
Citation: Rao, S.; Quezada, A.;

Rodriguez, S.; Chinolla, C.; Chung, CJ;

Siegel, J. Developing, Analyzing, and

Evaluating Vehicular Lane Keeping

Algorithms Using Electric Vehicles.

Vehicles 2022, 1, 1–29. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Vehicles for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Developing, Analyzing, and Evaluating Vehicular Lane Keeping
Algorithms Using Electric Vehicles
Shika Rao 1,‡, Alexander Quezada 2,‡, Seth Rodriguez 3,‡, Cebastian Chinolla 4,‡, Chan-Jin Chung 5 and Joshua Siegel
6,*

1 Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani, India;
shikarao2018@gmail.com

2 Department of Computer Science, Lehman College, City University of New York; aquezadawa@gmail.com
3 Department of Computer Science, University of Texas at El Paso; sethrod6636@gmail.com
4 Department of Computer Science, University of Texas at El Paso; cebastianchinolla@gmail.com
5 Department of Math and Computer Science, Lawrence Technological University, Michigan; cchung@ltu.edu
6 Department of Computer Science and Engineering, Michigan State University; jsiegel@msu.edu
* Correspondence: jsiegel@msu.edu
‡ These authors contributed equally to this work.

Abstract: Robust lane-following algorithms are one of the main challenges in developing effective 1

automated vehicles. In this work, a team of four undergraduate students designed and evaluated 2

several automated lane-following algorithms using computer vision as part of a Research Experience 3

for Undergraduate program funded by the National Science Foundation. The developed algorithms 4

use the Robotic Operating System (ROS) and the OpenCV library in Python to detect lanes and 5

to implement the lane-following logic on the road. The algorithms were tested on a real-world 6

test course using a street-legal vehicle with a high-definition camera as input and a drive-by-wire 7

system for output. Driving data was recorded to compare the performance of human driving to that 8

of the self-driving algorithms on the basis of three criteria: lap completion time, lane positioning 9

infractions, and speed limit infractions. The evaluation of the data showed that the human drivers 10

successfully completed every lap with zero infractions at a 100% success rate in varied weather 11

conditions, whereas, our most reliable algorithms had a success rate of at least 70% with some lane 12

positioning infractions and at lower speeds. 13

Keywords: Automated Vehicles (AVs), Real Vehicle, Drive-by-Wire, Lane-Following, Lane Centering, 14

Self-Drive Algorithms, Computer Vision, Robot Operating System (ROS), OpenCV 15

1. Introduction 16

Self-driving vehicles are the next major advancement in the automotive industry. 17

Some of the core systems that allow for autonomy in vehicles are lane-following algorithms. 18

Lane-following algorithms are responsible for keeping the vehicle centered within the 19

lane by using lane detection techniques to detect the pavement markings along the road. 20

According to the SAE International association, vehicle autonomy can be broken down into 21

six levels, starting with SAE Level Zero all the way up to SAE Level Five (Figure 1). 22

Version November 25, 2022 submitted to Vehicles https://www.mdpi.com/journal/vehicles

https://doi.org/10.3390/vehicles1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/vehicles

Version November 25, 2022 submitted to Vehicles 2

Figure 1. Levels of Driving Automation as defined by SAE J3016, revised in 2021. Source [27].

Although our algorithms are capable of steering, braking, accelerating, and lane 23

centering, we do not target any of the SAE levels of driving automation as our algorithms 24

forgo any kind of object detection, automatic emergency braking, and warning systems in 25

favor of researching robust lane detection and lane centering only using computer vision. 26

Lane detection uses computer vision to detect the lane by continuously estimating the 27

contours of the lane markings as the vehicle is in motion, whereas lane centering uses the 28

contours as input to monitor the position of the lane markings in relation to the position 29

of the vehicle. As seen in Figure 1, steering assistance and lane centering algorithms are 30

two of the essential systems that allow for autonomy in vehicles, and since many of these 31

systems rely on computer vision, the lane detection and lane centering problem devolves 32

partially into a computer vision problem. Thus, the focus of our research. 33

There has been a growing recognition that theoretical results cannot capture the 34

nuances of real-world algorithmic performance and many have started to view experi- 35

mentation as providing a pathway from theory to practice [22]. In this work, we aim 36

to experimentally analyze the strengths and weaknesses of Contour Line detection [19], 37

Hough Line Transform [21], and Spring Center Approximation [2] algorithms implemented 38

in Python. 39

In our empirical analysis, we found that a robust lane-following algorithm must be 40

able to deal with fading, broken-up, and missing road lane markings under varied weather 41

conditions and be resilient to environmental obstructions, which may prevent the lane from 42

being detected, such as shadows and reflections on the road. In this work, we tackle these 43

challenges in the lane following and lane centering algorithms we developed, analyzed, 44

and evaluated using a real street-legal electric vehicle. The key to our algorithms lies in the 45

region of interest, filters, and yaw rate conversion function we designed. The yaw rate con- 46

version function takes the coordinate of the centroid used by the lane centering algorithm 47

and converts it into yaw rates for the vehicle to use as input for steering. This allows our 48

algorithms to work under varied weather conditions and environmental challenges. Our 49

solutions were designed and implemented using the Robot Operating System (ROS) and 50

OpenCV libraries in Python. 51

Version November 25, 2022 submitted to Vehicles 3

All of our algorithms work in a similar way: they lane follow by chasing a hypothetical 52

blob that is always centered with respect to the lane. The coordinates of the blob are then 53

converted into yaw rates, which the drive-by-wire system uses to control the steering of 54

the vehicle. Thus, our goal is to implement this hypothetical blob that the algorithms can 55

always rely on being in middle of the lane. The first algorithm does this by computing the 56

centroid of the largest contour of the edge line. This centroid is the middle point of the 57

edge line, so we shift its position until it is in the middle of the lane relative to the edge 58

line. The coordinates of the centroid are then converted into a yaw rate for steering. On the 59

other hand, the second algorithm accomplishes this task by using Hough Line Transform 60

to detect the solid white lines on both sides of the lane and then draws a hypothetical 61

or "fictitious" line in between the white lines and computes its centroid to determine the 62

position of the blob. The third algorithm uses Hough Line Transform to detect the road 63

lane markings, then draws a series of rays that dynamically change in size to fit to the lane. 64

This algorithm starts with the blob centered in the middle of the lane and uses the size of 65

the rays to compute the forces acting on the blob to ensure it always stays in the middle of 66

the lane using spring physics. 67

To make a fair comparison between the driving performance of the algorithms and a 68

licensed human driver, we set a speed limit. The speed limit ensures that the algorithm can 69

be tested safely, since the test course is circular and compact, this means that the turns are 70

naturally sharp (see Figure 2). After testing it, we concluded that seven miles per hour is the 71

fastest speed the algorithms can safely handle while running circles around the test course. 72

We arrived at this value on the basis that, on average, the fastest a licensed human driver 73

could safely complete a lap around the course was eleven miles per hour without touching 74

the lane markings. This number is within the expectations we had considering that, in 75

simulation, the algorithms worked consistently up to ten miles per hour given the same test 76

course. But even in simulation, achieving speeds higher than ten miles per hour proved 77

difficult because of the tight turns. The driving performance of human versus algorithm 78

are put to the test and then evaluated under the same conditions by noting advantages 79

and disadvantages the algorithms have over the human driver and vice versa. As an 80

example, the algorithms were better at lane-following while keeping a consistent speed 81

than the human driver. This benchmark allows us to gauge where our algorithms stand in 82

comparison to a human driver and to pinpoint the areas that need the most improvement 83

to bridge the gap in performance. 84

Thus, the goal of this research is to develop, analyze, and evaluate self-driving lane 85

following and lane centering algorithms in simulation and in reality using street-legal 86

electric vehicles in a test course with various challenges. In our design, we intend to 87

account for sharp curves, narrow parking lot lines, unmaintained roads, and varied weather 88

conditions. Furthermore, we aim to compare the performance of the algorithms to each 89

other and to a licensed human driver under a speed limit. The main contributions and 90

novelty of this research work are summarized as follows: 91

1. We propose multiple computer vision based lane-following algorithms which are 92

tested on a full scale electric vehicle in a controlled testing environment. 93

2. The real-world testing environment has sharp curves, faded or narrow lane markings, 94

and unmaintained roads with exposure to the weather. The algorithms have been op- 95

timized to work under these conditions. Since computer vision-based lane-following 96

algorithms that rely on just a camera have not been evaluated under these circum- 97

stances before, our algorithms serve as a baseline for navigating unmaintained roads 98

under varied weather conditions. Our most reliable algorithms had a success rate of 99

at least 70% with some lane positioning infractions. 100

3. We evaluate the driving data of the algorithms and a licensed human driver using a 101

custom performance evaluation system, and then analyze and compare the two under 102

a specified speed limit using reports from the vehicle’s drive-by-wire system. The 103

algorithms are found to have a better speed control over the human driver, whereas 104

