by executing an interaction at p.

Next-step Interaction Action Proposal. To propose an action ut+1 = (pt+1, Rt+1)
for the next interaction, given the hidden information z and the input shape
partial point cloud O, we first obtain the AIP actionability heatmap AAIP

p|z for
every point p ∈ O predicted by the AIP Affordance Network DAIP and then
select the point pt+1 ← p∗ with the highest AIP actionability score aAIP

p∗|z . Then,

we sample 100 random actions {u1, u2, · · · , u100} at p using the Where2Act’s pre-
trained Action Proposal Network, use our AIP critic network CAIP to generate
the AIP action scores sAIP

ui|z for each action ui, and then choose the action ut+1 ←
u∗ with the highest AIP action score sAIP

u∗|z .

Stopping Criterion for the Few-shot Interactions. The AIP procedure for gener-
ating few-shot interactions stops when a preset budget is reached or the maximal
AIP actionability score is below a certain threshold (e.g., 0.05).

4.3 Training and Losses

In brief, for AAP module, we use ground-truth motion m to supervise EAAP and
CAAP , and utilize CAAP to supervise the training of DAAP . For AIP module, we
use AAP module to supervise the training of CAIP and use it to supervise DAIP .
Below, we describe the losses and the training strategy in detail.

AAP Action Scoring Loss. To supervise CAAP , we use a standard binary cross
entropy loss, which measures the error between the prediction of CAAP and
target part’s ground truth motion m of an interaction I. Specifically, given the
hidden information z, a batch of interaction observations I = {I1, I2, ..., IB}
where Ii = {Oi, ui,mi}, and the AAP action score prediction sAAP

ui|z for each
interaction Ii, the loss is defined as

LAAP
C = − 1

B

∑
i

ri log(s
AAP
ui|z) + (1− ri) log(1− sAAP

ui|z)

where ri = 1 if mi > τ (e.g., τ = 0.01) or ri = 0 rendering a binary discretization
for each interaction outcome.

AAP Actionability Scoring Loss. To train the Adaptive Affordance Network
DAAP , we apply an L1 loss to measure the difference from the predicted score
aAAP
p|z to the ground truth. To estimate the ground truth actionability score for

p, we randomly sample 100 actions at p according to the pre-trained Where2Act
Action Proposal Network, predict the AAP action scores sAAP

u|z ’s of these actions
u’s using the Adaptive Critic Network CAPP , and take the average of the top-5
scores as the ground truth actionability score.

AdaAfford 9

AIP Action Scoring Loss. To supervise the AIP Critic Network CAIP , we use
an L1 loss to measure the difference between our predicted AIP action score
sAIP
u|z and the ground truth AIP action score gtAIP

u|z . We design a greedy yet
effective way to estimate the ground-truth scores. Given a set of interactions
IT = {I1, I2, · · · }, to generate gtAIP

ui|z for an interaction action ui, we respectively

encode two interaction subsets Ii−1 = {I1, I2, · · · , Ii−1} and Ii = {I1, I2, · · · , Ii}
into latent codes zIi and zIi−1 . Then, we feed zIi and zIi−1 as the conditional
inputs to the Adaptive Critic Network CAAP separately and count the difference
of the AAP action scoring loss LAAP

C as the ground truth of AIP action score
gtAIP

ui|zIi−1
. More concretely, let the AAP action scoring loss conditioned on zIi

and zIi−1
respectively be LIi

and LIi−1
. We define the ground truth AIP action

score gtAIP
ui|zIi−1

← LIi−1
− LIi

. The AIP action score is trained to regress an

estimated positive influence of executing u on the AAP action score predictions,
where an action giving more influence is preferred as it helps discover more
hidden information useful to the task.

AIP Actionability Scoring Loss. To train the AIP Affordance Network DAIP , we
use another L1 loss. For each position p ∈ O, we sample 100 actions ui’s using the
pre-trained Where2Act Action Proposal Network, obtain the AIP action scores
sAIP
ui|z ’s of these actions ui’s predicted by the AIP Critic Network CAIP , and use
the average of the top-5 scores as the regression target.

Training Strategy. We iteratively train the AAP module and AIP module un-
til a joint convergence since the update of the subnetworks in one module will
affect the training of the subnetworks in the other module. More specifically,
the update of CAAP and DAAP in the AAP module will affect the ground-truth
AIP action scores, while the update of CAIP and DAIP in the AIP module will
change the proposed interactions used to generate z in the AAP module. There-
fore, our final solution is to train the AAP and AIP modules iteratively. The
procedure starts with firstly training the AAP module using randomly sampled
interactions. We then train the AIP module to learn to propose more efficient
and effective proposals. Then, with the trained subnetworks in the AIP mod-
ule, we finetune the AAP module with the proposed few-shot interactions. We
iteratively alternate the training until both modules converge.

