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Novel phenomena in magnetically intercalated graphite have been the subject of much research,
pioneered and promoted by M. S. and G. Dresselhaus and many others in the 1980s. Among the most
enigmatic findings of that era was the dramatic, roller-coaster-like behavior of the magnetoresistivity in a
EuC6 compound, in which magnetic Eu2þ ions form a triangular lattice that is commensurate to graphite
honeycomb planes. In this study, we provide a long-awaited microscopic explanation of this behavior,
demonstrating that the resistivity of EuC6 is dominated by spin excitations in Eu planes and their highly
nontrivial evolution with the magnetic field. Together with our theoretical analysis, the present study
showcases the power of the synthetic 2D materials as a source of potentially significant insights into the
nature of exotic spin excitations.
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I. INTRODUCTION

The two-dimensional (2D) world of Flatland, a math-
ematical abstraction and a cultural reference [1], has,
arguably, received its ultimate physical realization in the
form of graphene [2,3], whose unique properties [4] have
ushered in a new era of making artificial heterostructures
via a Lego-like [5] assembly of layered materials. Together
with the research in twisted bilayer and n-layer graphene
[6], the fledging field of van der Waals magnets holds a lot
of promise in opening new horizons for the fundamental
studies and applications along the path of using this
technology [7–11].
Historically, a more traditional, if not ancient [12], way of

achieving similar goals of synthesizing materials with novel
properties from a stack of carbon layers and various elements
and compounds has relied on the process of intercalation,
suggesting another cultural metaphor [13]. The research in
graphite intercalation compounds (GICs) has attracted sig-
nificant attention in the past, with the evolution of such
studies and understanding of these materials outlined in
several books and, specifically, in the reviews by M. S. and
G. Dresselhaus, whose efforts contributed to much of the
progress in this area (see Refs. [14–17]).
Of the fundamental footprint of this research, it is the

magnetically intercalated compounds that have produced

the most intriguing phenomena [16]. The case of EuC6,
made of alternating honeycomb layers of carbon and
triangular-lattice layers of Eu ions, shown schematically
in Fig. 1(a), particularly stands out. A highly dramatic,
roller-coaster-like dependence of the in-plane resistivity on
a magnetic field, reproduced from Ref. [18] in Fig. 1(b), is
clearly indicative of intricately intertwined magnetic and
electronic degrees of freedom of this material. Incidentally,
EuC6 is also the first magnet to exhibit the fabled 1=3-
magnetization plateau [19], and it was inspirational for an
understanding of this state [20].
The pioneering studies of EuC6 [18,21–23] have ana-

lyzed and successfully identified key exchange terms of the
triangular-lattice spin-7=2 model Hamiltonian of the loca-
lized 4f orbitals of Eu2þ ions that are necessary for
understanding the field-induced phases and the concomi-
tant magnetization data [19]. However, while yielding a
reasonable estimate of the Kondo coupling, the sole attempt
to explain magnetoresistivity itself [24] has provided a
largely unsuccessful modeling of it via a crude consi-
deration of the spin scattering of electrons and suggested a
rather relic backflow mechanism to explain the T depend-
ence of the resistivity.
Thus, it is fair to say that, by and large and to the best of

our knowledge, there exists no proper explanation of the
key resistivity results observed in EuC6, shown in Fig. 1(b).
Furthermore, the refocusing of the research of the 1980s
and 1990s on correlated systems and high-temperature
superconductivity has left these striking results in their
enigmatic state.
In this work, we provide a microscopic theory of the

magnetoresistivity of EuC6 and demonstrate that its highly
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nontrivial evolution with the magnetic field can be fully
accounted for by the scattering off the spin excitations in
Eu planes. Figure 1(c) demonstrates representative results
of our theory, which capture most of the qualitative and
quantitative features of the experimental data in Fig. 1(b),
with the details of the theory provided below. Our effort
brings together research in the magnetically intercalated
graphite compounds with that in the novel graphite-derived
artificial magnetic materials [8,17,25].
More broadly, we would also like to highlight that there

are a number of conducting magnetic materials that exhibit
a highly nonmonotonic magnetoresistivity [26–29], show-
ing that such measurements can serve as a very sensitive
probe of the field-induced phase transitions. However, most
theoretical explanations, if any, are limited to an associative
construction of phenomenological spin models to match the
number of phase transitions and broad trends in magneti-
zation [29], without any attempt to explicate scattering
mechanisms and calculate resistivity. In that respect, our
present study is also the one that accomplishes precisely
this goal: a fully microscopic calculation of the resistivity
throughout all the phases in the phase diagram of the
underlying spin model. We anticipate that our results will
not only be inspirational for the broader research in metallic
magnets but will also provide the technical guidance for
similar studies.
We outline, in broad strokes, our approach and results.

