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Abstract In this paper, we apply local discontinuous Galerkin methods to the pattern formation dynamical

model in polymerizing action flocks. Optimal error estimates for the density and filament polarization in different

norms are established. We use a semi-implicit spectral deferred correction time method for time discretization,

which allows a relative large time step and avoids computation of a Jacobian matrix. Numerical experiments are

presented to verify the theoretical analysis and to show the capability for simulations of action wave formation.
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1 Introduction

Action filaments are active polymers which stay far from thermodynamic equilibrium. By constantly

turning over the components through polymerization and depolymerization, they organize into a variety

of states, such as spots, spirals and traveling waves. The mathematical model of the pattern wave for

the actin filaments has been investigated intensively [10,13,14] in recent days. It is pointed out that the

model for wave formation in this paper, proposed in [13], does not require any nonlinear biochemistry

and depends on three simple and generic ingredients: actin polymerization, steric repulsion between actin

fibers and treadmilling. The numerical experiments in [13] verified the mechanism of the model, where

the density was an isotropic low value initially, then raised towards the Onsager threshold. The actin

filaments aligned at this state, then destabilized the isotropic phase by actin spots or spirals and finally

stayed at a polarized phase.
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Let Ω be a bounded rectangular domain in R2. The governing equations of the pattern formation

dynamical model in polymerizing action flocks in two space dimensions and in the dimensionless form

are as follows [13]:

∂ρ

∂t
= −∇ · (ρp) +∇2ρ+ ρ(1− ρ), (x, y) ∈ Ω, 0 < t 6 T, (1.1)

∂p

∂t
= Γ (rρ− 1)p+D∇2p− Γ2|p|2p, (x, y) ∈ Ω, 0 < t 6 T, (1.2)

where ρ and p are the density of action in F-action and the average filament polarization, respectively,

|p|2 = p21 + p22 with p = (p1, p2), Γ = γ/α, D = K/Dρ and Γ2 = γ2Dρ/ν
2
0 . Here, γ describes the change

rate of the direction of F-action filaments and α denotes the polymerization rate. Dρ and K means

the diffusion coefficient and an effective elastic constant, respectively. γ2 represents saturation of the

polarization, and ν0 is the treadmilling speed.

There are few works discussing numerical simulations for the pattern formation dynamical model. The

finite difference method was investigated in [13], and the numerical results verified the idea of the model.

Goff et al. [13] showed that Γ has an important impact on waves formation, for example, Γ = 4.3 and

Γ = 10 generate waves, but Γ = 1 leads to uniform density. Moreover, spiral shows up at high density

spots when Γ = 4.3 while no spiral emerge for Γ = 10. Later, characteristic finite element analysis was

proposed in [18] for this model and the error estimate was proved under some regularity assumptions of

the solution. The time method in the literature [18] used restricted time steps. To the best knowledge

of the authors, no previous work focused on discontinuous Galerkin (DG) methods for wave formation.

In this paper, we apply the high-order local discontinuous Galerkin (LDG) methods for the pattern

formation dynamical model, since the DG method has good stability, high-order accuracy, and flexibility

on h-p adaptivity and on complex geometry.

The DG method was first designed in 1973 by Reed and Hill [22] for solving neutron linear transport

equations. By using completely discontinuous piecewise polynomials as the numerical solution, the DG

method solved hyperbolic conservation laws in a series of papers [4, 6–8] based on the explicit Runge-

Kutta time integrations. However, it is difficult to apply the DG method directly to PDEs containing

higher-order spatial derivatives. Motivated by Bassi and Rebay [1], Cockburn and Shu [9] introduced

the LDG method to solve the convection-diffusion equations. Later on, the LDG method has been

successfully designed and applied in many models involving dispersive and higher-order terms [29]. The

idea of the LDG method is to rewrite the equation with higher-order derivatives into a first-order system,

and then apply the DG method to the system. With suitable numerical fluxes, the stability and optimal

error estimates can be proved for many model equations [28, 30, 31]. As an extension of DG schemes for

hyperbolic conservation laws, the LDG method results in an extremely local discretization, which offers

great advantages in parallel computing and h-p adaptation.

Equations (1.1)–(1.2) contain second-order spacial derivatives, and explicit time methods suffer very

small time step sizes. However, to fully recover the pattern formation, we need to set a large final time, say

T = 500. Therefore, the computational cost would be extremely large. Moreover, the source term in (1.1)

modeling pattern formation in actin flocks is important. If the numerical approximation of the density

is negative, source would also be negative, leading to even smaller density approximations and even

blow-up of the numerical solutions. Therefore, implicit schemes are necessary for the time integrations.

In this paper, we present a semi-implicit spectral deferred correction (SDC) time marching method

[11, 16, 21, 23] for the pattern formation dynamical model. The SDC time method, as a new variation

of the classical deferred correction method, was proposed in [11] to preserve good stability and accuracy

for stiff problems. Later, Tang et al. [23] provided a general framework for the convergence of the SDC

method. The classical semi-implicit SDC methods have been developed to solve many problems, such as

the phase field problems [12,20] and phase field crystal problems [17]. These semi-implicit time marching

methods are mainly efficient for problems with easy separation of stiff and non-stiff components. When it

comes to systems not easy to separate the stiff and non-stiff components, traditional semi-implicit schemes

are not straightforward to be explored. Recently, a novel semi-implicit SDC time marching method was

proposed in [16] for highly nonlinear ODEs without easy separation of stiff and non-stiff components.
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The rest of this paper is organized as follows. In Section 2, we present some preliminaries, including

assumptions of the solutions of the model, the basic notations and norms to be used throughout the

paper and the LDG spatial discretization. Section 3 is the main body of the paper where we present

the projections and some essential properties of the finite element spaces, error equations and the details

of the optimal error estimates for the pattern formation dynamical model. We provide a semi-implicit

spectral deferred correction time integration in Section 4. In Section 5, numerical results are given to

demonstrate the accuracy and capability of the LDG-SDC method. We will end in Section 6 with some

concluding remarks.

