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Abstract
In this paperwe continue our effort inGuo et al. ( J Comput Phys 406:109219, 2020) for devel-
oping high-order bound-preserving (BP) finite difference (FD) methods. We will construct
high-order BP FD schemes for the incompressible wormhole propagation. Wormhole prop-
agation is used to describe the phenomenon of channel evolution of acid and the increase of
porosity in carbonate reservoirs during the acidization of carbonate reservoirs. In wormhole
propagation, the important physical properties of acid concentration and porosity involve
their boundness between 0 and 1 and the monotonically increasing porosity. High-order
BP FD methods can maintain the high-order accuracy and keep these important physical
properties, simultaneously. The main idea is to choose a suitable time step size in the BP
technique and construct a consistent flux pair between the pressure and concentration equa-
tions to deduce a ghost equation. Therefore, we can apply the positivity-preserving technique
to the original and the deduced equations. Moreover, the high-order accuracy is attained by
the parametrized flux limiter. Numerical experiments are presented to verify the high-order
accuracy and effectiveness of the given scheme.
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1 Introduction

Acidization, as a stimulation technique, has been commonly used to increase the production
of petroleum reservoirs. In this technique, acid is injected into wells to dissolve the material
near and/or in the wellbore, which can increase the permeability and porosity of the material
close to a well. Therefore, under optimal injection rate, the rapid rates of dissolution and
heterogeneous flow profiles lead to the formation of highly conductive flow channels, com-
monly referred to as wormholes. Wormholes can establish a good connectivity between the
reservoir and the wellbore, thereby greatly improving the productivity of the oil well. Due to
the significant role that wormhole plays in subsurface reservoir management, there are many
research works have been done on the formation and propagation of wormholes.

The earliest research of wormhole propagation phenomenon was carried out through
experiments in [7,14]. With the establishment of mathematical models such as dimension-
less model, capillary model, network model, and continuum model, people had a better
understanding of wormhole propagation process. In [22], Panga et al. developed the two-
scale continuum model and proposed a partial differential equations system to describe the
formation and propagation of wormholes. Based on this model, there were many follow-up
works. Zhao et al. [33] presented the theoretical and numerical analysis on the front insta-
bility of wormhole propagation. 3D simulation of carbonate acidization was presented by
Maheshwari et al. in [21]. In [28], Wu et al. conducted a parallel simulation under a modifica-
tion of flow equation. In 2017, the authors in [1] studied the numerical-simulation approach
for a modified model. Later, Wei et al. [27] extended this model from single phase flow
to two-phase flow. In addition to the above works, many researchers also designed specific
numerical schemes for this model. In [17], Sun et al. proposed a fully conservative method
based on mixed finite element to simulate the wormhole propagation. Later, Li and Rui
[18,19] applied finite difference (FD) methods to this problem. Moreover, in [12], Guo et al.
applied the discontinuous Galerkin (DG) method to this model.

It is well known that the exact solutions of incompressible wormhole prorogations sat-
isfy some physical bounds, e.g. the concentration of acid c f is between 0 and 1, and the
porosity φ is increasing during time evolution and less than 1. In many numerical simula-
tions, the numerical approximations of c f may be placed outside the bounds, especially if
the exact solution contains discontinuities or large gradients. Moreover, the time derivative
of φ depends on c f , and the negative approximations of c f can further lead to φ < 0 in
some regions with low porosity. In addition, near the wormhole, the numerical oscillations
of φ itself may also cause negative values. Both of the above two cases will bring a neg-
ative coefficient in the diffusion term of the transport equation. Numerical experiments in
[31] have demonstrated that if the numerical approximations are out of the physical bounds,
the problems can be ill-posed, leading to the instability of numerical simulations. Thus, the
bound-preserving (BP) technique is essential for numerical simulations.

The BP technique for fractionswas recently introduced in [13], where two of the authors in
the present study applied second-order DGmethods for compressible miscible displacements
in porous media. Subsequently, the high-order extension on unstructured triangular meshes
was discussed in [3]. Later, the authors further investigated high-order BP DG methods for
multispecies and multireaction detonations [5,6] and incompressible wormhole propagations
[31]. One of the key steps in the numerical algorithm is to apply the “consistent” numerical
flux (see Definition 3.1). However, the ideas introduced in the works given above are not
straightforward extendable to FD schemes. In fact, the BP technique for FD methods was
mainly based on flux limiters, and it was first introduced in [30], where the maximum-
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principle-preserving FD methods were investigated for hyperbolic equations in one space
dimension. The extension to convection-diffusion equations was given in [16,29]. The basic
idea is to modify the numerical fluxes by combining the first-order and high-order numerical
fluxes. Therefore, the time step size has to be predetermined before the usage of the flux
limiters. In [11], the authors demonstrated that direct usage of the BP technique in [3,13,31]
can result in time step size paradox. This is mainly due to the fact that the requirement of
“consistent” numerical flux in the BP techniquewill result in a new time step size requirement
for the source term after the application of flux limiters. To fix this gap, in [11], we used
the same stencil to construct the high-order and first-order numerical fluxes and developed
high-order BP FDmethods for miscible displacements in porous media. However, to the best
knowledge of the authors, no previous works discussing the high-order BP FD methods for
incompressible wormhole propagation are available. In this paper, we will establish high-
order BP FD schemes in this direction and keep the bounds of concentration of acid and
porosity. For the incompressible wormhole propagation, since the initial values of Darcy’s
velocity u and pressure p are not given, we need to solve a large system of linear equations at
each time level to obtain numerical approximations of these two variables. As a result, unlike
[11], we need to construct a special numerical flux for the pressure equation to be “consistent”
with that for the concentration equation to obtain a ghost equation satisfied by c2 = 1 −
c f . Then we apply the positivity-preserving technique can be applied on both the original
and ghost equations. Moreover, different from miscible displacements in porous media, the
porosity φ in wormhole prorogation is bounded between 0 and 1, and it is increasing during
time evolution. Therefore, we also need to preserve the positivity of φt to obtain physically
relevant φ. To construct the BP technique, we define a new variable r = φc f , and then apply
the positivity-preserving flux limiter to r instead of c f . Therefore, the upper bound of r , say
φ, is changing during time evolution. We introduce special techniques to obtain physically
relevant φ. In summary, the whole algorithm can be divided into three parts. Firstly,We apply
positivity-preserving technique to obtain positive φt and use which in pressure equation to
seek the velocity andpressure. Then apply the positivity-preserving (PP) technique again to c f

and 1−φ simultaneously to obtain physically relevant numerical approximations. Finally, we
use “consistent” flux pair in the flux limiter in both the concentration and pressure equations
to obtain the positive approximation of 1 − c f , which further yields physically relevant
numerical approximations of c f .

