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We investigate the amplitude (Higgs) mode associated with longitudinal fluctuations of the order
parameter at the continuous spontaneous symmetry breaking phase transition. In quantum magnets, due to
the fast decay of the amplitude mode into low-energy Goldstone excitations, direct observation of this
mode represents a challenging task. By focusing on a quasi-one-dimensional geometry, we circumvent the
difficulty and investigate the amplitude mode in a system of weakly coupled spin chains with the help of
quantum Monte Carlo simulations, stochastic analytic continuation, and a chain-mean field approach
combined with a mapping to the field-theoretic sine-Gordon model. The amplitude mode is observed to
emerge in the longitudinal spin susceptibility in the presence of a weak symmetry-breaking staggered field.
A conventional measure of the amplitude mode in higher dimensions, the singlet bond mode, is found to
appear at a lower than the amplitude mode frequency. We identify these two excitations with the second
(first) breather of the sine-Gordon theory, correspondingly. In contrast to higher-dimensional systems, the
amplitude and bond order fluctuations are found to carry significant spectral weight in the quasi-1D limit.
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Introduction.—The phenomenon of spontaneous sym-
metry breaking (SSB) represents one of the key notions in
modern physics. For a continuous global symmetry, SSB is
expected to generate two types of collective excitations—
Goldstone modes, describing transverse or phase fluctua-
tions of the order parameter, and Higgs modes, which
describe its longitudinal or amplitude fluctuations. In
contrast to the gapless Goldstone excitation, which is
commonly observed in a variety of condensed matter
systems (e.g., magnons in magnetically ordered materials),
the observation of the amplitude (longitudinal) mode is
more challenging. It is complicated by its intrinsically finite
lifetime—an amplitude-mode excitation is allowed to
decay into a pair of Goldstone excitations which leads
to a strong damping of this excitation. By now several
successful experimental sightings of the amplitude mode
have been reported in the dimerized [1] and quasi-
one-dimensional (1D) quantum magnets KCuF3 [2,3],
BaCu2Si2O7 [4], Ising-like spin chains SrCo2V2O and
Yb2Pt2Pb [5,6] as well as in superconducting settings [7,8].
The amplitude mode is a well-defined excitation when its

lifetime is long, which requires suppression of the decays
into Goldstone modes, the spin waves. Theoretically, such
suppression requires weakening of the long range magnetic
order, the magnitude of which determines the spectral
weight of the spin waves. Two ways to achieve this have
been proposed, through (a) quantum critical points (QCPs)

[9–12] and (b) dimensional crossover towards one dimen-
sion (1D) [13–16]. The first strategy was recently verified
via quantumMonte Carlo model simulations in a dimerized
antiferromagnet [17–19] and superconductor-insulator
transition [20].
In this Letter, we explore the second, quasi-1D approach.

It has long been proposed that a stable longitudinal model
shall arise in weakly coupled spin chains [14–16]. It should
be noted that this 1D critical point is strongly different from
the O(3) QCP one due to the extreme spatial anisotropy of
spin correlations. At the critical point, which corresponds to
the limit of decoupled spin chains, excitations propagate
only along chains. This feature, combined with unique
properties of the spin-1=2 Heisenberg chain, imbues the
ordered phase of weakly coupled spin-1=2 chains with the
spinon confinement physics which is absent in the spatially
isotropic magnetically ordered phase with spontaneously
broken O(3) symmetry.
To study the excitation spectrum of the quasi-1D spin