2 Preliminaries

In this section, we demonstrate some preliminary results that will be used throughout the paper.

2.1 Hypotheses for the model

For the pattern formation dynamical model (1.1)–(1.2), the initial conditions are given as

ρ(x, y, 0) = ρ0(x, y), p(x, y, 0) = p0(x, y), (x, y) ∈ Ω.

For simplicity, we consider the periodic boundary condition in this paper. The analysis for homogeneous

Neumann boundary can be obtained following the same lines with some minor changes, and we thus

omit it.

We make the following hypotheses (H) for the problem:

1. 0 < ρ∗ 6 ρ(x, y, t) 6 ρ∗.

2. Γ, Γ2, D and r are all given positive constants.

3. ρ and p are uniformly bounded in R2 × [0, T ].

2.2 Basic notations

In this subsection, we present the notations. Following [15], let

0 = x 1
2
< · · · < xNx+

1
2
= 1 and 0 = y 1

2
< · · · < yNy+

1
2
= 1

be the grid points in the x and y directions, respectively. Define Ii = (xi− 1
2
, xi+ 1

2
) and Jj = (yj− 1

2
, yj+ 1

2
).

Let K = Ii × Jj , i = 1, . . . , Nx, j = 1, . . . , Ny, be a partition of Ω and denote Ωh = {K}. The mesh sizes

in the x and y directions are given as ∆xi = xi+ 1
2
− xi− 1

2
and ∆yj = yj+ 1

2
− yj− 1

2
, respectively and

h = max
{
max

i
∆xi, max

j
∆yj

}
.

Moreover, we assume the partition is quasi-uniform, i.e., there exists a positive constant λ such that

h 6 λhmin, where

hmin = min
{
min
i

∆xi, min
j

∆yj

}
.

Associated with this mesh, we define the finite element space as

W k
h = {z ∈ L2(Ω) : z |K ∈ Qk(K), ∀K ∈ Ωh},

where Qk(K) denotes the space of tensor product polynomials of degrees at most k in K. Finite element

spaces for the vector and the matrix are defined as

Uh = {u ∈ L2(Ω)2×2 : u |K ∈ Qk(K)2×2, ∀K ∈ Ωh},
Wh = {w ∈ L2(Ω)2 : w |K ∈ Qk(K)2, ∀K ∈ Ωh},
Vh = W k

h ,
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which is contained in the following mesh-dependent broken Sobolev space U ×W × V :

U = {u ∈ L2(Ω)2×2 : u |K ∈ H1(K)2×2, ∀K ∈ Ωh},
W = {w ∈ L2(Ω)2 : w |K ∈ H1(K)2, ∀K ∈ Ωh},
V = {v ∈ L2(Ω) : v |K ∈ H1(K), ∀K ∈ Ωh},

respectively. Qk(K) denotes the space of tensor product polynomials of degrees at most k in K. We

choose β = (1, 1)T to be a fixed vector that is not parallel to any normals of the element interfaces. We

denote Γh to be the set of all element interfaces and Γ0 = Γh\∂Ω. Let E ∈ Γ0 be an interior edge shared

by the elements Kℓ and Kr, where β ·nℓ > 0 and β ·nr < 0 with nℓ and nr being the outward normals

of Kℓ and Kr, respectively. For any z ∈ Vh, we define z− = z |∂Kℓ
and z+ = z |∂Kr , respectively. The

jump is given as [z] = z+ − z−. Moreover, for p ∈ Wh and u ∈ Uh, we can define p+, u+, p−, u− and

[p], [u] analogously. We also define ∂Ω− = {E ∈ ∂Ω | β · n < 0}, where n is the outer normal of E , and
∂Ω+ = ∂Ω\∂Ω−. For any E ∈ ∂Ω−, there exists K ∈ Ωh such that E ∈ ∂K, we define z+ |E = z |∂K , and

define z− on ∂Ω+ analogously. For simplicity, given E = {x 1
2
}×Jj ∈ ∂Ω− and Ẽ = {xNx+

1
2
}×Jj ∈ ∂Ω+,

by the periodic boundary condition, we define

z− |E = z− |Ẽ and z+ |Ẽ = z+ |E .

Similarly, given E = Ii × {y 1
2
} ∈ ∂Ω− and Ẽ = Ii × {yNy+

1
2
} ∈ ∂Ω+, we define

z− |E = z− |Ẽ and z+ |Ẽ = z+ |E .

Throughout this paper, the symbol C is used as a generic constant which may appear differently at

different occurrences. Moreover, the symbol ϵ is a sufficiently small positive constant.

2.3 Norms

In this subsection, we define several norms that will be used throughout the paper. For any given domain

D ⊂ Rd, d = 2, we denote by ∥v∥D the L2 norm of v on D. For any integer s > 0, let Hs(D) represent the

space equipped with the norm ∥·∥s,D, in which the function itself and the derivatives up to the s-th-order

are all in L2(D). Similar norms for the vector-valued function w and the matrix-valued function u can

be defined in a similar way, given by

∥w∥s,D =

( d∑
i=1

∥wi∥2s,D
)1/2

and ∥u∥s,D =

( d∑
i,j=1

∥uij∥2s,D
)1/2

,

respectively. We also define

∥w∥Γh
=

( ∑
e∈Γh

∥w∥2e
)1/2

, ∥u∥Γh
=

( ∑
e∈Γh

∥u∥2e
)1/2

and ∥∇w∥ =

( ∑
K∈Ωh

∥∇w∥2K
)1/2

for w ∈ Wh.

Denote ∥u∥0,K to be the standard L2 norm of u in the cell K. For any natural number ℓ, we consider

the norm of the Sobolev space Hℓ(K), defined by

∥u∥ℓ,K =

{ ∑
06α+β6ℓ

∥∥∥∥ ∂α+βu

∂xα∂yβ

∥∥∥∥2
0,K

} 1
2

.

Moreover, we define the norms on the whole computational domain as

∥u∥ℓ =
( ∑

K∈Ωh

∥u∥2ℓ,K
) 1

2

.
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For convenience, if we consider the standard L2 norm, then the corresponding subscript will be omitted.