The rest of the paper is organized as follows: we first introduce the mathematical model of
the incompressible wormhole propagation in Sect. 2. In Sect. 3, we construct the FD scheme
in two space dimensions. We demonstrate the BP technique for both first-order and high-
order schemes in Sect. 4. In Sect. 5, some numerical experiments will be carried out to verify
the high-order accuracy and effectiveness of the numerical technique. Finally, concluding
remarks are given in Sect. 6.

2 Mathematical Model

In this section, we introduce the mathematical model of the incompressible wormhole
propagation. Let � = [0, 2π ] × [0, 2π ] and J = [0, T ], the mathematical model of the
incompressible wormhole propagation is as follows:
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∂φ

∂t
+ ∇ · u = f , (x, y) ∈ �, 0 < t ≤ T , (2.1)

u = −κ(φ)

μ
∇ p, (x, y) ∈ �, 0 < t ≤ T , (2.2)

∂(φc f )

∂t
+ ∇ · (uc f ) = ∇ · (φD∇c f ) + kcav(cs − c f ) + f I cI − fPc f , (2.3)

∂φ

∂t
= αkcav(c f − cs)

ρs
, (x, y) ∈ �, 0 < t ≤ T , (2.4)

where u and p are the Darcy’s velocity (the volume of flow crossing a unit across-section per
unit time) and the pressure in the fluid mixture, respectively. φ is the porosity (the percentage
of the empty space in a rock) and c f is the concentrations of acid in the fluid phase. The
above variables are unknown time-dependent variables throughout this paper. f = f I − fP
is the external volumetric flow rate with f I = max{ f , 0} and fP = −min{ f , 0} being the
injection flow rate and the production flow rate, respectively. cI is the concentrations of acid
in the injected flow. D, a positive definite matrix, is the dispersion tensor for the acid in
porous media. If the flow vectors are essentially parallel to the x-axis [8,23] or we consider
molecular diffusion only [4,32], then D can be a diagonal matrix. In this paper, we only
consider the simplified cases and assume D to be a diagonal matrix. In this paper, D, f , f I ,
fP , cI are given functions. μ is the viscosity of fluid, kc is the local mass-transfer coefficient
and ks is the kinetic constant for reaction. ρs is the density of the rock and α is the dissolving
constant of the acid (grams of solid dissolved per mole of acid reacted). These values are
positive constants. cs is the concentrations of acid in the fluid-solid interface. Moreover, in
the case of first order kinetic reaction, the concentration cs has a simple relationship with c f

:

cs = c f

1 + ks/kc
. (2.5)

The permeability κ and the interfacial area available for reaction av are functions of φ defined
as

κ

κ0
= φ

φ0

(
φ(1 − φ0)

φ0(1 − φ)

)2

,
av

a0
= 1 − φ

1 − φ0
, (2.6)

respectively, where κ0, a0, and φ0 are the initial values for κ , av , φ. It is easy to see that the
pressure is uniquely determined up to a constant, thus we assume

∫
�
p dxdy = 0. However,

this assumption is not essential. If we define c2 = 1 − c f , then subtracting (2.3) from (2.1)
to obtain a ghost equation satisfied by c2:

∂(φc2)

∂t
+ ∇ · (uc2) = ∇ · (φD∇c2) − kcav(cs − c f ) + f I (1 − cI ) − fPc2. (2.7)

Notice that the convection and diffusion terms in (2.7) and (2.3) are almost the same. The
main difference between two equations is the source term. From (2.5) and (2.6), we have
−kcav(cs − c f ) ≥ 0, which will be benefit to the positivity preserving of the source term.
Hence, we can apply the same PP technique to (2.7), leading to the fact that c f = 1−c2 ≤ 1.

In this paper, we consider periodic boundary condition for simplicity. The initial concen-
tration and porosity are given as

c f (x, y, 0) = c0(x, y), φ(x, y, 0) = φ0(x, y), (x, y) ∈ �,

where 0 < φ	 ≤ φ0(x, y) ≤ φ	 < 1.
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3 The Finite Difference Scheme

In this section, we will construct the FD scheme for incompressible wormhole propagation.
We adopt the following spatial discretization for the domain [0, 2π] × [0, 2π]

0 = x 1
2

< x 3
2

< · · · < xNx− 1
2

< xNx+ 1
2

= 2π, (3.1)

0 = y 1
2

< y 3
2

< · · · < yNy− 1
2

< yNy+ 1
2

= 2π. (3.2)

Moreover, we define

Ii,k =
[
xi− 1

2
, xi+ 1

2

]
×

[
yk− 1

2
, yk+ 1

2

]
, (3.3)

as the rectangular cells. The grid centers and grid sizes are denoted as

xi = 1

2

(
xi− 1

2
+ xi+ 1

2

)
, 
xi = xi+ 1

2
− xi− 1

2
, i = 1, · · · , Nx , (3.4)

yk = 1

2

(
yk− 1

2
+ yk+ 1

2

)
, 
yk = yk+ 1

2
− yk− 1

2
, k = 1, · · · , Ny . (3.5)

In this paper, we apply uniform partition and define 
x = 
xi and 
y = 
yk . This
assumption is, unfortunately, essential in the reconstruction procedure [25] of the high-order
numerical fluxes.

Let (·)i,k denote the numerical approximation at (xi , yk) for simplicity. Then the semi-
discrete conservative FD scheme for (2.1)–(2.4) has the following form

d

dt
φi,k = − 1


x

(
ûi+ 1

2 ,k − ûi− 1
2 ,k

)
− 1


y

(
v̂i,k+ 1

2
− v̂i,k− 1

2

)
+ fi,k, (3.6)

a(φi,k)ui,k = − 1


x

(
p̂i+ 1

2 ,k − p̂i− 1
2 ,k

)
, (3.7)

a
(
φi,k

)
vi,k = − 1


y

(
p̂i,k+ 1

2
− p̂i,k− 1

2

)
, (3.8)

d

dt
ri,k = − 1


x

(
Ĉx i+ 1

2 ,k − Ĉx i− 1
2 ,k

)
− 1


y

(
Ĉy i,k+ 1

2
− Ĉy i,k− 1

2

)

+ 1


x

(
D̂x i+ 1

2 ,k − D̂x i− 1
2 ,k

)

+ 1


y

(
D̂y i,k+ 1

2
− D̂y i,k− 1

2

)
− B1(φi,k)c f i,k + f I i,kcI i,k − fP i,kc f i,k,

(3.9)

d

dt
φi,k = B2(φi,k)c f i,k, (3.10)

where

a(φ) = μ

κ(φ)
, B1(φ) = a0(1 − φ)kcks

(1 − φ0)(kc + ks)
, B2(φ) = αa0(1 − φ)kcks

ρs(1 − φ0)(kc + ks)
,

with r = φc f . Note that since the porosity φ is increasing during time evolution and less
than 1, κ(φ) is obviously not zero when 0 < φ0 < 1. We denote ˆ(·)i− 1

2 ,k as the numerical

fluxes at
(
xi− 1

2
, yk

)
and use it for the spatial derivative along x-axis. Likewise for the other

numerical fluxes.
The following definition is essential in constructing suitable numerical fluxes for the BP

technique.
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Definition 3.1 We say the flux Ĉx is consistent with û if Ĉx = û when c f = 1 in �.