5 Experiments

We perform experiments using the large-scale PartNet-Mobility dataset [20] and
the SAPIEN simulator [37], and set up several baselines for comparisons. Results
demonstrate the effectiveness and superiority of the proposed approach.

5.1 Data and Settings

Data. Following the settings of Where2Act [18], we conduct our experiments in
the SAPIEN [37] simulator equipped with NVIDIA PhysX [22] simulation engine
and the large scale PartNet-Mobility [20] dataset. We use 972 articulated 3D
objects covering 15 object categories, mostly following Where2Act, to carry out
the experiments. The dataset is divided into 10 training and 5 testing categories.
The shapes in the training categories are further divided into two disjoint sets
of training and test shapes. See supplementary for detailed statistics.

10 Y. Wang et al.

Table 1. Quantitative Evaluations. We experiment with three different test-time
interaction budgets (i.e., 1, 2, or 4) where numbers are separated by slashes. We use
“pushing all” and “pulling all” to denote the experiments over all object categories,
while “pulling closed door” and “pushing faucet” refer to the experiments over a single
category only. For the experiments over all categories, we report the performance over
novel shapes from the training categories (marked with “train cat.”) and shapes from
novel categories (marked with “test cat.”).

F-score (%) Sample-Succ (%)

pushing all

(train cat.)

Where2Act 56.44 20.85
Where2Act-interaction 72.13 31.53
Where2Act-adaptation 64.16/65.42/64.99 20.77/22.72/26.82
ours-random 70.24/70.58/70.85 29.59/31.35/32.57
ours-fps 64.32/69.58/70.99 26.22/27.30/30.65
ours-final 72.78/73.12/75.18 33.82/33.23/35.23

pushing all

(test cat.)

Where2Act 59.95 21.69
Where2Act-interaction 76.12 37.10
Where2Act-adaptation 51.09/53.28/55.56 19.06/22.27/24.50
ours-random 75.12/76.92/76.98 30.78/30.78/29.48
ours-fps 66.17/67.27/69.08 33.64/35.19/37.79
ours-final 77.58/77.63/78.42 34.97/36.75/37.40

pulling all

(train cat.)

Where2Act 31.19 1.92
Where2Act-interaction 38.28 3.89
Where2Act-adaptation 37.22/38.48/39.13 1.11/2.15/1.62
ours-random 35.03/34.48/36.84 4.44/2.78/6.11
ours-fps 39.88/42.74/43.55 2.78/5.56/4.44
ours-final 42.62/43.87/44.08 7.78/9.44/10.55

pulling all

(test cat.)

Where2Act 36.36 10.00
Where2Act-interaction 45.80 9.73
Where2Act-adaptation 40.11/45.52/48.80 3.40/6.25/10.17
ours-random 41.97/44.88/46.11 6.13/4.78/8.26
ours-fps 43.67/42.77/48.33 4.35/3.91/4.78
ours-final 49.51/50.00/51.33 5.21/7.39/10.45

pulling
closed door

Where2Act 48.44 4.38
Where2Act-interaction 66.79 9.09
Where2Act-adaptation 50.21/55.75/56.81 6.60/7.18/6.83
ours-random 52.41/54.25/53.37 7.14/6.84/6.53
ours-fps 59.79/63.43/69.13 8.88/11.33/12.10
ours-final 57.83/65.60/79.65 10.86/11.57/22.14

pushing
faucet

Where2Act 64.92 55.46
Where2Act-interaction 79.85 80.97
Where2Act-adaptation 66.25/62.18/67.15 57.50/52.08/61.70
ours-random 72.61/76.29/79.16 61.81/79.01/80.82
ours-fps 74.19/79.36/77.95 60.44/70.12/77.41
ours-final 77.42/83.06/83.83 65.90/81.66/82.14

Experiment Settings. Following Where2Act [18], we perform experiments over
all object categories under different manipulation action types. We train one net-
work for each downstream manipulation task over training shapes from the 10
training object categories and evaluate the performance over test shapes from the
training categories and shapes from unseen test categories. Besides, to further
demonstrate the effectiveness of our method, we conduct two additional experi-
ments under challenging tasks with clear kinematic ambiguity, each of which is
conducted over a single object category: 1) pulling closed doors of cabinets that
cannot be easily distinguished which side to pull open; 2) pushing faucets with
uncertainties which direction to rotate (clockwise or counter-clockwise). These
experiments are particularly interesting yet challenging cases on which previous
work Where2Act [18] fail drastically and we hope to test our framework.

Environment Settings. Following Where2Act, we abstract away the robot arm
and only use a Franka Panda flying gripper as the robot actuator. The input

AdaAfford 11

shape point cloud is assumed to be cleanly segmented out. To generate the input
partial point cloud scans, we mount an RGB-D camera with known intrinsic
parameters 5-unit-length away pointing to the center of the target object.