system, we utilize quantum Monte Carlo (QMC) simula-
tions and stochastic analytic continuation (SAC) [21–23] to
compute the spectral information of weakly coupled
Heisenberg spin-1=2 chains. The predicted amplitude
modes are directly observed in the numerics as the
interchain interaction is reduced towards zero, and the
dispersions of all low-energy modes agree nicely with
analytic predictions. More importantly, we find that the
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amplitude mode in quasi-1D systems exhibits two novel
features. First, in contrast with higher-dimensional mag-
nets, the amplitude mode in quasi-1D systems is charac-
terized by a spectral weight significantly stronger than the
continuum, making it highly visible and easy to detect.
Second, we find that a quasi-1D spin-1=2 magnet contains
three, instead of two, low-energy modes. In addition to the
phase and amplitude modes, visible in the dynamic spin
correlation functions, an additional scalar mode emerges in
the dynamic bond correlation function. Similar to the
amplitude mode, this scalar mode is singletlike but exhibits
different frequency and momentum dependence.
In higher dimensions, it has been known that the scalar

susceptibility serves as a great tool for probing fluctua-
tions in the singlet channel [10] and has been widely used
in numerical studies of dimerized antiferromagnets [17–
19]. Inside the ordered SSB phase scalar fluctuations
overlap with the amplitude ones but with much suppressed
damping, and the scalar susceptibility exhibits a sharp
peak at the amplitude mode frequency [11]. The quasi-1D
limit is different. We show that in contrast to the amplitude
mode which corresponds to the “second breather” in
the effective sine-Gordon description of the ordered
quasi-1D magnet, the scalar mode is represented by the
“first breather,” an excitation with smaller frequency
which is probed via the dynamic bond-bond correlation
function.
The model and the QMC method.—The geometry of the

problem is shown in Fig. 1. The Hamiltonian reads

H ¼ J
X

hi;jix

Si · Sj þ J⊥
X

hi;jiy

Si · Sj − h
X

i

ð−1ÞiSzi ; ð1Þ

where Si ¼ ðSxi ; S
y
i ; S

z
i Þ denotes the spin-1=2 operator on

site i and J (J⊥) is the nearest-neighbor Heisenberg
exchange along the x (y) direction. We set J ¼ 1 and
introduce ratio g ¼ J⊥=J to control the crossover from
decoupled 1D chains, g ¼ 0, to the isotropic 2D square
lattice, g ¼ 1. The last term represents the staggered
pinning field h, which explicitly breaks the spin-rotational
symmetry.
In our QMC simulations the following three correlation

functions are measured: the transverse spin correlation
function GSxðq; τÞ ¼ ð1=L2Þ

P
i;j e

−iq·ðri−rjÞhSxi ðτÞSxjð0Þi,
the similarly defined longitudinal Sz correlation function

GSzðq; τÞ, and the bond correlation GBðq; τÞ ¼
ð1=L2Þ

P
i;j e

−iq·ðri−rjÞhBjðτÞBið0Þi. Here Bi ¼ Si · Siþx̂

is a spin singlet bond operator (dimerization order para-
meter) defined on a nearest-neighbor bond of the spin
chain, L is the linear system size and τ ∈ ½0; β& is the
imaginary time. In the ordered SSB ground state with finite
hSzi ≠ 0 phase fluctuations (spin waves) are probed byGSx,
GSz measures the amplitude fluctuations, and the scalar
correlation function GB probes correlations between bonds
(energy density) [17–19].
It is important to notice that the SSB ground state is not

possible in the QMC simulation on a finite L × L system
and at finite inverse temperature β. Therefore, in the QMC
with h ¼ 0, there is no distinction between the phase and
amplitude correlation functions, GSxðq; τÞ ¼ GSzðq; τÞ.
Finite h ≠ 0 breaks spin-rotational symmetry and
allows one to probe the amplitude mode by measuring
GSz . It also induces the h-dependent gap in the phase mode
in GSx [24–26].
In order to access real-time quantum dynamics

and obtain the real-frequency spectral function Aðq;ωÞ
from the imaginary-time correlation Gðq; τÞ, Gðq; τÞ ¼
ð1=πÞ