In [3,13,31], we constructed û and v̂ to be consistent with Ĉx and Ĉy in (3.11), respectively,
for the DGmethods. However, the idea is not straightforward extendable to FD methods, see
[11] for detailed explanations.

We first demonstrate the construction of the numerical flux Ĉx for the convection term.
To construct Ĉx , we select a stencil I = {xi−r , · · · , xi+1+s}, where r + s + 1 = m is the
order of accuracy of the scheme. Generally, we want r = s. Then, we apply the flux splitting
[25] to the scheme and have

Ĉx i+ 1
2 ,k = 1

2

(
Ĉx

+
i+ 1

2 ,k + Ĉx
−
i+ 1

2 ,k

)
, (3.11)

where

Ĉx
+
i+ 1

2 ,k = f +((uc f )i−r ,k + αC (c f )i−r ,k, . . . , (uc f )i+s,k + αC (c f )i+s,k),

and

Ĉx
−
i+ 1

2 ,k = f −((uc f )i+1−r ,k − αC (c f )i+1−r ,k, · · · , (uc f )i+1+s,k − αC (c f )i+1+s,k),

with αC = maxi |ui,k |. f ±, the reconstruction function, has been well-developed in [25] and
the reconstruction procedure has been introduced in the Appendix in [11]. Here, we will only
demonstrate the following useful property without more details:

f +(a−r , · · · , as) =
s∑

�=−r

ω+
� a�, (3.12)

f −(a1−r , · · · , a1+s) =
s+1∑

�=1−r

ω−
� a�, (3.13)

whereω±
� is the weights in the reconstruction procedure, which can be obtained by following

the algorithm introduced in [25]. The most commonly used reconstruct procedure is based
on the weight essential non-oscillatory (WENO) scheme [2,15,20,25,26]. However, with
WENO reconstruction procedure, it may not be easy to obtain consistent numerical fluxes.
In fact, the nonlinear weights for Ĉx depend on u, which is obtained from (3.6)–(3.8). Due to
the consistency requirement, the nonlinear weights used in the construction of û also depend
on u itself. Therefore, we need the values of u to construct the weights for û then solve for u.
This contradiction is not easy to fix, and needs further investigations. In this paper, instead
of using the nonlinear weights from the WENO algorithm, we adopt the linear weights since
those weights are determined by the accuracy of the scheme, not the values of u. The values
of the linear weights can be found in Table 2.1 in [25]. It is easy to prove that

s∑
�=−r

ω+
� =

s+1∑
�=1−r

ω−
� = 1. (3.14)

This fact is useful in the construction of consistent numerical flux û and consistent lower-order
numerical fluxes in the flux limiters.

The following lemma is essential to construct the consistent numerical flux û and the
first-order numerical fluxes for the convection term. Here, we only demonstrate the results,
since it has already been proved in [11].
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Lemma 3.2 Let f ± be given in (3.12) and (3.13), then we have

f +(ui−r c f + αCc f , · · · , ui+sc f + αCc f ) = f +(ui−r , · · · , ui+s)c f + αCc f ,

and

f −(ui+1−r c f − αCc f , · · · , ui+1+sc f − αCc f ) = f −(ui+1−r , · · · , ui+1+s)c f − αCc f .

Now, we proceed to construct the numerical fluxes of Darcy’s velocity u and pressure p.
For the incompressible wormhole propagation, since the initial values of u and p are not
given, we can obtain numerical approximations of these two variables by solving a large
system of linear equations at each time level.

Here, unlike [11], we cannot simply take c f = 1 in Ĉx to obtain the consistent numerical
flux û. Due to the consistency requirement of the BP technique, we choose û as

ûi+ 1
2 ,k = 1

2

(
û+
i+ 1

2 ,k
+ û−

i+ 1
2 ,k

)
, (3.15)

where

û+
i+ 1

2 ,k
= f +(ui−r ,k, · · · , ui+s,k), û−

i+ 1
2 ,k

= f −(ui+1−r ,k, · · · , ui+1+s,k).

Likewise for v̂. By Lemma 3.2, we can easily get that the flux Ĉx is consistent with û.
Next, we will discuss the numerical flux p̂i− 1

2 ,k . We can simply follow the same construc-

tion procedure in computing ûi− 1
2 ,k . The flux p̂i,k− 1

2
can be obtained in similar way.

For the diffusion part, we consider D̂x i+ 1
2 ,k = D̂x i+ 1

2 ,k(c f ) only, and D̂y i,k+ 1
2

can be obtained following the same lines with some minor changes. We assume D =
diag{D11, D22} and apply the Taylor’s expansion introduced in [26] to write

D̂x i+ 1
2 ,k = φD11c f x |xi+ 1

2
,yk − 
x2

24

∂2

∂x2
(φD11c f x )|xi+ 1

2
,yk

+7
x4

5760

∂4

∂x4
(φD11c f x )|xi+ 1

2
,yk . (3.16)

To evaluate D̂x , we use the point values of φ, c f and u within the stencil I to construct
the polynomials interpolation of φ, D11 and c f , denoted as pφ , p11 and pc, respectively.
Then px = pφ p11(pc)x is a high-order approximation of φD11c f x . The approximations of
φD11c f x and its derivatives can be obtained by reading the point values of p

x as well as its
derivatives. For example, in order to consistent with the fifth order scheme (m = 5), we want
pc to be a sixth order approximation of c f , and then we should use a stencil with six points.

Remark 3.3 The sequence of solving (3.6)–(3.10) can be summarized as follows:

1. We directly use φn , cnf and (3.10) to obtain φn
t , which further yield φn+1.

2. Then we take the φn
t solved in step 1 as the source term in equation (3.6). Therefore, we

can combine Eqs. (3.6)–(3.8) to form a large system of linear equations for p. By solving
this large system of linear equations at time level n, we can obtain pn and un .