Version November 25, 2022 submitted to Vehicles 4

the human driver outperformed the algorithms when driving at faster speeds while 105

keeping to the lane. 106

4. We test the performance of algorithms written in Python as opposed to a compiled 107

programming language such as C++. 108

The remainder of this paper is organized as follows: Section 2 reviews the state of the 109

art research about lane-following algorithms for self-driving vehicles that only use a camera 110

and computer vision. This section goes over main gaps identified in this kind of research 111

and explains the role of our research in expanding knowledge in the discussed areas. 112

Section 3 elaborates on the simulation, physical testing environment, and the development 113

of the lane following algorithms. Then, the specifics about the challenges posed by the 114

weather and unmaintained roads are illustrated in Section 4. Section 5 discusses the 115

results of the evaluation of the algorithms in a real-time environment on the course using 116

a street-legal electric vehicle. The performance of the algorithms to a human driver is 117

also compared in this section. We reiterate the main results of this work and conclude the 118

manuscript by identifying the limitations and future avenues of work in Section 6. 119

2. Review of Literature 120

In most other research work on lane-following algorithms for self-driving vehicles 121

using only a camera and computer vision, the algorithms are only tested in simulation. 122

Even in simulation based work, the lane detection is overlaid on an image or video of the 123

road. A simulated vehicle is not used to understand the performance of lane detection 124

algorithms at different speeds nor does it take into account the kinematics of the vehicle. In 125

[8], the approaches in previous literature were categorized into three classes: area-based 126

methods, edge-based methods, area-edge-combined and algorithm-combined methods. In 127

area-based methods the road detection problem is considered as a classification problem 128

and regions in the image are classified into road and non-road. In edge-based methods, 129

an edge map of the road scene is obtained, and then using a predefined geometric model 130

matching the procedure is carried out to detect the lane. In algorithm-combined methods, 131

several methods are carried out together in parallel to increase detection performance. 132

According to these classifications, we use edge-based methods, and thus our prior art 133

search covers papers in this field. 134

In [11], the authors test their self-driving algorithm, which involved Hough Transform 135

with hyperbola fitting, on real-life vehicles. However, the authors mentioned that the 136

algorithm works only on slightly curved and straight roads, and there were some problems 137

with lane detection under certain lighting conditions. Our work aims to target these 138

limitations by enabling the vehicle to take sharp turns within a set speed limit under 139

different lighting conditions just using a camera and computer vision techniques. 140

The authors of [16] and [17] used several computer vision techniques for lane detection. 141

In [16], the authors compared thresholding, warping, and pixel summation to Gaussian Blur, 142

Canny Edge Detection, and Sliding Window Algorithm and found that the second approach 143

was more accurate. In [17], the authors used the HLS colorspace, perspective transform, 144

and sliding window algorithm. We did not attempt the sliding window algorithm in 145

this research work as the basic sliding window algorithm cannot detect dashed lines and 146

sharp curves. We attempted different combinations of the image processing pipeline 147

used in [16,17], however we observed that we gained minimal performance improvement 148

relative to the increase in computational complexity when working on the real vehicle. We 149

optimized the image processing pipeline for speed and efficiency by using only necessary 150

techniques (refer Section 3 for further details) to avoid processing delays. 151

In [24], the authors propose steerable filters for combating problems due to lighting 152

changes, road marking variation, and shadows. These filters seem very useful for combating 153

the shadow problem and especially for tuning to a specific lane angle. For lane tracking, in 154

this paper, the authors opt for using a discrete time Kalman Filter. We did not go for this 155

approach in our work as the Kalman filter provides a recursive solution of the least square 156

method, and it is incapable of detecting and rejecting outliers which sometimes leads to 157

Version November 25, 2022 submitted to Vehicles 5

poor lane tracking as stated in [8]. In [23], two different approaches were taken based on 158

whether the road was curved or straight. For a straight road, the lane was detected with 159

Standard Hough Transform. For curved roads, complete perspective transform followed 160

by lane detection by scanning the rows in the top-view image was implemented. As an 161

improvement to this, the authors in [25] adopt a generalized curve model that can fit both 162

straight and curved lines using an improved RANSAC algorithm that uses the least squares 163

technique to estimate lane model parameters based on feature extraction. 164

In [26], the authors propose a computer vision algorithm called HistWind for lane 165

detection. This algorithm involves filtering and ROI cropping, followed by histogram 166

peak identification, then sliding window algorithm. HistWind is then compared with a 167

Spatial CNN and the results are comparable for both, although HistWind has a considerably 168

lower execution time. In [9], the ACTor vehicle was used for testing a deep learning based 169

approach for lane centering using a pretrained inception network and transfer learning. 170

However, since this approach is computationally intensive and requires specialized hard- 171

ware, we did not attempt deep learning based solutions in our work. Additionally, due to 172

the test course being predefined, any deep learning based solution would have resulted 173

in an overfitted model. The computer vision based approach was chosen for this work 174

because it is usually simpler and faster than any other technique that requires specialized 175

hardware. 176

Version November 25, 2022 submitted to Vehicles 6

Table 1. Literature Review

Papers Purpose Brief Description Research Gaps Identified

Deep Learn-
ing Ap-
proaches

[26] Lane Detection A spatial CNN approach was
compared to sliding window al-
gorithm. Tested in simulation.

Authors found that classical com-
puter vision had considerably
lower execution time than deep
learning and no extra specialized
hardware required.

[15] Lane Detection LaneNet [31] was tested on a real
vehicle.

Only lane centering without
steering angle calculation was
done with deep learning. Also,
due to our test course being pre-
defined, any deep learning based
lane centering solution would
have resulted in overfitting.

[9] Lane Centering, and
Steering Control

Transfer learning with inception
network was used for lane cen-
tering and steering angle calcula-
tion. Tested on a real vehicle.

On average, the model achieved
a 15.2 degree of error. This
would not have worked for our
course consisting of sharp turns.

Classical Com-
puter Vision
Approaches

[16,17,23,24] Lane Detection Standard Hough Line Trans-
form, Sliding Window algorithm,
Kalman Tracking, RANSAC al-
gorithm.

These algorithms do not work
well on sharp curves, varied
weather conditions, nor poorly
maintained roads. They also
have not been tested in a real test
environment.

[34] Lane Detection Kalman Tracking used and
RANSAC algorithm for post-
processing. Tested under varied,
challenging weather conditions.

The future work of the paper in-
cluded explicitly fitting the curve
to the lane boundary data.

[32] Lane Centering and
Steering Control

A nonlinear path tracking sys-
tem for steering control was pre-
sented and tested in simulation.

[11] Lane Detection, Cen-
tering, and Steering
Control

Hough Transform with hyper-
bola fitting. Tested on real Ve-
hicles.

Only works on slight curves,
straight roads, and certain light-
ing conditions.

This work Lane Detection, Cen-
tering, and Steering
Control

Blob Contour Detection, Hough
Line Transform, Spring Center
Approximation method. Tested
on a real vehicle in a test course
with tight turns, varied weather
and poorly maintained road con-
ditions.

Tested only up to 7 miles per
hour.

From the above papers, we have identified that the improved RANSAC algorithm [25], 177

Kalman Tracking [25], sliding window algorithm [25], and spline models like [33] detect 178

and trace the exact curvature of the boundary of road. Out of these, as elaborated above, 179

the RANSAC algorithm seems promising as seen in [34]. Taking the characteristics of the 180

various lane models and the needs of lane detection in a harsh, real-time environment into 181

consideration, we propose fast and efficient lane keeping algorithms which use Contour 182

Detection (which traces the exact curvature of the road) and Hough Line Transform (which 183

linearly approximates the curvature of the road). 184

Version November 25, 2022 submitted to Vehicles 7

(a) One-to-one map of the test course in
Parking Lot H used in simulation. The

width of the lane, width of the road,
radius for the turns, etc. are labelled in

the above figure.

(b) Bird’s-eye view of the test course
in Parking Lot H at Lawrence

Technological University.

