Article

Developing, Analyzing, and Evaluating Vehicular Lane Keeping
Algorithms Using Electric Vehicles

Shika Rao ¥, Alexander Quezada >, Seth Rodriguez 3%, Cebastian Chinolla 4, Chan-Jin Chung > and Joshua Siegel

6,%

Citation: Rao, S.; Quezada, A.;
Rodriguez, S.; Chinolla, C.; Chung, CJ;
Siegel,]. Developing, Analyzing, and
Evaluating Vehicular Lane Keeping
Algorithms Using Electric Vehicles.
Vehicles 2022,1,1-29. https://doi.org/

Received:
Accepted:
Published:

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Submitted to Vehicles for possible open
access publication under the terms and
conditions of the Creative Commons
Attri- bution (CC BY) license (https:/ /
creativecommons.org/licenses /by /
4.0/).

Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani, India;
shikarao2018@gmail.com

Department of Computer Science, Lehman College, City University of New York; aquezadawa@gmail.com
Department of Computer Science, University of Texas at El Paso; sethrod6636@gmail.com

Department of Computer Science, University of Texas at El Paso; cebastianchinolla@gmail.com

Department of Math and Computer Science, Lawrence Technological University, Michigan; cchung@ltu.edu
Department of Computer Science and Engineering, Michigan State University; jsiegel@msu.edu

G o W N

Correspondence: jsiegel@msu.edu
f These authors contributed equally to this work.

Abstract: Robust lane-following algorithms are one of the main challenges in developing effective
automated vehicles. In this work, a team of four undergraduate students designed and evaluated
several automated lane-following algorithms using computer vision as part of a Research Experience
for Undergraduate program funded by the National Science Foundation. The developed algorithms
use the Robotic Operating System (ROS) and the OpenCV library in Python to detect lanes and
to implement the lane-following logic on the road. The algorithms were tested on a real-world
test course using a street-legal vehicle with a high-definition camera as input and a drive-by-wire
system for output. Driving data was recorded to compare the performance of human driving to that
of the self-driving algorithms on the basis of three criteria: lap completion time, lane positioning
infractions, and speed limit infractions. The evaluation of the data showed that the human drivers
successfully completed every lap with zero infractions at a 100% success rate in varied weather
conditions, whereas, our most reliable algorithms had a success rate of at least 70% with some lane
positioning infractions and at lower speeds.

Keywords: Automated Vehicles (AVs), Real Vehicle, Drive-by-Wire, Lane-Following, Lane Centering,
Self-Drive Algorithms, Computer Vision, Robot Operating System (ROS), OpenCV

1. Introduction

Self-driving vehicles are the next major advancement in the automotive industry.
Some of the core systems that allow for autonomy in vehicles are lane-following algorithms.
Lane-following algorithms are responsible for keeping the vehicle centered within the
lane by using lane detection techniques to detect the pavement markings along the road.
According to the SAE International association, vehicle autonomy can be broken down into
six levels, starting with SAE Level Zero all the way up to SAE Level Five (Figure 1).

Version November 25, 2022 submitted to Vehicles

https:/ /www.mdpi.com/journal /vehicles

10

11

12

13

14

15

16

17

18

19

20

21

https://doi.org/10.3390/vehicles1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/vehicles

Version November 25, 2022 submitted to Vehicles 2

SAE J3016™ LEVELS OF DRIVING AUTOMATION™

INTERNATIONAL. Learn more here: sae.org/standards/content/j3016_202104

SAE SAE SAE SAE
LEVEL 1" § LEVEL 2"} LEVEL 3" j LEVEL 4"

SAE
LEVEL 0"

SAE

LEVEL 5™

You are driving whenever these driver support features You are not driving when these automated driving
are engaged - even if your feet are off the pedals and features are engaged - even if you are seated in
What does the you are not steering “the driver’s seat”
human in the
dhr;\\/lzrtsos:g_t’ You must constantly supervise these support features; When the feature These automated driving features

you must steer, brake or accelerate as needed to requests, will not require you to take
maintain safety you must drive over driving

These are driver support features These are automated driving features
These features These features These features These features can drive the vehicle This feature
are limited provide provide under limited conditions and will can drive the
to providing steering steering not operate unless all required vehicle under
er‘attd° thssg} warnings and OR brake/ AND brake/ conditions are met all conditions
eatures dos momentary acceleration acceleration
assistance support to support to
the driver the driver
+automatic *lane centering +lane centering « traffic jam «local driverless |l *same as
emergency OR AND chauffeur taxi level 4,
braking « pedals/ but feature
Example <blind t «adaptive cruise | *adaptive cruise nt el can drive
Features [E] 20 control control at the SGELD everywhere

warning

wheel may or
UE
installed

same time inall

+lane departure conditions

warning

Figure 1. Levels of Driving Automation as defined by SAE J3016, revised in 2021. Source [27].

Although our algorithms are capable of steering, braking, accelerating, and lane
centering, we do not target any of the SAE levels of driving automation as our algorithms
forgo any kind of object detection, automatic emergency braking, and warning systems in
favor of researching robust lane detection and lane centering only using computer vision.
Lane detection uses computer vision to detect the lane by continuously estimating the
contours of the lane markings as the vehicle is in motion, whereas lane centering uses the
contours as input to monitor the position of the lane markings in relation to the position
of the vehicle. As seen in Figure 1, steering assistance and lane centering algorithms are
two of the essential systems that allow for autonomy in vehicles, and since many of these
systems rely on computer vision, the lane detection and lane centering problem devolves
partially into a computer vision problem. Thus, the focus of our research.

There has been a growing recognition that theoretical results cannot capture the
nuances of real-world algorithmic performance and many have started to view experi-
mentation as providing a pathway from theory to practice [22]. In this work, we aim
to experimentally analyze the strengths and weaknesses of Contour Line detection [19],
Hough Line Transform [21], and Spring Center Approximation [2] algorithms implemented
in Python.

In our empirical analysis, we found that a robust lane-following algorithm must be
able to deal with fading, broken-up, and missing road lane markings under varied weather
conditions and be resilient to environmental obstructions, which may prevent the lane from
being detected, such as shadows and reflections on the road. In this work, we tackle these
challenges in the lane following and lane centering algorithms we developed, analyzed,
and evaluated using a real street-legal electric vehicle. The key to our algorithms lies in the
region of interest, filters, and yaw rate conversion function we designed. The yaw rate con-
version function takes the coordinate of the centroid used by the lane centering algorithm
and converts it into yaw rates for the vehicle to use as input for steering. This allows our
algorithms to work under varied weather conditions and environmental challenges. Our
solutions were designed and implemented using the Robot Operating System (ROS) and
OpenCV libraries in Python.

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

Version November 25, 2022 submitted to Vehicles 3

All of our algorithms work in a similar way: they lane follow by chasing a hypothetical
blob that is always centered with respect to the lane. The coordinates of the blob are then
converted into yaw rates, which the drive-by-wire system uses to control the steering of
the vehicle. Thus, our goal is to implement this hypothetical blob that the algorithms can
always rely on being in middle of the lane. The first algorithm does this by computing the
centroid of the largest contour of the edge line. This centroid is the middle point of the
edge line, so we shift its position until it is in the middle of the lane relative to the edge
line. The coordinates of the centroid are then converted into a yaw rate for steering. On the
other hand, the second algorithm accomplishes this task by using Hough Line Transform
to detect the solid white lines on both sides of the lane and then draws a hypothetical
or "fictitious" line in between the white lines and computes its centroid to determine the
position of the blob. The third algorithm uses Hough Line Transform to detect the road
lane markings, then draws a series of rays that dynamically change in size to fit to the lane.
This algorithm starts with the blob centered in the middle of the lane and uses the size of
the rays to compute the forces acting on the blob to ensure it always stays in the middle of
the lane using spring physics.

To make a fair comparison between the driving performance of the algorithms and a
licensed human driver, we set a speed limit. The speed limit ensures that the algorithm can
be tested safely, since the test course is circular and compact, this means that the turns are
naturally sharp (see Figure 2). After testing it, we concluded that seven miles per hour is the
fastest speed the algorithms can safely handle while running circles around the test course.
We arrived at this value on the basis that, on average, the fastest a licensed human driver
could safely complete a lap around the course was eleven miles per hour without touching
the lane markings. This number is within the expectations we had considering that, in
simulation, the algorithms worked consistently up to ten miles per hour given the same test
course. But even in simulation, achieving speeds higher than ten miles per hour proved
difficult because of the tight turns. The driving performance of human versus algorithm
are put to the test and then evaluated under the same conditions by noting advantages
and disadvantages the algorithms have over the human driver and vice versa. As an
example, the algorithms were better at lane-following while keeping a consistent speed
than the human driver. This benchmark allows us to gauge where our algorithms stand in
comparison to a human driver and to pinpoint the areas that need the most improvement
to bridge the gap in performance.