Let ΓK be the edges of K, and we define

∥u∥2ΓK
=

∫
∂K

u2ds.

We also define

∥u∥2Γh
=
∑

K∈Ωh

∥u∥2ΓK
.

Moreover, we define the standard L∞ norm of u in K as ∥u∥∞,K , and define the L∞ norm on the

whole computational domain as

∥u∥∞ = max
K∈Ωh

∥u∥∞,K .

Finally, we define similar norms for the vector u = (u1, u2)
T as

∥u∥2ℓ,K = ∥u1∥2ℓ,K + ∥u2∥2ℓ,K , ∥u∥2ΓK
= ∥u1∥2ΓK

+ ∥u2∥2ΓK
, ∥u∥∞,K = max{∥u1∥∞,K , ∥u2∥∞,K}.

Similarly, the norms on the whole computational domain are given as

∥u∥2ℓ =
∑

K∈Ωh

∥u∥2ℓ,K , ∥u∥2Γh
=
∑

K∈Ωh

∥u∥2ΓK
, ∥u∥∞ = max

K∈Ωh

∥u∥∞,K .

The inner products of two functions in the finite element spaces Vh,Wh and U on the element K are

defined as

(u, v)K =

∫
K

uvdxdy, (u,v)K =

∫
K

u · vdxdy, (u, v)K =

∫
K

u : vdxdy.

2.4 The LDG scheme

In this subsection, we devise an LDG scheme for the dynamic model of pattern formation. By introducing

some auxiliary variables to represent the derivatives of the solution, the nonlinear system (1.1)–(1.2) can

be rewritten as the following first-order system:

∂ρ

∂t
+∇ · (ρp) +∇ · s = ρ(1− ρ), (2.1)

s+∇ρ = 0, (2.2)

∂p

∂t
+∇ · u− Γ(rρ− 1)p+ Γ2|p|2p = 0, (2.3)

1

D
u = −∇p. (2.4)

The notations in this paper are the same as those in [5, 25]. Suppose ∂1· = ∂x· and ∂2· = ∂y·. Then the

gradient of the vector p is a matrix with (∇p)ij = ∂jpi. The divergence of the matrix u is a vector with

(∇ · u)i =
d∑

j=1

∂juij .

We also define, for any θ,n ∈ Wh and u, r ∈ Uh,

u : r =
d∑

i,j=1

uijrij , θ · u · n =
d∑

i,j=1

θiuijnj .

The LDG scheme for the first-order system (2.1)–(2.4) is to find the approximation

(ρh, sh,ph, uh) ∈ Vh ×Wh ×Wh × Uh,
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such that the following variation forms hold for any element K ∈ Ωh, and any test functions v, w, θ, r ∈
Vh ×Wh ×Wh × Uh:∫

K

∂ρh
∂t

vdxdy = Qρ
K(ph, ρh; v) +QK(sh, v) +

∫
K

ρh(1− ρh)vdxdy, (2.5)∫
K

sh ·wdxdy = PK(ρh,w), (2.6)∫
K

∂ph

∂t
· θdxdy = LK(uh,θ) +

∫
K

(Γ(rρh − 1)ph − Γ2|ph|2ph) · θdxdy, (2.7)∫
K

1

D
uh : rdxdy = KK(ph, r). (2.8)

Here,

Qρ
K(ph, ρh; v) =

∫
K

ρhph · ∇vdxdy −
∫
∂K

ρ̂hph · nKvds, (2.9)

QK(sh, v) =

∫
K

sh · ∇vdxdy −
∫
∂K

ŝh · nKvds, (2.10)

PK(ρh,w) =

∫
K

ρh∇ ·wdxdy −
∫
∂K

ρ̂hw · nKds, (2.11)

LK(uh,θ) =

∫
K

uh : ∇θdxdy −
∫
∂K

θ · ûh · nKds, (2.12)

KK(ph, r) =

∫
K

ph · ∇ · rdxdy −
∫
∂K

p̂h · r · nKds. (2.13)

The “hat” terms are the so-called numerical flux. We use alternating fluxes for the diffusion term and

take

ŝh = s+h , ρ̂h = ρ−h , (2.14)

ûh = u+
h , p̂h = p−

h . (2.15)

For the convection term, we take

ρ̂hph =
1

2
(ρ+h p

+
h + ρ−h p

−
h − αne(ρ

+
h − ρ−h )),

where α > 0 can be chosen as any fixed constant independent of h and ne is the unit normal of e ∈ Γ0

such that β · ne > 0.

2.5 Useful projections

Suppose that P k denotes the space of polynomials of degrees no more than k. We will use several special

projections in this paper. Firstly, we define π+ into W k
h which is, for each cell K,

(π+u− u, v)K = 0, ∀ v ∈ Qk−1(K),

∫
Jj

(π+u− u)(xi− 1
2
, y)v(y)dy = 0, ∀ v ∈ P k−1(Jj),∫

Ii

(π+u− u)(x, yj− 1
2
)v(x)dx = 0, ∀ v ∈ P k−1(Ii), (π+u− u)(xi− 1

2
, yj− 1

2
) = 0, ∀ i, ∀ j,

and in the same way for π−,

(π−u− u, v)K = 0, ∀ v ∈ Qk−1(K),

∫
Jj

(π−u− u)(xi+ 1
2
, y)v(y)dy = 0, ∀ v ∈ P k−1(Jj),∫

Ii

(π−u− u)(x, yj+ 1
2
)v(x)dx = 0, ∀ v ∈ P k−1(Ii), (π−u− u)(xi+ 1

2
, yj+ 1

2
) = 0, ∀ i, ∀ j.
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Subsequently, we define Π+
x and Π+

y into W k
h which are, for each cell K,

(Π+
x u− u, vx)K = 0, ∀ v ∈ Qk(K),∫

Jj

(Π+
x u− u)(xi− 1

2
, y)v(y)dy = 0, ∀ v ∈ P k(Jj),

(Π+
y u− u, vy)K = 0, ∀ v ∈ Qk(K),∫

Ii

(Π+
y u− u)(x, yj− 1

2
)v(x)dx = 0, ∀ v ∈ P k(Ii),

as well as a vector-valued projection

Π+

(
s1

s2

)
=

(
Π+

x s1

Π+
y s2

)
.

