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The availability of FPGAs in cloud data centers offers rapid, on-demand access to reconfigurable hardware
compute resources that users can adapt to their own needs. However, the low-level access to the FPGA
hardware and associated resources such as the PCle bus, SSD drives, or DRAM modules also opens up threats
of malicious attackers uploading designs that are able to infer information about other users or about the
cloud infrastructure itself. In particular, this work presents a new, fast PCle-contention-based channel that is
able to transmit data between FPGA-accelerated virtual machines by modulating the PCle bus usage. This
channel further works with different operating systems, and achieves bandwidths reaching 20 kbps with
99% accuracy. This is the first cross-FPGA covert channel demonstrated on commercial clouds, and has a
bandwidth which is over 2,000x larger than prior voltage- or temperature-based cross-board attacks. This
paper further demonstrates that the PCle receivers are able to not just receive covert transmissions, but can
also perform fine-grained monitoring of the PClIe bus, including detecting when co-located VMs are initialized,
even prior to their associated FPGAs being used. Moreover, the proposed mechanism can be used to infer the
activities of other users, or even slow down the programming of the co-located FPGAs as well as other data
transfers between the host and the FPGA. Beyond leaking information across different virtual machines, the
ability to monitor the PCIe bandwidth over hours or days can be used to estimate the data center utilization
and map the behavior of the other users. The paper also introduces further novel threats in FPGA-accelerated
instances, including contention due to network traffic, contention due to shared NVMe SSDs, as well as
thermal monitoring to identify FPGA co-location using the DRAM modules attached to the FPGA boards. This
is the first work to demonstrate that it is possible to break the separation of privilege in FPGA-accelerated
cloud environments, and highlights that defenses for public clouds using FPGAs need to consider PCle, SSD,
and DRAM resources as part of the attack surface that should be protected.
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1 INTRODUCTION

Public cloud infrastructures with FPGA-accelerated virtual machine (VM) instances allow for easy,
on-demand access to reconfigurable hardware that users can program with their own designs.
The FPGA-accelerated instances can be used to accelerate machine learning, image and video

“Both authors contributed equally to this research.

Authors’ addresses: Ilias Giechaskiel, Independent Researcher, London, United Kingdom, ilias@giechaskiel.com; Shanquan
Tian, Yale University, New Haven, CT, USA, shanquan.tian@yale.edu; Jakub Szefer, Yale University, New Haven, CT, USA,
jakub.szefer@yale.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

1936-7406/2022/05-ART

https://doi.org/10.1145/3534972

ACM Trans. Reconfig. Technol. Syst.


HTTPS://ORCID.ORG/0000-0002-3700-2742
HTTPS://ORCID.ORG/0000-0002-1469-4045
HTTPS://ORCID.ORG/0000-0001-9721-3640
https://doi.org/10.1145/3534972
https://orcid.org/0000-0002-3700-2742
https://orcid.org/0000-0002-1469-4045
https://orcid.org/0000-0002-1469-4045
https://orcid.org/0000-0001-9721-3640
https://doi.org/10.1145/3534972

2 llias Giechaskiel, Shanquan Tian, and Jakub Szefer

manipulation, or genomic applications, for example [5]. The potential benefits of the instances with
FPGAs have resulted in numerous cloud providers including Amazon Web Services (AWS) [14],
Alibaba [3], Baidu [20], Huawei [37], and Tencent [59], giving public users direct access to FPGAs.
However, providing users low-level access to upload their own hardware designs has resulted in
serious implications for the security of cloud users and the cloud infrastructure itself.

Several recent works have considered the security implications of shared FPGAs in the cloud, and
have demonstrated covert-channel [29] and side-channel [33] attacks in this multi-tenant setting.
However, today’s cloud providers, such as AWS with their F1 instances, only offer “single-tenant”
access to FPGAs. In the single-tenant setting, each FPGA is fully dedicated to the one user who
rents it, while many other users may be in parallel using their separate, dedicated FPGAs which
are within the same server. Once an FPGA is released by a user, it can then be assigned to the next
user who rents it. This can lead to temporal thermal covert channels [61], where heat generated
by one circuit can be later observed by other circuits that are loaded onto the same FPGA. Such
channels are slow (less than 1bps), and are only suitable for covert communication, since they
require the two parties to coordinate and keep being scheduled on the same physical hardware one
after the other. Other means of covert communication in the single-tenant setting do not require
being assigned to the same FPGA chip. For example, multiple FPGA boards in servers share the
same power supply, and prior work has shown the potential for such shared power supplies to leak
information between FPGA boards [30]. However, the resulting covert channel was slow (less than
10 bps) and was only demonstrated in a lab setup.

Another single-tenant security topic that has been previously explored is that of fingerprinting
FPGA instances using Physical Unclonable Functions (PUFs) [60, 62]. Fingerprinting allows users
to partially map the infrastructure and get some insights about the allocation of FPGAs (e.g., how
likely a user is to be re-assigned to the same physical FPGA they used before), but fingerprinting
by itself does not lead to information leaks. A more recent fingerprinting-related work explored
mapping FPGA infrastructures using PCle contention to find which FPGAs are co-located in the
same Non-Uniform Memory Access (NUMA) node within a server [63]. However, no prior work
has successfully launched a cross-VM covert- or side-channel attack in a real cloud FPGA setting.

By contrast, our work shows that shared resources can be used to leak information across
separate virtual machines running on the FPGA-accelerated F1 instances in AWS data centers.
In particular, we use the contention of the PCle bus to not only demonstrate a new, fast covert
channel (reaching up to 20 kbps) that persists across different operating systems, but also to identify
patterns of activity based on the PCle signatures of different Amazon FPGA Images (AFls) used
by other users. This includes detecting when co-located VMs are initialized, or performing an
interference attack that can slow down the programming of other users’ FPGAs, or more generally
degrade the transfer bandwidth between the FPGA and the host VM. Our attacks do not require
special privileges or potentially malicious circuits such as Ring Oscillators (ROs) or Time-to-Digital
Converters (TDCs), and thus cannot easily be detected through static analysis or Design Rule
Checks (DRCs) that cloud providers may perform. We further introduce three new methods of
finding co-located instances that are in the same physical server: (a) through reducing the network
bandwidth via PCle contention, (b) through resource contention of the Non-Volatile Memory
Express (NVMe) SSDs that are accessible from each F1 instance via the PCle bus, and (c) through
the common thermal signatures obtained from the decay rates of each FPGA’s DRAM modules.
Our work therefore shows that single-tenant attacks in real FPGA-accelerated cloud environments
are practical, and demonstrates several ways to infer information about the operations of other
cloud users and their FPGA-accelerated virtual machines or the data center itself.
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1.1 Contributions
In summary, the contributions of this work are:!

(1) Demonstrating the first FPGA-based covert channel between separate virtual machines,
reaching 20 kbps with 99% accuracy.

(2) Characterizing the cross-VM covert-channel accuracy and bandwidth tradeoffs across differ-
ent operating systems.

(3) Inferring information about the behavior of other users through the PCle signatures of their
Amazon FPGA Images (AFIs).

(4) Detecting when co-located VM instances with FPGAs are initialized.

(5) Performing long-term monitoring of data center activity through PCle contention.

(6) Slowing down communication between the host and the FPGA, resulting in attacks that
degrade the FPGA programming times and other application data transfers.

(7) Identifying network- and SSD-based interference mechanisms and covert channels between
separate F1 users.

(8) Exploiting the thermal signatures of DRAM modules to identify F1 instances which are on
separate NUMA nodes, but share the same server.

1.2 Responsible Disclosure

Our findings and a copy of this paper have been shared with the AWS security team.

1.3 Paper Organization

The remainder of the paper is organized as follows. Section 2 provides the background on today’s
deployments of FPGAs in public cloud data centers and summarizes related work. Section 3 discusses
typical FPGA-accelerated cloud servers and PCle contention that can occur among the FPGAs,
while Section 4 evaluates our fast, PCle-based, cross-VM channel. Using the ideas from the covert
channel, Section 5 investigates how to infer information about other VMs through their PCle traffic
patterns, including detecting the initialization of co-located VMs, long-term PCle monitoring of
data center activity, and slowing down PCle traffic on adjacent instances. Section 6 then presents
alternative sources of information leakage due to network bandwidth contention, shared SSDs, and
thermal signatures of DRAM modules. The paper concludes in Section 7.