To simulate manipulating shapes with uncertain dynamics, we randomly
change the following three physical parameters in SAPIEN: 1) the friction of the
target part joint, 2) the mass of the target part, and 3) the friction coefficient of
the target part surface. For the ”pulling closed door” task, we manually select
the cabinets whose doors have no clear handle geometry in the PartNet-Mobility
dataset [37], and set the poses of those doors to be closed. The gripper cannot
tell which side to pull open the door because it is impossible to tell whether the
axis position is on the left or right of the door from passive visual observations.
For the ”pushing faucet” task, we randomly set the rotating direction of the
faucet switch to be in one of the following three modes: only clockwise, only
counter clockwise, or both ways.

5.2 Baselines and Evaluation Metrics.

We set up several baseline and employ two metrics for quantitative comparisons.

Baselines and Ablation Study. We compare our framework with several baselines
(see supplementary for more detailed descriptions for the baseline designs):

- Where2Act: the original method proposed in [18] where only the pure
visual information is used for predicting the visual actionable information
and no interaction data is used at all during test time;

- Where2Act-interaction: the Where2Act method augmented with four ad-
ditional interaction observations as inputs where the interaction positions are
uniformly sampled over the predicted affordance heatmap using Furthest
Point Sampling (FPS) and we train an additional encoding branch similar
to the Adaptive Information Encoder to extract the additional input feature;

- Where2Act-adaptation: theWhere2Act method augmented with a heuris-
tic based adaptation mechanism to replace the AAP module where given the
interaction observations we locally adjust the predictions for similar points;

- Ours-random: a variant of our proposed method that we use randomly
sampled interaction trials over the geometry instead of the AIP proposals;

- Ours-fps: a variant of our proposed method that we use FPS to sample over
the predicted affordance for interactions instead of the AIP proposals.

We compare to Where2Act to show that the few-shot interactions indeed
help to remove ambiguities and improve the performance. The Where2Act-
interaction baseline uses FPS to sample interaction positions relying on the
intuition that it may sparsely sample over all possible regions of uncertainties.
Comparing to this baseline helps validate that our iterative framework learns
smarter strategies to perform more effective interaction trials. Furthermore, the
Where2Act-adaptation baseline helps substantiate the effectiveness of our
proposed AAP module, while the Ours-random and Ours-fps baselines are
designed to verify the usefulness of the proposed AIP module.

Besides, we compare to an ablated version of our method to verify the sig-
nificance of iterative training between the AAP module and the AIP module.

12 Y. Wang et al.

Pushing all
category

Pushing all
category

novel shape

Pulling all
category

Pulling all
category

novel shape

Pulling
closed door

Pushing
faucet

Pushing
drawer

1

0.75

0.5

0.25

0

Fig. 4. Example results of adapted affordance predictions given by AAP module under
different kinematic and dynamic parameters. The first five columns show the adapted
affordance prediction conditioned on increasing joint friction (the first and second
columns), part mass (the third column), and friction coefficient on object surface (the
fourth and fifth columns). The last two columns respectively show the influence of
different rotating directions (i.e., joint limits) and joint axis locations.

- Ours w/o iter: an ablated version that trains the whole framework without
the iteratively training process.

Evaluation Metrics. Following Where2Act [18], we use the F-score, balancing
the precision and recall, to evaluate the predictions of the Adaptive Critic Net-
work CAAP , and use the sample-successful rate (Sample-Succ) to evaluate the
performance of the Adaptive Critic Network CAAP and the Adaptive Affordance
Network DAAP . To compute the sample successful rate, we apply the learned
test-time strategy to fill I and then use the extracted hidden information z
as the conditional input to CAAP and DAAP . After that, we randomly select a
point to interact from the group of points with the top-100 actionability scores
aAAP
p|z , sample 100 actions ui’s at p, obtain the AAP action scores sAAP

ui|z ’s of these
actions ui’s predicted by the AAP Critic Network CAAP , and then choose the
action ui with the highest sAAP

ui|z to execute. We perform 10 interaction trials per
test shape and report the final sample-succ rate as the percentage of sampling
successful interactions in simulation.