Figure 2. Environment

3. Materials and Methods 185

3.1. Simulation 186

We use Robot Operating System (ROS) and Python for the development of our al- 187

gorithms. We test the code on two simulators: simple-sim [1], which is a 2D simulator, 188

and Gazebo, which is a 3D simulator. We use the OpenCV library for implementing the 189

computer vision algorithms. 190

3.2. Real World 191

3.2.1. Environment 192

The test course is in Parking Lot H located at Lawrence Technological University in 193

Southfield, Michigan, USA. It is a two-lane course, with an intersection at the bottom left 194

where the vehicle is programmed to stop at the yellow line before crossing it using a dead 195

reckoning turn. The challenge for each of the algorithms is to make two laps around the 196

course in succession for both the inner and outer lanes. The vehicle is meant to start with 197

the front wheels behind the yellow line, then proceed to make the dead reckoning turn, 198

and continue to drive until it has to make a stop for three seconds at the starting point and 199

repeat. The test course is out in the open affected by the weather, it has potholes, sharp 200

curves, fading and narrow road lane markings, and yellow parking lot markings as seen in 201

Figure 2. 202

3.2.2. Vehicle Specifications 203

ACTor (Autonomous Campus TranspORt) is built on top of a modified Polaris Gem e2 204

(Figure 3) provided by a joint sponsorship from two companies: Mobis and Dataspeed. Mo- 205

bis provided the base vehicle, and Dataspeed installed the drive-by-wire system. Lawrence 206

Technological University, DENSO, Dataspeed, Veoneer, SoarTech, and Realtime Technolo- 207

gies provided Dataspeed’s drive-by-wire system, vision sensors, 2D and 3D LIDARs, GPS, 208

on-board computers, and all other hardware. The Polaris Gem e2 has a top speed of twenty 209

miles per hour, and a range of approximately twenty miles. For this research project, we 210

limit the speed to seven miles per hour for safety reasons since the algorithms are tested 211

under the supervision of humans on board. 212

213

We use a Mako G-319 Camera from Allied Vision for lane-following. The Mako camera 214

has a resolution of 2064 x 1544 pixels with a max frame rate of 37 frames per second at max 215

resolution, and it has native ROS support. 216

Version November 25, 2022 submitted to Vehicles 8

(a) ACTor Specifications. The width
of the vehicle is 55.5 inches (141 cm)
and length is 103 inches (262 cm) as

labelled above.

(b) The camera of the vehicle is fitted
with sunglasses to reduce bright
reflection and unwanted glare.

Figure 3. The above images contain details about the vehicle.

3.3. Code Architecture 217

All of the lane-following algorithms follow the same architecture for the sake of sim- 218

plicity and modularity. We have four nodes: the SDT report, yellow line, line follow and the 219

control unit as seen in Figure 4. The SDT report publishes the data required for evaluating 220

the algorithms. The yellow line node is responsible for detecting the yellow line by counting 221

the number of yellow pixels for a specified number of frames in a custom region of interest. 222

The line follow node is responsible for converting the coordinates of the center blob into 223

yaw rates used for steering by the drive-by-wire system. The control unit is responsible for 224

connecting the algorithm to the drive-by-wire system to pass the computed yaw rates and 225

the speed values input by the user. Further details of the mathematics behind each of these 226

nodes is provided below. 227

228

The filters applied are also consistent across the algorithms and a region of interest is 229

customized for each algorithm. 230

Figure 4. RQT graph of the ROS node architecture.

3.3.1. SDT Report Node 231

The Speed, Distance and Time (SDT) report is a node that keeps track of the instanta- 232

neous speed, the distance traveled, and the time while the vehicle is in motion and makes 233

this information available to other nodes. The instantaneous speed comes from the steering 234

report published by Dataspeed’s drive-by-wire system installed on the vehicle. This node 235

keeps track of the time elapsed by using the time module from the ROS client library for 236

Python while the vehicle is in motion. Finally, given the instantaneous speed and the time, 237

we computed the distance traveled by approximating it using the Riemann sum using the 238

equation below. 239

distance =
n

∑
i=n−1

(speed ∗ ∆time)

3.3.2. Yellow Line Node 240

The yellow line node detects the yellow line on the course by using a 351 x 160 region 241

of interest and converting it to the HSL colorspace. Using the converted image, this node 242

Version November 25, 2022 submitted to Vehicles 9

uses OpenCV’s inRange and findContours functions to get a binary image with only the 243

yellow pixels within an HSL range and computes the area of the largest contour as seen in 244

Figure 5. The algorithm determines whether or not what it sees is a yellow line by checking 245

for an area greater than six-hundred pixels for seven consecutive frames while the vehicle 246

is in motion. 247

Once the yellow line is detected, it publishes a Boolean message which the control 248

unit then listens for to slow down the vehicle for a few seconds until it comes to a full stop 249

at the yellow line for three seconds, and then perform the dead reckoning turn depending 250

on whether it is in the inner or outer lane. The dead reckoning proved to be more reliable 251

at the intersection, as there are no road lane marking to follow during the duration of the 252

turn. This algorithm can be improved further by combining this method with Hough Lines 253

Transform to look for lines of an specific slope instead of solely relying on color detection. 254

Figure 5. Filtration to detect yellow lines.

3.3.3. Line Follow Node 255

The line follow node is the only node which varies by algorithm. It is solely responsible 256

for computing the yaw rate in radians per seconds and publishing it to the control unit. 257

3.3.4. Control Unit Node 258

The control unit subscribes to the three nodes described above and links them to the 259

drive-by-wire system. The yaw rates computed in the line follow node and the speed values 260

input by the user are published as a command to the vehicle through this node. This node 261

also publishes control messages to the drive-by-wire system during the dead reckoning 262

turn (the turn at the intersection). In order to know when to switch from lane-following to 263

dead reckoning, and vice-versa, the control unit subscribes to messages sent by the yellow 264

line node. The dead reckoning parameters are sensitive to weather conditions. This is 265

because the sunlight present at the time affects how fast the seven consecutive frames of 266

yellow were detected, thus resulting in stopping early before the yellow or stopping late 267

past the yellow line. 268

3.3.5. Filters 269

We apply a white balance filter that converts the RGB image to the CIELAB (or L*A*B) 270

colorspace as it approximates human vision. This provides a lightness component and 271

two color components. The white balance filter adjusts the image such that the colors in 272

the image are naturally seen without being affected by the color of the light source. The 273

filter compensates for the color hue of the light source. In case of direct sunlight, we apply 274

this white balance filter twice to enhance the algorithms ability to detect the lane under 275

sunlight. 276

Additionally, since algorithms are sensitive to the weather conditions, we implement 277

the ability to dynamically adjust the parameters of the filters at the time of testing. This 278

method uses the HLS (Hue, Light, Saturation) colorspaceto create a mask for detecting 279

the white lane markings. The HLS colorspace simplifies the process because only the L 280

value needs adjusting depending on the weather. The mask is created by converting the 281

images from the camera to grayscale and then smoothing them using a 2D Convolution 282

kernel ([18]). HSL masking was also useful as it allows only white and yellow regions to 283

pass through into a grayscale image. Lastly, we pass the smoothed grayscale images to the 284

Version November 25, 2022 submitted to Vehicles 10

EdgeGradient(G) =
√

G2
x + G2

y

Angle(θ) = tan −1(
Gy

Gx
)

Figure 7. The mathematics behind the operation of Canny Edge Detection is shown in the equations
above.

Canny Edge Detection function to get the best results for detecting the white lane markings. 285

The math behind these functions is shown in Figure 10. 286

The Canny Edge Detection function [14] is able detect the edges of objects in the 287

images by comparing the gradient magnitude of a pixel to the pixels on its sides. If the 288

magnitude is larger than the adjacent pixels in the direction of maximum intensity, the 289

Canny edge detector classifies that pixel as an edge as shown in Figure 7. This function 290

also uses non-maximum suppression and thresholding. This technique is used to extract 291

the morphological information from the images and to reduce the amount of data that is 292

processed. 293

(a) (b)

Figure 6. Mathematics behind the color conversion from RGB to CIELAB and RGB to HLS. Images
sourced from [18].

Figure 8. Image after applying of all the filters.

3.3.6. Region of Interest 294

Seeing as the raw camera footage contains substantial noise and extraneous informa- 295

tion, we decided to implement a region of interest to target only the region needed to detect 296

the road lane markings. This is accomplished by using a numpy array of size five, which 297

corresponds to the number of sides in the polygon-shaped region we mapped out using 298

the fillPoly function in the OpenCV library. The end result is a region of interest tailored 299

to the needs of each algorithm for detecting the lane markings. We also had the idea of 300

implementing a dynamic region of interest using a numpy of size eight that would auto- 301

Version November 25, 2022 submitted to Vehicles 11

(a) (b)

Figure 10. Pseudocode for the Yaw Rate calculation algorithm.

matically change its shape based to the coordinates of the centroid. This further cropped 302

the image, however, it would sometimes leave in extraneous information that interfered 303

with the algorithms. Future experimentation with the array size and parameters could lead 304

to better results. 305

As can be seen in Figure 9, the image after applying a region of interest is cleaner 306

and eliminates noisy data such as extraneous lines on the road and on the horizon. This 307

allows our algorithm to focus on the actual lane markings rather than attempting to draw a 308

contour or Hough lines on something such as grass, yellow parking lot markings, or any 309

additional irregularities on the course that our filters are not able to detect. 310

Figure 9. Image after applying Region Of Interest function.