2 BACKGROUND & RELATED WORK

This section provides a brief background on FPGAs in public cloud computing data centers, with a
focus on the F1 instances from Amazon Web Services (AWS) [14] that are evaluated in this work. It
also summarizes related work in the area of FPGA cloud security.

2.1 AWS F1 Instance Architecture

AWS has offered FPGA-accelerated virtual machine instances to users since late 2016 [4]. These
so-called F1 instances are available in three sizes: f1.2xlarge, f1.4xlarge, and f1.16xlarge,
where the instance name represents twice the number of FPGAs it contains (so f1.2x1large has
1 FPGA, while f1.4xlarge has 2, and f1.16x1large has 8 FPGAs). Each instance is allocated 8
virtual CPUs (vCPUs), 122 GiB of DRAM, and 470 GB of NVMe SSD storage per FPGA. For example,

IThis article extends the work accepted at HOST 2021 [32] by (a) measuring and identifying differences in the covert-channel
bandwidth across different operating systems, (b) detecting when co-located VM instances with FPGAs are initialized, (c)
showing that malicious adversaries can use PCle contention for slowing down the communication between the host and
the FPGA, leading to slower FPGA programming times and applications, and (d) introducing a new method of instance
co-location based on network bandwidth contention. Our new findings also allow us to update the deduced PCle topology
of F1 server architectures used by AWS.
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Fig. 1. Prior work suggested that AWS servers contain 8 FPGAs divided between two NUMA nodes [63].

f1.4xlarge instances have 16 vCPUS, 244 GiB of DRAM, and 940 GB of SSD space [14], since they
contain 2 FPGAs.

Each FPGA board is attached to the server over a x16 PCle Gen 3 bus. In addition, each FPGA
board contains four DDR4 DRAM chips, totaling 64 GiB of memory per FPGA board [14]. These
memories are separate from the server’s DRAM and are directly accessible by each FPGA. The F1
instances use Virtex UltraScale+ XCVU9P chips [14], which contain over 1.1 million lookup tables
(LUTs), 2.3 million flip-flops (FFs), and 6.8 thousand Digital Signal Processing (DSP) blocks [69].

As has recently been shown, each server contains 8 FPGA boards, which are evenly split between
two Non-Uniform Memory Access (NUMA) nodes [63]. The AWS server architecture deduced by
Tian et al. [63] is shown in Figure 1, and is consistent with publicly available information on AWS
instances [12, 14]. AWS servers containing FPGAs have two Intel Xeon E5-2686 v4 (Broadwell)
processors, connected through an Intel QuickPath Interconnect (QPI) link. Each processor forms
its own NUMA node with its associated DRAM and four FPGAs attached as PCle devices. Due to
this architecture, an f1.2xlarge instance may be on the same NUMA node as up to three other
f1.2xlarge instances, or on the same NUMA node as one other f1.2xlarge instance and one
f1.4xlarge instance (which uses 2 FPGAs). Conversely, an f1.4xlarge instance may share the
same NUMA node with up to two f1.2xlarge instances, or one f1.4xlarge instance. Finally, as
f1.16xlarge instances use up all 8 FPGAs in the server, they do not share any resources with
other instances, since both NUMA nodes of the server are fully occupied. In this work, we are able
to produce a more fine-grained topology of the servers and their PCle topologies due to additional
sources of contention via NVMe SSDs and Network Interface Controller (NIC) cards.

2.2 Programming AWS F1 Instances

Users utilizing F1 instances do not retain entirely unrestricted control to the underlying hardware,
but instead need to adapt their hardware designs to fit within a predefined architecture. In particular,
user designs are defined as “Custom Logic (CL)” modules that interact with external interfaces
through the cloud-provided “Shell”, which hides physical aspects such as clocking logic and I/O
pinouts (including for PCle and DRAM) [29, 62]. This restrictive Shell interface further prevents
users from accessing identifier resources, such as eFUSE and Device DNA primitives, which could
be used to distinguish between different FPGA boards [29, 62]. Finally, users cannot directly
upload bitstreams to the FPGAs. Instead, they generate a Design Checkpoint (DCP) file using
Xilinx’s tools and then provide it to Amazon to create the final bitstream (Amazon FPGA Image,
or AFI), after it has passed a number of Design Rule Checks (DRCs). The checks, for example,
include prohibiting combinatorial loops such as Ring Oscillators (ROs) as a way of protecting the
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underlying hardware [28, 29], though alternative designs bypassing these restrictions have been
proposed [29, 57].

2.3 Related Work

Since the introduction of FPGA-accelerated cloud computing about five years ago, a number
of researchers have been exploring the security aspects of FPGAs in the cloud. A key feature
differentiating such research from prior work on FPGA security outside of cloud environments is
the threat model, which assumes remote attackers without physical access to or modifications of
the FPGA boards. This section summarizes selected work that is applicable to the cloud setting,
leaving traditional FPGA security topics to existing books [38] or surveys [26, 39, 50, 73].

2.3.1 PCle-Based Threats. The Peripheral Component Interconnect Express (PCle) standard pro-
vides a high-bandwidth, point-to-point, full-duplex interface for connecting peripherals within
servers. Existing work has shown that PCle switches can cause bottlenecks in multi-GPU sys-
tems [21, 25, 27, 55, 56], leading to severe stalls due to their scheduling policy [44]. In terms of PCle
contention in FPGA-accelerated cloud environments, prior work has shown that different driver
implementations result in different overheads [66], and that changes in PCle bandwidth can be used
to co-locate different instances on the same server [63]. In parallel to this work, PCle contention
was used for side-channel attacks which can recover the workload of GPUs and NICs via changes
in the delay of PCle responses [58]. Our work is similar, but presents the first successful cross-VM
attacks using PCle contention on a real public cloud. Moreover, by going beyond just PCle, our
work is able to deduce cross-NUMA-node co-location using the DRAM thermal fingerprinting
approach.

2.3.2  Power-Based Threats. Computations that cause data-dependent power consumption can
result in information leaks that can be detected even by adversaries without physical access to the
device under attack. For example, it is known that a shared power supply in a server can be used
to leak information between different FPGAs, where one FPGA modulates power consumption
and the other measures the resulting voltage fluctuations [30]. However, such work results in low
transmission rates (below 10 bps), and has only been demonstrated in a lab environment.

Other work has shown that it is possible to develop stressor circuits which modulate the overall
power consumption of an FPGA and generate a lot of heat, for instance by using ring oscillators or
transient short circuits [1, 2, 35]. These large power draws can be used for fault attacks [40], or as
Denial-of-Service (DoS) attacks [42] which simply make the hardware unavailable for an extended
period of time. Such attacks could also prematurely age FPGAs, due to the potentially excessive
heat for an extended period of time [19]. Our work has instead focused on information leaks and
non-destructive reverse-engineering of the cloud infrastructure.

2.3.3 Thermal-Based Threats. It is now well-known that it is possible to implement temperature
sensors suitable for thermal monitoring on FPGAs using ring oscillators [23], whose frequency
drifts in response to temperature variations [45, 46, 65, 72]. A receiver FPGA could thus use a ring
oscillator to observe the ambient temperature of a data center. For example, existing work [61]
has explored a new type of temporal thermal attack: heat generated by one circuit can be later
observed by other circuits that are loaded onto the same FPGA. This type of attack is able to leak
information between different users of an FPGA who are assigned to the same FPGA over time.
However, the bandwidth of temporal attacks is low (less than 1 bps), while our covert channels can
reach a bandwidth of up to 20 kbps.