R∞
0 dωAðq;ωÞðe−τω þ e−ðβ−τÞωÞ, we employ the sto-

chastic analytic continuation (SAC). This technique, details
of which are described in Refs. [27–30] and the
Supplemental Material (SM) [31], has been successfully
applied to a broad range of quantum magnets [32,37–45].
Analytical theory.—At small g ¼ J⊥=J ≪ 1, a variety of

exact (Bethe ansatz) and nonperturbative approaches (boso-
nization and renormalization group) are available. In the
g ¼ 0 limit elementary excitations of the spin chain are
right- and left-moving spinons, neutral spin-1=2 fermions
ψR=L;s, which encode an extended SUð2ÞR × SUð2ÞL sym-
metry of chiral rotations at low energies. The staggered
part of the lattice spin operator is expressed via spinons
as Sai ∼ ð−1Þiψ†

Rsσ
a
ss0ψLs0 þ H:c:, where σa is the Pauli

matrix. The singlet bond operator is staggered as well,
Bi ∼ ð−1Þiψ†

RsψLs þ H:c:. These expressions define physi-
cal response functions GSa and GB of the chain. When
continued to the real frequency, the response is given by the
triplet and singlet spinon continua, correspondingly.
Interchain interaction, g ≠ 0, causes confinement of

spinons, binding them in triplet and singlet pairs. This is
easiest seen with the help of the chain mean-field theory
[15,16,33,34] which maps the problem to the 1D sine-
Gordon model by approximating the J⊥ term in Eq. (1) by
the interchain staggered field 2J⊥m0

P
ið−1ÞiSzi with the

self-consistently determined staggered magnetic order
m0 ¼ ð−1ÞihSzi i along the z axis [31]. This mean field
breaks spin rotational symmetry of the problem (with
h ¼ 0). The excitation spectrum of the sine-Gordon model
consists of solitons and antisolitons of mass Δ0, which
describe transverse spin excitations, and their bound
states, breathers. The amplitude mode, which within the

FIG. 1. Coupled antiferromagnetic Heisenberg spin chains with
nearest-neighbor spin exchange J (black solid line) and J⊥ (red
dashed line).
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low-energy mapping to the sine-Gordon model is
represented by Sz ∼ cosðΦ=2Þ, is described by the second
breather, of mass

ffiffiffi
3

p
Δ0. The singlet mode, which is

represented as B ∼ sinðΦ=2Þ, is instead described by the
first breather, of mass Δ0, see Ref. [31] and Refs. [16,34].
This brief description shows that in the system of weakly
coupled spin-1=2 chains the amplitude, Sz, and the scalar,
B, modes are distinct and independent excitations.
Detailed calculation of spin and bond susceptibilities

are presented in the SM [31]. The dispersions of the phase
(Sx and Sy), amplitude (Sz), and bond (B) modes near
kx ¼ π are

ωSx ¼ ωSy ¼ Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bh þ cos ky þ
v2ðkx − πÞ2

Δ2
0

s

ð2Þ

ωSz ¼Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þbhÞþ
Z2

Z1

coskyþ
v2ðkx−πÞ2

Δ2
0

s

ð3Þ

ωB ¼ Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bh þ
v2ðkx − πÞ2

Δ2
0

s

: ð4Þ

Here kx (ky) is the momentum along the chain (transverse to
the chain) and bh is a dimensionless parameter describing
the effect of the external staggered field h, Eq. (S25). At
h ¼ 0, bh vanishes and our equations for ωSx and ωSz

recover the corresponding formulae in Ref. [34]. The
velocity v is πJ=2 and the ratio Z2=Z1 ≈ 0.491309.
Note that in addition to having a different mass, the

dispersion of the bond mode is different from the amplitude

one as well. It propagates along the chain with the same
velocity v as spin fluctuations but is essentially dispersion-
less in the transverse ky direction, see Ref. [31].
Numerical results.—In Fig. 2, we present numerical

results of spectral functions for spin-spin and bond-bond
correlations, with and without the pinning field h and
compare them with the dispersions (cyan lines) obtained
from analytic theory Eqs. (2)–(4). From the top to bottom
row, the values of g are 0.5, 0.1, and 0.05, reflecting the
dimensional crossover from 2D to quasi-1D. The system
has periodic boundary condition L × L with L ¼ 36. The
QMC calculations are carried out at inverse temperature
β ¼ 4L. The spectra are plotted along the high-symmetry
path indicated in the BZ in panel Fig. 2(c). The first (last)
two columns of Fig. 2 are measured in the absence
(presence) of the staggered field h.
Key differences between the 2D [g ¼ 0.5, Figs. 2(a)–