3.4. Algorithm I (Blob) 311

Contour Line Detection, Offset Lane Centering, and Proportional Control Yaw Rate Calcula- 312

tion using Contour 313

314

The goal of all lane-following algorithms is to identify the center of the lane and to steer 315

the vehicle towards it [19]. The first algorithm is the simplest of the three implemented. 316

The algorithm was implemented using the filtered image as input. 317

In this algorithm, the key to getting the vehicle to follow the white line smoothly 318

consisted of two steps: 319

1. Compute the centroid of the largest contour using the OpenCV library 320

2. Devise a formula to convert the coordinates of the centroid into yaw rates (in radians 321

per seconds) 322

We drew a circle at the centroid of the largest contour, which presents the center of the 323

white line in the camera’s view. The vehicle was commanded to try to keep that circle in 324

the same area in the image while in motion. 325

We refined this algorithm in simulation by computing the difference between the x 326

value of the contour’s centroid and subtracting it from the y value of the vehicle’s camera 327

centroid. Then, dividing that by a correction value, which we obtained by multiplying 328

a constant by the x value of the vehicle’s camera centroid. This yields a yaw rate that is 329

proportional to the difference between the x position of the contour’s centroid and the 330

centroid of the vehicle’s camera view. 331

Version November 25, 2022 submitted to Vehicles 12

(a) In SimpleSim simulator (b) In Gazebo simulator

Figure 11. The above image shows the algorithm in action in 2 different simulators, namely SimpleSim
and Gazebo. The circle is drawn at the centroid of the largest contour (the detected white line).

For lane centering, only one of the lane lines was detected and the vehicle was centered 332

to maintain a certain distance from the detected line. The simulated vehicle was able to 333

follow the lane at a high speed of 16 mph with no discernable jitter. 334

(a) Outer lane (b) Inner lane

Figure 12. This is a still from the camera of the vehicle when using the blob detection algorithm in
the real time environment. As seen in the above figure, the largest white contour is found (marked in
red) and the blue dot indicates the centroid of it. The ROI cropping is also seen above.

3.5. Algorithm II (Hough) 335

Probabilistic Hough Transform Line Detection, Fictitious Center Lane Line using Offset for 336

Lane Centering, and Proportional Control Yaw Rate Calculation using Contour 337

338

Hough lines have been used in previous lane keeping algorithms, including those used
by real vehicles[11]. We implemented the Probabilistic Hough Line Transform function
[21] to the filtered image for line detection. The standard Hough Transform is used to
determine the parameters of features such as lines and curves within an image. In the
case of line detection, a single edge pixel is mapped to a sinusoid in 2D parameter space
representing all possible lines that could pass through that image point. This point-to-curve
transformation is the Hough transformation for straight lines. When viewed in Hough
parameter space, points which are collinear in the cartesian image space become readily
apparent as they yield curves which intersect at a common point. Probabilistic Hough
Transform is an optimization of the Hough Transform. It doesn’t take all the points of the
line into consideration. Instead, it takes only a random subset of points which is sufficient
for line detection. The Probabilistic Hough Lines are found using the parametric form for a
standard line equation:

ρ = xcosθ + ysinθ

Version November 25, 2022 submitted to Vehicles 13

The methods we utilize after the implementation of the Probabilistic Hough Line 339

Transform deviates from prior research. The slope of each line is calculated and all lines 340

with a positive slope are averaged to come up with the left line and all lines with a negative 341

slope are averaged to come up with the right line. 342

For lane centering, we used two different methods: 343

1. We offset the right line in case of outer lane-following and the middle line in case of 344

inner lane-following according to the range of view of the camera. 345

2. We averaged the left and right slopes to obtain a middle line. 346

For the yaw rate calculation, we used two different methods: 347

1. We use the contour detection line following method on the center line. (Refer Section 348

3.4) 349

2. We use an equation that we came up with which directly uses the middle line to 350

convert the point furthest away from the screen to a yaw rate. 351

For yaw rate calculation directly with the x coordinate from the center line, we used the 352

center error (refer Figure 10) and divided it by a large gain value to obtain a small yaw rate. 353

We tested combinations of the above lane centering and yaw rate calculation methods 354

to arrive at four variations of the same algorithm. The case wherein we used offset lane 355

centering and contour detection on the center line worked the best in both simulation and 356

real life tests. Thus, this was chosen as the implementation for algorithm II. This algorithm 357

is novel as it is a combination of Algorithm 1 (refer Section 3.4) and the Hough Transform. 358

(a) Average middle line lane (b) Offset right line

Figure 13. The Hough Lines and the Center Lane Line are visually represented in 2D simulation.

(a) Outer lane (b) Inner lane

Figure 14. The ROI used for Algorithm II when using the offset method of lane centering. Different
ROIs are used for inner and outer lane.

Version November 25, 2022 submitted to Vehicles 14

(a) Outer lane (b) Inner lane

Figure 15. Hough Lines and Contour Detection.
This is an image from the implementation of the algorithm in the real-time environment. The above
figure shows the Hough Lines for the white lines drawn in blue and the center lane line drawn in red.
Red was chosen as the color for the center line as red is not typically found on roads. The green on
the red line indicates the Contour Detection of the center line.

Figure 16. The above image shows the ROI used for Average Center Lane Line method for lane
centering. The same ROI is used for inner and outer lane.

(a) Outer lane (b) Inner lane

Figure 17. Hough Lines and Average Center Lane Line.
The ROI in Figure 16 is used for this method so that the white lines on both sides are detected. Both
of these lines are used to create a fictitious center line which is shown in red.

3.6. Algorithm III (Spring) 359

Hough Transform Line Detection with Spring Method Center Approximation for Lane Center- 360

ing 361

362

Hough line detection is applied to find all the lines in the filtered image. All the 45◦ 363

lane lines are extended to form an X to account for cases where there are broken or dashed 364

lines in order to enable the automobile to follow a continuous path. The spring method 365

center approximation method [2,20] is then used on these lines. This algorithm’s objective 366

Version November 25, 2022 submitted to Vehicles 15

is to use spring physics as a dynamic control model to move the vehicle’s center (VC) to 367

the lane’s center (LC). This works because the x component of the spring’s push force is in 368

equilibrium when the car is in the middle of the lane. 369

To transfer the force into steering input, the rays that intersect with the line mask are 370

detected once they have been generated from the VC point. The force may be represented as 371

a push or pull force on the point LC using the ray lengths. The last step involves calculating 372

the steering input using the horizontal component of the force to move the car right or left 373

and center it in the lane. We adapted and optimized this algorithm to work in Python and 374

fit in our code architecture. 375

Figure 18. The above image shows the working of the algorithm in simulation. The blue lines indicate
the Hough lines and the yellow point indicates the center of the lane. The rays are extended until
they touch the Hough lines on either side.

Figure 19. The above figure indicates the ROI cropping done. Since both white lines are ideally
required for this algorithm, the ROI is symmetrical on both sides.

(a) Outer lane (b) Inner lane

Figure 20. Visual Representation of the Hough Lines and the center point. The rays are drawn out to
meet the Hough lines. The inner lane image shows how the algorithm works even on a sharp turn.

Version November 25, 2022 submitted to Vehicles 16

Table 2. Summary of the algorithms implemented.

Line Detection Lane Centering Proportional Yaw
Rate Control In Simulation In Real-Time

Environment

Algorithm 1 Contour Offset
Using the x

coordinate value
from centroid

Worked well. No
jitter even at high

speeds.

Works. This is the
algorithm being

used for
demonstration.
Jitter present in
real life even at

low speeds.

Algorithm 2
Probabilistic

Hough Lines, then
Contour

Average Center
Lane Line

Using the x
coordinate value

from centroid

Worked, but jitter
present even at low

speeds.

Could not do the
sharp turns, lane

departures present.

Probabilistic
Hough Lines

Average Center
Lane Line

Using x coordinate
value from average

center lane line

Worked better than
above in

simulation. Slight
jitter even at low

speeds.

Could not do the
sharp turns, lane

departures present.

Probabilistic
Hough Lines Offset

Using x coordinate
value from the

offset center lane
line

Worked well. Jitter
present at high

speeds.

Works, but
requires future

adjustment to find
a perfect equation

to calculate the
proportional yaw

rate.

Probabilistic
Hough Lines, then

Contour
Offset

Using the x
coordinate value

from centroid

Worked well. Jitter
present at high

speeds.