2.3.4 DRAM-Based Threats. Recent work has shown that direct control of the DRAM connected
to the FPGA boards can be used to fingerprint them [62]. This can be combined with existing
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Fig. 2. The newly-deduced PCle configuration for F1 servers based on the experiments in this work: each
CPU has two PCle links, each of which provides connectivity to two FPGAs, an NVMe SSD, and a Network
Interface Card (NIC) through a PCle switch.

work [63] to build a map of the cloud data centers where FPGAs are used. Such fingerprinting
does not by itself, however, help with cross-VM covert channels, as it does not provide co-location
information. By contrast, our PCle, NIC, SSD, and DRAM approaches are able to co-locate instances
in the same server and enable cross-VM covert channels and information leaks.

2.3.5 Multi-Tenant Security. This work has focused on the single-tenant setting, where each user
gets full access to the FPGA, and thus reflects the current environment offered by cloud providers.
However, there is also a large body of security research in the multi-tenant context, where a single
FPGA is shared by multiple, logically (and potentially physically) isolated users. For example, several
researchers have shown how to recover information about the structure [64, 74] or inputs [51]
of machine learning models or cause timing faults to reduce their accuracy [24, 54]. Other work
in this area has shown that crosstalk due to routing wires [28] and logic elements [31] inside the
FPGA chips can be used to leak static signals, while voltage drops due to dynamic signals can lead
to covert-channel [29], side-channel [33, 36], and fault [52] attacks. Several works have also tried
to address such issues to enable multi-tenant applications, proposing static checks [41, 43], voltage
monitors [34, 48, 53], or a combination of the two [42]. Our work on PCle, SSD, and DRAM threats
is orthogonal to such work, but is directly applicable to current cloud FPGA deployments.

3 PCIE CONTENTION IN CLOUD FPGAS

The user’s Custom Logic running on the FPGA instances can use the Shell to communicate with
the server through the PCle bus. Users cannot directly control the PCle transactions, but instead
perform simple reads and writes to predefined address ranges through the Shell. These memory
accesses get translated into PCle commands and PCle data transfers between the server and the
FPGA. Users may also set up Direct Memory Access (DMA) transfers between the FPGA and the
server. By designing hardware modules with low logic overhead, users can generate transfers fast
enough to saturate the PCle bandwidth. In fact, because of the shared PCle bus within each Non-
Uniform Memory Access (NUMA) node, these transfers can create interference and bus contention
that affects the PCle bandwidth of other users. The resulting performance degradation can be used
for detecting co-location [63], or, as we show in this work, for fast covert- and side-channel attacks,
breaking the isolation between otherwise logically and physically separate VM instances.

In our covert-channel analysis (Section 4), we show that the communication bandwidth is not
identical for all pairs of FPGAs in a NUMA node. In particular, this suggests that the 4 PCle devices
are not directly connected to each CPU, but instead likely go through two separate switches, forming
the hierarchy shown in Figure 2, improving the deduced model of prior work [63]. Although not
publicly confirmed by AWS, this topology is similar to the one described for P4d instances, which
contain 8 GPUs [7]. As a result, even though all 4 FPGAs in a NUMA node contend with each
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Fig. 3. Example cross-VM covert communication: The transmitter (Alice) sends the ASCII byte ‘H’, represented
as 01001000 in binary, to the receiver (Bob) in 8 intervals by stressing her PCle bandwidth to transmit a 1
and remaining idle to transmit a 0. If Bob’s FPGA bandwidth B drops below a threshold T, he detects a 1,
otherwise a 0 is detected. To ensure no residual effects after each transmission, the time difference § between
successive measurements is slightly larger than the transmission duration d.

other, the covert-channel bandwidth is highest amongst those sharing a PCle switch, due to the
bottleneck imposed by the shared link (Section 4).

We also expand on the model to show that the PCle switches provide connectivity to an NVMe
SSD drive and a Network Interface Card (NIC), thereby expanding the attack surface by identifying
additional sources of PCle contention. Finally, as we show in Section 4.5, how effectively these
PCle links can be saturated is also dependent on the operating system/kernel configuration instead
of just the user-level software and underlying hardware architecture.

4 CROSS-VM COVERT CHANNELS

In this section, we describe our implementation for the first cross-FPGA covert-channel on public
clouds (Section 4.1), and discuss our experimental setup (Section 4.2). We then analyze bandwidth
vs. accuracy trade-offs (Section 4.3), before investigating the impact of receiver and transmitter
transfer sizes on the covert-channel accuracy for a given covert-channel bandwidth (Section 4.4).
We finish the section by discussing differences in the covert-channel bandwidth between VMs
using different operating systems (Section 4.5). Side channels and information leaks based on PCle
contention from other VMs are discussed in Section 5.

4.1 Covert-Channel Implementation

Our covert channel is based on saturating the PCle link between the FPGA and the server, so, at
their core, both the transmitter and the receiver consist of (a) an FPGA image that interfaces with
the host over PCle with minimal latency in accepting write requests or responding to read requests,
and (b) software that attaches to the FPGA and repeatedly writes to (or reads from) the mapped
Base Address Register (BAR). These requests are translated to PCle transactions, transmitted over
the data and physical layers, and then relayed to the Custom Logic (CL) hardware through the
shell (SH) logic as AXI reads or writes. The transmitter stresses its PCle link to transmit a 1, but
remains idle to transmit a bit 0, while the receiver keeps measuring its own bandwidth during
the transmission period (the receiver is thus identical to a transmitter that sends a 1 during every
measurement period). The receiver then classifies the received bit as a 1 if the bandwidth B has
dropped below a threshold T, and as 0 otherwise.

The two communicating parties need to have agreed upon some minimal information prior to
the transmissions: the specific data center to use (region and availability zone, e.g., us-east-1e),
the time t to start communications, and the initial measurement period, expressed as the time
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Fig. 4. The process to find a pair of co-located f1.2x1arge instances using PCle contention uses the covert-
channel mechanism to check for pre-agreed handshake messages: Alice transmits the handshake message
with her first FPGA, and waits to see if Bob acknowledges the handshake message. In parallel, Bob measures
the bandwidths of all his FPGAs. In this example, Bob detects the contention in his seventh FPGA during the
fourth handshake attempt. Note that Alice and Bob can rent any number of FPGAs for finding co-location,
with five and seven shown in this figure as an example.

difference between successive transmissions d. All other aspects of the communication can be
handled within the channel itself, including detecting that the two parties are on the same NUMA
node, or increasing the bandwidth by decreasing §. To ensure that the PCle link returns to idle
between successive measurements, transmissions stop before the end of the measurement interval,
i.e., the transmission duration d satisfies d < §. Note that synchronization is implicit due to the
receiver and transmitter having access to a shared wall clock time, e.g., via the Network Time
Protocol (NTP). Figure 3 provides a high-level overview of our covert-channel mechanism.

Before they can communicate, the two parties (Alice and Bob in the example of Figure 3) first
need to ensure that they are co-located on the same NUMA node within the server. To do so,
they can launch multiple instances at or near an agreed upon time and attempt to detect whether
any of their instances are co-located by sending handshake messages and expecting a handshake
response, using the same setup information as for the covert channel itself (i.e., the time ¢’ to start
the communication, the measurement duration 8, and location information such as the data center
region and availability zone). They additionally need to have agreed on the handshake message
H, which determines the per-handshake measurement duration A. This co-location process is
summarized in Figure 4. Note that as prior work has shown [63], by launching multiple instances,
the probability for co-location is high, but the two parties would have to agree on a “timeout”
approach. For instance, they could have a maximum number of handshake attempts M, after which
they re-launch instances at time ¢’ + M - A, or launch additional instances for every unsuccessful
handshake attempt (e.g., after attempt 1, Alice and Bob both launch a new instance, while Alice
terminates instance 1).