Thus, the goal of this research is to develop, analyze, and evaluate self-driving lane
following and lane centering algorithms in simulation and in reality using street-legal
electric vehicles in a test course with various challenges. In our design, we intend to
account for sharp curves, narrow parking lot lines, unmaintained roads, and varied weather
conditions. Furthermore, we aim to compare the performance of the algorithms to each
other and to a licensed human driver under a speed limit. The main contributions and
novelty of this research work are summarized as follows:

1. We propose multiple computer vision based lane-following algorithms which are
tested on a full scale electric vehicle in a controlled testing environment.

2. The real-world testing environment has sharp curves, faded or narrow lane markings,
and unmaintained roads with exposure to the weather. The algorithms have been op-
timized to work under these conditions. Since computer vision-based lane-following
algorithms that rely on just a camera have not been evaluated under these circum-
stances before, our algorithms serve as a baseline for navigating unmaintained roads
under varied weather conditions. Our most reliable algorithms had a success rate of
at least 70% with some lane positioning infractions.

3. We evaluate the driving data of the algorithms and a licensed human driver using a
custom performance evaluation system, and then analyze and compare the two under
a specified speed limit using reports from the vehicle’s drive-by-wire system. The
algorithms are found to have a better speed control over the human driver, whereas

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

920

91

92

93

94

95

926

97

98

929

101

102

104

Version November 25, 2022 submitted to Vehicles 4

the human driver outperformed the algorithms when driving at faster speeds while
keeping to the lane.

4. We test the performance of algorithms written in Python as opposed to a compiled
programming language such as C++.

The remainder of this paper is organized as follows: Section 2 reviews the state of the
art research about lane-following algorithms for self-driving vehicles that only use a camera
and computer vision. This section goes over main gaps identified in this kind of research
and explains the role of our research in expanding knowledge in the discussed areas.
Section 3 elaborates on the simulation, physical testing environment, and the development
of the lane following algorithms. Then, the specifics about the challenges posed by the
weather and unmaintained roads are illustrated in Section 4. Section 5 discusses the
results of the evaluation of the algorithms in a real-time environment on the course using
a street-legal electric vehicle. The performance of the algorithms to a human driver is
also compared in this section. We reiterate the main results of this work and conclude the
manuscript by identifying the limitations and future avenues of work in Section 6.

2. Review of Literature

In most other research work on lane-following algorithms for self-driving vehicles
using only a camera and computer vision, the algorithms are only tested in simulation.
Even in simulation based work, the lane detection is overlaid on an image or video of the
road. A simulated vehicle is not used to understand the performance of lane detection
algorithms at different speeds nor does it take into account the kinematics of the vehicle. In
[8], the approaches in previous literature were categorized into three classes: area-based
methods, edge-based methods, area-edge-combined and algorithm-combined methods. In
area-based methods the road detection problem is considered as a classification problem
and regions in the image are classified into road and non-road. In edge-based methods,
an edge map of the road scene is obtained, and then using a predefined geometric model
matching the procedure is carried out to detect the lane. In algorithm-combined methods,
several methods are carried out together in parallel to increase detection performance.
According to these classifications, we use edge-based methods, and thus our prior art
search covers papers in this field.

In [11], the authors test their self-driving algorithm, which involved Hough Transform
with hyperbola fitting, on real-life vehicles. However, the authors mentioned that the
algorithm works only on slightly curved and straight roads, and there were some problems
with lane detection under certain lighting conditions. Our work aims to target these
limitations by enabling the vehicle to take sharp turns within a set speed limit under
different lighting conditions just using a camera and computer vision techniques.

The authors of [16] and [17] used several computer vision techniques for lane detection.
In [16], the authors compared thresholding, warping, and pixel summation to Gaussian Blur,
Canny Edge Detection, and Sliding Window Algorithm and found that the second approach
was more accurate. In [17], the authors used the HLS colorspace, perspective transform,
and sliding window algorithm. We did not attempt the sliding window algorithm in
this research work as the basic sliding window algorithm cannot detect dashed lines and
sharp curves. We attempted different combinations of the image processing pipeline
used in [16,17], however we observed that we gained minimal performance improvement
relative to the increase in computational complexity when working on the real vehicle. We
optimized the image processing pipeline for speed and efficiency by using only necessary
techniques (refer Section 3 for further details) to avoid processing delays.

In [24], the authors propose steerable filters for combating problems due to lighting
changes, road marking variation, and shadows. These filters seem very useful for combating
the shadow problem and especially for tuning to a specific lane angle. For lane tracking, in
this paper, the authors opt for using a discrete time Kalman Filter. We did not go for this
approach in our work as the Kalman filter provides a recursive solution of the least square
method, and it is incapable of detecting and rejecting outliers which sometimes leads to

Version November 25, 2022 submitted to Vehicles 5

poor lane tracking as stated in [8]. In [23], two different approaches were taken based on
whether the road was curved or straight. For a straight road, the lane was detected with
Standard Hough Transform. For curved roads, complete perspective transform followed
by lane detection by scanning the rows in the top-view image was implemented. As an
improvement to this, the authors in [25] adopt a generalized curve model that can fit both
straight and curved lines using an improved RANSAC algorithm that uses the least squares
technique to estimate lane model parameters based on feature extraction.

In [26], the authors propose a computer vision algorithm called HistWind for lane
detection. This algorithm involves filtering and ROI cropping, followed by histogram
peak identification, then sliding window algorithm. HistWind is then compared with a
Spatial CNN and the results are comparable for both, although HistWind has a considerably
lower execution time. In [9], the ACTor vehicle was used for testing a deep learning based
approach for lane centering using a pretrained inception network and transfer learning.
However, since this approach is computationally intensive and requires specialized hard-
ware, we did not attempt deep learning based solutions in our work. Additionally, due to
the test course being predefined, any deep learning based solution would have resulted
in an overfitted model. The computer vision based approach was chosen for this work
because it is usually simpler and faster than any other technique that requires specialized
hardware.

Version November 25, 2022 submitted to Vehicles

Table 1. Literature Review

‘ Papers Purpose Brief Description Research Gaps Identified
Deep Learn- | [26] Lane Detection A spatial CNN approach was Authors found that classical com-
ing Ap- compared to sliding window al- puter vision had considerably
proaches gorithm. Tested in simulation. lower execution time than deep
learning and no extra specialized
hardware required.
[15] Lane Detection LaneNet [31] was tested onareal Only lane centering without
vehicle. steering angle calculation was
done with deep learning. Also,
due to our test course being pre-
defined, any deep learning based
lane centering solution would
have resulted in overfitting.
[9] Lane Centering, and Transfer learning with inception ~ On average, the model achieved
Steering Control network was used for lane cen- a 15.2 degree of error. This
tering and steering angle calcula- would not have worked for our
tion. Tested on a real vehicle. course consisting of sharp turns.
Classical Com- | [16,17,23,24] Lane Detection Standard Hough Line Trans- These algorithms do not work
puter Vision form, Sliding Window algorithm, well on sharp curves, varied
Approaches Kalman Tracking, RANSAC al- weather conditions, nor poorly
gorithm. maintained roads. They also
have not been tested in a real test
environment.
[34] Lane Detection Kalman Tracking used and The future work of the paper in-
RANSAC algorithm for post- cluded explicitly fitting the curve
processing. Tested under varied, to the lane boundary data.
challenging weather conditions.
[32] Lane Centering and A nonlinear path tracking sys-
Steering Control tem for steering control was pre-
sented and tested in simulation.
[11] Lane Detection, Cen- Hough Transform with hyper- Only works on slight curves,
tering, and Steering bola fitting. Tested on real Ve- straight roads, and certain light-
Control hicles. ing conditions.
This work Lane Detection, Cen- Blob Contour Detection, Hough Tested only up to 7 miles per

tering, and Steering
Control

Line Transform, Spring Center
Approximation method. Tested
on a real vehicle in a test course
with tight turns, varied weather
and poorly maintained road con-
ditions.

hour.

From the above papers, we have identified that the improved RANSAC algorithm [25],
Kalman Tracking [25], sliding window algorithm [25], and spline models like [33] detect
and trace the exact curvature of the boundary of road. Out of these, as elaborated above,
the RANSAC algorithm seems promising as seen in [34]. Taking the characteristics of the
various lane models and the needs of lane detection in a harsh, real-time environment into
consideration, we propose fast and efficient lane keeping algorithms which use Contour
Detection (which traces the exact curvature of the road) and Hough Line Transform (which
linearly approximates the curvature of the road).

Version November 25, 2022 submitted to Vehicles 7

(a) One-to-one map of the test course in (b) Bird’s-eye view of the test course
Parking Lot H used in simulation. The in Parking Lot H at Lawrence
width of the lane, width of the road, Technological University.

radius for the turns, etc. are labelled in
the above figure.

Figure 2. Environment

3. Materials and Methods
3.1. Simulation

We use Robot Operating System (ROS) and Python for the development of our al-
gorithms. We test the code on two simulators: simple-sim [1], which is a 2D simulator,
and Gazebo, which is a 3D simulator. We use the OpenCV library for implementing the
computer vision algorithms.