5.3 Results and Analysis

Table 1 presents the quantitative comparisons against the baselines showing
that our method achieves the best performance in most comparison entries.
Specifically, compared to Where2Act, we observe that our method can im-
prove the performance evidently with only 1 interaction. Also, the performance
increases as the number of interactions increases in most cases. Compared to
the Where2Act-adaptation baseline, our method with the proposed AAP

AdaAfford 13

Interaction Affordance Map Interaction
(step 2)

Affordance Map
(step 2)

0.25

0.75

0.5

-1

2

1

0
AIP Affordance Map Interaction Affordance Map AIP Affordance Map Interaction Affordance Map

AIP Affordance Map

Pushing
drawer

Pushing
faucet

Pulling all
category

AIP Affordance Map
(step 2)

Pushing all
category

interaction
succeed

interaction
fail

interaction
succeed

interaction
succeed

interaction
succeed

interaction
succeed

interaction
succeed

interaction
succeed

Fig. 5. Example results for the interactions proposed by the AIP module and the
corresponding AIP affordance map predictions. In the first three rows, we show the
initial and the second AIP affordance maps, the corresponding proposed interactions,
and the posterior affordance map predictions. In the last row, we present two more
examples that only one interaction is needed. From these results, our AIP module
successfully proposes reasonable interactions for querying useful hidden information.

module shows better performance, revealing that learning an adaptation net-
work works better than using simple heuristics for adaptation. Compared to the
Where2Act-interaction baseline that is fed with four interactions in one shot,
our whole framework works better because our recurrent structure strategically
and successively selects the most effective interaction trials. Finally, the superior
performance against the Ours-random and Ours-fps baselines that use ran-
dom and FPS sampled interaction trials further validate that our proposed AIP
module is effective in strategically and iteratively picking interaction trials.

Fig. 4 shows example visualizations for our predicted affordance map poste-
rior given interactions under different hidden kinematic or dynamic information
(see the caption for more details explaining the different scenarios). In these
figures, it is clear to see that our proposed method successfully adapts the af-
fordance prediction conditioned on different hidden information. The affordance
predictions within one shape share the same visual inputs but output different
results, showing that our hidden embedding z contains certain information. For
example, in the first (second) column, we observe that with bigger joint friction
coefficients the door (handle) is harder to manipulate and one needs to push
(pull) at only points very far away from the joint axis to accomplish the task.
On the right-most (second-to-the-right) column, our network successfully figures
out which side of the door (faucet switch) one needs to push.

Fig. 5 further shows some interaction proposals by our AIP module with
its influence on the prediction of AAP affordance map and to the AIP affor-
dance map itself. In the first row, for example, we see that the AIP affordance
first proposes to interact at both sides of the faucet since it knows little about

14 Y. Wang et al.

Pulling
closed door
real-world

AIP Affordance Map Interaction (step 1)
interaction fail

Affordance Map AIP Affordance Map
(step 2)

Interaction (step 2)
interacton succeed

Affordance Map
(step2)

Fig. 6. Real-robot experiment on pulling open a closed door in the real world. We
show the AIP affordance map predictions, the AIP proposed interactions, and the
AAP posterior predictions, for two interaction trials. The results show that our work
could reasonably generalize to real-world scenarios.

the hidden information but at the second timestep proposes the right side as
it already learns that the left side is actionable. Cases in the first and third
rows demonstrate that the past few interactions will influence the selection of
future interaction points, justifying the necessity of our recurrent structure for
interaction selection. Specifically, in the third row, after the failure of the first
interaction, our AIP module proposes interaction points farther from the joints
since it already knows interactions on points with shorter distances than the first
interaction point are not likely to succeed. In the last row, we show cases which
only require one step to adapt.

Ablation Study. In Table 2, comparing against the ablated version of our method
Ours w/o iter that trains the whole system without the interactive training
process, we see that Ours-final achieves better results in most cases, which
proves the effectiveness of the iterative training scheme. By iteratively alternat-
ing the training between the AAP module and the AIP module, the networks
would be trained under the distribution of test-time interactions and thus achieve
improved performance. Our method can generalize well to novel shapes and even
shapes from unseen object categories through the scores in test category.

Table 2. Ablation Study. We compare our method to an ablated version, where we
remove the iteratively training process. It is clear to see that the iteratively training
process helps our framework achieve better results in most cases.

F-score (%) Sample-Succ (%)

pushing all (train cat.)
ours w/o iter 71.21/72.64/73.16 30.67/31.62/32.56
ours-final 72.78/73.12/75.18 33.82/33.23/35.23

pushing all (test cat.)
ours w/o iter 77.24/77.33/77.17 31.03/33.89/38.83
ours-final 77.58/77.63/78.42 34.97/36.75/37.40

pulling all (train cat.)
ours w/o iter 41.19/42.10/42.81 6.67/7.22/8.33
ours-final 42.62/43.87/44.08 7.78/9.44/10.55

pulling all (test cat.)
ours w/o iter 48.31/48.28/50.50 5.65/6.52/9.13
ours-final 49.51/50.00/51.33 5.21/7.39/10.45

pulling closed door
ours w/o iter 56.74/64.88/80.64 9.77/11.50/22.00
ours-final 57.83/65.60/79.65 10.86/11.57/22.14

pushing faucet
ours w/o iter 73.81/83.03/84.32 61.11/81.60/84.03
ours-final 77.42/83.06/83.83 65.90/81.66/82.14

Real-world and Real-robot Experiments. Finally, we perform real-world and real-
robot experiments to show that our method can to some degree work beyond

AdaAfford 15

synthetic data. We use a Franka panda robot with a two-finger parallel gripper
as the actuator to pull open a cabinet door in the real world. Fig. 6 presents
the results that our system proposes two interaction trials to inquire more in-
formation about this real-world cabinet and successfully learns to adapt to the
posterior predictions.