In our experiments, we typically launch 5 instances per user at the same time in the same region
and availability zone, have a 128-bit handshake message H, and consider the co-location attempt
successful if the message was recovered with > 80% accuracy. Other fixed parameters, such as the
measurement duration or transfer sizes, were informed by early manual experiments and the work
in [63] to ensure we can reliably detect co-location. Note that these parameters can be different
from those used after the co-location has been established. For instance, co-location detection can
use low-bandwidth transfers (e.g., 200 bps) that are reliable across all NUMA node setups, and can
be increased as part of the setup process, once co-location has been established.
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Algorithm 1 Cross-VM transmissions on AWS F1 instances

1: procedure INIT(nb)

2 local < malloc(nb) > Allocate a local buffer with nb bytes
3 remote < attach(BAR4, BURST_CAPABLE) > Attach to the FPGA and get the base pointer
4 return local, remote

5: procedure STRESS(local, remote, d, nb)

6

7

8

9

count < 0 > Count of repetitions
start « cur_time() > Get the current time
while cur_time() < start + d do
memcpy(remote, local, nb) > Copy nb bytes from the local buffer to the FPGA
10: count + + > Increment the number of successful repetitions
11: return count
12: procedure MEASUREBANDWIDTH(start, msg, d, 8, nb)
13: local, remote « init(nb) > Get the local and remote buffers
14: counts[len(msg)] = {0} > Initialize the repetition counts
15: for i = 0;i < len(msg);i =i+ 1do
16: while cur_time() < start + i+ do > Wait until the agreed start time
17: sleep()
18: if msg[i] then > Only stress for 1 bits and record counts
19: counts[i] = stress(local, remote, d, nb)
20: return counts

During the co-location process, the two communicating parties can also establish what the
threshold T should be, and whether the communication bandwidth should be increased. As shown
in [63], the PCle bandwidth of an instance drops from over 3,000 MBps to under 1,000 MBps when
there is an external PCle stressor. As a result, this threshold T could be simply hardcoded (at,
say, 2,000 MBps), or be adaptive, as the mid-point between the minimum b, and maximum by
bandwidths recorded during a successful handshake. The latter is the approach we use in our work:
if the two instances are not co-located, b,, = by, and the decoded bits will be random, and hence
will not match the expected handshake message H. If the two instances are co-located, by, > b,
(assuming H contains at least one 0 and at least one 1), so any bit 1 will correspond to a bandwidth
b1 = by, < (by, + by)/2 = T and any bit 0 will result in bandwidth by = by > (b, + by)/2 = T.

4.2 Experimental Setup

For the majority of our experiments, we use VMs with AWS FPGA Developer Amazon Machine
Image (AMI) [17] version 1.8.1, which runs CentOS 7.7.1908, and develop our code with the Hardware
and Software Development Kit (HDK/SDK) version 1.4.15 [8]. We vary the operating systems used
for the transmitters and receivers and significantly improve the covert-channel bandwidth in
Section 4.5. For our FPGA bitstream, we use the unmodified CL_DRAM_DMA image provided by AWS
(agfi-0d132ece5c8010bf7) [11] for both the transmitter and the receiver designs. This design
maps the 128 GiB PCle Application Physical Function (AppPF) BAR4 (a 64-bit prefetchable Base
Address Register (BAR) [10]) to the 64 GiB of FPGA DRAM (twice). It is not necessary to use the
FPGA DRAMs themselves: just responding to the PCle requests to not hang the interfaces, like in the
CL_HELLO_WORLD example [13], is sufficient. Our custom-written software maps the FPGA DRAM
modules via the BAR4 register, and uses the BURST_CAPABLE flag to support write-combining for
higher performance. Data transfers are implemented using memcpy, getting similar performance to
the AWS benchmarks [6]. Algorithm 1 summarizes our software routine in pseudocode.
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Fig. 5. Bandwidth and accuracy for covert-channel transmissions between any pair of FPGAs, among the four
FPGAs in the same NUMA node. Each FPGA pair is color-coded, with transmitters indicated through different
markers, and receivers through different line styles. For any given pair, the bandwidth is approximately
the same in each direction, i.e., the bandwidth from FPGA X to FPGA' Y is approximately the same as the
bandwidth from FPGA Y to FPGA X. Communication is possible between any two FPGAs in the NUMA node,
but the bandwidths for different pairs diverge.

Unless otherwise noted, we primarily perform experiments with “spot” instances in the us-east-1
(North Virginia) region in availability zone d for cost reasons, though prior work has shown that
PCle contention is present with both spot and on-demand instances, in all regions and different
availability zones where F1 instances are currently supported, namely ap-southeast-2 (Sydney),
eu-west-1 (Ireland), us-east-1 (North Virginia), and us-west-2 (Oregon) [63]. Although the
results presented are for instances launched by a single user, it should also be noted that we have
successfully created a cross-VM covert channel between instances launched by two different users.

4.3 Bandwidth vs. Accuracy Trade-Offs

Using our co-location mechanism, we are able to easily find 4 distinct f1.2x1arge instances that are
all in the same NUMA node, and then measure the covert-channel accuracy for different bandwidths,
i.e., different measurement parameters d and §. Specifically, we test (d, §) from (0.1 ms, 0.2 ms) to
(9 ms, 10 ms), corresponding to transmission rates between 5 kbps and 100 bps.? For these exper-
iments, the receiver keeps transferring 2 kB chunks of data from the host, while the transmitter
repeatedly sends 64 kB of data in each transmission period (i.e., until the end of the interval d).
These parameters are explored separately in Section 4.4 below.

The results of our experiments, shown in Figure 5, indicate that we can create a fast covert
channel between any two FPGAs in either direction: at 200 bps and below, the accuracy of the covert
channel is 100%, with the accuracy at 250 bps dropping to 99% for just one pair. At 500 bps, three of
the six possible pairs can communicate at 100% accuracy, while one pair can communicate with 97%
accuracy at 2 kbps (and sharply falls to 70% accuracy even at 2.5 kbps—though in Section 4.5 we
show that bandwidths of 20 kbps at 99% accuracy are possible). It should be noted that, as expected,
the bandwidth within any given pair is symmetric, i.e., it remains the same when the roles of the
transmitter and the receiver are reversed. As the VMs occupy a full NUMA node, there should not

2Section 4.5 shows that different setups can result in even higher bandwidths exceeding 20 kbps.
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Fig. 7. Covert-channel accuracy for different receiver transfer sizes. Chunks between 64 B and 4kB are

suitable for 100% accuracies, but sizes outside this range result in a drop in accuracy for at least one pair of
FPGAs in the NUMA node.

be any impact from other users’ traffic. The variable bandwidth between different pairs is therefore
likely due to the PCle topology.

4.4 Transfer Sizes

In this set of experiments, we fix d = 4ms, § = 5ms (i.e., a covert-channel bandwidth of 200 bps),
and vary the transmitter and receiver transfer sizes. Figure 6 first shows the per-pair channel
accuracy for different transmitter sizes. The results show that at 4 kB and above, the covert-channel
accuracy is 100%, while it becomes much lower at smaller transfer sizes. This is because sending
smaller chunks of data over PCle results in lower bandwidth due to the associated PCle overhead
of each transaction. For example, in one 4 ms transmission, the transmitter completes 140,301
transfers of 1B each, corresponding to a PCle bandwidth of only 1B x 140,301/4 ms = 33.5 MBps.
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Fig. 8. Bandwidth and accuracy for covert-channel transmissions between any pair of four co-located
instances, where three instances are running Amazon Linux 2 (AL2) and the last one is running CentOS.
Each FPGA pair is color-coded, with transmitters indicated through different markers, and receivers through
different line styles.

However, in the same time, a transmitter can complete 1,890 transfers of 4 kB, for a PCle bandwidth
of 4kB x 1,890/4ms = 1.8 GBps.?

The results of the corresponding experiments for receiver transfer sizes are shown in Figure 7.
Similar to the transmitter experiments, very small transfer sizes are unsuitable for the covert
channel due to the low resulting bandwidth. However, unlike in the transmitter case, large receiver
transfer sizes are also problematic, as the number of transfers completed within each measurement
interval is too small to be able to distinguish between external transmissions and the inherent
measurement noise.