3.2. Real World
3.2.1. Environment

The test course is in Parking Lot H located at Lawrence Technological University in
Southfield, Michigan, USA. It is a two-lane course, with an intersection at the bottom left
where the vehicle is programmed to stop at the yellow line before crossing it using a dead
reckoning turn. The challenge for each of the algorithms is to make two laps around the
course in succession for both the inner and outer lanes. The vehicle is meant to start with
the front wheels behind the yellow line, then proceed to make the dead reckoning turn,
and continue to drive until it has to make a stop for three seconds at the starting point and
repeat. The test course is out in the open affected by the weather, it has potholes, sharp
curves, fading and narrow road lane markings, and yellow parking lot markings as seen in
Figure 2.

3.2.2. Vehicle Specifications

ACTor (Autonomous Campus TranspORt) is built on top of a modified Polaris Gem e2
(Figure 3) provided by a joint sponsorship from two companies: Mobis and Dataspeed. Mo-
bis provided the base vehicle, and Dataspeed installed the drive-by-wire system. Lawrence
Technological University, DENSO, Dataspeed, Veoneer, SoarTech, and Realtime Technolo-
gies provided Dataspeed’s drive-by-wire system, vision sensors, 2D and 3D LIDARs, GPS,
on-board computers, and all other hardware. The Polaris Gem e2 has a top speed of twenty
miles per hour, and a range of approximately twenty miles. For this research project, we
limit the speed to seven miles per hour for safety reasons since the algorithms are tested
under the supervision of humans on board.

We use a Mako G-319 Camera from Allied Vision for lane-following. The Mako camera
has a resolution of 2064 x 1544 pixels with a max frame rate of 37 frames per second at max
resolution, and it has native ROS support.

Version November 25, 2022 submitted to Vehicles 8

Icamerafimage_raw

N Mako Camera

Height
73 inches ¢
(185.4cm)}

“Width
55.5 inches
{141 ¢cm),

g EENNL

(a) ACTor Specifications. The width (b) The camera of the vehicle is fitted
of the vehicle is 55.5 inches (141 cm) with sunglasses to reduce bright
and length is 103 inches (262 cm) as reflection and unwanted glare.

labelled above.

Figure 3. The above images contain details about the vehicle.

3.3. Code Architecture

All of the lane-following algorithms follow the same architecture for the sake of sim-
plicity and modularity. We have four nodes: the SDT report, yellow line, line follow and the
control unit as seen in Figure 4. The SDT report publishes the data required for evaluating
the algorithms. The yellow line node is responsible for detecting the yellow line by counting
the number of yellow pixels for a specified number of frames in a custom region of interest.
The line follow node is responsible for converting the coordinates of the center blob into
yaw rates used for steering by the drive-by-wire system. The control unit is responsible for
connecting the algorithm to the drive-by-wire system to pass the computed yaw rates and
the speed values input by the user. Further details of the mathematics behind each of these
nodes is provided below.

The filters applied are also consistent across the algorithms and a region of interest is
customized for each algorithm.

Jsdt_reportftime_secs

Ivehicle/steering_report

/camera/image_raw

Nine_follow_inner

Figure 4. RQT graph of the ROS node architecture.

3.3.1. SDT Report Node

The Speed, Distance and Time (SDT) report is a node that keeps track of the instanta-
neous speed, the distance traveled, and the time while the vehicle is in motion and makes
this information available to other nodes. The instantaneous speed comes from the steering
report published by Dataspeed’s drive-by-wire system installed on the vehicle. This node
keeps track of the time elapsed by using the time module from the ROS client library for
Python while the vehicle is in motion. Finally, given the instantaneous speed and the time,
we computed the distance traveled by approximating it using the Riemann sum using the
equation below.

n
distance = Y _ (speed * Atime)

i=n—1

3.3.2. Yellow Line Node

The yellow line node detects the yellow line on the course by using a 351 x 160 region
of interest and converting it to the HSL colorspace. Using the converted image, this node

Version November 25, 2022 submitted to Vehicles 9

uses OpenCV’s inRange and findContours functions to get a binary image with only the
yellow pixels within an HSL range and computes the area of the largest contour as seen in
Figure 5. The algorithm determines whether or not what it sees is a yellow line by checking
for an area greater than six-hundred pixels for seven consecutive frames while the vehicle
is in motion.

Once the yellow line is detected, it publishes a Boolean message which the control
unit then listens for to slow down the vehicle for a few seconds until it comes to a full stop
at the yellow line for three seconds, and then perform the dead reckoning turn depending
on whether it is in the inner or outer lane. The dead reckoning proved to be more reliable
at the intersection, as there are no road lane marking to follow during the duration of the
turn. This algorithm can be improved further by combining this method with Hough Lines
Transform to look for lines of an specific slope instead of solely relying on color detection.

MAX_AREA: VRXAREA: 5217.5
DETECTED: DETECTED: False

Figure 5. Filtration to detect yellow lines.

3.3.3. Line Follow Node

The line follow node is the only node which varies by algorithm. It is solely responsible
for computing the yaw rate in radians per seconds and publishing it to the control unit.

3.3.4. Control Unit Node

The control unit subscribes to the three nodes described above and links them to the
drive-by-wire system. The yaw rates computed in the line follow node and the speed values
input by the user are published as a command to the vehicle through this node. This node
also publishes control messages to the drive-by-wire system during the dead reckoning
turn (the turn at the intersection). In order to know when to switch from lane-following to
dead reckoning, and vice-versa, the control unit subscribes to messages sent by the yellow
line node. The dead reckoning parameters are sensitive to weather conditions. This is
because the sunlight present at the time affects how fast the seven consecutive frames of
yellow were detected, thus resulting in stopping early before the yellow or stopping late
past the yellow line.

3.3.5. Filters

We apply a white balance filter that converts the RGB image to the CIELAB (or L*A*B)
colorspace as it approximates human vision. This provides a lightness component and
two color components. The white balance filter adjusts the image such that the colors in
the image are naturally seen without being affected by the color of the light source. The
filter compensates for the color hue of the light source. In case of direct sunlight, we apply
this white balance filter twice to enhance the algorithms ability to detect the lane under
sunlight.

Additionally, since algorithms are sensitive to the weather conditions, we implement
the ability to dynamically adjust the parameters of the filters at the time of testing. This
method uses the HLS (Hue, Light, Saturation) colorspaceto create a mask for detecting
the white lane markings. The HLS colorspace simplifies the process because only the L
value needs adjusting depending on the weather. The mask is created by converting the
images from the camera to grayscale and then smoothing them using a 2D Convolution
kernel ([18]). HSL masking was also useful as it allows only white and yellow regions to
pass through into a grayscale image. Lastly, we pass the smoothed grayscale images to the

255

257

258

259

260

Version November 25, 2022 submitted to Vehicles 10

Edgegradient(G) = |/ G} + GJ

G
Angle() = tan 1 (G—y)

X

Figure 7. The mathematics behind the operation of Canny Edge Detection is shown in the equations
above.

Canny Edge Detection function to get the best results for detecting the white lane markings.
The math behind these functions is shown in Figure 10.

The Canny Edge Detection function [14] is able detect the edges of objects in the
images by comparing the gradient magnitude of a pixel to the pixels on its sides. If the
magnitude is larger than the adjacent pixels in the direction of maximum intensity, the
Canny edge detector classifies that pixel as an edge as shown in Figure 7. This function
also uses non-maximum suppression and thresholding. This technique is used to extract
the morphological information from the images and to reduce the amount of data that is
processed.

RGB ¢+ CIE L*a*b*

In case of 8-bit and 16-bit images, R, G, and B are converied to the floating-point format and scaled to fit the 0 to 1 range.
X 0.412453 0.357580 0.180423 R
Y | « | 0.212671 0.715160 0.072169 | - | G
z 0.019334 0.119193 0.950227 B

X + X/Xy, whereX, = 0.950456

Z + Z/Zy, whereZ, = 1088754 RGB <+ HLS
I e 116« Y'/* —16 for Y > 0.008856 In case of 8-bit and 16-bit images, R, G, and B are converted to the floating-point format and scaled to fit the 0 to 1 range.
903.3+Y for ¥ < 0.008856

Vinaz + maz(R, G, B)

@+ 500(#(X) — F(Y)) + delta
Vinin + min(R, G, B)

b+ 200((Y) — £(2)) + delta

Vinaz + Vinin
PR

L

where)
1) — £/ for ¢ > 0.008856 if L < 0.5
7787t +16/116 for t < 0.008856
if L>0.5
and ’ '
60(G — B)/(Vinaz — Vi if Vir = R
delta _ [128 for S-bit images (;(fay in) - fﬂf‘" e
Y0 for floating-point images g o] 120+ 00(B = RB)/(Viaz = Vinia) - 1f Vinaz =
240 + 60(R — G)/(Vingz — Vinin) i Vinaz = B
This outputs 0 < L < 100, —127 < a < 127, —127 < b < 127 . The values are then converted to the destination data type: 0 fR=G=B
« 8-bitimages: L < L +255/100, a + @+ 128, b+ b+ 128 If H < Othen H « H + 360 Onoutput0 < L<1,0< S <1,0< H < 360
(@ (b)

Figure 6. Mathematics behind the color conversion from RGB to CIELAB and RGB to HLS. Images
sourced from [18].