Please refer to the supplementary materials for a video better illustrating this
example, more experiment settings, more example results, and more experiments
with additional analysis.

6 Conclusion

This work addresses a big limitation of previous works learning visual actionable
affordance for manipulating 3D articulated objects – the hidden kinematic or
dynamic uncertainties. We propose a novel framework AdaAfford that samples
a few test-time interactions for fastly adapting to a more accurate affordance
posterior prediction removing such ambiguities. Experimental results validate
the effectiveness of our method compared to baseline approaches.

Limitations and Future Works. This work only considers two action types and
3D articulated objects. Future works may study more interaction and data types.
Also, we only perform short-term interactions. Future works can investigate how
to extend the framework for long-term manipulation trajectories. Finally, we
abstract away the complexity of robot arms and only use flying grippers in our
experiments. Future works shall work on considering the robot arm constraints.

Acknowledgements. National Natural Science Foundation of China —Youth Sci-
ence Fund (No.62006006). Leonidas and Kaichun were supported by the Toyota
Research Institute (TRI) University 2.0 program, NSF grant IIS-1763268, a Van-
nevar Bush Faculty Fellowship, and a gift from the Amazon Research Awards
program. The Toyota Research Institute University 2.0 program6.

References

1. Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine.
Learning to poke by poking: Experiential learning of intuitive physics. arXiv
preprint arXiv:1606.07419, 2016. 4

2. Sachin Chitta, Benjamin Cohen, and Maxim Likhachev. Planning for autonomous
door opening with a mobile manipulator. In 2010 IEEE International Conference
on Robotics and Automation, pages 1799–1806. IEEE, 2010. 2

3. Enric Corona, Albert Pumarola, Guillem Alenya, Francesc Moreno-Noguer, and
Grégory Rogez. Ganhand: Predicting human grasp affordances in multi-object
scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5031–5041, 2020. 4

6 Toyota Research Institute (”TRI”) provided funds to assist the authors with their
research but this article solely reflects the opinions and conclusions of its authors
and not TRI or any other Toyota entity.

16 Y. Wang et al.

4. Kuan Fang, Te-Lin Wu, Daniel Yang, Silvio Savarese, and Joseph J Lim. Demo2vec:
Reasoning object affordances from online videos. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 2139–2147, 2018. 4

5. Karim Farid and Nourhan Sakr. Few shot system identification for reinforcement
learning. arXiv preprint arXiv:2103.08850, 2021. 4

6. Fabio Ferreira, Lin Shao, Tamim Asfour, and Jeannette Bohg. Learning visual
dynamics models of rigid objects using relational inductive biases. arXiv preprint
arXiv:1909.03749, 2019. 4

7. Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning
for fast adaptation of deep networks. In International Conference on Machine
Learning, pages 1126–1135. PMLR, 2017. 4

8. David F Fouhey, Vincent Delaitre, Abhinav Gupta, Alexei A Efros, Ivan Laptev,
and Josef Sivic. People watching: Human actions as a cue for single view geometry.
In European Conference on Computer Vision, pages 732–745. Springer, 2012. 4

9. James J Gibson. The theory of affordances. Hilldale, USA, 1(2):67–82, 1977. 3
10. Michael Janner, Sergey Levine, William T Freeman, Joshua B Tenenbaum, Chelsea

Finn, and Jiajun Wu. Reasoning about physical interactions with object-oriented
prediction and planning. arXiv preprint arXiv:1812.10972, 2018. 4

11. Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, and Yuke Zhu. Synergies
between affordance and geometry: 6-dof grasp detection via implicit representa-
tions. Proceedings of Robotics: Science and Systems (RSS), 2021. 3

12. Hedvig Kjellström, Javier Romero, and Danica Kragić. Visual object-action recog-
nition: Inferring object affordances from human demonstration. Computer Vision
and Image Understanding, 115(1):81–90, 2011. 4

13. Mia Kokic, Danica Kragic, and Jeannette Bohg. Learning task-oriented grasping
from human activity datasets. IEEE Robotics and Automation Letters, 5(2):3352–
3359, 2020. 3

14. K Niranjan Kumar, Irfan Essa, Sehoon Ha, and C Karen Liu. Estimating mass dis-
tribution of articulated objects using non-prehensile manipulation. arXiv preprint
arXiv:1907.03964, 2019. 4

15. Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting robotic
grasps. The International Journal of Robotics Research, 34(4-5):705–724, 2015. 3,
4

16. Xueting Li, Sifei Liu, Kihwan Kim, Xiaolong Wang, Ming-Hsuan Yang, and Jan
Kautz. Putting humans in a scene: Learning affordance in 3d indoor environments.
In IEEE Conference on Computer Vision and Pattern Recognition, 2019. 4

17. Priyanka Mandikal and Kristen Grauman. Learning dexterous grasping with
object-centric visual affordances. In IEEE International Conference on Robotics
and Automation (ICRA), 2021. 2, 3, 4

18. Kaichun Mo, Leonidas J. Guibas, Mustafa Mukadam, Abhinav Gupta, and Shub-
ham Tulsiani. Where2act: From pixels to actions for articulated 3d objects. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 6813–6823, October 2021. 2, 3, 4, 5, 9, 10, 11, 12

19. Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su, and Leonidas Guibas. O2O-Afford:
Annotation-free large-scale object-object affordance learning. In Conference on
Robot Learning (CoRL), 2021. 4

20. Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J.
Guibas, and Hao Su. PartNet: A large-scale benchmark for fine-grained and hierar-
chical part-level 3D object understanding. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019. 3, 9

21. Tushar Nagarajan and Kristen Grauman. Learning affordance landscapes for in-
teraction exploration in 3d environments. In NeurIPS, 2020. 2, 3, 4

AdaAfford 17

22. NVIDIA. Nvidia.physx. 9
23. L Peterson, David Austin, and Danica Kragic. High-level control of a mobile manip-

ulator for door opening. In Proceedings. 2000 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2000)(Cat. No. 00CH37113), volume 3,
pages 2333–2338. IEEE, 2000. 2

24. Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hi-
erarchical feature learning on point sets in a metric space. arXiv preprint
arXiv:1706.02413, 2017. 6

25. William Qi, Ravi Teja Mullapudi, Saurabh Gupta, and Deva Ramanan. Learning
to move with affordance maps. arXiv preprint arXiv:2001.02364, 2020. 4

26. Yuzhe Qin, Rui Chen, Hao Zhu, Meng Song, Jing Xu, and Hao Su. S4g: Amodal
single-view single-shot se (3) grasp detection in cluttered scenes. In Conference on
robot learning, pages 53–65. PMLR, 2020. 3

27. Zengyi Qin, Kuan Fang, Yuke Zhu, Li Fei-Fei, and Silvio Savarese. Keto: Learn-
ing keypoint representations for tool manipulation. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 7278–7285. IEEE, 2020.
3, 4

28. Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen.
Efficient off-policy meta-reinforcement learning via probabilistic context variables.
In International conference on machine learning, pages 5331–5340. PMLR, 2019.
4

29. Joseph Redmon and Anelia Angelova. Real-time grasp detection using convolu-
tional neural networks. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 1316–1322. IEEE, 2015. 3, 4

30. Tanner Schmidt, Richard A Newcombe, and Dieter Fox. Dart: Dense articulated
real-time tracking. In Robotics: Science and Systems, volume 2. Berkeley, CA,
2014. 2

31. Yu Sun, Shaogang Ren, and Yun Lin. Object–object interaction affordance learn-
ing. Robotics and Autonomous Systems, 62(4):487–496, 2014. 4

32. Dimitrios Tzionas and Juergen Gall. Reconstructing articulated rigged models
from rgb-d videos. In European Conference on Computer Vision, pages 620–633.
Springer, 2016. 2

33. Yusuke Urakami, Alec Hodgkinson, Casey Carlin, Randall Leu, Luca Rigazio, and
Pieter Abbeel. Doorgym: A scalable door opening environment and baseline agent.
Deep RL workshop at NeurIPS 2019, 2019. 2

34. Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, and Kai
Xu. Shape2motion: Joint analysis of motion parts and attributes from 3d shapes.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8876–8884, 2019. 2

35. Yijia Weng, He Wang, Qiang Zhou, Yuzhe Qin, Yueqi Duan, Qingnan Fan, Bao-
quan Chen, Hao Su, and Leonidas J. Guibas. Captra: Category-level pose tracking
for rigid and articulated objects from point clouds. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), pages 13209–13218, October
2021. 2

36. Ruihai Wu, Yan Zhao, Kaichun Mo, Zizheng Guo, Yian Wang, Tianhao Wu, Qing-
nan Fan, Xuelin Chen, Leonidas Guibas, and Hao Dong. VAT-mart: Learning
visual action trajectory proposals for manipulating 3d ARTiculated objects. In
International Conference on Learning Representations, 2022. 2, 3

37. Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu,
Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang,
Leonidas J. Guibas, and Hao Su. SAPIEN: A simulated part-based interactive

18 Y. Wang et al.

environment. In The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2020. 3, 9, 11

38. Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B Tenenbaum, and Shuran Song.
Densephysnet: Learning dense physical object representations via multi-step dy-
namic interactions. arXiv preprint arXiv:1906.03853, 2019. 4

39. Zhenjia Xu, He Zhanpeng, and Shuran Song. Umpnet: Universal manipulation
policy network for articulated objects. IEEE Robotics and Automation Letters,
2022. 3

40. Zhihao Yan, Ruizhen Hu, Xingguang Yan, Luanmin Chen, Oliver van Kaick, Hao
Zhang, and Hui Huang. RPM-NET: Recurrent prediction of motion and parts
from point cloud. ACM Trans. on Graphics, 38(6):Article 240, 2019. 2

41. Lixin Yang, Xinyu Zhan, Kailin Li, Wenqiang Xu, Jiefeng Li, and Cewu Lu. Cpf:
Learning a contact potential field to model the hand-object interaction. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages
11097–11106, 2021. 4

42. Li Yi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, Hao Su, and Leonidas
Guibas. Deep part induction from articulated object pairs. ACM Trans. Graph.,
37(6), Dec. 2018. 2

43. Wenhao Yu, Jie Tan, C Karen Liu, and Greg Turk. Preparing for the unknown:
Learning a universal policy with online system identification. arXiv preprint
arXiv:1702.02453, 2017. 4

44. Tony Z Zhao, Anusha Nagabandi, Kate Rakelly, Chelsea Finn, and Sergey Levine.
Meld: Meta-reinforcement learning from images via latent state models. arXiv
preprint arXiv:2010.13957, 2020. 4

45. Wenxuan Zhou, Lerrel Pinto, and Abhinav Gupta. Environment probing interac-
tion policies. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. 4

46. Yixin Zhu, Yibiao Zhao, and Song Chun Zhu. Understanding tools: Task-oriented
object modeling, learning and recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2855–2864, 2015. 4

7 More Detailed Data Statistics

Table 3 summarizes the data statistics and splits. Figure 7 visualizes some ex-
ample shapes from our dataset.

8 More Details about Method
In our setting, the subsequent interactions always continue from the previous
interactions. But it actually doesn’t matter for our method, we can take any
distribution of test-time interactions in the training process and it won’t violate
our design.

The input point cloud O is the current observation and might be changed if
an interaction successfully moves the object.

9 More Experiment Settings

Details of Baselines ForOurs-fps,Where2Act-interaction andWhere2Act-
adaptation baselines, we augment the FPS method with an actionability score.

AdaAfford 19

Box Microwave Door Faucet TrashCan

Kettle

KitchenPot

Refrigerator

BucketWashingMachine Safe

Switch StorageFurniture

Table

Window

Tr
ai

ni
ng

 C
at

eg
or

ie
s

Te
st

in
g

C
at

eg
or

ie
s

Fig. 7. Data Visualization. We show example shapes of object categories in our
paper.

In detail, we only select the points with higher actionability scores than a preset
threshold (e.g., 0.5). If there are not enough such points, the threshold will be
set lower until there exist at least 50 points whose actionability scores are higher
than the threshold. For Where2Act-adaptation baseline, we first train a net-
work to give the similarities between points. For point p1 and point p2, given their
point features extracted by PointNet++ and the distance between them, the net-
work outputs a similarity score simp1p2 . Then, an interaction I = (O, p,R,m)
acting on p with action score su will influence point q by:

(r − su) ∗ simpq (1)

where r = 1 if m > τ (e.g., τ = 0.01) or r = 0, u = (p,R). Specifically, if the
original an actionability score of point q is aq and the original action score of an
arbitrary action u∗ = (q,R∗) on point q is su∗ , the new action score snewu∗

and
actionability score anewq would be:

snewu∗
= su∗ + (r − su) ∗ simpq (2)

anewq = aq + (r − su) ∗ simpq (3)

To train the network to give similarity between points, similar to our method,
we use the ground truth result of the action u∗ as the regression target of snewu∗

.

20 Y. Wang et al.

Table 3. We first summarize the shape counts in our dataset for pushing and pulling
shapes over all categories, in which there are three data splits: training data from
the training categories, test data from the training categories, and data from the test
categories. We use the first split to train and use the rest two for evaluation. We further
show the shape counts in our two additional tasks: pulling closed door and pushing
faucet (denoted as Closed Door and Faucet for brevity).

Train-Cats Box Microwave Door Faucet TrashCan

Train / Test 20 / 8 9 / 3 23 / 12 65 / 19 52 / 17

Kettle Refrigerator Switch Cabinet Window

22 / 7 32 / 11 53 / 17 270 / 75 40 / 18

Total 586 / 187

Test-Cats Table Washer Bucket Pot Safe

95 16 36 23 29

Total 199

ADDL Exp. Category Train data Test data

Closed door Cabinet 74 11

Faucet Faucet 15 4

More baselines We employ several baselines using FPS method to sample inter-
action points, and the results show the usefulness of the proposed AIP module
of our framework.