We define the projections Π+,π+ and π− based on the projections defined above. For the vector-valued

function p = (p1, p2)
T ∈ W , we define

π−p = (π−p1, π
−p2)

T.

For the matrix-valued function u = (u1,u2) ∈ U , where u1 and u2 are its two column vectors, we define

Π+u = (Π+u1,Π
+u2).

We choose the initial solution as

ρh(x, y, 0) = π−ρ0, ph(x, y, 0) = π−p0, (2.16)

and then we have

∥ρ(x, y, 0)− ρh(x, y, 0)∥ 6 Chk+1, ∥p(x, y, 0)− ph(x, y, 0)∥ 6 Chk+1.

Moreover, we define

(u, v) =
∑

K∈Ωh

(u, v)K , (u,v) =
∑

K∈Ωh

(u,v)K , (u, v) =
∑

K∈Ωh

(u, v)K ,

Qρ(p, ρ; v) =
∑

K∈Ωh

Qρ
K(p, ρ; v), Ξ(·, ·) =

∑
K∈Ωh

ΞK(·, ·) (2.17)

with Ξ = Q, P, L, K.

It is easy to check the following identity by integration by parts on each cell.

Lemma 2.1. For any functions (v,p, s, u) ∈ Vh ×Wh ×Wh × Uh, we have

L(u,p) +K(p, u) = 0, Q(s, ρ) + P(ρ, s) = 0. (2.18)

Now we state the main theorem.

Theorem 2.2. Let ρh,ph, sh and uh be the numerical solutions of the semi-discrete LDG scheme

(2.5)–(2.8) with initial discretization given as (2.16), and let ρ ∈ L∞(0, T ;Hk+3), s ∈ L∞(0, T ; (Hk+2)2),

u ∈ L∞(0, T ; (Hk+2)2×2) and p ∈ L∞(0, T ; (Hk+3)2) be the exact solutions of the problem (2.1)–(2.4).

If the finite element space is the piecewise tensor product polynomials of degrees at most k and h is

sufficiently small, then we have the error estimate

∥ρ− ρh∥L∞(0,T ;L2) + ∥p− ph∥L∞(0,T ;L2) + ∥s− sh∥L2(0,T ;L2) + ∥u− uh∥L2(0,T ;L2) 6 Chk+1, (2.19)

where the constant C is independent of h.
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3 Proof of the main theorem

In this section, we proceed to prove Theorem 2.2. We first introduce some auxiliary results for the

projections defined in Section 2. Subsequently, we make an a priori error estimate which provides the

boundedness of the numerical approximations. Then we construct the error equations which further yield

several main energy inequalities and complete the proof of (2.19). Finally, we verify the a priori error

estimate at the end of this section.

3.1 Projections and interpolation properties

In this section, we demonstrate the projections and several useful lemmas. Let us start with the classical

inverse properties [3].

Lemma 3.1. Assume u ∈ Vh. Then there exists a positive constant C independent of h and u such

that

h∥u∥∞,K + h1/2∥u∥ΓK 6 C∥u∥K .

Lemma 3.2. Suppose w ∈ Hk+1(Ω). Then for any projection Ph, which is either π−, Π+
x or Π+

y , we

have

∥w − Phw∥+ h1/2∥w − Phw∥Γh
6 Chk+1.

Moreover, the projection π− on the Cartesian meshes has the following superconvergence property [2].

Lemma 3.3. Suppose ρ ∈ Hk+2(Ω). Then for any s ∈ Wh, we have

|P(ρ− π−ρ, s)| 6 Chk+1∥ρ∥k+2∥s∥. (3.1)

In this paper, we use e to denote the error between the exact and numerical solutions, i.e.,

eu = u− uh, eρ = ρ− ρh, ep = p− ph, es = s− sh.

As the general treatment of the finite element methods, we split the errors into two terms as

eρ = ξρ − ηρ, ηρ = π−ρ− ρ, ξρ = π−ρ− ρh,

ep = ξp − ηp, ηp = π−p− p, ξp = π−p− ph,

es = ξs − ηs, ηs = Π+s− s, ξs = Π+s− sh,

eu = ξ
u
− η

u
, η

u
= Π+u− u, ξ

u
= Π+u− uh.

Based on the above notations, it is easy to verify that

L(η
u
, v) = 0, Q(ηs, v) = 0, ∀ v ∈ Qk(K). (3.2)

Following [24,26,27,32] with some minor changes, we have the following lemma.

Lemma 3.4. Suppose that ξρ and ξs are defined above. We have

∥∇ξρ∥ 6 C(∥ξs∥+ hk+1), h− 1
2 ∥[ξρ]∥Γh

6 C(∥ξs∥+ hk+1).

Let us finish this subsection by proving the following lemma whose proof was given in [19].

Lemma 3.5. Let u ∈ Ck+1(Ω) and Πu ∈ W k
h . Suppose ∥u−Πu∥ 6 Chκ for some positive constant C

and κ 6 k + 1. Then

h∥u−Πu∥∞ + h1/2∥u−Πu∥Γh
6 Chκ,

where the positive constant C does not depend on h.
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3.2 The a priori error estimate

In this subsection, we make an a priori error estimate assumption that

∥ρ− ρh∥+ ∥p− ph∥ 6 h, (3.3)

which further implies

∥ρh∥∞ + ∥ph∥∞ 6 C (3.4)

by Lemma 3.5.

Remark 3.6. The a priori estimate assumption (3.3) holds for small enough h and this choice is

heavily based on how large the constant C is in (2.19). Notice that the constant C is independent of h,

as long as h is sufficiently small, say h < H . Then we can guarantee (3.3) holds for 0 6 t 6 T . Moreover,

we will show that, if h < H, then the equality of (3.3) cannot happen if t < T . However, we still need

this estimate to obtain the boundedness of the numerical approximations. This assumption, which will

be verified in Subsection 3.6, is used for the estimate of the convection terms.