Figure 8. Image after applying of all the filters.

3.3.6. Region of Interest

Seeing as the raw camera footage contains substantial noise and extraneous informa-
tion, we decided to implement a region of interest to target only the region needed to detect
the road lane markings. This is accomplished by using a numpy array of size five, which
corresponds to the number of sides in the polygon-shaped region we mapped out using
the fillPoly function in the OpenCV library. The end result is a region of interest tailored
to the needs of each algorithm for detecting the lane markings. We also had the idea of
implementing a dynamic region of interest using a numpy of size eight that would auto-

Version November 25, 2022 submitted to Vehicles 11

Initial Yaw Rate Calculation Algorithm pseudocode: Final Yaw Rate Calculation Algorithm pseudocode:
mid = cols / 2; center_error = ¢X - camera_center X,
steer err = mid - cx; correction = constant * camera_center_y;
yaw_rate = 0.01 * steer_err yaw _rate = center_error / correction
(@ (b)

Figure 10. Pseudocode for the Yaw Rate calculation algorithm.

matically change its shape based to the coordinates of the centroid. This further cropped
the image, however, it would sometimes leave in extraneous information that interfered
with the algorithms. Future experimentation with the array size and parameters could lead
to better results.

As can be seen in Figure 9, the image after applying a region of interest is cleaner
and eliminates noisy data such as extraneous lines on the road and on the horizon. This
allows our algorithm to focus on the actual lane markings rather than attempting to draw a
contour or Hough lines on something such as grass, yellow parking lot markings, or any
additional irregularities on the course that our filters are not able to detect.

Figure 9. Image after applying Region Of Interest function.

3.4. Algorithm I (Blob)

Contour Line Detection, Offset Lane Centering, and Proportional Control Yaw Rate Calcula-
tion using Contour

The goal of all lane-following algorithms is to identify the center of the lane and to steer
the vehicle towards it [19]. The first algorithm is the simplest of the three implemented.
The algorithm was implemented using the filtered image as input.

In this algorithm, the key to getting the vehicle to follow the white line smoothly
consisted of two steps:

1. Compute the centroid of the largest contour using the OpenCV library
2. Devise a formula to convert the coordinates of the centroid into yaw rates (in radians
per seconds)

We drew a circle at the centroid of the largest contour, which presents the center of the
white line in the camera’s view. The vehicle was commanded to try to keep that circle in
the same area in the image while in motion.

We refined this algorithm in simulation by computing the difference between the x
value of the contour’s centroid and subtracting it from the y value of the vehicle’s camera
centroid. Then, dividing that by a correction value, which we obtained by multiplying
a constant by the x value of the vehicle’s camera centroid. This yields a yaw rate that is
proportional to the difference between the x position of the contour’s centroid and the
centroid of the vehicle’s camera view.

Version November 25, 2022 submitted to Vehicles 12

(a) In SimpleSim simulator (b) In Gazebo simulator

Figure 11. The above image shows the algorithm in action in 2 different simulators, namely SimpleSim
and Gazebo. The circle is drawn at the centroid of the largest contour (the detected white line).

For lane centering, only one of the lane lines was detected and the vehicle was centered a2
to maintain a certain distance from the detected line. The simulated vehicle was able to 333
follow the lane at a high speed of 16 mph with no discernable jitter. 33s

ROI and Filtered ROI

N
N\

Figure 12. This is a still from the camera of the vehicle when using the blob detection algorithm in

(a) Outer lane (b) Inner lane

the real time environment. As seen in the above figure, the largest white contour is found (marked in
red) and the blue dot indicates the centroid of it. The ROI cropping is also seen above.

3.5. Algorithm II (Hough) 335
Probabilistic Hough Transform Line Detection, Fictitious Center Lane Line using Offset for s3e
Lane Centering, and Proportional Control Yaw Rate Calculation using Contour 337

338

Hough lines have been used in previous lane keeping algorithms, including those used
by real vehicles[11]. We implemented the Probabilistic Hough Line Transform function
[21] to the filtered image for line detection. The standard Hough Transform is used to
determine the parameters of features such as lines and curves within an image. In the
case of line detection, a single edge pixel is mapped to a sinusoid in 2D parameter space
representing all possible lines that could pass through that image point. This point-to-curve
transformation is the Hough transformation for straight lines. When viewed in Hough
parameter space, points which are collinear in the cartesian image space become readily
apparent as they yield curves which intersect at a common point. Probabilistic Hough
Transform is an optimization of the Hough Transform. It doesn’t take all the points of the
line into consideration. Instead, it takes only a random subset of points which is sufficient
for line detection. The Probabilistic Hough Lines are found using the parametric form for a
standard line equation:

o = xcosf + ysinf

Version November 25, 2022 submitted to Vehicles 13

The methods we utilize after the implementation of the Probabilistic Hough Line
Transform deviates from prior research. The slope of each line is calculated and all lines
with a positive slope are averaged to come up with the left line and all lines with a negative
slope are averaged to come up with the right line.

For lane centering, we used two different methods:

1. We offset the right line in case of outer lane-following and the middle line in case of
inner lane-following according to the range of view of the camera.
2. We averaged the left and right slopes to obtain a middle line.

For the yaw rate calculation, we used two different methods:

1. We use the contour detection line following method on the center line. (Refer Section
3.4)

2. We use an equation that we came up with which directly uses the middle line to
convert the point furthest away from the screen to a yaw rate.

For yaw rate calculation directly with the x coordinate from the center line, we used the

center error (refer Figure 10) and divided it by a large gain value to obtain a small yaw rate.

We tested combinations of the above lane centering and yaw rate calculation methods
to arrive at four variations of the same algorithm. The case wherein we used offset lane
centering and contour detection on the center line worked the best in both simulation and
real life tests. Thus, this was chosen as the implementation for algorithm II. This algorithm

is novel as it is a combination of Algorithm 1 (refer Section 3.4) and the Hough Transform.

(a) Average middle line lane (b) Offset right line

Figure 13. The Hough Lines and the Center Lane Line are visually represented in 2D simulation.

(a) Outer lane (b) Inner lane

Figure 14. The ROI used for Algorithm II when using the offset method of lane centering. Different
ROIs are used for inner and outer lane.

342

343

344

345

346

350

351

352

353

Version November 25, 2022 submitted to Vehicles 14

ROl Image and Hough Lines

(a) Outer lane (b) Inner lane

Figure 15. Hough Lines and Contour Detection.

This is an image from the implementation of the algorithm in the real-time environment. The above
figure shows the Hough Lines for the white lines drawn in blue and the center lane line drawn in red.
Red was chosen as the color for the center line as red is not typically found on roads. The green on
the red line indicates the Contour Detection of the center line.

Filtered Image with ROI x Image with ROI

Figure 16. The above image shows the ROI used for Average Center Lane Line method for lane
centering. The same ROl is used for inner and outer lane.

(a) Outer lane (b) Inner lane

Figure 17. Hough Lines and Average Center Lane Line.
The ROI in Figure 16 is used for this method so that the white lines on both sides are detected. Both
of these lines are used to create a fictitious center line which is shown in red.

3.6. Algorithm III (Spring)
Hough Transform Line Detection with Spring Method Center Approximation for Lane Center-
ing

Hough line detection is applied to find all the lines in the filtered image. All the 45°
lane lines are extended to form an X to account for cases where there are broken or dashed
lines in order to enable the automobile to follow a continuous path. The spring method
center approximation method [2,20] is then used on these lines. This algorithm’s objective

Version November 25, 2022 submitted to Vehicles 15

is to use spring physics as a dynamic control model to move the vehicle’s center (VC) to
the lane’s center (LC). This works because the x component of the spring’s push force is in
equilibrium when the car is in the middle of the lane.

To transfer the force into steering input, the rays that intersect with the line mask are
detected once they have been generated from the VC point. The force may be represented as
a push or pull force on the point LC using the ray lengths. The last step involves calculating
the steering input using the horizontal component of the force to move the car right or left
and center it in the lane. We adapted and optimized this algorithm to work in Python and
fit in our code architecture.

Figure 18. The above image shows the working of the algorithm in simulation. The blue lines indicate
the Hough lines and the yellow point indicates the center of the lane. The rays are extended until
they touch the Hough lines on either side.

Filtered Image with ROI - ® Image with ROI

Figure 19. The above figure indicates the ROI cropping done. Since both white lines are ideally
required for this algorithm, the ROI is symmetrical on both sides.

(a) Outer lane (b) Inner lane

Figure 20. Visual Representation of the Hough Lines and the center point. The rays are drawn out to
meet the Hough lines. The inner lane image shows how the algorithm works even on a sharp turn.