2(d)] and quasi-1D regimes [g ¼ 0.1 for Figs. 2(e)–2(h)
and g ¼ 0.05 for Figs. 2(j)–2(l)] are easily seen. For
g ¼ 0.5 the phase mode is clearly visible in panels (a)
and (c) while the amplitude and scalar fluctuations (d) and
(b) exhibit only an overdamped multimagnon continuum
without any sharp modes, as expected [13,14]. As the
system moves towards 1D (g ¼ 0.1 and 0.05), the single
magnon mode remains sharp and becomes more 1D-like
(i.e., less dispersive along the interchainM − X1 direction).
At the same time, the spectral weight in the bond [Figs. 2(f)
and 2(j)] and amplitude [Figs. 2(h) and 2(i)] sectors shifts
down in energy, resulting in the emergence of the two low
energy peaks in corresponding spectral densities.
Let us investigate these differences closer. The first

column in Fig. 2 shows ASx at h ¼ 0. Note that simulations

(a) (b) (c)

!

(d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 2. Spectral functions obtained from QMC SAC. (a), (e), (i) and (b), (f), (j) show the spectra function of spin and bond operators,
respectively, ASxðq;ωÞ and ABðq;ωÞ, without the field, h ¼ 0, at different values of g ¼ J=J⊥, with the system size is L ¼ 36, and
inverse temperature β ¼ 4L. The dashed cyan curves in (e), (i) and (f), (j) are analytical dispersions in Eqs. (2) and (4) with bh ¼ 0. (c),
(g), (k) and (d), (h), (l) show the phase mode spectra ASxðq;ωÞ and amplitude mode spectra ASzðq;ωÞ measured in the presence of a
weak staggered field h ¼ 1=25, with system size L ¼ 36 and inverse temperature β ¼ 4L. The dashed cyan curves in (g), (k) and (h), (l)
are analytical dispersions in Eqs. (2) and (3) with finite bh.
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in finite size and temperature system are necessarily done in
the symmetric phase with three components of spin
susceptibility degenerate ASx ¼ ASy ¼ ASz . The minimal
spin excitation energy, measured at the M point ðπ; πÞ, is
small but finite. At g ¼ 0.05 it is about 0.004. The
dispersion of the lowest energy branch is well described
by the pole of the RPA susceptibility Eq. (S35). Notice that
in this magnetically disordered phase the gap is
Δ2 − 2Z1J⊥ > 0, as discussed above. It vanishes only in
the thermodynamic limit L ¼ ∞ when the SSB takes place
and the spin rotational symmetry gets broken, resulting in
different dispersion relations for transverse, Eq. (2), and
longitudinal, Eq. (3), modes (with bh ¼ 0).
We also observe noticeable spectral intensity at higher

energy, ω ≈ 0.6–0.7, in Figs. 2(e) and 2(i). We assign this to
the second breather of the sine-Gordonþ RPA theory,
Eq. (S36), with the mass

ffiffiffi
3

p
Δ [31]. Naturally, this feature

is absent in the 2D limit, Fig. 2(a), where our quasi-1D
arguments do not apply. This interpretation is further
supported by the data for bond spectral function AB,
presented in the second column of Fig. 2. Here, one
observes a pronounced difference between the 2D,
g ¼ 0.5, and 1D limits, g ¼ 0.05 and 0.1: the broad and
overdamped multiparticle continuum evolves into a very
structured one with a sharp particlelike peak at the lowest
energy for small-g cases, in Figs. 2(f) and 2(j). This is the
first breather of the sine-Gordon model, describing the
scalar bond (staggered dimerization) mode, with mass Δ,
of weakly coupled spin chains, as described below Eq. (4).
As explained in the SM [31], its dispersion along ky is
negligible while that along kx matches Eq. (4) (with
bh ¼ 0) very well.
Taken together, our data lend strong support to the