3.3 Error equations

In this subsection, we proceed to construct the error equations. From (2.5)–(2.8), we have the following

error equations:(
∂eρ
∂t

, v

)
= Qρ(p, ρ; v)−Qρ(ph, ρh; v) +Q(es, v) + (ρ(1− ρ)− ρh(1− ρh), v), (3.5)

(es,w) = P(eρ,w), (3.6)(
∂ep
∂t

,θ

)
= L(eu,θ) + Γ((rρ− 1)p− (rρh − 1)ph,θ)− Γ2(|p|2p− |ph|2ph,θ), (3.7)

1

D
(eu, r) = K(ep, r) (3.8)

for any v ∈ Vh, w,θ ∈ Wh and r ∈ Uh.

3.4 The first energy inequality

In this subsection, we will derive the first energy inequality. Taking v = ξρ, w = ξs in (3.5) and (3.6),

respectively, and using Lemma 2.1, we can obtain(
∂ξρ
∂t

, ξρ

)
+ (ξs, ξs) =: R1 +R2 +R3 +R4, (3.9)

where

R1 :=

(
∂ηρ
∂t

, ξρ

)
+ (ηs, ξs),

R2 := (ρp− ρhph,∇ξρ) +
∑
e∈Γe

⟨(ρp− ρ̂hph) · ne, [ξρ]⟩e,

R3 := (ρ(1− ρ)− ρh(1− ρh), ξρ),

R4 := −P(ηρ, ξs)

with Γe = Γ0 ∪ ∂Ω− and ⟨u, v⟩e =
∫
e
uv ds. Now, we estimate Ri (i = 1, . . . , 4) term by term. Using the

Schwarz inequality and Lemma 3.2, we can get

R1 6 C∥ηρt∥∥ξρ∥+ C∥ηs∥∥ξs∥
6 Chk+1(∥ξρ∥+ ∥ξs∥) 6 Ch2k+2 + ∥ξρ∥2 + ϵ∥ξs∥2. (3.10)
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We estimate R2 by dividing it into three parts

R2 =: R21 +R22 −R23, (3.11)

where

R21 = (ρp− ρhp,∇ξρ) + (ρhp− ρhph,∇ξρ),

R22 =
1

2

∑
e∈Γe

⟨(2ρp− ρ+h p
+
h − ρ−h p

−
h ) · ne, [ξρ]⟩e,

R23 =
1

2

∑
e∈Γe

⟨α[ξρ − ηρ], [ξρ]⟩e.

Using Hypothesis 3 and (3.4), we have

R21 6 C(∥ρ− ρh∥+ ∥p− ph∥)∥∇ξρ∥
6 C(hk+1 + ∥ξρ∥+ ∥ξp∥)(∥ξs∥+ hk+1)

6 C(h2k+2 + ∥ξρ∥2 + ∥ξp∥2) + ϵ∥ξs∥2, (3.12)

where in the first step we use the Schwarz inequality while the second step follows from Lemmas 3.2

and 3.4. C depends on ∥p∥∞ and ∥ρh∥∞. The estimate of R22 also requires Hypothesis 3 and (3.4),

R22 =
1

2

∑
e∈Γe

⟨(p(ρ− ρ+h ) + (p− p+
h )ρ

+
h + p(ρ− ρ−h ) + (p− p−

h )ρ
−
h ) · ne, [ξρ]⟩e

6 C(∥ρ− ρh∥Γh
+ ∥p− ph∥Γh

)∥[ξρ]∥Γh

6 Ch
1
2 (∥ηρ∥Γh

+ ∥ξρ∥Γh
+ ∥ηp∥Γh

+ ∥ξp∥Γh
)(∥ξs∥+ hk+1)

6 C(hk+1 + ∥ξp∥+ ∥ξρ∥)(∥ξs∥+ hk+1)

6 C(h2k+2 + ∥ξρ∥2 + ∥ξp∥2) + ϵ∥ξs∥2, (3.13)

where in the second step we use the Schwarz inequality, the third step follows from Lemma 3.4, and the

fourth one requires Lemmas 3.1 and 3.2. Now we proceed to the estimate of R23,

R23 6 C(∥ηρ∥Γh
+ ∥ξρ∥Γh

)∥[ξρ]∥Γh

6 Ch
1
2 (∥ηρ∥Γh

+ ∥ξρ∥Γh
)(∥ξs∥+ hk+1)

6 C(hk+1 + ∥ξρ∥)(∥ξs∥+ hk+1)

6 C(h2k+2 + ∥ξρ∥2) + ϵ∥ξs∥2, (3.14)

where the first step follows from the Schwarz inequality, the second step is based on Lemma 3.4, and the

third one requires Lemma 3.2. Plug (3.12)–(3.14) into (3.11) to obtain

R2 6 C(∥ξp∥2 + ∥ξρ∥2 + h2k+2) + ϵ∥ξs∥2. (3.15)

Use Hypotheses 3 and Lemma 3.2 to obtain

R3 = (ρ− ρh, ξρ)− (ρ2 − ρ2h, ξρ)

6 C∥ξρ∥(∥ξρ∥+ ∥ηρ∥) 6 C(∥ξρ∥2 + h2k+2). (3.16)

The estimate of R4 follows from Lemma 3.3, i.e.,

R4 6 Chk+1∥ρ∥k+2∥ξs∥ 6 Ch2k+2 + ϵ∥ξs∥2. (3.17)

Substituting the estimation (3.10), (3.15)–(3.17) into (3.9), we obtain

1

2

d∥ξρ∥2

dt
+ ∥ξs∥2 6 C(∥ξρ∥2 + ∥ξp∥2 + h2k+2) + ϵ∥ξs∥2. (3.18)

Integrating the above equation (3.18) with respect to t, we have the first energy inequality

∥ξρ∥2 +
∫ t

0

∥ξs∥2 dt 6 C

∫ t

0

(∥ξρ∥2 + ∥ξp∥2) dt+ Ch2k+2. (3.19)
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3.5 The second energy inequality

In this subsection, we construct the second energy inequality. Take θ = ξp, r = ξ
u
in (3.7) and (3.8),

respectively and use Lemma 2.1 and (3.2) to obtain(
∂ξp
∂t

, ξp

)
+

1

D
(ξ

u
, ξ

u
) =: T1 + T2 − T3 − T4, (3.20)

where

T1 := (ηpt, ξp) +
1

D
(η

u
, ξ

u
),

T2 := Γ((rρ− 1)p− (rρh − 1)ph, ξp),

T3 := Γ2(|p|2p− |ph|2ph, ξp),

T4 := K(ηp, ξu).