- Ours-purefps: that directly uses FPS method to sample interaction points
without using actionability scores.

- Ours-argfps: that uses FPS augmented with actionability scores to select
interaction points. When sampling a new point, we combine its distance to
the sampled point set with its actionability score while doing FPS, as the
weighted distance.

10 More Results and Analysis

In Figure 8 and 9, we show more qualitative results. See the captions of these
two figures for more details.

Table 4 shows the comparisons between different methods using FPS. In
most cases, both Ours-argfps and Ours-fps achieve better results than Ours-
purefps. Because in Ours-purefps baseline, FPS only cares about the 3D po-
sition of points discarding the point features. While Ours-argfps and Ours-fps
utilize the action scores which are generated by point features and thus achieve
better results. Results show that our framework gets better performance in most
cases compared with those baselines, which further shows the effectiveness of our
AIP module.

AdaAfford 21

Table 4. Quantitative Evaluations. Comparison with different FPS baselines. Re-
sults show that our framework achieves the best performance in most cases.

F-score (%) Sample-Succ (%)

pushing all (train cat.)
ours-purefps 66.78/69.43/70.65 28.23/31.50/29.51
ours-argfps 66.78/69.43/70.65 28.23/31.50/29.51
ours-fps 64.32/69.58/70.99 26.22/27.30/30.65
ours-final 72.78/73.12/75.18 33.82/33.23/35.23

pushing all (test cat.)
ours-purefps 66.35/66.55/67.19 34.15/32.60/35.06
ours-argfps 74.04/75.03/76.63 33.11/34.54/36.49
ours-fps 66.17/67.27/69.08 33.64/35.19/37.79
ours-final 77.58/77.63/78.42 34.97/36.75/37.40

pulling all (train cat.)
ours-purefps 35.46/37.54/37.35 2.78/5.56/2.78
ours-argfps 35.46/37.54/37.35 3.89/4.44/6.11
ours-fps 39.88/42.74/43.55 2.78/5.56/4.44
ours-final 42.62/43.87/44.08 7.78/9.44/10.55

pulling all (test cat.)
ours-purefps 43.60/48.91/47.36 6.96/5.22/3.91
ours-argfps 45.17/47.39/50.60 8.69/7.22/10.00
ours-fps 43.67/42.77/48.33 4.35/3.91/4.78
ours-final 49.51/50.00/51.33 5.21/7.39/10.45

pulling closed door
ours-purefps 53.53/59.81/67.20 6.67/7.64/10.71
ours-argfps 58.42/62.31/68.72 8.94/11.25/13.75
ours-fps 59.79/63.43/69.13 8.88/11.33/12.10
ours-final 57.83/65.60/79.65 10.86/11.57/22.14

pushing faucet
ours-purefps 73.39/79.13/79.85 61.88/76.59/72.50
ours-argfps 74.66/78.30/79.61 61.42/66.65/74.75
ours-fps 74.19/79.36/77.95 60.44/70.12/77.41
ours-final 77.42/83.06/83.83 65.90/81.66/82.14

22 Y. Wang et al.

1

0.75

0.5

0.25

0

(1)

(8)

(6)

(4)

(2)

(7)

(5)

(3)

Fig. 8. We visualize more results for the adapted affordance predictions given by the
AAPmodule conditioned on different hidden kinematic and dynamic information. From
the first tor the last block, we respectively change the 1) mass of target part 2) joint
friction 3) friction coefficient on the target part’s surface 4) joint friction 5) friction co-
efficient on the target part’s surface 6) rotating direction of the faucet 7) mass of target
part 8) axis location of the door, and clearly see reasonable adaptions in affordance
predictions.

Interaction Affordance Map Interaction
(step 2)

Affordance Map
(step 2)

0.25

0.75

0.5

-1

2

1

0

AIP Affordance Map Interaction Affordance Map AIP Affordance Map Interaction Affordance Map

AIP Affordance Map AIP Affordance Map
(step 2)

Pushing
drawer

Pushing all
category

Pulling all
category

Pushing all
category

interaction
succeed

interaction
succeed

interaction
succeed

interaction
succeed

interaction
fail

interaction
succeed

interaction
fail

interaction
fail

Fig. 9. We visualize more results for the interactions proposed by the AIP module and
the corresponding AIP affordance map predictions. In the first row, we show the initial
and the second AIP affordance maps, the corresponding proposed interactions, and
the posterior affordance map predictions. In the last three rows, we present six more
examples that only one interaction is needed.

	AdaAfford: Learning to Adapt Manipulation Affordance for 3D Articulated Objects via Few-shot Interactions