Works. Algorithm
being used for
demonstration.

Fastest and
smoothest

algorithm. Jitter
present in real life

only at higher
speeds.

Algorithm3 Hough Lines Spring Force Using the mean
force value

Worked well. Jitter
and lane

departures present
at medium to high

speeds.

Works. This is the
algorithm being

used for
demonstration.

4. Challenges 376

This research study is novel because we tested our algorithms under challenging 377

situations including dynamic lighting, varied road conditions, and distractions that would 378

confuse our camera and interfere with our algorithms. We had to plan for and overcome all 379

of these obstacles since people travel at various hours of the day and on unreliable roads. 380

4.1. Environment Challenges 381

Lawrence Technological University’s Lot H Course has many inconsistencies in its lane 382

lines as the course is meant to represent the imperfections of real-world road conditions. 383

Large portions of the lanes have potholes, cracks, and bumps, which interferes with the 384

vehicle’s speed control, as well as the algorithms’ ability to detect the lane. Moreover, 385

since the test course replicates an unmaintained road, the lane lines are narrower and 386

the markings are more faded than many real-world roads, hence harder to detect with 387

Version November 25, 2022 submitted to Vehicles 17

our algorithms. As a result of this and the weather, our lane detection function would 388

sometimes lose track of the lane causing the vehicle to drive off the road. For this reason, we 389

decided to implement a shadow creep functionality to prevent this behavior. Our shadow 390

creep implementation creates an artificial middle lane line for when the Hough lines are lost 391

until the lane detection algorithm recovers. However, this method was was unsuccessful 392

so instead we secured a strip of white reflective tape along the segments of the lane that 393

were faded or missing as seen in Figure 21. 394

(a) Broken white lane line is shown
in the above image. The deteriorated

road conditions are also seen.

(b) A strip of reflective white tape is
secured creating a more stable line to

detect and track.

Figure 21. The Lot H Course contains many broken lines where there should be solid lane lines. This
mimics real-life, worn road conditions.

In Figure 22 (a), we see that there are instances where there are yellow parking lines are 395

close to the white lane lines. This creates the issue of premature yellow detection, resulting 396

in the ACTor stopping and turning before reaching the stopping area. The solution that 397

we came up with was to design and implement a region of interest tailored specifically for 398

detecting the yellow line as seen Section 3.3.6. 399

As shown in Figure 22 (b), shadows from nearby trees and objects obscure the lane and 400

breaks the lane detection algorithm due to the drastic change in brightness. This paired with 401

our restriction of only being able to use the single Mako G-319 Camera for lane-following 402

created a problem. To fix this problem, we implemented a dynamic reconfiguration menu 403

and added an option to adjust the L (or light) value in the HLS colorspace we use in our 404

filters for detecting the lane. When the shadow obscures the lane, the brightness drastically 405

drops, which means all we needed to do is find a way to increase the brightness of the live 406

camera footage when it happens. By adding an option to dynamically change the L value, 407

we were able to solve the problem. 408

Since the camera was installed behind the windshield, our algorithms struggled in 409

sunny conditions due to overexposure. Our stopgap solution was to tape a tinted sunglasses 410

lens to the camera to polarize some of the light, but many times this did not suffice and 411

our algorithms could not work properly as we relied on the camera to guide us through 412

the course. Additionally, when it rained, the oil mixed in soil created reflective puddles on 413

the ground, and the raindrops on the windshield increased the level of noise in the camera 414

footage as shown in Figure 23. This made it more difficult for our algorithms to recognize 415

the lane lines as the puddles were reflecting the white clouds overhead. The camera was 416

also installed in a location out of the wipers reach, so it could not wipe off the raindrops 417

off the windshield. But the region of interest and filtering techniques implemented were 418

Version November 25, 2022 submitted to Vehicles 18

(a) Yellow parking lines near the lane
interfering with yellow line

detection.

(b) Shadows from nearby trees
interfering with lane detection.

Figure 22. The above images indicate some of the environmental challenges faced. The images are
from the test course.

robust and the algorithms were unaffected by rainy conditions (please refer to Appendix 419

A). However, the filtering can still be improved and is an area for future quantitative study 420

[30]. 421

Figure 23. Rainfall leaves reflective puddles across the course making it difficult to detect and track
lane lines. Consistent rainfall on the windshield also caused multiple disturbances with camera
consistency.

4.2. Code and Simulation Challenges 422

Though simulators have in the past been used to successfully transfer learning from 423

one domain to another without retraining, including in self driving [10], in this case, the 424

code that worked well in simulation but struggled in reality, as the simulation failed to 425

account for the nuance and complexity of the real-world environment. The algorithms’ 426

movement in the simulated environment was not smooth or uniform at higher speeds. In 427

real life, most of the algorithms had poor steering control leading to unsteady movements 428

of the vehicle when testing due to the conditions of the unmaintained road. 429

We tested perspective transform and Bird’s Eye View transform but found that these 430

transformation techniques were ineffective for our uses. We also tried median blur, his- 431

togram equalization, dilation, Laplacian, Gaussian, and Sobel filters. However, we found 432

these operations add little performance improvements relative to their computational com- 433

Version November 25, 2022 submitted to Vehicles 19

plexity. In consideration of speed, we applied only the most necessary filters so that our 434

algorithms could work well. 435

All nodes in ROS run in parallel so ROS was chosen for development purposes to be 436

able to make use of the available computational resources on the vehicle. However, we 437

still observed that there were delays in the processing speed as sometimes the masked 438

image would not change despite the vehicle being in motion. This is an area that would 439

benefit from increased computational power and could possibly increase the speed and 440

performance of the vehicle and algorithms. It is also worth mentioning that this could be 441

one of the limitations of implementing our algorithms in Python. 442

5. Results 443

An evaluation program was used to collect the total time, average speed, and speed 444

infractions of a successful run for each method. An external evaluator recorded the number 445

of times the vehicle would either touch a lane line or drift outside the lane. One of the 446

Teaching Assistants was arbitrarily chosen as the evaluator and assigned to follow the 447

vehicle across the test course. Markings were made on a paper version of the track where 448

the vehicle touched a line, departed from the lane, or for the dead reckoning turn error. 449

In addition, the weather conditions at the time and any additional comments were also 450

noted. Since the same person evaluated all of the algorithms, the key was uniform and left 451

up to the evaluator’s discretion. In addition, rosbags were recorded using the vehicle’s 452

drive-by-wire system to corroborate and verify the evaluator’s sheets. 453

A run is defined as a failure if the human driver has to manually use the brake to stop 454

the vehicle from hitting the curb or going off the predetermined course. In case of a lane 455

departure wherein the algorithm is unable to follow the lane anymore, this case would also 456

be considered a failure. In the dead reckoning turn, if the vehicle turns too much to the 457

right in case of the inner or outer lane turn, it is a failure case. If it turns too much to the 458

right in case of the outer lane-following, it hits the curb. If it turns too much to the right in 459

case of inner lane-following, the algorithm loses the middle dashed line or the outer line 460

too according to the Region of Interest used. In both of these cases, it results in a failure 461

case as the algorithm is unable to proceed following the lane. 462

The Table 3 below shows the recorded data for the official runs of the algorithm. Each 463

run, whether it was successful or not, was recorded as a rosbag file for future analysis. 464

An external evaluator was responsible for noting the results. Refer to Appendix A for the 465

details of each of the official runs. The total number of recorded runs for each algorithm 466

was used to determine the average success rate. 467

Table 3. Summary of Results Data.

Inner/ Outer Success Rate
(%)

Time taken to
complete 2 laps

(s)

Best Average
speed for both

laps (mph)

Distance
covered above
or below speed

limit (m)

No. of Line
Touches

Algorithm 1-
Blob Outer 66.67 193.02 1.999 3.352 0

Inner 50 153.22 2.108 4.962 3 in lap 1, 4 in
lap 2

Algorithm 2-
Hough Outer 77.78 86.88 4.476 8.142 0

Inner 66.67 163.41 2.088 4.768 0
Algorithm 3-

Spring Outer 33.33 163.68 2.147 2.77 infinite1

Inner 75 154.02 2.13 3.364 0
Best Human

Driver Outer 100 75.00 5.854 71.03 0

Inner 100 71.14 5.185 2.292 0
1 The vehicle’s wheels were on the line throughout most of the lap (but it did not depart the lane).

Version November 25, 2022 submitted to Vehicles 20

The official runs of each algorithm on the inner and outer lane are recorded above and 468

processed into a speed-time graph. These are then compared with the data from the human 469

driver that drove the best below (Refer to Appendix A for more graphs) 470

(a) (b)

Figure 24. The above images shows the speed-time graph for the best human drivers for inner lane
and outer lane. The time taken, distance traveled above the speed limit, and average speed were
taken into account for determining the best human driver.