4.5 Operating Systems

Starting with FPGA AMI version 1.10.0, Amazon has provided AMIs based on Amazon Linux 2
(AL2) [18] alongside AMIs based on CentOS [17] (both using the Xilinx-provided XOCL PCle driver).
AL2 uses a Linux kernel that has been tuned for the AWS infrastructure [15], and may therefore
impact the performance of the covert channel. Since the attacker does not have control over the
victim’s VM, it is necessary to explore the effect of the operating system on our communication
channel, and thus experiment with both types of operating systems as receivers and transmitters.
We use the co-location methodology of Section 4.1 to find different instances that are in the same
NUMA node, and report the accuracy of our cross-VM covert channel from bandwidths as low
as 0.1kbps to as high as 66.6 kbps. As described in Section 3 and shown in Figure 2, each NUMA
node consists of 4 distinct f1.2x1large instances, and each one can run either AL2 or CentOS. As
Section 4.3 identified, the bandwidth between different FPGA pairs will depend on where they are
in the PCle topology, so to get an accurate estimate of the maximum cross-instance covert-channel
bandwidth for different setups, we run experiments on three different configurations of full NUMA
nodes. The first experiment contains one instance running CentOS and three instances running
AL2 (Figure 8), the second contains two instances with CentOS and two with AL2 (Figure 9), while

3 A maximum transfer size of 1 MB was chosen to ensure that multiple transfers were possible within each transfer interval
without ever interfering with the next measurement interval.
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Fig. 9. Bandwidth and accuracy for covert-channel transmissions between any pair of four co-located
instances, where two instances are running Amazon Linux 2 (AL2) and the other two are running CentOS.
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Fig. 10. Bandwidth and accuracy for covert-channel transmissions between any pair of four co-located
instances, where only one instance is running Amazon Linux 2 (AL2) and the remaining are running CentOS.

the last setup has three CentOS VMs and one AL2 one (Figure 10). For each experiment, we collect
the covert-channel bandwidths for all pairs of instances, and in both directions of communication,
resulting in 12 different bandwidth vs. accuracy sets of measurements.

Figure 8 shows the covert channel channel bandwidths for all FPGA pairs, where one instance
is running CentOS and the remaining three are running AL2. For any pair of AL2 instances, the
covert-channel accuracy at 20 kbps is over 90% (in fact, reaching 99%), and for a subset of those pairs
remains above 80% at even 40 kbps. However, when a CentOS instance is involved, the bandwidth
drops to 0.5 kbps, for either direction of communication.

Figures 9 and 10 show that, depending on where the instances are on the PCle topology, the
bandwidth can vary. Indeed, Figure 9 shows that the bandwidth for an AL2 transmitter and a
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Table 1. Cross-VM covert channel bandwidth for different receiver and transmitter operating systems.
* A bandwidth of 5.9 kbps at 95% accuracy could be sustained across repeated individual experiments outside
of a full NUMA node.

Transmitter Receiver Bandwidth Accuracy
CentOS CentOS 2.0kbps 97%
CentOS Amazon Linux 2 *0.3 kbps 100%
Amazon Linux 2 CentOS 2.5 kbps 94%
Amazon Linux 2 Amazon Linux 2 20.0 kbps 99%

Table 2. Cross-FPGA covert channel bandwidth achieved by different works. The PCle contention approach
of our work achieves bandwidths that are several orders of magnitude faster than prior research, and are
performed on a commercial public cloud. * Achieved only in a lab setup.

Cloud Method Reference  Bandwidth Accuracy
TACC Thermal Attack [61] < 0.1bps 100%
— Voltage Stressing [30] 6.1bps 99%
AWS  PCle Contention (CentOS) This work  2,000.0 bps 97%
AWS  PCle Contention (AL2) This work  20,000.0 bps 99%

CentOS receiver can reach 2.5 kbps at 98% accuracy, but CentOS transmitters and AL2 receivers
generally have bandwidths below 0.5 kbps, though in repeated individual experiments (outside of a
full NUMA node), we have been able to get a channel at 5.9 kbps at 95% accuracy. The CentOS-
CentOS results of Figure 10 are consistent with those of Section 4.3, with bandwidths between
250 bps and 1.4 kbps for all but the fastest pair of instances. Table 1 summarizes these results, while
Table 2 compares the achieved bandwidths to prior work in cross-FPGA communications.

5 CROSS-VM SIDE-CHANNEL LEAKS

In this section, we explore what kinds of information malicious adversaries can infer about com-
putations performed by un-cooperating victim users that are co-located in the same NUMA node
in different, logically isolated VMs. We first show that the PCle activity of an off-the-shelf video-
processing AMI from the AWS Marketplace leaks information about the resolution and bitrate
properties of the video being processed, allowing adversaries to infer the activity of different users
(Section 5.1). We then show that it is possible to detect when a VM in the same NUMA node is
being initialized (Section 5.2), and more generally monitor the PCle bus over a long period of time
(Section 5.3). We finally show that PCle contention can be used for interference attacks, including
slowing down the programming of the FPGA itself, or of other data transfer communications
between the FPGA and the host VM (Section 5.4). The attacks of this and the next section are
summarized in Figure 11.

5.1 Inferring User Activity

To help users in accelerating various types of computations on F1 FPGA instances, the AWS
Marketplace lists numerous virtual machine images created and sold by independent software
vendors [16]. Users can purchase instances with pre-loaded software and hardware FPGA designs
for data analytics, machine learning, and other applications, and deploy them directly on the AWS
Elastic Cloud Compute (EC2) platform. AWS Marketplace products are usually delivered as Amazon
Machine Images (AMIs), each of which provides the virtual machine setup, system environment
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Fig. 11. Summary of the (a) passive monitoring side-channel and (b) active interface contention-based attacks
presented in Sections 5 and 6. Bandwidths are not drawn to scale.

settings, and all the required programs for the application that is being sold. AWS Marketplace
instances which use FPGAs naturally use PCle to communicate between the software and the
hardware of the purchased instance. In this section, we first introduce an AMI we purchased to
test as the victim software and hardware design (Section 5.1.1), and then discuss the recovery of
potentially private information from the victim AMTI’s activity by running a co-located receiver
VM that monitors the victim’s PCle activity (Section 5.1.2).

5.1.1 Experimental Setup. Among the different hardware accelerator solutions for cloud FPGAs,
in this section, we target video processing using the DeepField AMI, which leverages FPGAs to
accelerate the Video Super-Resolution (VSR) algorithm to convert low-resolution videos to high-
resolution ones [22]. The DeepField AMI is based on Amazon Linux 2, and sets up the system
environment to make use of the proprietary, pre-trained neural network models [22]. To use the
AM]I, the virtual machine software first loads the Amazon FPGA Image (AFI) onto the associated
FPGA using the load_afi command to set up the FPGA board on the F1 instance. The ffmpeg
program, which is customized for the FPGA platform, is called to convert an input video of no
more than 1280 X 720 in resolution to a high-resolution video with a maximum output resolution
of 3840 X 2160. As discussed above, the DeepField AMI handles all of the software and provides the
FPGA image for the acceleration of the VSR algorithm. Users do not know how the FPGA logic
operates, since it is provided as a pre-compiled AFI. However, PCle contention allows us to reveal
potentially private information from such example AMIs by running an attacker VM to measure
the PCle activity of the victim. In particular, this type of high-performance computing for image
and video processing inevitably requires massive data transfers between the FPGA and the host
processor through PCle. These AMI behaviors are reflected in the PCle bandwidth trace.

For our experiments, we first launch a group of f1.2x1arge instances running the DeepField AMI
to find a co-located F1 instance pair using our PCle contention approach of Section 4. After verifying
that the attacker and the victim are co-located, we set up the attacker VM in monitoring mode,
which continuously measures the PCle bandwidth, similar to the receiver in the covert-channel
setup. The monitoring program has been configured to measure bandwidth with a measurement
duration of § = 20 ms and a data transfer duration of d = 18 ms.
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Fig. 12. PCle bandwidth traces collected by the attacker while the victim runs the DeepField AMI to perform
VSR conversions with input videos of different resolutions and frame rates. Within each sub-figure, the red
lines label the start and end of the VSR conversion on the FPGA.

The victim VM then runs the unmodified DeepField AMI to convert different lower-resolution
videos to higher-resolution ones using the ffmpeg program. In our experiments, each run of the
DeepField AMI takes approximately 5 min, and each bandwidth trace in the attacker VM lasts for
10 min, thus covering both the conversion process, as well as periods of inactivity. As discussed in
Section 5.1.2, by comparing the bandwidth traces among the different experiments, we observe
that we can (a) infer information about whether the victim is actively in the process of converting
a video, and (b) deduce certain parameters of the videos.