Now we estimate Ti (i = 1, 2, 3, 4) term by term. Using Hypothesis 3, the Schwartz inequality and

Lemma 3.2 we have

T1 6 C∥ξp∥∥ηpt∥+
1

D
∥ξ

u
∥∥η

u
∥

6 Chk+1(∥ξp∥+ ∥ξ
u
∥) 6 Ch2k+2 + C∥ξp∥2 + ϵ∥ξ

u
∥2. (3.21)

The estimate of T2 requires Lemma 3.2, Hypothesis 3 and (3.4),

T2 = Γ(rρ(p− ph), ξp) + Γ(r(ρ− ρh)ph, ξp)− Γ(p− ph, ξp)

6 C∥ξp∥(∥ξp∥+ ∥ηp∥+ ∥ξρ∥+ ∥ηρ∥)
6 C(∥ξp∥2 + ∥ξρ∥2 + h2k+2). (3.22)

Using Lemma 3.2 and Hypothesis 1, we estimate T3 through

T3 = Γ2(|p|2(p− ph) + (|p|2 − |ph|2)ph, ξp)

= Γ2(|p|2(p− ph), ξp) + Γ2((|p|+ |ph|)ph(|p| − |ph|), ξp)
6 C∥ξp∥(∥ξp∥+ ∥ηp∥) 6 C(∥ξp∥2 + h2k+2). (3.23)

Here, we use the fact that ||p| − |ph|| 6 |p− ph|, and hence

∥|p| − |ph|∥ 6 ∥|p− ph|∥ = ∥p− ph∥.

For T4, we use Lemma 3.3 to obtain

T4 6 Chk+1∥p∥k+2∥ξu∥ 6 Ch2k+2 + ϵ∥ξ
u
∥2. (3.24)

Substituting (3.21)–(3.24) into (3.20), we have

1

2

d

dt
∥ξp∥2 + ∥D−1/2ξ

u
∥2 6 C(∥ξp∥2 + ∥ξρ∥2 + h2k+2) + ϵ∥ξ

u
∥2.

By taking ϵ to be small enough and using Hypothesis 1, the above equation leads to

d

dt
∥ξp∥2 + ∥ξ

u
∥2 6 C(∥ξp∥2 + ∥ξρ∥2 + h2k+2).

Integrating the above equation with respect to t, we obtain

∥ξp∥2 +
∫ t

0

∥ξ
u
∥2 dt 6 C

∫ t

0

(∥ξp∥2 + ∥ξρ∥2) dt+ Ch2k+2. (3.25)
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3.6 Proof of Theorem 2.2

Now we are ready to combine the two energy inequalities and finish the proof of Theorem 2.2.

Firstly, from (3.19) and (3.25), it is easy to derive the following estimate:

∥ξρ∥2 + ∥ξp∥2 +
∫ t

0

(∥ξs∥2 + ∥ξ
u
∥2)dt 6 C

∫ t

0

(∥ξp∥2 + ∥ξρ∥2) dt+ Ch2k+2.

Now, we can employ Gronwall’s inequality to obtain

∥ξρ∥2 + ∥ξp∥2 +
∫ t

0

∥ξs∥2dt+
∫ t

0

∥ξ
u
∥2 dt 6 Ch2k+2.

Finally, by using the standard approximation result, we obtain (2.19). To complete the proof, let us

verify the a priori assumption (3.3). For k > 1, we can consider h small enough so that Chk+1 < 1
2h,

where C is the constant determined by the final time T . Then define

t∗ = inf{t : ∥ρ− ρh∥+ ∥p− ph∥ > h}.

We should have ∥ρ−ρh∥+∥p−ph∥ = h by continuity in time at t = t∗. However, if t∗ < T , Theorem 2.2

implies that

∥ρ− ρh∥+ ∥p− ph∥ 6 Chk+1

for t 6 t∗, in particular

h = ∥(ρ− ρh)(t
∗)∥+ ∥(p− ph)(t

∗)∥ 6 Chk+1 <
1

2
h,

which leads to a contradiction. Therefore, there always holds t∗ > T , and thus the a priori assump-

tion (3.3) is justified.

4 Time discretization

In this section, we give the semi-implicit spectral deferred correction (SDC) time discretization after the

LDG discretization of the dynamic model of pattern formation (2.1)–(2.4). More details for the semi-

implicit SDC time discretization can be found in [16,21]. The SDC time method, compared with classical

SDC time methods, does not require separation of stiff and non-stiff components, which is more general

and efficient.

To employ the SDC method, first of all it is necessary to construct a first-order semi-implicit scheme.

For the pattern formation dynamical model, the source terms are non-trivial and we treat them in a

special way. The corresponding first-order semi-implicit scheme is

ρn+1 − ρn

∆t
+∇ · (ρn+1pn) +∇ · sn+1 = ρn+1(1− ρn), (4.1)

sn+1 +∇ρn+1 = 0, (4.2)

pn+1 − pn

∆t
+∇ · un+1 − Γ(rρn+1 − 1)pn+1 + Γ2|pn|2pn+1 = 0, (4.3)

1

D
un+1 = −∇pn+1. (4.4)

One obvious benefit of the first-order semi-implicit scheme (4.1)–(4.4) is that it can be decomposed into

two systems: (4.1)–(4.2) for ρn+1 and (4.3)–(4.4) for pn+1. Then we can solve the two systems indepen-

dently. Note that the first-order scheme (4.1)–(4.4) leads to a linear system for Un+1 = (ρn+1,pn+1)T.