Version November 25, 2022 submitted to Vehicles 16
Table 2. Summary of the algorithms implemented.
Line Detection Lane Centering Proportional Yaw In Simulation In R.eal-Tlme
Rate Control Environment
Works. This is the
algorithm being
Using the x Worked well. No used for
Algorithm 1 Contour Offset coordinate value jitter even at high demonstration.
from centroid speeds. Jitter present in
real life even at
low speeds.
Probabilistic Average Center Using the x Worked, but jitter Could not do the
Algorithm 2 Hough Lines, then La rioye Line coordinate value = present even atlow sharp turns, lane
Contour from centroid speeds. departures present.
Worked better than
Probabilistic Average Center Using x coordinate . ab(?ve in Could not do the
. - value from average simulation. Slight sharp turns, lane
Hough Lines Lane Line . .
center lane line jitter even atlow departures present.
speeds.
Works, but
. . requires future
- Using x coordinate Worked well. Jitter ~ adjustment to find
Probabilistic value from the ; .
. Offset present at high a perfect equation
Hough Lines offset center lane d leulate th
line speeds. to calculate the
proportional yaw
rate.
Works. Algorithm
being used for
demonstration.
Probabilistic Using the x Worked well. Jitter Fastest and
Hough Lines, then Offset coordinate value present at high smoothest
Contour from centroid speeds. algorithm. Jitter
present in real life
only at higher
speeds.
Worked well. Jitter Works. This is the
Using the mean and lane algorithm bein
Algorithm3 Hough Lines Spring Force & departures present & &
force value : . used for
at medium to high .
demonstration.

speeds.

4. Challenges

This research study is novel because we tested our algorithms under challenging
situations including dynamic lighting, varied road conditions, and distractions that would
confuse our camera and interfere with our algorithms. We had to plan for and overcome all
of these obstacles since people travel at various hours of the day and on unreliable roads.

4.1. Environment Challenges

Lawrence Technological University’s Lot H Course has many inconsistencies in its lane

lines as the course is meant to represent the imperfections of real-world road conditions.

Large portions of the lanes have potholes, cracks, and bumps, which interferes with the

vehicle’s speed control, as well as the algorithms’ ability to detect the lane. Moreover,

since the test course replicates an unmaintained road, the lane lines are narrower and
the markings are more faded than many real-world roads, hence harder to detect with

Version November 25, 2022 submitted to Vehicles 17

our algorithms. As a result of this and the weather, our lane detection function would
sometimes lose track of the lane causing the vehicle to drive off the road. For this reason, we
decided to implement a shadow creep functionality to prevent this behavior. Our shadow
creep implementation creates an artificial middle lane line for when the Hough lines are lost
until the lane detection algorithm recovers. However, this method was was unsuccessful
so instead we secured a strip of white reflective tape along the segments of the lane that
were faded or missing as seen in Figure 21.

(a) Broken white lane line is shown (b) A strip of reflective white tape is

in the above image. The deteriorated secured creating a more stable line to
road conditions are also seen. detect and track.

Figure 21. The Lot H Course contains many broken lines where there should be solid lane lines. This
mimics real-life, worn road conditions.

In Figure 22 (a), we see that there are instances where there are yellow parking lines are
close to the white lane lines. This creates the issue of premature yellow detection, resulting
in the ACTor stopping and turning before reaching the stopping area. The solution that
we came up with was to design and implement a region of interest tailored specifically for
detecting the yellow line as seen Section 3.3.6.

As shown in Figure 22 (b), shadows from nearby trees and objects obscure the lane and
breaks the lane detection algorithm due to the drastic change in brightness. This paired with
our restriction of only being able to use the single Mako G-319 Camera for lane-following
created a problem. To fix this problem, we implemented a dynamic reconfiguration menu
and added an option to adjust the L (or light) value in the HLS colorspace we use in our
filters for detecting the lane. When the shadow obscures the lane, the brightness drastically
drops, which means all we needed to do is find a way to increase the brightness of the live
camera footage when it happens. By adding an option to dynamically change the L value,
we were able to solve the problem.

Since the camera was installed behind the windshield, our algorithms struggled in
sunny conditions due to overexposure. Our stopgap solution was to tape a tinted sunglasses
lens to the camera to polarize some of the light, but many times this did not suffice and
our algorithms could not work properly as we relied on the camera to guide us through
the course. Additionally, when it rained, the oil mixed in soil created reflective puddles on
the ground, and the raindrops on the windshield increased the level of noise in the camera
footage as shown in Figure 23. This made it more difficult for our algorithms to recognize
the lane lines as the puddles were reflecting the white clouds overhead. The camera was
also installed in a location out of the wipers reach, so it could not wipe off the raindrops
off the windshield. But the region of interest and filtering techniques implemented were

389

390

3901

392

394

Version November 25, 2022 submitted to Vehicles 18

(a) Yellow parking lines near the lane (b) Shadows from nearby trees
interfering with yellow line interfering with lane detection.
detection.

Figure 22. The above images indicate some of the environmental challenges faced. The images are
from the test course.

robust and the algorithms were unaffected by rainy conditions (please refer to Appendix
A). However, the filtering can still be improved and is an area for future quantitative study
[30].

Figure 23. Rainfall leaves reflective puddles across the course making it difficult to detect and track
lane lines. Consistent rainfall on the windshield also caused multiple disturbances with camera
consistency.

4.2. Code and Simulation Challenges

Though simulators have in the past been used to successfully transfer learning from
one domain to another without retraining, including in self driving [10], in this case, the
code that worked well in simulation but struggled in reality, as the simulation failed to
account for the nuance and complexity of the real-world environment. The algorithms’
movement in the simulated environment was not smooth or uniform at higher speeds. In
real life, most of the algorithms had poor steering control leading to unsteady movements
of the vehicle when testing due to the conditions of the unmaintained road.

We tested perspective transform and Bird’s Eye View transform but found that these
transformation techniques were ineffective for our uses. We also tried median blur, his-
togram equalization, dilation, Laplacian, Gaussian, and Sobel filters. However, we found
these operations add little performance improvements relative to their computational com-

419

421

Version November 25, 2022 submitted to Vehicles 19

plexity. In consideration of speed, we applied only the most necessary filters so that our
algorithms could work well.

All nodes in ROS run in parallel so ROS was chosen for development purposes to be
able to make use of the available computational resources on the vehicle. However, we
still observed that there were delays in the processing speed as sometimes the masked
image would not change despite the vehicle being in motion. This is an area that would
benefit from increased computational power and could possibly increase the speed and
performance of the vehicle and algorithms. It is also worth mentioning that this could be
one of the limitations of implementing our algorithms in Python.

5. Results

An evaluation program was used to collect the total time, average speed, and speed
infractions of a successful run for each method. An external evaluator recorded the number
of times the vehicle would either touch a lane line or drift outside the lane. One of the
Teaching Assistants was arbitrarily chosen as the evaluator and assigned to follow the
vehicle across the test course. Markings were made on a paper version of the track where

the vehicle touched a line, departed from the lane, or for the dead reckoning turn error.

In addition, the weather conditions at the time and any additional comments were also
noted. Since the same person evaluated all of the algorithms, the key was uniform and left
up to the evaluator’s discretion. In addition, rosbags were recorded using the vehicle’s
drive-by-wire system to corroborate and verify the evaluator’s sheets.

A run is defined as a failure if the human driver has to manually use the brake to stop
the vehicle from hitting the curb or going off the predetermined course. In case of a lane
departure wherein the algorithm is unable to follow the lane anymore, this case would also
be considered a failure. In the dead reckoning turn, if the vehicle turns too much to the
right in case of the inner or outer lane turn, it is a failure case. If it turns too much to the
right in case of the outer lane-following; it hits the curb. If it turns too much to the right in
case of inner lane-following, the algorithm loses the middle dashed line or the outer line
too according to the Region of Interest used. In both of these cases, it results in a failure
case as the algorithm is unable to proceed following the lane.

The Table 3 below shows the recorded data for the official runs of the algorithm. Each

run, whether it was successful or not, was recorded as a rosbag file for future analysis.

An external evaluator was responsible for noting the results. Refer to Appendix A for the
details of each of the official runs. The total number of recorded runs for each algorithm
was used to determine the average success rate.

Table 3. Summary of Results Data.

. Distance
Success Rate Time taken to Best Average covered above No. of Line
Inner/ Outer o complete 2 laps speed for both
(%)) laps (mph) or below speed Touches
S aps tmp limit (m)
Algorithm 1- Outer 66.67 193.02 1.999 3.352 0
Blob
Inner 50 153.22 2.108 4.962 3inlap1,4in
lap 2
Algorithm 2- Outer 77.78 86.88 4476 8.142 0
Hough
Inner 66.67 163.41 2.088 4.768 0
Algorithm 3- e]
. Outer 33.33 163.68 2.147 2.77 infinite
Spring
Inner 75 154.02 2.13 3.364 0
Best Human Outer 100 75.00 5.854 71.03 0
Driver
Inner 100 71.14 5.185 2.292 0

! The vehicle’s wheels were on the line throughout most of the lap (but it did not depart the lane).