5.1.2  Leaking Private Information from Marketplace AMIs. We now show that private information
regarding the activities of co-located instances can be revealed through the PCle bandwidth traces.
Figure 12 shows the PCle bandwidth measured by the attacker while the victim is running the
DeepField AMI on an f1.2x1arge instance. We test different input video files, with three different
resolutions (360p, 480p, and 720p) and two frame rates of 15 and 30 frames-per-second (FPS). All
videos have a 16:9 aspect ratio, and, except for the resolutions and frame rates, the contents of the
input video files are otherwise identical. The output video produced for each conversion always has
a resolution of 3840 X 2160, but maintains the same frame rate as the original input. The beginning
and ending of the VSR conversion on the FPGA can be clearly seen in Figure 12, where vertical red
lines delineating the start and end of the process have been added for clarity. We observe that the
PClIe bandwidth drops during the conversion, and that runtime is reduced as the input resolution
or the input frame rate decrease. For example, the runtime for a 720p, 30 FPS video (Figure 12f) is
approximately twice as long as for a 15 FPS one (Figure 12c).
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Fig. 13. Detecting the VM initialization process for co-located f1.2xlarge instances by monitoring the PCle
traffic. In this experiment, five new instances are created in sequence, of which the last three happen to be
co-located with the monitoring instance.

5.2 Detecting Instance Initialization

In the experiments of this work, we have thus far only focused on covert communication and
side-channel information leakage between VM instances that have already been initialized. By
contrast, in this section, we show for the first time that the instance initialization process can
also be detected by monitoring the bandwidth of the PCle bus. Indeed, on AWS, there is a time
lag between when a user requests that an instance with a target AMI be launched and when it is
provisioned, initialized, and ready for the user to connect to it over SSH. This process can take
multiple minutes, and, as we show in this work, causes significant PCle traffic that is measurable
by co-located adversaries.

For our experiments, we first create an f1.2x1large instance (named INST-A) and start the PCle
bandwidth monitoring program on it. We then launch five f1.2xlarge instances in sequence,
named INST-B-i, for i € {1, 2,3,4,5}. For each INST-B-i, we attempt to complete a handshake with
INST-A at a pre-determined time, and then terminate the instance before launching the next one.
As the monitoring program on INST-A is running throughout the experiments (including when
no INST-B is running), it is able to capture the initialization, handshake, and termination of any
potentially co-located instances.

Figure 13 plots the PCle bandwidth of the monitoring instance INST-A, along with three reference
lines for each of the five instance initializations:

e “Create VM” denotes the request for initializing a new VM.

e “Finish Init” means that the VM has been initialized, which we define as being able to SSH
into the VM instance.

o “Terminate VM” indicates the request for shutting down the VM.

For each VM, we load the PCle transmitter AFI and software and attempt a handshake between the
“Finish Init” and “Terminate VM” steps. The handshake results suggest that the last three instances
are co-located with INST-A but the first two are not. Incidentally, the last the three instances
also cause large PCle bandwidth drops (from 1,600 MBps to 600 MBps) during their initialization
process, as shown in Figure 13. The PCle bandwidth stays stable for the first two instances, as they
are not co-located with INST-A. Note that this bandwidth drop occurs before we can SSH into the
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Fig. 14. Long-term PCle-based data center monitoring between the evening of April 25 and the early morning
of April 26, with d = 4ms and § = 5ms on an f1.2xlarge on-demand instance.
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Fig. 15. Long-term PCle-based data center monitoring on a different f1.2x1large on-demand instance with
d =18ms and § = 20 ms.

instances, and therefore reflects the initialization process itself. Moreover, it is worth noting that
the termination step is not reflected in the PCle trace, indicating a potentially lazy termination
process that does not require heavy data transfers. The ability to detect when other users are being
allocated to the same NUMA node not only helps with the covert-channel handshaking process of
Section 4.1, but can also alert non-adversarial users to potential interference from other users so
that they can tweak their applications to expect slower transfers.

5.3 Long-Term PCle Monitoring

In this section, we present the results of measuring the PCle bandwidth for two on-demand
f1.2xlarge instances in the us-east-1 region (availability zone €). These experiments took place
between 5pm on April 25, 2021 and 2am on April 26 (Eastern Time, as us-east-1 is located in
North Virginia). For both sets of four-hour measurements, the first f1.2x1large instance (Figure 14)
is measuring with a transmission duration of d = 4 ms and a measurement duration of § = 5ms,
while the second instance (Figure 15) has d = 18 ms and § = 20 ms. For the first instance, the PCle
link remains mostly idle during the evening (Figure 14a), but experiences contention in the first
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Fig. 16. PCle bandwidth traces collected by the monitoring instance while the victim instance runs the
DeepField AMI to perform a VSR conversion of the same video five consecutive times, (a) without and (b)
with the third instance acting as a PCle stressor. Within each sub-figure, the red lines label the start and end
of the VSR conversion on the FPGA.

night hour (Figure 14b). The second instance instead appears to be co-located with other FPGAs
that make heavier use of their PCle bandwidth. During the evening measurements (Figure 15a), the
PCle bandwidth drops momentarily below 1,200 MBps during the third hour and below 800 MBps
during the fourth hour. These large drops are likely due to co-located VMs are being initialized and
not normal user traffic, as described in Section 5.2. It also experiences sustained contention in the
third hour of the night measurement (Figure 15b). Although the bandwidth in the two instances
is comparable, the 5 ms measurements are noisier compared to the 20 ms ones. Finally, note that,
generally, our covert-channel code results in bandwidth drops of over 800 MBps, while the activity
of other users tends to cause drops of less than 50 MBps, suggesting that noise from external traffic
has minimal impact on our channel.

5.4 Interference Attacks

The PCle contention mechanism we have uncovered can also be used to degrade the performance
of co-located applications by other users. Indeed, as we have shown in a prior work [63], the
bandwidth can fall from 3 GBps to under 1 GBps using just one PCle stressor (transmitter), and to
below 200 MBps when using two stressors.

To exemplify how the reduced PCle bandwidth can affect user applications, we again find a
full NUMA node with four co-located VMs, but only use three of them. Specifically, the first VM
is running the DeepField AMI Video Super-Resolution (VSR) algorithm [22], and represents the
victim user. The second VM is monitoring the PCle bandwidth (similar to the experiments of
Section 5.1), while the third acts as a PCle stressor. The fourth one is unused and left idle, to avoid
unintended interference. To further minimize any other external effects, the VSR computation in
Figure 16 is repeated five times in sequence. As Figure 16 shows, the PCle bandwidth measured by
the monitoring instance drops from over 1,950 MBps to under 650 MBps, and the conversion time
in the victim instance increases by 33%. In addition to slowing down the victim application, when
using a stressor, the attacker can extract even more fine-grained information about the victim.
Indeed, as Figure 16b shows, the boundary between the five repetitions becomes clear, aiding the
AMI fingerprinting attacks discussed in Section 5.1.
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Table 3. Resources used by the three AFIs tested.

AFI Lookup Tables (LUTs) Registers CARRY8 Chains Multiplexers
Small 6,728 8,369 75 72
Medium 139,020 220,061 2,529 4,741
Large 310,462 321,713 7,316 28,597
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Fig. 17. The FPGA programming time can be slowed down by heavy PCle traffic from co-located instances.
In (a), only the user’s custom logic (CL) is reconfigured, while in (b), both the FPGA shell (SH) and the custom
logic (CL) are reloaded onto the FPGA. Three AFls with different numbers of logic resources are used.

Furthermore, one particular, and perhaps unexpected, consequence of the reduced PCIe band-
width is a more time-consuming programming process that can, in some cases, be more than tripled.
To investigate this effect, we measure the FPGA programming time in one of the instances (INST-A)
under different conditions including:

(1) Whether a PCle bandwidth-hogging application is running on a second instance, INST-B.

(2) Whether just the custom logic (CL) or both the CL and FPGA shell (SH) are reloaded with
fpga-load-local-image (using the -F flag).