Applying the LDG discretization for the first-order semi-implicit schemes (4.1)–(4.4), we obtain an ODE

system

Un
t = F(t,Un,Un+1), t ∈ [0, T ],
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U(0) = U0, (4.5)

where F is continuous for U and t.

Now we construct higher-order SDC time discretization based on the first-order scheme (4.1)–(4.4).

Divide the time interval [tn, tn+1] into P subintervals by choosing the points tn,m for m = 0, 1, . . . , P

such that

tn = tn,0 < tn,1 < · · · < tn,m < · · · < tn,p = tn+1.

Let ∆tn,m = tn,m+1 − tn,m and Uk
n,m denotes the k-th-order approximation to u(tn,m). The points

{tn,m}pm=0 are chosen to be the Chebyshev Gauss-Lobatto nodes on [tn, tn+1]. Starting from Un, we

calculate Un+1 in the following algorithm. In Algorithm 1, we denote Im+1
m (F(t,Uk,Uk)) to the inte-

gral of the P -th degree interpolating polynomial on the P + 1 points F(tn,m,Uk
n,m,Uk

n,m)Pm=0 over the

subinterval [tn,m, tn,m+1], which is the numerical quadrature approximation of∫ tn,m+1

tn,m

F(τ,U(τ),U(τ))dτ.

The computation of ∫ tn,m+1

tn,m

F(τ,U(τ),U(τ))dτ

is based on the P -th degree Lagrange interpolation formulation of F(τ,U(τ),U(τ)) on the P + 1 Gauss

type points over the subinterval [tn,m, tn,m+1]. The local truncation error obtained with the semi-implicit

SDC scheme is O(δtmin(K+1,P+1)), where δt = maxn,m(tn,m). For more details of the SDC time dis-

cretization, see [16].

Algorithm 1 The SDC time integration method

Require: U1
n,0 = Un;

1: Use a first-order semi-implicit scheme to compute the approximate solution U1 at the nodes {tn,m}pm=1, i.e.,

2: for m = 0, 1, . . . , P − 1 do

3: U1
n,m+1 = U1

n,m +∆tn,mF(tn,m,U1
n,m,U1

n,m+1).

4: end for

5: Compute successive corrections based on the first-order scheme:

6: for k = 1, . . . ,K do

7: Uk+1
n,0 = Un

8: end for

9: for m = 0, 1, . . . , P − 1 do

10: Uk+1
n,m+1 = Uk+1

n,m +∆tn,m(F(tn,m+1,Uk
n,m+1,U

k+1
n,m+1)−F(tn,m+1,Uk

n,m+1,U
k
n,m+1)) + Im+1

m (F(t,Uk,Uk))

11: end for

5 Numerical examples

In this section we provide numerical examples to illustrate the accuracy and capability of the numerical

method. The first example is the accuracy test to verify our theoretical analysis, and the rest examples

are real problems performed in [13, 18]. The LDG discretization, combined with a semi-implicit SDC

integration method, is used to solve (2.5)–(2.8).

Example 5.1. We solve (1.1)–(1.2) and the parameters are taken as

D = 2, r = 1, Γ = 10 and Γ2 = 0.1. (5.1)

The exact smooth solutions are given as

ρ(x, t) = esin(t) sin(x) sin(y), p1(x, t) = esin(t) sin(x) cos(y),

p2(x, t) = ecos(t) cos(x) sin(y).

We can calculate the initial conditions and the right-hand sides accordingly.
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Piecewise linear and quadratic tensor product polynomials are used in the LDG scheme. We use

uniform meshes with M ×M elements over the computational domain Ω = [0, 2π]× [0, 2π], and compute

the numerical approximations at T = 0.2. Periodic boundary condition is used in this numerical example.

The numerical results are given in Table 1. From the table, we can observe optimal convergence rates,

which verifies the results in Theorem 2.2.

In the rest several examples, we study the actin pattern formation by the coefficient Γ which is the ratio

between alignment and the polymerization rate. Unless otherwise stated, the parameters are taken as

D = 5, r = 1.1 and Γ2 = 0.075. (5.2)

Examples 5.2 and 5.4 were performed by [18] with a characteristic finite element method. When Γ = 4.3,

spirals were caught at high density spots. Example 5.3 was studied in [13] by a finite difference method,

where a uniform density profile or waves have been obtained for various values of Γ. We use an LDG

spatial discretization combined with the second-order SDC time scheme in the simulations.

Example 5.2. The computational domain is Ω = [0, 150]2. The initial density and filament polariza-

tion of F-action are given by

ρ(x, y, 0) = 0.8 + 10−4rand(0, 1), (5.3)

p1(x, y, 0) = 10−2(2rand(0, 1)− 1), p2(x, y, 0) = 10−2(2rand(0, 1)− 1),

where rand(0, 1) represents the random number in [0, 1]. The parameter Γ in the modelling equations is

chosen as Γ = 4.3.

The computed mesh is composed of 150 × 150 elements with equal size. The time step in the second-

order SDC time scheme is ∆t = 0.1. The contour plots of density of the actin and the vector space for

average filament polarization with time evolution are shown in Figure 1. From the figures, we can see

that the density of the actin first grow, and align at ρ = 1, then several spots with higher density emerge

at t = 40, and the corresponding filament polarization shows spiral around the spots. At later stage the

spots move and disappear, then waves with regular width show up in the end. The results agree with

those in [13,18].