3. Finally, we construct the numerical fluxes in (3.9) with φn , cnf and u
n . Thus, we can get

rnt . Moreover, we can obtain cn+1
f with r = φc f .
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Remark 3.4 Thanks to the consistent numerical fluxes, we can subtract (3.9) from (3.6) to
obtain the numerical scheme satisfied by c2 = 1 − c f (or r2 = φ − r ):

d

dt
r2i,k = − 1


x
(Ĉx2 i+ 1

2 ,k − Ĉx2 i− 1
2 ,k) − 1


y
(Ĉy2 i,k+ 1

2
− Ĉy2 i,k− 1

2
)

+ 1


x
(̂Dx2 i+ 1

2 ,k −̂Dx2 i− 1
2 ,k)

+ 1


y
(̂Dy2 i,k+ 1

2
−̂Dy2 i,k− 1

2
) + B1(φi,k)c f i,k + f I i,k(1 − cI i,k) − fP i,kc2i,k .

(3.17)

wherêDx2(c2) = −D̂x (c f ),̂Dy2(c2) = −D̂y(c f ). We can apply the PP technique to (3.17)
to obtain positive c2 (or r2), leading to c f ≤ 1.

Remark 3.5 Due to the consistency requirement, û is taken as the central fluxwithout penalty,
likewise for v̂ and p̂. However, in numerical simulations, we cannot use even number of grid
points for the partition of the computational domain.Weuse the following linear heat equation
in one dimension as an example to demonstrate the reason:

ux = 0, u = px , x ∈ �,

subject to periodic boundary condition and
∫
�
pdx = 0. With central flux, the second-order

spatial discretization is given as

u j+1 − u j−1 = 0, u j = p j+1 − p j−1,

then we can obtain

p j+2 − 2p j + p j−2 = 0.

Even with the additional condition that
∑

j p j = 0, the above is not uniquely solvable if
even number of grid points is used. To handle this difficulty, we choose odd number of points
in both x and y directions in all the numerical simulations.

Finally, we want to demonstrate the following key ideas.

1. Sinceφmust be between0 and1 and increasemonotonically,wewill first apply positivity-
preserving technique to obtain positive φt and use which as another source to find the
velocity and pressure.

2. Due to the initial values of u and p are not given, we need to couple the equations
satisfied by u and p to obtain the numerical approximations of these two variables. Then,
we construct special numerical fluxes û and v̂ which are consistent with Ĉx and Ĉy ,
respectively.

3. Apply flux limiters to the high-order scheme by taking a linear combination of the first-
order and high-order fluxes. These two numerical fluxes use the same stencils.

4. For diffusion part, apply Taylor’s expansion to construct the numerical fluxes.

4 Bound-Preserving Technique

In this section, we proceed to discuss the BP technique for problems in two space dimen-
sions. Though the FD scheme can provide high-order approximation, it may not preserve
the physical bounds of the numerical solution. In order to construct the BP technique, we
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consider the semi-discrete conservative FD scheme (3.6)–(3.10). We apply a parameterized
PP flux limiter to modify the high-order fluxes in (3.9) towards a first-order fluxes by taking
a linear combination of them. We would like to prove that the first-order scheme maintains
the positivity of the numerical approximations with the appropriate time steps. Following the
analysis in [3,13], the numerical solution c f can be bounded between 0 and 1 by using the
consistent numerical flux pair.

4.1 First-Order Scheme

In this subsection, we will construct first-order BP technique with Euler forward time dis-
cretization. The first-order form of (3.9) can be written as

d

dt
ri,k = − 1


x

(
ĉx i+ 1

2 ,k − ĉx i− 1
2 ,k

)
− 1


y

(
ĉy i,k+ 1

2
− ĉy i,k− 1

2

)

+ 1


x

(
d̂x i+ 1

2 ,k − d̂x i− 1
2 ,k

)
+ 1


y

(
d̂y i,k+ 1

2
− d̂y i,k− 1

2

)

− B1
(
φi,k

)
c f i,k + f I i,kcI i,k − fP i,kc f i,k, (4.1)

where ĉx , ĉy , d̂x and d̂y are the first-order numerical fluxes. We define on to represent the
numerical approximation of o at time level n. In the rest of this section, for the numerical
approximations at time level n, we will drop the superscript n for simplicity. Then the first-
order fully-discretized scheme of (4.1) has the following form

rn+1
i,k = Fc

i,k + Fd
i,k + Fs

i,k, (4.2)

where

Fc
i,k = 1

3
ri,k − λx

(
ĉx i+ 1

2 ,k − ĉx i− 1
2 ,k

)
− λy

(
ĉy i,k+ 1

2
− ĉy i,k− 1

2

)
, (4.3)

Fd
i,k = 1

3
ri,k + λx (d̂x i+ 1

2 ,k − d̂x i− 1
2 ,k) + λy

(
d̂y i,k+ 1

2
− d̂y i,k− 1

2

)
, (4.4)

Fs
i .k = 1

3
ri,k + 
t

(
f I i,kcI i,k − B1(φi,k)c f i,k − fP i,kc f i,k

)
, (4.5)

with λx = 
t

x and λy = 
t


y being the ratio of the time and space mesh sizes along x and y
directions, respectively.

Now, we proceed to construct the first-order numerical fluxes. For convection part, we
need to take the special low-order numerical fluxes ĉx i+ 1

2 ,k and ĉy i,k+ 1
2
such that ĉx = û

and ĉy = v̂ when c f = 1, respectively. Following the construction in (3.11), we take

ĉx i+ 1
2 ,k = 1

2

((
f̂ +
i+ 1

2 ,k
+ αx

)
c f i,k +

(
f̂ −
i+ 1

2 ,k
− αx

)
c f i+1,k

)
, (4.6)

ĉy i,k+ 1
2

= 1

2

((
f̂ +
i,k+ 1

2
+ αy

)
c f i,k +

(
f̂ −
i,k+ 1

2
− αy

)
c f i,k+1

)
, (4.7)

where

f̂ +
i+ 1

2 ,k
= f +(ui−r ,k, · · · , ui+s,k), f̂ −

i+ 1
2 ,k

= f −(ui−r+1,k, · · · , ui+s+1,k).
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f̂ +
i,k+ 1

2
and f̂ −

i,k+ 1
2
can be defined analogously. The parameters αx and αy being determined

by the BP technique. By Lemma 3.2, it is easy to verify that ĉx i+ 1
2 ,k and ĉy i,k+ 1

2
are consistent

with û and v̂, respectively.
For diffusion term, the numerical fluxes can be taken as

d̂x i+ 1
2 ,k =

(
D̄11
i+ 1

2 ,k

) c f i+1,k − c f i,k


x
, d̂y i,k+ 1

2
=

(
D̄22
i,k+ 1

2

) c f i,k+1 − c f i,k


y
,

where D̄11
i+ 1

2 ,k
= 1

2

(
(φD11 (u))i,k + (φD11 (u))i+1,k

)
. Likewise for D̄22

i,k+ 1
2
.