description of the spin system in terms of confined spinon
pairs. The spin susceptibility is described by the triplet of
bound spinons and its internal excited state (the second
breather) while the scalar susceptibility is represented by
bound singlet pairs of spinons.
To differentiate between the transverse and longitudinal

fluctuations we next turn on the staggered field h ≠ 0 along
the z axis. The corresponding QMC data are represented by
the last two columns of Fig. 2. Now ASx ¼ ASy measures
the phase fluctuations of the order parameter (the third
column), which are gapped stronger by the finite h, while
ASz gives the amplitude fluctuations (the last column).
To illustrate the emergence of the amplitude and scalar

modes we plot in Fig. 3 the frequency dependence of these
two spectra at different values of g at the wave vector
k ¼ ðπ; π=2Þ. In 2D (g ¼ 0.5), both spectra exhibit a
continuum background from multimagnon excitations.
As g gets smaller, a peak emerges in the spectral function
and becomes sharper as g becomes smaller. It is seen that
for the same value of g the peak in AB is more narrow and
occurs at a lower frequency than that in ASz . The larger
linewidth of the amplitude mode is due to the stronger

damping it experiences due to decays into the low
energy phase fluctuations, in comparison with the bond
correlation function [10], while the peak’s maxima differ-
ence is a unique property of quasi-1D system as Eqs. (3)
and (4) show.
In Fig. 4, we present the finite-size analysis and

extrapolate the peak frequency of each mode to the
thermodynamic limit. Here, we focus on the momentum
point k ¼ ðπ; π=2Þ, at which the interchain dispersion
vanishes within the RPA approximation, and the frequency
of a mode is obtained by fitting the correlation function to
an exponential function of the imaginary time ∝ e−ωτ

(several representative cases of such fitting are presented
in SM [31]). Given the square-root form of dispersions (2),

(a)

(b)

FIG. 3. Frequency dependence of the spectral functions at k ¼
ðπ; π=2Þ for (a) the bond-bond correlation at h ¼ 0 and (b) the
amplitude mode at h ¼ 1=25.

(a)

(b)

FIG. 4. Finite-size analysis for (a) g ¼ 0.1 and (b) g ¼ 0.05 at
the momentum point k ¼ ðπ; π=2Þ. The vertical ω∞ axis shows
extrapolation of the numerical data to the L ¼ ∞ limit. Values on
the left vertical ωth axis mark analytical predictions for the peak
frequencies of different modes. See main text for details.
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(3), and (4), we take the following functional form for the
extrapolation to infinite size ωL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
∞ þ L2

0=L
2

p
, where

ω∞ and L0 are fitting parameters. The results for so
obtained ω∞ are presented to the right of the ω∞ axis in
Fig. 4. As discussed above, without the staggered field the
lowest energy peak in ASxðh ¼ 0Þ describes coherent
threefold degenerate mode ωSx . At finite h ¼ 1=25, the
degeneracy is removed and ωSx and ωSz scale to different
limits. Within the sine-Gordon description ωSz=ωSx ¼

ffiffiffi
3

p
,

see Eqs. (2) and (3). Figure 4 shows that this ratio
extrapolates to 1.8 for g ¼ 0.1 and to 2.0 for g ¼ 0.05 at
L ¼ ∞. The ωth axis in Fig. 4 shows analytical predictions
for ωSx ;ωSz, which are calculated as functions of g and h,
without any adjustable parameters, in the SM [31]. This
parameter-free comparison is seen to work reasonably well.
In addition, in agreement with analytical predictions, Fig. 4
shows that for h ¼ 0, ωSx and ωB extrapolate to the same
limit, just as Eqs. (2) and (4) with bh ¼ 0 require.
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