Example 5.3. We study the actin pattern formation by the coefficient Γ with various values. The

computational domain is Ω = [0, 150]2. The initial density and filament polarization of F-action are

given by

ρ(x, y, 0) = 0.8 + 10−4rand(0, 1), (5.4)

p1(x, y, 0) = 10−2(2rand(0, 1)− 1), p2(x, y, 0) = 10−2(2rand(0, 1)− 1),

Table 1 Accuracy test for Example 5.1, the results are solutions at the final time T = 0.2 for the LDG discretization with

piecewise linear polynomial combined with the second-order SDC time discretization, and quadratic polynomial combined

with the third-order SDC time discretization. The time step is ∆t = 0.1h with h = 2π
M

Mesh ∥ρ− ρh∥L2 Order ∥ρ− ρh∥L∞ Order ∥p− ph∥L2 Order ∥p− ph∥L∞ Order

82 5.46E−01 – 1.80E−01 – 1.29E−01 – 3.90E−01 –

162 1.40E−01 1.96 4.85E−02 1.89 3.35E−01 1.95 1.07E−01 1.87

322 3.53E−02 1.99 1.25E−02 1.96 8.48E−02 1.98 2.75E−02 1.96

642 8.84E−03 2.00 3.16E−03 1.98 2.12E−02 2.00 6.93E−03 1.99

1282 2.21E−03 2.00 7.95E−04 1.99 5.31E−03 2.00 1.74E−03 2.00

82 7.03E−02 – 3.65E−02 – 1.66E−01 – 7.17E−02 –

162 8.89E−03 2.95 4.29E−03 3.09 2.14E−02 2.96 9.15E−03 2.97

322 1.12E−03 2.99 5.21E−04 3.04 2.69E−03 2.99 1.13E−03 3.01

642 1.40E−04 3.00 6.43E−05 3.01 3.37E−04 3.00 1.41E−04 3.01

1282 1.75E−05 3.00 7.99E−06 3.00 4.22E−05 3.00 1.74E−05 3.00
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(f) p at T = 40
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(g) ρ at T = 150
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(h) ρ at T = 250
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Figure 1 (Color online) Example 5.2, numerical density and filament polarization with time evolution for (1.1)–(1.2) with

parameters Γ = 4.3, D = 5, r = 1.1 and Γ2 = 0.075. Initial conditions are set as (5.4), and the uniform mesh is composed

of 150 × 150 elements with periodic boundary conditions. An LDG discretization with piecewise linear polynomials and a

second-order SDC time scheme with time step ∆t = 0.1 are used during the simulation

where rand(0, 1) represents the random number in [0, 1]. Various values of Γ are chosen, namely 1, 4.3

and 10, respectively.
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(b) ρ at T = 100
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Figure 2 (Color online) Example 5.3, numerical density and filament polarization with time evolution for (1.1)–(1.2) with

parameters D = 5, r = 1.1, Γ2 = 0.075 and Γ = 4.3. Initial conditions are set as (5.5), and the uniform mesh is composed

of 100 × 100 elements with periodic boundary conditions. An LDG discretization with piecewise linear polynomials and a

second-order SDC time scheme with time step ∆t = 0.1 are used during the simulation

The computed mesh is composed of 100×100 elements with equal size. Note that the initial conditions

in this example are different from those of Example 5.2 since the random numbers are different. The

time steps in the second-order SDC time scheme are ∆t = 0.1 for Γ = 1 and Γ = 4.3, and ∆t = 0.02 for

Γ = 10. The contour plots of density of the actin and the vector space for average filament polarization

at several times are shown in Figure 2 for Γ = 4.3, and Figure 3 for Γ = 1 and Γ = 10. From Figure 2,

we can see similar trend for spots, wave formation on a coarse mesh with 100 × 100 elements. The top

two rows of Figure 3 are results for Γ = 1, showing that the density grows until ρ = 1.0 then stays at

the stage. The final state in the case of Γ = 1 is uniform. The bottom two rows of Figure 3 for Γ = 10

show that the density grows up to ρ = 1.0, subsequently high density points emerge, then waves form.

Comparing the bottom two rows of Figure 3 for Γ = 10 with results of Figure 2 for Γ = 4.3, we can see

that in the case of Γ = 10, the waves start earlier and no spiral shows up around the high density spots.

These results confirm the numerical simulations derived by the finite difference method in [13].

Example 5.4. The computational domain is Ω = [0, 50]2. The initial density and initial filament

polarization of F-action are given by

ρ(x, y, 0) = 0.4 + 0.4e−20(x−25)2−20(y−25)210−4rand(0, 1), (5.5)

p1(x, y, 0) = 10−2(2rand(0, 1)− 1), p2(x, y, 0) = 10−2(2rand(0, 1)− 1),

where rand(0, 1) again represents the random number in [0, 1]. We take Γ = 10.

The computed mesh is composed of 100 × 100 elements with equal size. The time step in the second-

order SDC time scheme is ∆t = 0.02 for Γ = 10. The contour plots of density of the actin and the vector

space for average filament polarization with time evolution are shown in Figure 4. Similar to the results

of [18], the density grows until ρ = 1, and filament polarization close to 0. The solution stay at the stage

for a period of time, and waves form in the end.
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Figure 3 (Color online) Example 5.3, numerical density and filament polarization with time evolution for (1.1)–(1.2) with

parameters D = 5, r = 1.1, Γ2 = 0.075. The top two rows of figures are numerical solutions for Γ = 1 while the bottom two

rows for Γ = 10. Initial conditions are set as (5.5), and the uniform mesh is composed of 100× 100 elements with periodic

boundary conditions. An LDG discretization with piecewise linear polynomials and a second-order SDC time scheme are

used during the simulation

6 Concluding remarks

In this paper, we studied the pattern formation dynamical model in polymerizing action flocks through an

LDG method, and optimal convergence rates were derived. Numerical experiments verified the theoretical
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Figure 4 (Color online) Example 5.4, numerical density and filament polarization with time evolution for (1.1)–(1.2) with

parameters D = 5, r = 1.1, Γ2 = 0.075 and Γ = 10. Initial conditions are set as (5.6), and the uniform mesh is composed

of 100 × 100 elements with periodic boundary conditions. An LDG discretization with piecewise linear polynomials and a

second-order SDC time scheme are used during the simulation

analysis and capabilities of the LDG method. In particular, we caught spiral around a spot in actin

pattern formation simulations for a suitable ratio between the change rate of the direction of F-action
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filaments and the polymerization rate. We will consider positivity of the density for the explicit Runge-

Kutta time method. The physical and numerical energy of the model and the adaptive strategy in long

time simulations will also be explored in the future.
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