Next, we proceed to prove that the first-order scheme is bound-preserving. Firstly, we
demonstrate some properties for porosity φ in the following theorem:

Theorem 4.1 Given 0 ≤ ri,k ≤ φi,k(0 ≤ c f i,k ≤ 1) and φi,k < 1 for all i, k, we have

φi,k ≤ φn+1
i,k < 1, if the time step satisfies


t < B−1, (4.8)

where B is a positive constant defined as

B = αa0kcks
ρs(1 − φ	)(kc + ks)

.

Proof Wedefine B3(x, y) = αa0kcks
ρs (1−φ0(x,y))(kc+ks )

, which is independent of time t and is greater
than 0. Thus, we have B2(φ) = B3(x, y) · (1 − φ) ≤ B · (1 − φ).

It is easy to prove that

φn+1
i,k = φi,k + 
t B2(φi,k)c f i,k

= φi,k + 
t B3(x, y) · (1 − φi,k)c f i,k

≥ φi,k,

where we use the assumption φi,k < 1 and 0 ≤ c f i,k ≤ 1. Moreover, we have

φn+1
i,k = φi,k + 
t B2(φi,k)c f i,k

= φi,k + 
t B3(x, y) · (1 − φi,k)c f i,k

≤ φi,k + 
t B · (1 − φi,k)

= (1 − 
t B)φi,k + 
t B.

Clearly, under the condition (4.8), we can obtain φn+1
i,k < 1. ��

Since φc f on the left hand side in (3.9) has been replaced by a new variable r , we discuss
the bound-preserving property of r instead of c f . In the following lemmas, we will study the
PP property of r in (4.2). We analyze Fc

i,k first.

Lemma 4.2 Assume c f i,k > 0 for all i and k, then Fc
i,k > 0 under the conditions

λx = 
t


x
≤ φi,k

3

(
f̂ +
i+ 1

2 ,k
− f̂ −

i− 1
2 ,k

+ 2αx

) , λy = 
t


y
≤ φi,k

3

(
f̂ +
i,k+ 1

2
− f̂ −

i,k− 1
2

+ 2αy

) ,

(4.9)
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and

αx ≥ max
i,k

{
− f̂ +

i+ 1
2 ,k

, f̂ −
i+ 1

2 ,k
, 0

}
, αy ≥ max

i,k

{
− f̂ +

i,k+ 1
2
, f̂ −

i,k+ 1
2
, 0

}
. (4.10)

Proof It is easy to prove that

Fc
i,k = 1

3
ri,k − λx

(
ĉx i+ 1

2 ,k − ĉx i− 1
2 ,k

)
− λy

(
ĉy i,k+ 1

2
− ĉy i,k− 1

2

)

= 1

6
ri,k − λx

(
ĉx i+ 1

2 ,k − ĉx i− 1
2 ,k

)
+ 1

6
ri,k − λy

(
ĉy i,k+ 1

2
− ĉy i,k− 1

2

)

= Lc
x + Lc

y,

where

Lc
x = 1

6
φi,kc f i,k

− λx

2

((
f̂ +
i+ 1

2 ,k
+ αx

)
c f i,k +

(
f̂ −
i+ 1

2 ,k
− αx

)
c f i+1,k

−
(
f̂ +
i− 1

2 ,k
+ αx

)
c f i−1,k −

(
f̂ −
i− 1

2 ,k
− αx

)
c f i,k

)

=
(
1

6
φi,k − λx

2

(
f̂ +
i+ 1

2 ,k
− f̂ −

i− 1
2 ,k

+ 2αx

))
c f i,k

+ λx

2

(
αx − f̂ −

i+ 1
2 ,k

)
c f i+1,k + λx

2

(
αx + f̂ +

i− 1
2 ,k

)
c f i−1,k,

and

Lc
y = 1

6
φi,kc f i,k

− λy

2

((
f̂ +
i,k+ 1

2
+ αy

)
c f i,k +

(
f̂ −
i,k+ 1

2
− αy

)
c f i,k+1 −

(
f̂ +
i,k− 1

2
+ αy

)
c f i,k−1

−
(
f̂ −
i,k− 1

2
− αy

)
c f i,k

)

=
(
1

6
φi,k − λy

2

(
f̂ +
i,k+ 1

2
− f̂ −

i,k− 1
2

+ 2αy

))
c f i,k

+ λy

2

(
αy − f̂ −

i,k+ 1
2

)
c f i,k+1 + λy

2

(
αy + f̂ +

i,k− 1
2

)
c f i,k−1.

Thus, under the conditions (4.9) and (4.10), all the coefficients are positive. Hence, we have
Lc
x > 0 and Lc

y > 0, which further yields Fc
i,k > 0. ��

Now, we proceed to prove Fd
i,k > 0.

Lemma 4.3 Assume c f i,k > 0 for all i and k, then Fd
i,k > 0 under the conditions

�x = 
t


x2
≤ φi,k

12DM
11

, �y = 
t


y2
≤ φi,k

12DM
22

, (4.11)

where

DM
�� = max

i,k
((φD��(u))i,k), � = 1, 2.
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Proof Based on the same analysis of the convection term, we have

Fd
i,k = 1

3
ri,k + λx (d̂x i+ 1

2 ,k − d̂x i− 1
2 ,k) + λy(d̂y i,k+ 1

2
− d̂y i,k− 1

2
)

= 1

3
φi,kc f i,k + λx (d̂x i+ 1

2 ,k − d̂x i− 1
2 ,k) + λy(d̂y i,k+ 1

2
− d̂y i,k− 1

2
) = Ld

x + Ld
y ,

where

Ld
x = 1

6
φi,kc f i,k + λx (d̂x i+ 1

2 ,k − d̂x i− 1
2 ,k)

= 1

6
φi,kc f i,k + 
t


x

(
(φD11(u))i,k + (φD11(u))i+1,k

2

c f i+1,k − c f i,k


x

)

− 
t


x

(
(φD11(u))i−1,k + (φD11(u))i,k

2

c f i,k − c f i−1,k


x

)