(a) (b)

Figure 25. The speed time graphs for Spring algorithm run on the inner lane and Hough algorithm
on the outer lane are shown in the above images. For more graphs of the algorithms, please refer to
Appendix A.

The speed control for the algorithms are noticeably more consistent than that of the 471

human drivers. The bumps in the graph are the result of the vehicle trying to make 472

corrections for bumps and inconsistencies in the road. The sharp peaks and troughs of 473

the graph are the result of losing a Hough line in the mask, then picking the line up again. 474

The human drivers also demonstrated a tendency to go over the speed limit in many 475

cases, suggesting it is difficult for humans to maintain a consistent speed at all times. On 476

average, the human drivers were able to drive faster than the algorithms, close the set 477

speed limit of seven miles per hour. However, the algorithms were not far off; the Hough 478

algorithm was able to complete the outer lane laps at a maximum speed of 6.7 miles per 479

hour and at an average speed of 4.476 miles per hour consistently for over four tests, which 480

is comparable to the average speed of the human drivers. The human drivers would often 481

exceed the speed limit and once they noticed the speed limit infraction on the speedometer 482

of the vehicle, they would try to correct it by slowing down and the pattern would repeat 483

throughout the laps for large distances traveled. On the other hand, the Hough algorithm 484

for outer lane covered a much smaller distance of inconsistent change in speeds. Overall, 485

the human driver was better at keeping to the lane at higher speeds, but struggled keeping 486

a consistent speed when compared to the self-driving algorithms. 487

The algorithms are quite far from human performance in terms of control of the vehicle 488

at high speeds though the Spring and Hough algorithm proved promising. In the recorded 489

runs of the authors, the average speed ranged from 3.8 to 6.9 miles per hour (for each author 490

attempting the course) when following the speed limit. In contrast, the Hough algorithm 491

achieved an average speed of 4.476 miles per hour (and 4.358 miles per hour in another of 492

the recorded runs) for outer lane which falls exactly within the range of the human runs. 493

Version November 25, 2022 submitted to Vehicles 21

All of the algorithms faced some difficulty when under direct sunlight. Hough lines 494

especially are dependent on the accuracy of the HSV mask, which varies depending on 495

weather and light conditions. The Hough algorithm performed best in overcast weather 496

conditions. We observed that the spring algorithm had a superior performance for the 497

inner lane when compared to the outer lane. We attribute this to the fact that the algorithm 498

is able to better detect the lane when it is at a closer proximity to the vehicle due to the 499

sharper curves. 500

Figure 26. The nomenclature for the Turn Number is indicated in the above image.

Table 4. Table indicating the most difficult turn for each algorithm.

Parameter Algorithm Outer/ Inner Location

Hardest Turn Blob Outer Turn 2

Inner Especially Turn 2, but all turns
are mostly difficult

Hough Outer Turn 3

Inner None, all face equal difficulty
or ease

Spring Outer None, all face equal difficulty
or ease

Inner None, all face equal difficulty
or ease

6. Conclusions 501

This research presented three different algorithms that autonomous vehicles may use 502

to navigate both inner and outer roadway lanes. Real-world driving data and graphs 503

showed that the human driver was better at staying within the lane while the algorithms 504

excelled at driving at a certain speed consistently. We tested the algorithms on the ACTor 505

self-driving platform as fast as they could go under the speed limit of seven miles per 506

hour while still achieving the highest level of accuracy. In the end, during testing and 507

demonstration, all three algorithms were able to complete the course for two laps. Some 508

algorithms performed better than others, but ultimately, they were all able to complete the 509

laps. Based on the results from all of the tables, we came to the conclusion illustrated in 510

Table 5: 511

Version November 25, 2022 submitted to Vehicles 22

Table 5. Summary of the findings

Parameter measured Lane Algorithm

Fastest Algorithm Outer Hough (max speed: 6.7 mph)
Inner Hough (max speed: 4.9 mph)

Smoothest algorithm /
Algorithm with the least jerk Outer Hough

Inner Hough, Spring

Most reliable algorithm (based
on the average success rate) Outer Hough

Inner Hough

Best overall algorithm / Most
promising algorithm Outer Hough, Spring

Inner Hough, Spring

A high average speed, along with the minimal number of line touches, suggests good 512

speed and centering control since it means the car did not have to slow down as much for 513

turns. Existing lane-following algorithms are built for smooth, well marked roadways [11], 514

[17]. In this research work, despite the numerous obstacles, such as the tight curves and 515

unmaintained roads, our algorithms were able to navigate the test course. These algorithms 516

serve as a baseline for navigating the challenging sections of road. 517

Our work aims to enable a vehicle to drive under varied weather and road conditions 518

without any human intervention within the bounds of a predefined course when the 519

self-driving feature is enabled. As per SAE definition of autonomy (refer Figure 1), our 520

work advances the computer vision aspect of self-driving research required to achieve full 521

autonomy. 522

There are opportunities for future improvement of this study. For example, more 523

data collection in the form of rosbags could be useful in getting more accurate values of 524

the performance of the algorithms. We could also test the effectiveness of our filtration 525

process under snowy conditions as long as the lanes are visible. The future directions of this 526

research includes a fully-automated function to evaluate the performance of self-driving 527

algorithms. We use an automated evaluation function to compute the time taken for the 528

laps, the average speed, and the distance traveled over and below the speed limit. However, 529

a fully automated evaluation system that also notes the weather conditions and number of 530

line touches and departures could be built instead of any human evaluation. In addition, 531

research into HDR algorithms can be used to improve the filtration pipeline used in this 532

research as excessive sunlight and luminosity was a challenge that lead to a few failure 533

cases (refer to Appendix A). Lane detection using deep learning algorithms like LaneNet 534

[29] followed by lane centering algorithms could also be further explored. 535

The evaluation data files (or rosbags) of the algorithms driving are saved for further 536

research in the future. The implementations of the algorithms are also open source and 537

available on GitHub. 538

In the future, we intend to develop algorithms that will enable vehicles to travel faster 539

and more accurately—ideally, at a pace that is equal to that of humans—and to deliver 540

reliable data regardless of the weather, road conditions, or the amount of lighting present 541

in the environment. We believe our work brings self-driving research one step closer to full 542

automation. 543

Author Contributions: Conceptualization, Shika Rao, Alexander Quezada, Seth Rodriguez, and 544

Cebastian Chinolla; Methodology, Shika Rao, Alexander Quezada, Seth Rodriguez, and Cebastian 545

Chinolla; Formal analysis, Alexander Quezada, Seth Rodriguez, Cebastian Chinolla, and Shika Rao; 546

Resources, CJ Chung and Joshua Siegel; Writing—original draft preparation, Cebastian Chinolla, 547

Seth Rodriguez, Shika Rao, and Alexander Quezada; writing—review and editing, Seth Rodriguez, 548

Cebastian Chinolla, Shika Rao, Alexander Quezada, CJ Chung, and Joshua Siegel; Supervision, CJ 549

Chung and Joshua Siegel; Project Administration, CJ Chung and Joshua Siegel; Funding Acquisition, 550

Version November 25, 2022 submitted to Vehicles 23

CJ Chung and Joshua Siegel. All authors have read and agreed to the published version of the 551

manuscript. 552

Funding: This material is based upon work supported by the National Science Foundation under 553

Grant No. 2150096 and Grant No. 2150292. 554

Data Availability Statement: The evaluation data files of the algorithms driving (recorded rosbags) 555

were kept for further research in the future. The implementations of the algorithms are open-sourced 556

below. 557

Algorithm 1 in simulation: https://github.com/irisfield/shifted_line_sim_pkg Algorithm 1 on 558

vehicle: https://github.com/irisfield/shifted_line_pkg 559

Algorithm 2 in simulation: https://github.com/irisfield/fictitious_line_sim Algorithm 2 on vehicle: 560

https://github.com/irisfield/fictitious_line_pkg 561

Algorithm 3 in simulation: https://github.com/irisfield/spring_line_sim Algorithm 3 on vehicle: 562

https://github.com/irisfield/spring_line_pkg 563

Acknowledgments: We thank our mentors, Dr. Joe DeRose and Prof. Nick Paul, as well as our 564

teaching assistants, Mark Kocherovsky, and Joe Schulte. We also thank Adam Terwilliger from MSU. 565