(3) The size of the loaded AFI in terms of the logic resources used (see Table 3). Because AWS
uses partial reconfiguration [9], “the size of a partial bitstream is directly proportional to the
size of the region it is reconfiguring” [68], with larger images therefore requiring more data
transfers from the host to the FPGA device.

The results of our experiments are summarized in Figure 17, where three AFIs of different sizes
are loaded onto INST-A with/without reloading the shell, and with/without PCle contention on
INST-B. As Figure 17a shows, PCle contention slows down the FPGA programming of all AFIs,
with the effect being more prominent for larger instances, where programming has slowed down
from = 7s to ~ 12s. When the shell is also reloaded (Figure 17b), the same pattern holds, but the
effects are even more pronounced: even reloading the small AFI slows down from = 7s to over
20 s, while the large AFI takes over 30 s compared to ~ 9 s without PCle stressing. The effect is
likely not just due to the fact that the AFI needs to transferred to the FPGA over PCle using the
fpga-load-local-image command, but in part also because the AFIs need to be fetched over
the network from the cloud provider’s internal servers. As we show in the next section, network
bandwidth is also impacted by the FPGA’s PCle activity.
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6 OTHER CROSS-INSTANCE EFFECTS

In this section, we investigate how other aspects of the hardware that is present in F1 servers,
namely Network Interface Cards (Section 6.1), NVMe SSD storage (Section 6.2), and DRAM modules
directly attached to the FPGAs (Section 6.3) leak information that can permeate the VM instance
boundary and can be used to, for example, cause interference on other users, or determine that
different VM instances belong to the same server. The NIC and SSD contention-based attacks are
summarized in Figure 11b.

6.1 Network-Based Contention

Network Interface Controller (NIC) cards provide connectivity between a virtual machine and
the Internet through external devices such as switches and routers. NIC cards are typically also
connected to the host over PCle, and therefore share the bandwidth with the FPGAs. To test
whether the FPGA PCle traffic has any effect on the network bandwidth, we rent three co-located
f1.2xlarge instances and test each instance as the PCle bandwidth-hogging stressor, and use the
remaining two instances in turn to measure the network bandwidth using the speedtest-cli
program [49] (a total of six combinations).

The results for all six pairs of instances are identical: when the PCle stressor is not running,
speedtest-cli --bytes reports a download bandwidth of approximately 233 MBps and an upload
bandwidth of 157 MBps. However, when the stressor is running on a co-located instance, the
download bandwidth drops to 100 MBps, while the upload bandwidth is reduced to 75 MBps. This
means that the PCle stressor can demonstrably halve the network bandwidth of co-located instances
as a result of the NIC sharing the PCle bus with the FPGAs, as shown in Figure 2. It is worth noting
that our experiments did not reveal any influences in the other direction, i.e., the PCle and network
bandwidth of co-located instances remained the same when running a network bandwidth stressor,
likely because such a network stressor does not saturate the PCle bus.

6.2 SSD Contention

Another shared resource that can lead to contention is the SSD storage that F1 instances can access.
The public specification of F1 instances notes that f1.2x1large instances have access to 470 GB of
Non-Volatile Memory Express (NVMe) SSD storage, f1.4xlarge have 940 GB, and f1.16x1large
have 4 x 940 GB [14]. This suggests that F1 servers have four separate 940 GB SSD drives, each of
which can be shared between two f1.2x1arge instances. In this section, we confirm our hypothesis
that one SSD drive can be shared between multiple instances, and explain how this fact can be
exploited to reverse-engineer the PCle topology and co-locate VM instances. The SSD contention
we uncover can also be used for a slow, but reliable, covert channel, or to degrade the performance
of other users, akin to the interference attack of Section 5.4. We also demonstrate the existence
of FPGA-to-SSD contention, which is likely the result of the SSD going through the same PCle
switch, as shown in Figure 2. This topology remains consistent with the one publicly described for
GPU-based P4d instances [7], which appear to be architecturally similar to F1 instances.

6.2.1 SSD-to-SSD Contention. SSD contention is tested by measuring the bandwidth of the SSD
by using the hdparm command with its -t option, which performs disk reads without any data
caching [47]. Measurements are averaged over repeated reads of 2 MB chunks from the disk in a
period of 3 seconds. When the server is otherwise idle, hdparm reports the SSD read bandwidth
to be over 800 MBps. However, when the other f1.2xlarge instance that shares the same SSD
stresses it using the stress command [67] with the --io 4 --hdd 4 parameters, the bandwidth
drops below 50 MBps. The stress command with the parameters above results in 4 threads calling
sync (to stress the read buffers) and another 4 threads calling write and unlink (to stress write

ACM Trans. Reconfig. Technol. Syst.



22 llias Giechaskiel, Shanquan Tian, and Jakub Szefer

800 1

—>— Transmitter A |
—@— Transmitter B 1
6001 —@— Transmitter C 1
—— Transmitter D it

Receiver A \

Receiver B

400 4

Receiver C
Receiver D
Pair (A, B)
Pair (A, C)
Pair (A, D)
Pair (B, C) i
Pair (B, D) ol
Pair (C. D) 5.5 22 i

15 30 45 60 75 90 105 120 135 150 165 180
Time (s)

SSD Bandwidth (MBps)

2004

=1L

Fig. 18. NVMe SSD bandwidth for all transmitter and receiver pairs in a NUMA node, as measured by hdparm.
Running stress between seconds 60 to 90 causes a bandwidth drop in exactly one other instance in the
NUMA node, while running the FPGA-based PCle stressor (between seconds 120 and 150) reduces the SSD
bandwidth in all cases.

performance). The total number of threads is kept to 8, to match the number of vCPUs allocated to
an f1.2xlarge instance, while all FPGAs remain idle during these experiments.

This non-uniform SSD behavior can be used for a robust covert channel with a bandwidth
of 0.125 bps with 100% accuracy. Specifically, for a transmission of bit 1, stress is called for 7
seconds, while for a transmission of bit 0, the transmitter remains idle. The receiver uses hdparm to
measure its SSD’s bandwidth, and can distinguish between contention and no-contention of the
SSD resources (i.e., bits 1 and 0 respectively) using a simple threshold. The period of 8 seconds per
bit also accounts for 1 second of inactivity in every transmission, allowing the disk usage to return
to normal.

The same mechanism can be exploited to deteriorate the performance of other tenants. It can
further co-locate instances on an even more fine-grained level than was previously possible. To
accomplish this, we rent several f1.2x1arge instances until we find four which form a full NUMA
node through the PCle-based co-location approach of Section 4. We then stress the SSD in one of
the four instances, and measure the SSD performance in the remaining three. We discover two pairs
of instances with mutual SSD contention, which supports our hypothesis, and is also consistent
with the PCle topology for other instance types [7].

The fact that SSD contention only exists between two f1.2x1arge instances can be beneficial for
adversaries: when the covert-channel receiver and the transmitter are scheduled on two instances
that share an SSD, they can communicate without interference from other tenants in the same
NUMA node.*

6.2.2 FPGA-to-SSD Contention. To formalize the above observations, we use the methodology
described in Section 4 to find four co-located f1.2x1arge instances in the same NUMA node. Then,
for each pair of instances, we repeatedly run hdparm in the “receiver” instance for a period of 3
minutes, and then in the transmitter instance, (a) at the one minute mark run stress for 30 s, and

4 Assuming that slots within a server are assigned randomly, the probability of getting instances with shared SSDs given
that they are already co-located in the same NUMA node is 33%: out of the three remaining slots in the same NUMA node,
exactly one slot can be in an instance that shares the SSD.
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Fig. 19. FPGA PCle bandwidth for all transmitter and receiver pairs in a NUMA node, as measured by our
covert-channel receiver. Running stress between seconds 60 to 90 does not cause a bandwidth drop, but
running the FPGA-based PCle stressor (between seconds 120 and 150) reduces the bandwidth in all cases.

(b) at the two minute mark use our FPGA-based covert-channel code as a stressor which constantly
transmits the bit 1 during each measurement period for another 30s.