=
(
1

6
φi,k − �x

2
((φD11(u))i−1,k + 2(φD11(u))i,k + (φD11(u))i+1,k)

)
c f i,k

+ �x

2
((φD11(u))i,k + (φD11(u))i+1,k)c f i+1,k

+ �x

2
((φD11(u))i−1,k + (φD11(u))i,k)c f i−1,k,

and

Ld
y = 1

6
φi,kc f i,k + λy(d̂y i,k+ 1

2
− d̂y i,k− 1

2
)

= 1

6
φi,kc f i,k + 
t


y

(
(φD22(u))i,k + (φD22(u))i,k+1

2

c f i,k+1 − c f i,k


y

)

− 
t


y

(
(φD22(u))i,k−1 + (φD22(u))i,k

2

c f i,k − c f i,k−1


y

)

=
(
1

6
φi,k − �y

2
((φD22(u))i,k−1 + 2(φD22(u))i,k + (φD22(u))i,k+1)

)
c f i,k

+ �y

2
((φD22(u))i,k + (φD22(u))i,k+1)c f i,k+1

+ �y

2
((φD22(u))i,k−1 + (φD22(u))i,k)c f i,k−1.

Since (φD(u))i,k ≥ 0 for all i and k, we have Ld
x > 0 and Ld

y > 0 under the condition

(4.11). Thus, we can obtain Fd
i,k > 0. ��

Next, we will prove Fs
i,k > 0.

Lemma 4.4 Assume c f i,k > 0 for all i and k, then Fs
i,k > 0 if the time step satisfies


t ≤ min{ φ	

6B1(φ	)
,

φ	

6 fP M
}, (4.12)

where

fP M = max
i,k

fP i,k . (4.13)

Proof The source term can be split into

Fs
i,k = 1

3
ri,k + 
t( f I i,kcI i,k − B1(φi,k)c f i,k − fP i,kc f i,k)
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= 
t f I i,kcI i,k + 1

6
ri,k − 
t B1(φi,k)c f i,k + 1

6
ri,k − 
t fP i,kc f i,k

= 
t f I i,kcI i,k +
(
1

6
φi,k − 
t B1(φi,k)

)
c f i,k +

(
1

6
φi,k − 
t fP i,k

)
c f i,k

= S1 + S2 + S3.

Clearly, it is easy to verify that S1 = 
t f I i,kcI i,k ≥ 0. Then under the condition (4.12), We
have S2 > 0 and S3 > 0. To sum up, Fs

i,k = S1 + S2 + S3 > 0 under the condition (4.12). ��
Combining the above three lemmas, we can obtain the following theorem.

Theorem 4.5 Consider the FD scheme (3.6)–(3.8), (4.1) and (3.10) with Euler forward time
discretization. Assume c f i,k > 0 for all i and k, then rn+1

i,k > 0, Lc
x + Ld

x + 1
2 F

s
i,k > 0 and

Lc
y + Ld

y + 1
2 F

s
i,k > 0 under the conditions (4.9), (4.10), (4.11) and (4.12).

Proof To obtain rn+1
i,k > 0, we only need Fc

i,k , F
d
i,k , and Fs

i,k in (4.2) to be positive, which

follows directly from Lemmas 4.2–4.4, respectively. Meanwhile, Lc
x + Ld

x + 1
2 F

s
i,k > 0 and

Lc
y + Ld

y + 1
2 F

s
i,k > 0 used in BP technique can be derived from Lemmas 4.2–4.4. ��

From Theorem 4.5, we have rn+1 > 0 over the computational domain. Moreover, we also
need to prove rn+1 < φn+1, and the result is as follows.

Theorem 4.6 Suppose all the conditions in Theorem 4.5 are satisfied. We assume c f i,k > 0

and c2i,k > 0 for all i, k and choose the consistent flux pair
(
û, ĉx

)
and

(
v̂, ĉy

)
. Then

0 ≤ rn+1 ≤ φn+1.

Proof Because of the fluxes û and ĉx as well as v̂ and ĉy are consistent, then we can deduce a
ghost equation for r2 by subtracting (4.1) from (3.6) and introducing ghost variables r2 = φc2,
c2 = 1 − c f and c2I = 1 − cI ,

d

dt
r2i,k = − 1


x

(
ĉx2 i+ 1

2 ,k − ĉx2 i− 1
2 ,k

)
− 1


y

(
ĉy2 i,k+ 1

2
− ĉy2 i,k− 1

2

)

+ 1


x

(
d̂x2 i+ 1

2 ,k − d̂x2 i− 1
2 ,k

)

+ 1


y

(
d̂y2 i,k+ 1

2
− d̂y2 i,k− 1

2

)
+ B1

(
φi,k

)
c f i,k + f I i,kc2I i,k − fP i,kc2i,k,

(4.14)

where ĉx2 and ĉy2 are numerical fluxes for the convection part, d̂x2 and d̂y2 are numerical
fluxes for the diffusion part. Compare the Eq. (4.14) with (3.9), we can find that the equation
for r2 is very similar to that for r . The main difference between two equations is that source
term in (4.14) contains a positive term +B1(φ)c f instead of −B1(φ)c f , which will relax the
restrictions on time steps for PP of the source term. Therefore, following the same analysis
in Theorem 4.5, with Euler forward time discretization we can get rn+1

2 > 0 under the
conditions (4.9), (4.10), (4.11) and (4.12), which further yields rn+1 < φn+1. ��

4.2 Bound-Preserving Technique for High-Order Schemes

In this subsection, we will construct high-order BP technique by taking a linear combination
of first-order and high-order numerical fluxes with the parameterized PP flux limiter. Here,
we also apply Euler forward time discretization.
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We write (3.9) as

rn+1
i,k = ri,k − λx (F̂

x
i+ 1

2 ,k
− F̂ x

i− 1
2 ,k

) − λy(F̂
y
i,k+ 1

2
− F̂ y

i,k− 1
2
) + 
t Si,k, (4.15)

where

F̂ x
i+ 1

2 ,k
= Ĉx i+ 1

2 ,k − D̂x i+ 1
2 ,k, F̂ y

i,k+ 1
2

= Ĉy i,k+ 1
2

− D̂y i,k+ 1
2
,

and

Si,k = f I i,kcI i,k − B1(φi,k)c f i,k − fP i,kc f i,k .