Version November 25, 2022 submitted to Vehicles 20

The official runs of each algorithm on the inner and outer lane are recorded above and es
processed into a speed-time graph. These are then compared with the data from the human e
driver that drove the best below (Refer to Appendix A for more graphs) a70

Cebastian Inner Lane Seth Outer Lane

Speed (mph)
[T

N

speed (mph)
6 b M w s ow oo u oo

10 20 30 40 50 60 70
Time (s) Time (s)

] 10 20 30 40 50 60 70 80

(a) (b)

Figure 24. The above images shows the speed-time graph for the best human drivers for inner lane
and outer lane. The time taken, distance traveled above the speed limit, and average speed were
taken into account for determining the best human driver.

Hough Outer Lane Spring Inner Lane

2.0

Speed (mph)
Speed (mph)

0 50 100 150 200 250 300

o 25 50 7 100 125 150
Time {s) Time (s)

(a) (b)

Figure 25. The speed time graphs for Spring algorithm run on the inner lane and Hough algorithm
on the outer lane are shown in the above images. For more graphs of the algorithms, please refer to

Appendix A.
The speed control for the algorithms are noticeably more consistent than that of the 47

human drivers. The bumps in the graph are the result of the vehicle trying to make 472
corrections for bumps and inconsistencies in the road. The sharp peaks and troughs of a7
the graph are the result of losing a Hough line in the mask, then picking the line up again. a7
The human drivers also demonstrated a tendency to go over the speed limit in many a7
cases, suggesting it is difficult for humans to maintain a consistent speed at all times. On 476
average, the human drivers were able to drive faster than the algorithms, close the set 77
speed limit of seven miles per hour. However, the algorithms were not far off; the Hough 7
algorithm was able to complete the outer lane laps at a maximum speed of 6.7 miles per a7
hour and at an average speed of 4.476 miles per hour consistently for over four tests, which 4s0
is comparable to the average speed of the human drivers. The human drivers would often 4s:
exceed the speed limit and once they noticed the speed limit infraction on the speedometer s
of the vehicle, they would try to correct it by slowing down and the pattern would repeat aes
throughout the laps for large distances traveled. On the other hand, the Hough algorithm es
for outer lane covered a much smaller distance of inconsistent change in speeds. Overall, 4ss
the human driver was better at keeping to the lane at higher speeds, but struggled keeping s
a consistent speed when compared to the self-driving algorithms. 287

The algorithms are quite far from human performance in terms of control of the vehicle s
at high speeds though the Spring and Hough algorithm proved promising. In the recorded asse
runs of the authors, the average speed ranged from 3.8 to 6.9 miles per hour (for each author 4s0
attempting the course) when following the speed limit. In contrast, the Hough algorithm e
achieved an average speed of 4.476 miles per hour (and 4.358 miles per hour in another of 4e2
the recorded runs) for outer lane which falls exactly within the range of the human runs. 403

Version November 25, 2022 submitted to Vehicles 21

All of the algorithms faced some difficulty when under direct sunlight. Hough lines
especially are dependent on the accuracy of the HSV mask, which varies depending on
weather and light conditions. The Hough algorithm performed best in overcast weather
conditions. We observed that the spring algorithm had a superior performance for the
inner lane when compared to the outer lane. We attribute this to the fact that the algorithm
is able to better detect the lane when it is at a closer proximity to the vehicle due to the
sharper curves.

Figure 26. The nomenclature for the Turn Number is indicated in the above image.

Table 4. Table indicating the most difficult turn for each algorithm.

Parameter | Algorithm Outer/ Inner Location
Hardest Turn Blob Outer Turn 2
Inner Especially Turn 2, but all turns
are mostly difficult
Hough Outer Turn 3
None, all face equal difficulty
Inner
or ease
Spring Outer None, all face equal difficulty
or ease
Inner None, all face equal difficulty
or ease

6. Conclusions

This research presented three different algorithms that autonomous vehicles may use
to navigate both inner and outer roadway lanes. Real-world driving data and graphs
showed that the human driver was better at staying within the lane while the algorithms
excelled at driving at a certain speed consistently. We tested the algorithms on the ACTor
self-driving platform as fast as they could go under the speed limit of seven miles per
hour while still achieving the highest level of accuracy. In the end, during testing and
demonstration, all three algorithms were able to complete the course for two laps. Some
algorithms performed better than others, but ultimately, they were all able to complete the
laps. Based on the results from all of the tables, we came to the conclusion illustrated in
Table 5:

Version November 25, 2022 submitted to Vehicles 22

Table 5. Summary of the findings

Parameter measured Lane Algorithm
Fastest Algorithm Outer Hough (max speed: 6.7 mph)
Inner Hough (max speed: 4.9 mph)
Smoothest algorithm /
Algorithm with the least jerk Outer Hough
Inner Hough, Spring
Most reliable algorithm (based Outer Hough
on the average success rate)
Inner Hough
Best overgll'algorlth{n / Most Outer Hough, Spring
promising algorithm
Inner Hough, Spring

A high average speed, along with the minimal number of line touches, suggests good
speed and centering control since it means the car did not have to slow down as much for
turns. Existing lane-following algorithms are built for smooth, well marked roadways [11],
[17]. In this research work, despite the numerous obstacles, such as the tight curves and
unmaintained roads, our algorithms were able to navigate the test course. These algorithms
serve as a baseline for navigating the challenging sections of road.

Our work aims to enable a vehicle to drive under varied weather and road conditions
without any human intervention within the bounds of a predefined course when the
self-driving feature is enabled. As per SAE definition of autonomy (refer Figure 1), our
work advances the computer vision aspect of self-driving research required to achieve full
autonomy.

There are opportunities for future improvement of this study. For example, more
data collection in the form of rosbags could be useful in getting more accurate values of
the performance of the algorithms. We could also test the effectiveness of our filtration
process under snowy conditions as long as the lanes are visible. The future directions of this
research includes a fully-automated function to evaluate the performance of self-driving
algorithms. We use an automated evaluation function to compute the time taken for the
laps, the average speed, and the distance traveled over and below the speed limit. However,
a fully automated evaluation system that also notes the weather conditions and number of
line touches and departures could be built instead of any human evaluation. In addition,
research into HDR algorithms can be used to improve the filtration pipeline used in this
research as excessive sunlight and luminosity was a challenge that lead to a few failure
cases (refer to Appendix A). Lane detection using deep learning algorithms like LaneNet
[29] followed by lane centering algorithms could also be further explored.

The evaluation data files (or rosbags) of the algorithms driving are saved for further
research in the future. The implementations of the algorithms are also open source and
available on GitHub.

In the future, we intend to develop algorithms that will enable vehicles to travel faster
and more accurately—ideally, at a pace that is equal to that of humans—and to deliver
reliable data regardless of the weather, road conditions, or the amount of lighting present
in the environment. We believe our work brings self-driving research one step closer to full
automation.

Author Contributions: Conceptualization, Shika Rao, Alexander Quezada, Seth Rodriguez, and
Cebastian Chinolla; Methodology, Shika Rao, Alexander Quezada, Seth Rodriguez, and Cebastian
Chinolla; Formal analysis, Alexander Quezada, Seth Rodriguez, Cebastian Chinolla, and Shika Rao;
Resources, CJ] Chung and Joshua Siegel; Writing—original draft preparation, Cebastian Chinolla,
Seth Rodriguez, Shika Rao, and Alexander Quezada; writing—review and editing, Seth Rodriguez,
Cebastian Chinolla, Shika Rao, Alexander Quezada, CJ] Chung, and Joshua Siegel; Supervision, CJ
Chung and Joshua Siegel; Project Administration, C] Chung and Joshua Siegel; Funding Acquisition,

Version November 25, 2022 submitted to Vehicles 23

CJ Chung and Joshua Siegel. All authors have read and agreed to the published version of the
manuscript.

Funding: This material is based upon work supported by the National Science Foundation under
Grant No. 2150096 and Grant No. 2150292.

Data Availability Statement: The evaluation data files of the algorithms driving (recorded rosbags)
were kept for further research in the future. The implementations of the algorithms are open-sourced
below.