The results of these experiments are summarized in Figure 18. During idle periods, the SSD
bandwidth is approximately 800-900 MBps. However, for the two instances with SSD contention,
i.e., pairs (A, D) and (B, C), the bandwidth drops to as low as 7 MBps while the stress command is
running (the bandwidth for the other instance pairs remains unaffected). When the FPGA-based
PCle stressor is enabled, the SSD bandwidth reported by hdparm is reduced in a measurable way to
approximately 700 MBps.

We further test for the opposite effect, i.e., whether stressing the SSD can cause a measurable
difference to the FPGA-based PCle performance. We again stress the SSD between 60-90 s, and
stress the FPGA between 120-150 s. As the results of Figure 19 show, the PCle bandwidth drops
from almost 1.8 GBps to approximately 500-1,000 MBps when the FPGA-stressor is enabled, but
there is no significant difference in performance when the SSD-based stressor is turned on. Similar
to the experiments of Section 6.1, this is likely because the FPGA-based stressor can more effectively
saturate the PCle link, while the SSD-based stressor seems to be limited by the performance of
the hard drive itself, whose bandwidth when idle (800 MBps) is much lower than that of the FPGA
(1.8 GBps). In summary, using the FPGA as a PCle stressor can cause the SSD bandwidth to drop,
but the converse is not true, since there is no observable influence on the FPGA PCle bandwidth as
a result of SSD activity.

6.3 DRAM-Based Thermal Monitoring

DRAM decay is known to depend on the temperature of the DRAM chip and its environment [70, 71].
Since the FPGAs in cloud servers have direct access to the on-board DRAM, they can be used as
sensors for detecting and estimating the temperature around the FPGA boards, supplementing
PCle-traffic-based measurements.

Figure 20 summarizes how the DRAM decay of on-board chips can be used to monitor thermal
changes in the data center. When a DRAM module is being initialized with some data, the DRAM
cells will become charged to store the values, with true cells storing logical 1s as charged capacitors,
and anti-cells storing them as depleted capacitors. Typically, true and anti-cells are paired, so
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Fig. 20. By alternating between AFls that instantiate DRAM controllers or leave them unconnected, the
decay rate of DRAM cells can be measured as a proxy for environmental temperature monitors [62].

initializing the DRAM to all ones will ensure only half of the DRAM cells will be charged, even if
the actual location of true and anti-cells is not known.

After the data has been written to the DRAM and the cells have been charged, the DRAM refresh
is disabled. Disabling DRAM refresh in the server itself is not possible as the physical hardware
on the server is controlled by the hypervisor, not the users. However, the FPGA boards have their
own DRAMs. By programming the FPGAs with AFIs that do and do not have DRAM controllers,
disabling of the DRAM refresh can be emulated, allowing the DRAM cells to decay [62]. Eventually,
some of the cells will lose enough charge to “flip” their value (for example, data written as 1 becomes
0 for true cells, since the charge has dissipated).

DRAM data can then be read after a fixed time Tycqy, Which is called the decay time. The number
of flipped cells during this time depends on the temperature of the DRAM and its environment [71],
and can therefore produce coarse-grained DRAM-based temperature sensors of F1 instances.

Prior work [63] and this paper have so far focused on information leaks due to shared resources
within a NUMA node, but did not attempt to co-locate instances that are in the same physical server,
but belong to different NUMA nodes. In this section, we propose such a methodology that uses the
boards’ thermal signatures, which are obtained from the decay rates of each FPGA’s DRAM modules.
To collect these signatures, we use the method and code provided by Tian et al. [62] to alternate
between bitstreams that instantiate DRAM controllers and ones that leave them unconnected to
initialize the memory and then disable its refresh rate. When two instances are in the same server,
the temperatures of all 8 FPGAs in an f1.16x1large instance (and by extension the DRAM thermal
signatures) are highly correlated. However, when the instances come from different servers, the
decay rates are different, and thus contain distinguishable patterns that can be used to classify the
two instances separately. This insight can be used to find FPGA instances that are co-located in the
same server, even if they span different NUMA nodes.

6.3.1 Setup & Evaluation. Our method for co-locating instances within a server has two aspects to
it: first, we show that we can successfully identify two FPGA boards as being in the same server
with high probability using their DRAM decay rates, and then we show that by using PCle-based
co-location we can build the full profile of a server, and identify all eight of its FPGA boards, even
if they are in different NUMA nodes. More specifically, we use the open-source software by Tian et
al. [62] to collect DRAM decay measurements for several FPGAs over a long period of time and
then find which FPGAs’ DRAM decay patterns are the “closest”.
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Fig. 22. Accuracy of classifying individual FPGAs as belonging to the right server as a function of measurement
time using the three different proposed metrics.

To validate our approach, we rent three f1.16x1arge instances (a total of 24 FPGAs) for a period
of 24 hours, and measure how “close” each pair of FPGA traces is by calculating the total distance
between their data points over the entire measurement period for three different metrics. The first
metric compares the raw number of bit flips from the DRAM decay measurement ¢l directly. The
second approach normalizes the data to fitin the [-1, 1] range, i.e., ¢} = (2¢L, —m—M)/(M —m),
where m = min; ¢, and M = max; cl,,. In Figure 21, we show an alternative metric, which takes
the difference between successive raw measurements, i.e., ¢, = ¢l — L. Note that if FPGA A is
the closest to FPGA B using these metrics, then B is not necessarily the closest to A. However, if
FPGA A is closest to B and B is closest to C, then A, B, and C are all in the same server.

The raw data metric has an accuracy of 75%, the normalized metric is 71% accurate, while the
difference metric succeeds in correctly pairing all FPGAs except for one, for an accuracy of 96%.
Shorter measurement periods still result in high accuracies. For example, using the DRAM data
from the first 12 hours results in only one additional FPGA mis-identification, for an accuracy of
92%. We plot the classification accuracy for the three metrics as a function of time in Figure 22.
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In the experiments of Figure 21, the cqg metric places slots 0-4 of server A together (along with,
mistakenly, slot 0 of server B), slots 5-7 of server A as a second group, slots 1-7 of server B as
one server, and slots 0-3 and 4-7 of server C as the two final groups. Consequently, our method
successfully identifies the six NUMA nodes without making use of PCle contention at all.

However, by using insights about the NUMA nodes that can be extracted through our PCle-based
experiments, the accuracy and reliability of this method can be further increased. For example,
slot 0 of server B could already be placed in the same NUMA node as slots 1-3 using PCle-based
co-location. Leveraging the PCle-based co-location method, if the “closest” FPGA is known to be
in the same NUMA node due to PCle contention, and the second-closest FPGA (not in the same
NUMA node according to PCle contention) is only farther by at most 1% compared to the closest
FPGA, then this second-closest FPGA can be identified as belonging to the second NUMA node of
the same server. In the experiment of Figure 21, this approach successfully groups all FPGAs in the
three tested servers without errors.

7 CONCLUSION

This paper introduced a novel, fast covert-channel attack between separate users in a public, FPGA-
accelerated cloud computing setting. It characterized how contention of the PCle bus can be used
to create a robust communication mechanism, even among users of different operating systems,
with bandwidths reaching 20 kbps with 99% accuracy. In addition to making use of contention of
the PCle bus for covert channels, this paper demonstrated that contention can be used to monitor
or disrupt the activities of other users, including inferring information about their applications, or
slowing them down. This work further identified alternative co-location mechanisms, which make
use of network cards, SSDs, or even the DRAM modules attached to the FPGA boards, allowing
adversaries to co-locate FPGAs in the same server, even if they are on separate NUMA nodes.

More generally, this work demonstrated that malicious adversaries can use PCle monitoring
to observe the data center server activity, breaking the separation of privilege that isolated VM
instances are supposed to provide. With more types of accelerators becoming available on the
cloud, including FPGAs, GPUs, and TPUs, PCle-based threats are bound to become a key aspect of
cross-user attacks. Overall, our insights showed that low-level, direct hardware access to PCle, NIC,
SSD, and DRAM hardware creates new attack vectors that need to be considered by both users
and cloud providers alike when deciding how to trade off performance, cost, and security for their
designs: even if the endpoints of computations (e.g., CPUs and FPGAs) are assumed to be secure,
the shared nature of cloud infrastructures poses new challenges that need to be addressed.
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