To obtain positive numerical approximation rn+1
i,k , we replace the numerical fluxes F̂ x

i+ 1
2 ,k

and F̂ y
i,k+ 1

2
in (4.15) by the modified fluxes

F̃ x
i+ 1

2 ,k
= θi+ 1

2 ,k

(
F̂ x
i+ 1

2 ,k
− f̂ x

i+ 1
2 ,k

)
+ f̂ x

i+ 1
2 ,k

, F̃ y
i,k+ 1

2
= θi,k+ 1

2

(
F̂ y
i,k+ 1

2
− f̂ y

i,k+ 1
2

)

+ f̂ y
i,k+ 1

2
, (4.16)

respectively. In (4.16), f̂ x
i+ 1

2 ,k
= ĉx i+ 1

2 ,k − d̂x i+ 1
2 ,k and f̂ y

i,k+ 1
2

= ĉy i,k+ 1
2

− d̂y i,k+ 1
2
are

the first-order fluxes discussed in Sect. 4.1. We want to choose the limiting parameters
θi+ 1

2 ,k ∈ [0, 1] and θi,k+ 1
2

∈ [0, 1] such that

ri,k − λx (F̃
x
i+ 1

2 ,k
− F̃ x

i− 1
2 ,k

) − λy(F̃
y
i,k+ 1

2
− F̃ y

i,k− 1
2
) + 
t Si,k ≥ 0,

which can be divided into two parts along the x and y directions, respectively.

1

2
ri,k − λx

(
F̃ x
i+ 1

2 ,k
− F̃ x

i− 1
2 ,k

)
+ 1

2

t Si,k ≥ 0, (4.17)

1

2
ri,k − λy

(
F̃ y
i,k+ 1

2
− F̃ y

i,k− 1
2

)
+ 1

2

t Si,k ≥ 0. (4.18)

We can rewrite these two inequalities as

λxθi− 1
2 ,k

(
F̂ x
i− 1

2 ,k
− f̂ x

i− 1
2 ,k

)
− λxθi+ 1

2 ,k

(
F̂ x
i+ 1

2 ,k
− f̂ x

i+ 1
2 ,k

)
− �

mx
i,k ≥ 0, (4.19)

λyθi,k− 1
2

(
F̂ y
i,k− 1

2
− f̂ y

i,k− 1
2

)
− λyθi,k+ 1

2

(
F̂ y
i,k+ 1

2
− f̂ y

i,k+ 1
2

)
− �

my
i,k ≥ 0, (4.20)

where

�
mx
i,k = −1

2
ri,k + λx

(
f̂ x
i+ 1

2 ,k
− f̂ x

i− 1
2 ,k

)
− 1

2

t( f I i,kcI i,k − B1(φi,k)c f i,k − fP i,kc f i,k) ≤ 0,

(4.21)

�
my
i,k = −1

2
ri,k + λy

(
f̂ y
i,k+ 1

2
− f̂ y

i,k− 1
2

)
− 1

2

t

(
f I i,kcI i,k − B1

(
φi,k

)
c f i,k − fP i,kc f i,k

)
≤ 0.

(4.22)

Theorem 4.5 guarantees that both �
mx
i,k ≤ 0 and �

my
i,k ≤ 0. For brevity, we define Fx

i± 1
2 ,k

=
F̂ x
i± 1

2 ,k
− f̂ x

i± 1
2 ,k

and Fy
i,k± 1

2
= F̂ y

i,k± 1
2
− f̂ y

i,k± 1
2
. We consider the node (i, k) and look for the
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locally defined pairs of numbers

(
�m

− 1
2 ,Ii,k

,�m
+ 1

2 ,Ii,k

)
along the x direction such that (4.19)

is satisfied for

θi− 1
2 ,k ∈

[
0,�m

− 1
2 ,Ii,k

]
, θi+ 1

2 ,k ∈
[
0,�m

+ 1
2 ,Ii,k

]
. (4.23)

Following [30],

1. If Fi− 1
2 ,k ≥ 0 and Fi+ 1

2 ,k ≤ 0, let

(
�m

− 1
2 ,Ii,k

,�m
+ 1

2 ,Ii,k

)
= (1, 1).

2. If Fi− 1
2 ,k ≥ 0 and Fi+ 1

2 ,k > 0, let

(
�m

− 1
2 ,Ii,k

,�m
+ 1

2 ,Ii,k

)
=

(
1,min

(
1,

�
mx
i,k

−λFi+ 1
2 ,k − ε

))
.

3. If Fi− 1
2 ,k < 0 and Fi+ 1

2 ,k ≤ 0, let

(
�m

− 1
2 ,Ii,k

,�m
+ 1

2 ,Ii,k

)
=

(
min

(
1,

�
mx
i,k

λFi− 1
2 ,k − ε

)
, 1

)
.

4. If Fi− 1
2 ,k < 0 and Fi+ 1

2 ,k > 0,

(a) When (4.19) holds with
(
θi− 1

2 ,k, θi+ 1
2 ,k

)
= (1, 1), let

(
�m

− 1
2 ,Ii,k

,�m
+ 1

2 ,Ii,k

)
= (1, 1);

(b) Otherwise, let
(

�m
− 1

2 ,Ii,k
,�m

+ 1
2 ,Ii,k

)
=

(
�
mx
i,k

λFi− 1
2 ,k − λFi+ 1

2 ,k − ε
,

�
mx
i,k

λFi− 1
2 ,k − λFi+ 1

2 ,k − ε

)
.

In the above algorithm, we choose ε to be a very small positive number to avoid the denomi-
nator being 0. For example, we take ε = 10−13. Then the locally defined limiting parameter
along the x direction is given as

θi+ 1
2 ,k = min(�m

+ 1
2 ,Ii,k

,�m
− 1

2 ,Ii+1,k
), i = 0, · · · , Nx . (4.24)

Since theprocess of obtaining the

(
�m

Ii,k ,− 1
2
,�m

Ii,k ,+ 1
2

)
is similar to that of

(
�m

− 1
2 ,Ii,k

,�m
+ 1

2 ,Ii,k

)
.

We also can obtain the limiting parameter along the y direction by the same algorithm

θi,k+ 1
2

= min(�m
Ii,k ,+ 1

2
,�m

Ii,k+1,− 1
2
), k = 0, · · · , Ny . (4.25)

Finally, for rn+1 and rn+1
2 , we can find the parameters θ and θ2 following the algorithm given

above, respectively. Due to consistency requirement of the numerical fluxes in the equations
satisfied by rn+1 and rn+1

2 , we can choose

θ̃i+ 1
2 ,k = min{θi+ 1

2 ,k, θ2i+ 1
2 ,k}, θ̃i,k+ 1

2
= min{θi,k+ 1

2
, θ2i,k+ 1

2
}

as the parameters applied in the scheme (4.16).
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Remark 4.7 In the above algorithm, we take θ̃ to be the smallest one between θ and θ2,
then we can get positive rn+1 and rn+1

2 . Then the condition rn+1 + rn+1
2 = φn+1 yields

0 ≤ rn+1 ≤ φn+1.