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design 566

of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or 567

in the decision to publish the results. 568

Appendix A 569

The tables containing the details of each of the official runs are given below. External 570

evaluation was done. Rosbags are available for future analysis. 571

https://github.com/irisfield/shifted_line_sim_pkg
https://github.com/irisfield/shifted_line_pkg
https://github.com/irisfield/fictitious_line_sim
https://github.com/irisfield/fictitious_line_pkg
https://github.com/irisfield/spring_line_sim
https://github.com/irisfield/spring_line_pkg

Version November 25, 2022 submitted to Vehicles 24

Table A1. Success Cases

Algorithm Inner/
Outer

No. of
Line

Touches

Location
of line
touch

No. of
Lane

Depar-
tures

Location
of lane
depar-
ture

Yellow
Stop

Line Vi-
olation

dead
reckon-

ing
Turn Vi-
olation

Time (2
laps) (s)

Avg
speed
(mph)

Distance
in Error

Weather
Condi-

tion

Blob outer 1

1 dead
reckon-
ing lane

touch

0 NA Yes,
after Yes, left 193.02 1.999 3.352 Overcast

Blob inner
3 in lap
1, 4 in
lap 2

All
turns in

both
laps

and 1
dead

reckon-
ing lane

touch

0 NA Yes,
after Yes, left 153.22 2.108 4.962 Rain

Hough outer 0 NA 0 NA Yes,
after No 188.79 2.17 2.42 Rain

Hough inner 0 NA 0 NA
Yes,
little
after

No 163.41 2.088 4.768 Sunny

Spring inner 1

1 dead
reckon-
ing lane

touch

0 NA Yes,
after Yes, left 154.02 2.13 3.364 Sunny

Spring outer infinite everywhere 0 NA Yes,
after Yes, left 163.68 2.147 2.77 Overcast

Hough1 outer 0 NA 0 NA No No - - - Rain

Hough1 outer 1

1 dead
reckon-
ing lane

touch

0 NA Yes,
after Yes, left - - - Overcast

1 Rosbag not available, only external evaluation.

Table A2. Failure Cases

Algorithm Inner/ Outer Average Speed
till stop (mph)

Location of
Failure

Weather
Conditions

Reasons for
Failure Remarks

Hough outer 4.286 Turn number 3
(lap 2)

Overcast,
Sunny

Overcast
weather

suddenly
turned to sunny
and the camera
couldn’t adjust

fast enough.

Was going at
very high speed
too. Around 6.7

mph when it
failed.

Spring1 outer - dead reckoning Overcast

Did not do the
dead reckoning

before lap 2
properly.

Had an infinite
number of lane
departures and

line touches.
Was “line

following” the
middle dashed

line.
1 Rosbag not available, only external evaluation.

Version November 25, 2022 submitted to Vehicles 25

The tables containing the details of a few of the test runs are given below. There 572

are a lot more failure cases and some perfect runs as we were able to experiment and 573

customize the filters and parameter values according to the specific weather conditions at 574

that exact moment. These runs were recorded as a rosbag file for future analysis and cross 575

verification with the evaluator’s observations. One of the team members was responsible 576

for the evaluation. 577

Table A3. Success Cases

Algorithm Inner/
Outer

No. of
Line

Touches

Location
of line
touch

No. of
Lane De-
partures

Location
of lane

departure

Yellow
Stop Line
Violation

dead reck-
oning
Turn

Violation

Weather
Condi-

tion
Remarks

Hough Outer 0 NA 0 NA Yes, after No Very
sunny -

Blob Inner 3 in lap 1,
4 in lap 2 All turns 1

Turn 1 (by
back

wheel
only)

No
Yes, to the

right a
little

Very
sunny -

Spring Inner 3

Lap2
dead reck-

oning,
Turn 3,
Turn2
(back
wheel
only)

1 Turn 2 in
lap 2 No Yes, left

side

Very
sunny

and
Moderate

Sunny
(kept

switch-
ing)

-

Spring Inner 0 NA NA NA No Yes, left Overcast
little rainy

Only 1
lap, Max

speed:
3.3554
mph

Hough Inner 0 NA 1

1 lane
departure
after right
after dead
reckoning

in lap2

No Yes, left
side

Overcast
drizzly -

Hough Outer 0 NA 0 NA Yes, after Nil Overcast
drizzly

Only 1
lap, Max

speed:
6.71 mph

Hough Outer 1 Turn 2 0 NA

Yes did
not detect

yellow
because
of high
speed

Nil Overcast

Only 1
lap, Max

speed:
7.38 mph

Blob Outer 0 NA 0 NA Yes, after No Sunny -

Blob Inner 3 in lap 1,
4 in lap 2

All turns
in both

laps and,
1 dead

reckoning
lane touch

0 NA Yes, after Yes, left Sunny -

Hough Outer 0 NA 0 NA No Nil Sunny -
Spring Outer infinite everywhere 0 NA Yes, after Yes, left Overcast -

Version November 25, 2022 submitted to Vehicles 26

Table A4. Failure Cases

Algorithm Inner/ Outer Location of
Failure

Weather
Conditions

Reasons for
Failure Remarks

Hough Outer Turn 3 Very sunny

Lane Departure
and could not

catch Hough line
after this. Sun

conditions were
the problem.

-

Spring Inner
dead reckoning-
Lane Departure

before lap 2
Very sunny

Lane Departure
after dead

reckoning turn and
could not catch

Hough line after
this. Sun

conditions were
the problem.

-

Hough Inner Turn 2 lane
Departure Overcast, Drizzly

Too fast for the
algorithm. Vehicle

went off course.

Max speed we
raised it to was

5.59 mph. Could
not go faster.

Blob Outer Turn 2 Very sunny

Lane Departure
due to shadow

problem and could
not catch Hough

line after this. Sun
conditions were

the problem.

-

Appendix B 578

The graphs to evaluate the algorithms’ self-driving are given below. 579

(a) (b)

Figure A1

(a) (b)

Figure A2

Version November 25, 2022 submitted to Vehicles 27

(a) (b)

Figure A3

Appendix C 580

The graphs to evaluate human driving are given below. 581

(a) (b)

Figure A4

(a) (b)

Figure A5

(a) line (b)

Figure A6

Version November 25, 2022 submitted to Vehicles 28

(a) (b)

Figure A7

References 582

1. Ltu-Ros. (n.d.). LTU-ros/simple-sim-roads. GitHub. Retrieved June 24, 2022, from https://github.com/ltu-ros/simple_sim_ 583

roads 584

2. N. Paul, M. Pleune, C. Chung, B. Warrick, S. Bleicher and C. Faulkner, "ACTor: A Practical, Modular, and Adaptable Autonomous 585

Vehicle Research Platform," 2018 IEEE International Conference on Electro/Information Technology (EIT), 2018, pp. 0411-0414, 586

doi: 10.1109/EIT.2018.8500202. 587

3. Andrei, M.-A., Boiangiu, C.-A., Tarbă, N., and Voncilă, M.-L. (2021). Robust Lane Detection and Tracking Algorithm for Steering 588

Assist Systems. Machines, 10(1), 10. MDPI AG. Retrieved from http://dx.doi.org/10.3390/machines10010010 589

4. Mlsdpk. (n.d.). Ros-lane-follower/lane-detection.py at master · MLSDPK/ros-lane-follower. GitHub. Retrieved June 24, 2022, 590

from https://github.com/mlsdpk/ros-lane-follower/blob/master/lane_detect_follower/scripts/lane_detection.py 591

5. SravanChittupalli. (n.d.). Sravanchittupalli/Lane-following-bot-in-gazebo: LaneDetection bot using canny edge detection, Hough 592

Transform, PID control in gazebo using Ros. GitHub. Retrieved June 24, 2022, from https://github.com/SravanChittupalli/Lane- 593

following-bot-in-Gazebo 594

6. Automatic white balancing with grayworld assumption. Stack Overflow. Retrieved June 24, 2022, from https://stackoverflow. 595

com/questions/46390779/automatic-white-balancing-with-grayworld-assumption 596

7. Hough Line transform. OpenCV. (n.d.). Retrieved June 24, 2022, from https://docs.opencv.org/3.4/d9/db0/tutorial_hough_ 597

lines.html 598

8. Yenikaya, S., Yenikaya, G., and Düven, E. (2013). Keeping the vehicle on the road. ACM Computing Surveys, 46(1), 1–43. 599

doi:10.1145/2522968.2522970 600

9. I. Timmis, N. Paul and C. -J. Chung, "Teaching Vehicles to Steer Themselves with Deep Learning," 2021 IEEE International 601

Conference on Electro Information Technology (EIT), 2021, pp. 419-421, doi: 10.1109/EIT51626.2021.9491894. 602

10. Pappas, G.; Siegel, J.E.; Politopoulos, K.; Sun, Y. A Gamified Simulator and Physical Platform for Self-Driving Algorithm Training 603

and Validation. Electronics 2021, 10, 1112. https://doi.org/10.3390/electronics10091112 604