Algorithm 1 in simulation: https://github.com/irisfield /shifted_line_sim_pkg Algorithm 1 on
vehicle: https:/ / github.com /irisfield /shifted_line_pkg

Algorithm 2 in simulation: https://github.com /irisfield /fictitious_line_sim Algorithm 2 on vehicle:
https:/ / github.com /irisfield /fictitious_line_pkg

Algorithm 3 in simulation: https://github.com/irisfield /spring_line_sim Algorithm 3 on vehicle:
https:/ /github.com/irisfield /spring_line_pkg

Acknowledgments: We thank our mentors, Dr. Joe DeRose and Prof. Nick Paul, as well as our

teaching assistants, Mark Kocherovsky, and Joe Schulte. We also thank Adam Terwilliger from MSU.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

The tables containing the details of each of the official runs are given below. External
evaluation was done. Rosbags are available for future analysis.

https://github.com/irisfield/shifted_line_sim_pkg
https://github.com/irisfield/shifted_line_pkg
https://github.com/irisfield/fictitious_line_sim
https://github.com/irisfield/fictitious_line_pkg
https://github.com/irisfield/spring_line_sim
https://github.com/irisfield/spring_line_pkg

Version November 25, 2022 submitted to Vehicles 24
Table A1. Success Cases
. dead
No. of Location No. of Location Yellow reckon- . Avg . Weather
. Inner/ . . Lane of lane Stop . Time (2 Distance .
Algorith Line of line . . ing speed . Condi-
Outer Depar- depar- Line Vi- . laps) (s) in Error .
Touches touch . Turn Vi- (mph) tion
tures ture olation .
olation
1 dead
Blob outer 1 reckon- 0 NA YOS, Vs left 193.02 1.999 3352 Overcast
ing lane after
touch
All
turns in
both
3in lap laps Y
Blob inner 1,4in and1 0 NA °> Yes left 15322 2.108 4.962 Rain
after
lap 2 dead
reckon-
ing lane
touch
Hough | outer 0 NA 0 NA ;;:r No 188.79 2.17 2.42 Rain
Yes,
Hough inner 0 NA 0 NA little No 163.41 2.088 4.768 Sunny
after
1 dead
Spring | inner 1 reckon- 0 NA YOS Ve left 15402 2.13 3364 Sunny
ing lane after
touch
Spring outer infinite everywhere 0 NA ;?EZ; Yes, left 163.68 2.147 2.77 Overcast
Hough! | outer 0 NA 0 NA No No - - Rain
1 dead
Hough1 outer 1 .reckon— 0 NA Yes, Yes, left - - Overcast
ing lane after
touch
1 Rosbag not available, only external evaluation.
Table A2. Failure Cases
. Average Speed Location of Weather Reasons for
Algorithm Inner/ Outer till stop (mph) Failure Conditions Failure Remarks
Overcast
weather Was going at
suddenly very high speed
Hough outer 4.286 Turn(lr; urr21;ber 3 Osvjiiast turned to sunny too. Around 6.7
P Y and the camera mph when it
couldn’t adjust failed.
fast enough.
Had an infinite
number of lane
Did not do the departures and
Spring! outer - dead reckonin Overcast dead reckoning line touches.
pring & before lap 2 Was “line
properly. following” the
middle dashed
line.

1 Rosbag not available, only external evaluation.

Version November 25, 2022 submitted to Vehicles

25

The tables containing the details of a few of the test runs are given below. There
are a lot more failure cases and some perfect runs as we were able to experiment and
customize the filters and parameter values according to the specific weather conditions at
that exact moment. These runs were recorded as a rosbag file for future analysis and cross
verification with the evaluator’s observations. One of the team members was responsible

for the evaluation.

Table A3. Success Cases

Inner/ No. of Location No. of Location Yellow de;gi:;k- Weather
Algorithm o Line of line Lane De- of lane Stop Line Condi- Remarks
uter . . Turn .
Touches touch partures departure Violation s tion
Violation
Hough Outer 0 NA 0 NA Yes, after No Very -
sunny
Turn 1 (b
3inlap 1 back(g Yes, to the Very
Blob Inner 4inl 2’ All turns 1 heel No right a -
in lap whee little sunny
only)
Lap2 Very
dead reck- sunny
oning, and
Sprin Inner 3 Turn 3, 1 Turn 2 in No Yes, left Moderate)
pring Turn2 lap 2 side Sunny
(back (kept
wheel switch-
only) ing)
Only 1
Overcast lap, Max
Spring Inner 0 NA NA NA No Yes, left little rain speed:
Y 33534
mph
1 lane
departure
after right Yes, left Overcast
Hough Inner 0 NA 1 after dgad No side drizzly i
reckoning
in lap2
Only 1
Hough Outer 0 NA 0 NA Yes, after Nil C?ivgrcast lap, Ma.x
rizzly speed:
6.71 mph
Yes did
not detect Only 1
Hough Outer 1 Turn 2 0 NA g ellow Nil Overcast lap, Ma.x
ecause speed:
of high 7.38 mph
speed
Blob Outer 0 NA 0 NA Yes, after No Sunny -
All turns
in both
Blob Inner 3inlap1, lapsand, 0 NA Yes, after Yes, left Sunny -
4inlap 2 1 dead ! !
reckoning
lane touch
Hough Outer 0 NA 0 NA No Nil Sunny -
Spring Outer infinite everywhere 0 NA Yes, after Yes, left Overcast -

Version November 25, 2022 submitted to Vehicles

26

Table A4. Failure Cases

Algorithm

Inner/ Outer

Location of
Failure

Weather
Conditions

Reasons for
Failure

Remarks

Hough

Outer

Turn 3

Very sunny

Lane Departure
and could not
catch Hough line
after this. Sun
conditions were
the problem.

Spring

Inner

dead reckoning-
Lane Departure
before lap 2

Very sunny

Lane Departure
after dead
reckoning turn and
could not catch
Hough line after
this. Sun
conditions were
the problem.

Hough

Inner

Turn 2 lane
Departure

Overcast, Drizzly

Too fast for the
algorithm. Vehicle
went off course.

Max speed we
raised it to was
5.59 mph. Could
not go faster.

Blob

Outer

Turn 2

Very sunny

Lane Departure
due to shadow
problem and could
not catch Hough
line after this. Sun
conditions were
the problem.

Appendix B

The graphs to evaluate the algorithms’ self-driving are given below.

Figure A1

Figure A2

Speed (mph)

Speed (mph)

Blob Outer Lane

[4 20 10 60

Time (s)

(a)

Hough Outer Lane

Speed (mph)
&

100

0 50 100 150

Time (s)

(a)

Speed (mph)
NN
° &

250

Blob Inner Lane

104

0 50 75 100 125
Time (s)

(b)

Hough Inner Lane

150 175

104

100 150
Time (s)

(b)

579

Version November 25, 2022 submitted to Vehicles

27

Speed (mph)

Figure A3

Appendix C

Spring Outer Lane

40 60
Time (s)

(a)

Speed (mph)

Spring Inner Lane

75 100
Time (s)

(b)

The graphs to evaluate human driving are given below.

Figure A4

Figure A5

Figure A6

speed (mph)

speed (mph)

Cebastian Outer Lane

30 40
Time (s)

(a)

Seth Outer Lane

0 4 0 60
Time (s)

(a)

Alexander Outer Lane

Speed (mph)

0 40 50 60
Time (s)

(a) line

Speed (mph)

Speed (mph)

Cebastian Inner Lane

30 40
Time (s)

(b)

Seth Inner Lane

30 40
Time (s)

(b)

Alexander Inner Lane

speed (mph)

40 60
Time (s)

(b)

580

Version November 25, 2022 submitted to Vehicles 28

Shika Outer Lane Shika Inner Lane

16

144

12 4

10 4

Speed (mph)
speed (mph)

o N & o o

s} 10 20 30 40 10 20 30 40 50 60 70

Time (s) Time (s)
() (b)
Figure A7

References

1. Ltu-Ros. (n.d.). LTU-ros/simple-sim-roads. GitHub. Retrieved June 24, 2022, from https://github.com/ltu-ros/simple_sim_
roads

2. N.Paul, M. Pleune, C. Chung, B. Warrick, S. Bleicher and C. Faulkner, "ACTor: A Practical, Modular, and Adaptable Autonomous
Vehicle Research Platform," 2018 IEEE International Conference on Electro/Information Technology (EIT), 2018, pp. 0411-0414,
doi: 10.1109/EIT.2018.8500202.

3. Andrei, M.-A,, Boiangiu, C.-A., Tarbd, N., and Voncild, M.-L. (2021). Robust Lane Detection and Tracking Algorithm for Steering
Assist Systems. Machines, 10(1), 10. MDPI AG. Retrieved from http://dx.doi.org/10.3390 /machines10010010

4. Mlsdpk. (n.d.). Ros-lane-follower /lane-detection.py at master - MLSDPK/ros-lane-follower. GitHub. Retrieved June 24, 2022,
from https://github.com/mlsdpk/ros-lane-follower/blob/master/lane_detect_follower/scripts/lane_detection.py

5. SravanChittupalli. (n.d.). Sravanchittupalli/Lane-following-bot-in-gazebo: LaneDetection bot using canny edge detection, Hough
Transform, PID control in gazebo using Ros. GitHub. Retrieved June 24, 2022, from https://github.com/SravanChittupalli/Lane-
following-bot-in-Gazebo

6. Automatic white balancing with grayworld assumption. Stack Overflow. Retrieved June 24, 2022, from https:/ /stackoverflow.
com/questions /46390779 /automatic-white-balancing-with-grayworld-assumption

7. Hough Line transform. OpenCV. (n.d.). Retrieved June 24, 2022, from https://docs.opencv.org/3.4/d9/db0/tutorial_hough_
lines.html

8. Yenikaya, S., Yenikaya, G., and Diiven, E. (2013). Keeping the vehicle on the road. ACM Computing Surveys, 46(1), 1-43.
doi:10.1145/2522968.2522970

9. I Timmis, N. Paul and C. -J. Chung, "Teaching Vehicles to Steer Themselves with Deep Learning," 2021 IEEE International
Conference on Electro Information Technology (EIT), 2021, pp. 419-421, doi: 10.1109/EIT51626.2021.9491894.