4.3 High-Order Time Discretization

In the previous subsection, all the analysis are based on Euler forward time discretization. For
high-order ones, we use the third-order strong-stability-preserving (SSP) time discretization
to solve the ODE system wt = L (w):

w(1) =wn + 
tL
(
w, tn

)
,

w(2) =3

4
wn + 1

4

(
w(1) + 
tL

(
w(1), tn+1

))
,

wn+1 =1

3
wn + 2

3

(
w(2) + 
tL

(
w(2), tn + 
t

2

))
.

Another choice is the third-order SSP multi-step method:

wn+1 = 16

27

(
wn + 3
tL

(
wn, tn

)) + 11

27

(
wn−3 + 12

11

tL

(
wn−3, tn−3)) .

More details can be found in [9,10,24]. Since the third-order SSP time discretization is
a convex combination of Euler forward time discretization, we can apply the flux limiter
designed in Sect. 4.2 to each stage/step to obtain the physically relevant numerical solutions.

5 Numerical Experiments

In this section, some numerical experiments using the the high-order BP FD method have
been carried out. In all experiments, we only consider linear weights in the reconstruction
procedure. Moreover, we use third-order SSP Runge-Kutta discretization in time and fifth-
order finite difference scheme (r = s = 2) in space.

Example 5.1 We first test the accuracy of the high-order bound-preserving FD scheme and
take � = [0, 2π] × [0, 2π ]. We use periodic boundary condition and take u = (1, 1)T . The
initial condition is given as

c f (x, y, 0) = sin4(x + y), φ(x, y, 0) = 0.5 + 0.4sin(x)sin(y),

and the source functions are taken as

f I = 2φt , fP = φt , cI = 1.

Other parameters are chosen as

D = 0, kc = ks = a0 = α

ρs
= 1.

In the numerical simulation, we choose Nx = Ny = M with M = 20, 40, 80, 160, 320 ,
respectively. We take 
t = 0.1h2(h = 
x = 
y) and compute up to T = 0.01. Moreover,
we use spectral method with fourth-order Runge-Kutta time discretization to obtain the refer-
ence solution. The numerical results are given in Table 1, showing the error and convergence
order of c f and φ.
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Fig. 1 Example 5.2: Numerical approximations of concentration of acid c f at t = 0.1

From the table, we can observe fifth-order accuracy of the FD schemewith andwithout the
BP limiter. In addition, negative values of c f appears if the BP technique is not applied, and
the parameterized flux limiters remedied the negative values in a conservativeway. Therefore,
the BP technique does not kill the accuracy when it works.

Example 5.2 We choose the initial conditions with large gradients

c f (x, y, 0) = sign(sin(2x)sin(2y)) + 1

2
,

φ(x, y, 0) = 0.9
sign(sin(x)sin(y)) + 1

2
+ 0.05.

The source functions are chosen as

f I = (1 + π2

2
φ̄t )max{sin(2x)sin(2y), 0}, fP = −min{sin(2x)sin(2y), 0}, cI = 0,

where φ̄t is the average of φt over the whole computational domain. Other parameters are
taken as

μ = κ0 = kc = ks = α

ρs
= 1, a0 = 0.5, D(u) = 0.01.

We take Nx = Ny = 41 over the computational domain � = [0, 2π] × [0, 2π]. Moreover,
we compute up to T = 0.1 and choose 
t = 0.2h2(h = 
x = 
y) to reduce the time
error. Numerical approximations of c f with and without BP limiter are given in Fig. 1. We
can observe that the numerical simulation with BP limiter is between 0 and 1. To better
observe the effect of the BP technique, the distributions of c f with and without BP limiter at
t = 0.1 along diagonal y = 2π −x are shown in Fig. 2. By using BP technique, all numerical
approximations are within the physical bounds.

Example 5.3 We simulate a real wormhole propagation scenario in petroleum engineering
to observe the formation and propagation of a wormhole starting from a singular area. The
parameters are chosen as

D = 0, κ0 = 10−9m2, T = 15s,

α = 100kg/mol, kc = 1m/s, ks = 10m/s,
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Fig. 2 Example 5.2: Distribution of c f at t = 0.1 along diagonal y = 2π − x

Fig. 3 Example 5.3: Concentration of acid with time evolution
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Fig. 4 Example 5.3: Porosity of rock with time evolution

μ = 10−2Pa s, f I = fP = 0,

a0 = 2m−1, ρs = 2500kg/m2.

The computational domain is � = [0, 0.2m] × [0, 0.2m]. Initial concentration of acid and
initial porosity of rock in this domain are set to be c f 0 = 0 and φ0 = 0.2, respectively. In
order to observe the phenomenon of wormhole propagation, we set a singular area at the
middle of the left boundary with size to be 0.01m × 0.01m with high porosity φ = 0.4 and
permeability κ = 10−8 m2. The concentration of influx acid is 1mol/m2 and drained out of it
from the right boundary. The upper and lower boundary conditions are set to be periodic. The
left and right boundary of the domain are Dirichlet conditions with pressure pd = 10000 Pa
and pd = −10000 Pa, respectively.

The contour plots of the concentration of acid and porosity with time evolution are shown
in Figs. 3–4, from which we can observe that the concentration c f and porosity φ are all
within their physical bounds.

Example 5.4 To further observe the formation and propagation of wormholes, we set two
singular areas with high porosity and permeability on the left boundary with size to be
0.01m × 0.01m. One is 0.05m above the bottom with porosity 0.4, and the other is 0.14m
above the bottom with porosity 0.6. The permeability of the two entries is determined by
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Fig. 5 Example 5.4: Concentration of acid with time evolution

(2.6) which is about 10−8 m2 and 10−7 m2, respectively. Other parameters and conditions
are the same as in Example 5.3.

The contour plots of the concentration of acid and porosity with time evolution are shown in
Figs. 5–6. Wormhole propagation is clearly shown from the figures, and the concentration
c f as well as the porosity φ are all within their physical bounds.

6 Concluding Remarks

In this paper, we constructed high-order BP FDmethods for incompressible wormhole prop-
agation on rectangular meshes. We have obtained the physically relevant acid concentration
and porosity. Numerical simulations have shown the accuracy and good performance of the
BP technique.
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Fig. 6 Example 5.4: Porosity of rock with time evolution
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