11. A. A. Assidiq, O. O. Khalifa, M. R. Islam and S. Khan, "Real time lane detection for autonomous vehicles," 2008 International 605

Conference on Computer and Communication Engineering, 2008, pp. 82-88, doi: 10.1109/ICCCE.2008.4580573. Retrieved July 13, 606

2022, from https://ieeexplore.ieee.org/abstract/document/4580573 607

12. Kemfic. (2018, May 24). Curved Lane Detection. Hackster.io. Retrieved July 13, 2022, from https://www.hackster.io/kemfic/ 608

curved-lane-detection-34f771#things 609

13. Mouiad-JRA. (n.d.). Mouiad-JRA/Lane-line-detection-using-image-processing-vs-deep-learning: GitHub. Retrieved July 13, 610

2022, from https://github.com/Mouiad-JRA/Lane-Line-Detection-using-Image-Processing-vs-Deep-Learning 611

14. J. Canny, "A Computational Approach to Edge Detection," in IEEE Transactions on Pattern Analysis and Machine Intelligence, 612

vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986, doi: 10.1109/TPAMI.1986.4767851. 613

15. J. Yang, C. Wang, H. Wang and Q. Li, "A RGB-D Based Real-Time Multiple Object Detection and Ranging System for Autonomous 614

Driving," in IEEE Sensors Journal, vol. 20, no. 20, pp. 11959-11966, 15 Oct.15, 2020, doi: 10.1109/JSEN.2020.2965086. 615

16. Vighnesh Devane, Ganesh Sahane, Hritish Khairmode, Gaurav Datkhile, “Lane Detection Techniques using Image Processing”, 616

ITM Web Conf. 40 03011 (2021), DOI: 10.1051/itmconf/20214003011 617

17. Haque, Md and Islam, Md and Alam, Kazi and Iqbal, Hasib and Shaik, Md. (2019). A Computer Vision based Lane Detection 618

Approach. International Journal of Image, Graphics and Signal Processing. 11. 27-34. 10.5815/ijigsp.2019.03.04. 619

18. Color Conversions. OpenCV. (n.d.). Retrieved June 24, 2022, from https://docs.opencv.org/3.4/de/d25/imgproc_color_ 620

conversions.html 621

19. Chan-Jin Chung, A Simple lane-following Algorithm Using A Centroid of The Largest Blob, NSF Self-Drive REU 2022 Workshop 622

at LTU. Retrieved July 30, 2022, from http://qbx6.ltu.edu/mcs/REU/workshop/lanefollowing_algo22chung.pdf 623

20. Nick Paul, Minimal Python implementation of blob lane-following algorithm. Retrieved August 12, 2022, from https://github. 624

com/nick-paul/lane_follow_blob 625

https://github.com/ltu-ros/simple_sim_roads
https://github.com/ltu-ros/simple_sim_roads
https://github.com/ltu-ros/simple_sim_roads
http://dx.doi.org/10.3390/machines10010010
https://github.com/mlsdpk/ros-lane-follower/blob/master/lane_detect_follower/scripts/lane_detection.py
https://stackoverflow.com/questions/46390779/automatic-white-balancing-with-grayworld-assumption
https://stackoverflow.com/questions/46390779/automatic-white-balancing-with-grayworld-assumption
https://stackoverflow.com/questions/46390779/automatic-white-balancing-with-grayworld-assumption
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
doi:10.1145/2522968.2522970
https://doi.org/10.3390/electronics10091112
https://ieeexplore.ieee.org/abstract/document/4580573
https://www.hackster.io/kemfic/curved-lane-detection-34f771#things
https://www.hackster.io/kemfic/curved-lane-detection-34f771#things
https://www.hackster.io/kemfic/curved-lane-detection-34f771#things
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
http://qbx6.ltu.edu/mcs/REU/workshop/lanefollowing_algo22chung.pdf
https://github.com/nick-paul/lane_follow_blob
https://github.com/nick-paul/lane_follow_blob
https://github.com/nick-paul/lane_follow_blob

Version November 25, 2022 submitted to Vehicles 29

21. J. Matas, C. Galambos, J. Kittler, Robust Detection of Lines Using the Progressive Probabilistic Hough Transform, Computer Vision 626

and Image Understanding, Volume 78, Issue 1, 2000, Pages 119-137, ISSN 1077-3142, https://doi.org/10.1006/cviu.1999.0831. 627

22. A Theoretician’s Guide to the Experimental Analysis of Algorithms. (n.d.). Retrieved August 13, 2022, from http://plato.asu. 628

edu/ftp/experguide.pdf 629

23. Yan Jiang, Feng Gao and Guoyan Xu, "Computer vision-based multiple-lane detection on straight road and in a curve," 2010 630

International Conference on Image Analysis and Signal Processing, 2010, pp. 114-117, doi: 10.1109/IASP.2010.5476151. 631

24. J. C. McCall and M. M. Trivedi, "An integrated, robust approach to lane marking detection and lane tracking," IEEE Intelligent 632

Vehicles Symposium, 2004, 2004, pp. 533-537, doi: 10.1109/IVS.2004.1336440. 633

25. J. Guo, Z. Wei and D. Miao, "Lane Detection Method Based on Improved RANSAC Algorithm," 2015 IEEE Twelfth International 634

Symposium on Autonomous Decentralized Systems, 2015, pp. 285-288, doi: 10.1109/ISADS.2015.24. 635

26. D. Vajak, M. Vranješ, R. Grbić and N. Teslić, "A Rethinking of Real-Time Computer Vision-Based Lane Detection," 2021 IEEE 11th 636

International Conference on Consumer Electronics (ICCE-Berlin), 2021, pp. 1-6, doi: 10.1109/ICCE-Berlin53567.2021.9720012. 637

27. SAE Levels of Autonomy. Available online: https://www.sae.org/blog/sae-j3016-update(accessed on 6 September 2022). 638

28. What Full Autonomy Means for the Waymo Driver. Available online: https://spectrum.ieee.org/full-autonomy-waymo-driver# 639

toggle-gdpr (accessed on 6 September 2022). 640

29. Wang, Z., Ren, W., & Qiu, Q. (2018). Lanenet: Real-time lane detection networks for autonomous driving. arXiv preprint 641

arXiv:1807.01726. 642

30. P. Duthon, F. Bernardin, F. Chausse, M. Colomb, "Methodology Used to Evaluate Computer Vision Algorithms in Adverse 643

Weather Conditions", Transportation Research Procedia, Volume 14, 2016, Pages 2178-2187, ISSN 2352-1465, https://doi.org/10.1 644

016/j.trpro.2016.05.233. 645

31. Ze Wang, Weiqiang Ren and Qiang Qiu, "LaneNet: Real-Time Lane Detection Networks for Autonomous Driving", 2018. 646

32. K. Cumali and E. Armagan, "Steering Control of a Vehicle Equipped with Automated Lane Centering System," 2019 11th Interna- 647

tional Conference on Electrical and Electronics Engineering (ELECO), 2019, pp. 820-824, doi: 10.23919/ELECO47770.2019.8990555. 648

33. Y. Wang, D. Shen and E.K. Teoh, "Lane detection using spline model", Pattern Recognition Letters, vol. 21, pp. 677-689, 2000. 649

34. Li, Yingmao & Iqbal, Asif & Gans, Nicholas. (2014). Multiple lane boundary detection using a combination of low-level image 650

features. 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014. 10.1109/ITSC.2014.6957935. 651

https://doi.org/10.1006/cviu.1999.0831.
http://plato.asu.edu/ftp/experguide.pdf
http://plato.asu.edu/ftp/experguide.pdf
http://plato.asu.edu/ftp/experguide.pdf
https://www.sae.org/blog/sae-j3016-update
https://spectrum.ieee.org/full-autonomy-waymo-driver#toggle-gdpr
https://spectrum.ieee.org/full-autonomy-waymo-driver#toggle-gdpr
https://spectrum.ieee.org/full-autonomy-waymo-driver#toggle-gdpr
https://doi.org/10.1016/j.trpro.2016.05.233.
https://doi.org/10.1016/j.trpro.2016.05.233.
https://doi.org/10.1016/j.trpro.2016.05.233.

	Introduction
	Review of Literature
	Materials and Methods
	Simulation
	Real World
	Environment
	Vehicle Specifications

	Code Architecture
	SDT Report Node
	Yellow Line Node
	Line Follow Node
	Control Unit Node
	Filters
	Region of Interest

	Algorithm I (Blob)
	Algorithm II (Hough)
	Algorithm III (Spring)

	Challenges
	Environment Challenges
	Code and Simulation Challenges

	Results
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