10. Pappas, G.; Siegel,].E.; Politopoulos, K.; Sun, Y. A Gamified Simulator and Physical Platform for Self-Driving Algorithm Training
and Validation. Electronics 2021, 10, 1112. https:/ /doi.org/10.3390/electronics10091112

11. A. A. Assidiq, O. O. Khalifa, M. R. Islam and S. Khan, "Real time lane detection for autonomous vehicles," 2008 International
Conference on Computer and Communication Engineering, 2008, pp. 82-88, doi: 10.1109/ICCCE.2008.4580573. Retrieved July 13,
2022, from https:/ /ieeexplore.ieee.org/abstract/document/4580573

12. Kemfic. (2018, May 24). Curved Lane Detection. Hackster.io. Retrieved July 13, 2022, from https:/ /www.hackster.io /kemfic/
curved-lane-detection-34f771#things

13. Mouiad-JRA. (n.d.). Mouiad-JRA /Lane-line-detection-using-image-processing-vs-deep-learning: GitHub. Retrieved July 13,
2022, from https:/ / github.com /Mouiad-JRA /Lane-Line-Detection-using-Image-Processing-vs-Deep-Learning

14. J. Canny, "A Computational Approach to Edge Detection," in IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986, doi: 10.1109/TPAMI.1986.4767851.

15. J. Yang, C. Wang, H. Wang and Q. Li, "A RGB-D Based Real-Time Multiple Object Detection and Ranging System for Autonomous
Driving," in IEEE Sensors Journal, vol. 20, no. 20, pp. 11959-11966, 15 Oct.15, 2020, doi: 10.1109/JSEN.2020.2965086.

16. Vighnesh Devane, Ganesh Sahane, Hritish Khairmode, Gaurav Datkhile, “Lane Detection Techniques using Image Processing”,
ITM Web Conf. 40 03011 (2021), DOI: 10.1051/itmconf/20214003011

17. Haque, Md and Islam, Md and Alam, Kazi and Igbal, Hasib and Shaik, Md. (2019). A Computer Vision based Lane Detection
Approach. International Journal of Image, Graphics and Signal Processing. 11. 27-34. 10.5815/ijigsp.2019.03.04.

18. Color Conversions. OpenCV. (n.d.). Retrieved June 24, 2022, from https://docs.opencv.org/3.4/de/d25/imgproc_color_
conversions.html

19. Chan-Jin Chung, A Simple lane-following Algorithm Using A Centroid of The Largest Blob, NSF Self-Drive REU 2022 Workshop
at LTU. Retrieved July 30, 2022, from http://qbx6.1tu.edu/mcs/REU/workshop /lanefollowing_algo22chung.pdf

20. Nick Paul, Minimal Python implementation of blob lane-following algorithm. Retrieved August 12, 2022, from https:/ /github.

com/nick-paul/lane_follow_blob

583

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

https://github.com/ltu-ros/simple_sim_roads
https://github.com/ltu-ros/simple_sim_roads
https://github.com/ltu-ros/simple_sim_roads
http://dx.doi.org/10.3390/machines10010010
https://github.com/mlsdpk/ros-lane-follower/blob/master/lane_detect_follower/scripts/lane_detection.py
https://stackoverflow.com/questions/46390779/automatic-white-balancing-with-grayworld-assumption
https://stackoverflow.com/questions/46390779/automatic-white-balancing-with-grayworld-assumption
https://stackoverflow.com/questions/46390779/automatic-white-balancing-with-grayworld-assumption
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
doi:10.1145/2522968.2522970
https://doi.org/10.3390/electronics10091112
https://ieeexplore.ieee.org/abstract/document/4580573
https://www.hackster.io/kemfic/curved-lane-detection-34f771#things
https://www.hackster.io/kemfic/curved-lane-detection-34f771#things
https://www.hackster.io/kemfic/curved-lane-detection-34f771#things
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
http://qbx6.ltu.edu/mcs/REU/workshop/lanefollowing_algo22chung.pdf
https://github.com/nick-paul/lane_follow_blob
https://github.com/nick-paul/lane_follow_blob
https://github.com/nick-paul/lane_follow_blob

Version November 25, 2022 submitted to Vehicles 29

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.
34.

J. Matas, C. Galambos, J. Kittler, Robust Detection of Lines Using the Progressive Probabilistic Hough Transform, Computer Vision
and Image Understanding, Volume 78, Issue 1, 2000, Pages 119-137, ISSN 1077-3142, https://doi.org/10.1006/cviu.1999.0831.
A Theoretician’s Guide to the Experimental Analysis of Algorithms. (n.d.). Retrieved August 13, 2022, from http:/ /plato.asu.
edu/ftp/experguide.pdf

Yan Jiang, Feng Gao and Guoyan Xu, "Computer vision-based multiple-lane detection on straight road and in a curve," 2010
International Conference on Image Analysis and Signal Processing, 2010, pp. 114-117, doi: 10.1109/IASP.2010.5476151.

J. C. McCall and M. M. Trivedi, "An integrated, robust approach to lane marking detection and lane tracking," IEEE Intelligent
Vehicles Symposium, 2004, 2004, pp. 533-537, doi: 10.1109/IVS.2004.1336440.

J. Guo, Z. Wei and D. Miao, "Lane Detection Method Based on Improved RANSAC Algorithm," 2015 IEEE Twelfth International
Symposium on Autonomous Decentralized Systems, 2015, pp. 285-288, doi: 10.1109/ISADS.2015.24.

D. Vajak, M. Vranje$, R. Grbi¢ and N. Tesli¢, "A Rethinking of Real-Time Computer Vision-Based Lane Detection," 2021 IEEE 11th
International Conference on Consumer Electronics (ICCE-Berlin), 2021, pp. 1-6, doi: 10.1109/ICCE-Berlin53567.2021.9720012.
SAE Levels of Autonomy. Available online: https://www.sae.org/blog/sae-j3016-update(accessed on 6 September 2022).
What Full Autonomy Means for the Waymo Driver. Available online: https://spectrum.ieee.org/full-autonomy-waymo-driver#
toggle-gdpr (accessed on 6 September 2022).

Wang, Z., Ren, W., & Qiu, Q. (2018). Lanenet: Real-time lane detection networks for autonomous driving. arXiv preprint
arXiv:1807.01726.

P. Duthon, F. Bernardin, F. Chausse, M. Colomb, "Methodology Used to Evaluate Computer Vision Algorithms in Adverse
Weather Conditions", Transportation Research Procedia, Volume 14, 2016, Pages 2178-2187, ISSN 2352-1465, https:/ /doi.org/10.1
016/j.trpro.2016.05.233.

Ze Wang, Weigiang Ren and Qiang Qiu, "LaneNet: Real-Time Lane Detection Networks for Autonomous Driving", 2018.

K. Cumali and E. Armagan, "Steering Control of a Vehicle Equipped with Automated Lane Centering System," 2019 11th Interna-
tional Conference on Electrical and Electronics Engineering (ELECO), 2019, pp. 820-824, doi: 10.23919/ELECO47770.2019.8990555.
Y. Wang, D. Shen and E.K. Teoh, "Lane detection using spline model", Pattern Recognition Letters, vol. 21, pp. 677-689, 2000.
Li, Yingmao & Igbal, Asif & Gans, Nicholas. (2014). Multiple lane boundary detection using a combination of low-level image
features. 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014. 10.1109/ITSC.2014.6957935.

640

641

642

643

644

645

646

647

648

649

650

651

https://doi.org/10.1006/cviu.1999.0831.
http://plato.asu.edu/ftp/experguide.pdf
http://plato.asu.edu/ftp/experguide.pdf
http://plato.asu.edu/ftp/experguide.pdf
https://www.sae.org/blog/sae-j3016-update
https://spectrum.ieee.org/full-autonomy-waymo-driver#toggle-gdpr
https://spectrum.ieee.org/full-autonomy-waymo-driver#toggle-gdpr
https://spectrum.ieee.org/full-autonomy-waymo-driver#toggle-gdpr
https://doi.org/10.1016/j.trpro.2016.05.233.
https://doi.org/10.1016/j.trpro.2016.05.233.
https://doi.org/10.1016/j.trpro.2016.05.233.

	Introduction
	Review of Literature
	Materials and Methods
	Simulation
	Real World
	Environment
	Vehicle Specifications

	Code Architecture
	SDT Report Node
	Yellow Line Node
	Line Follow Node
	Control Unit Node
	Filters
	Region of Interest

	Algorithm I (Blob)
	Algorithm II (Hough)
	Algorithm III (Spring)

	Challenges
	Environment Challenges
	Code and Simulation Challenges

	Results
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