We build on the achievements of the prior work on EuC6

[18,21–23] and reanalyze phenomenological constraints on
the triangular-lattice spin-7=2 model of Eu2þ layers. In this
analysis, we also use more recent experimental insights into
the magnetic ground state of EuC6 [30] and density-
functional theory of its electronic structure [31].
Thus, we establish bounds on the exchange parameters

as related to the phenomenology of different magnetic
phases of EuC6, examine ranges of parameters that make

transitions between the phases first order, and formulate a
minimal model to describe EuC6. We proceed by con-
structing the spin-wave theory for all the field-induced
phases of that model. Although a numerical procedure is
generally needed to obtain magnon eigenenergies, the
approach leading to it, as well as the results for some of
the phases, is fully analytical.
While the Kondo coupling between conducting elec-

tronic states and Eu2þ spins is fully local, the matrix
elements of electron scattering on magnons have a non-
trivial form, owing to the internal structure of quasiparticle
eigenstates in different phases. This structure leads, among
other things, to the non-spin-flip scattering processes in
the noncollinear phases. We articulate that these matrix
elements are essential for a consistent calculation of the
transport scattering rate. The expression for the latter, given
in a concise form, is derived using Boltzmann formalism,
which we revisit for both spin-flip and non-spin-flip
channels, providing a thorough derivation of the relaxation-
time approximation in the process.
The temperature dependence of the resistivity anticipated

from our theory is discussed for all field-induced phases.
Significantly, the zero-field results of our theory demon-
strate an analogue of the phonon-dominated resistivity
behavior, but due to scattering off the acoustic magnons
of the 120° state, with a 2D equivalent of the Bloch-
Grüneisen low-temperature asymptote of ρ ∝ T4 and the
high-temperature Ohm’s law, ρ ∝ T. Given the extent
of the magnon bandwidth, the nearly linear trend of
ρðTÞ observed in Ref. [24] above 8 K is shown to be well
within the onset of the Ohm’s regime.
The resistivity calculations are performed at experimen-

tally relevant temperatures for various parameters of the
minimal model to demonstrate qualitative trends and for a
specific set of parameters that best describes EuC6. We also
investigate the dependence of our results on the filling

(a) (b) (c)

FIG. 1. (a) Schematics of EuC6. Small and large dots are C and Eu atoms, respectively. (b) EuC6 in-plane resistivity data vs magnetic
field, ρðHÞ, for various temperatures (see Ref. [18]). Arrows are the fields of the anomalies in ρðHÞ that correspond to transitions
between magnetic states, extrapolated to T ¼ 0. (Reprinted with permission from Ref. [18].) (c) Our representative results for the
transport scattering rate.
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fraction of electronic bands, encoded in the Fermi momen-
tum kF, and conclude that the relatively smaller values of
kF ≲ π=3 provide a better correspondence to the EuC6

phenomenology, inviting more research into a verification
of its electronic properties. Other intriguing features of the
resistivity for the larger values of kF, potentially control-
lable by doping, are also discussed.
Altogether, the results of our model for the transport

relaxation rate, offered in Fig. 1(c) for a representative
kF ¼ π=3, show a striking similarity to the experimental
data in Fig. 1(b), with the possible origin of the discrep-
ancies at higher fields discussed below. Our theory implic-
itly contains the field dependence via that of the magnon
spectra and scattering matrix elements, which, in turn,
depend on the spin arrangement in each of the field-induced
phases. It also properly accounts for the effect of the
thermal population of magnetic scatterers on the resistivity.
One of the qualitative messages of our study is the
importance of the non-spin-flip channel of the scattering,
which is present in the phases with the noncollinear spin
configurations but is absent for the collinear ones. This
effect explains the weaker scattering and lower resistivity in
the 1=3-magnetization plateau and fully polarized phases.
The general picture that emerges from our analysis is that

of the resistivity as a very informative probe of not only
field-induced phase transitions but also of the elementary
spin excitations in these phases. The provided thorough
theoretical analysis of the iconic two-dimensional triangu-
lar-lattice antiferromagnet coupled to conduction electrons
showcases the largely untapped power of the synthetic 2D
materials as a source of potentially significant insights into
the nature of exotic spin excitations. Our approach and
findings can be applied, for example, to the electron
scattering by the fractionalized spinons of the Kitaev spin
liquid [32,33] and to the other magnetically intercalated
systems such as chalcogenides [34–36].
The paper is organized as follows. Section II A discusses

the electronic structure of EuC6 and the approximate values
of the Fermi momenta. Section II B gives an overview of
the phenomenologically motivated spin model of EuC6, its
classical ground states and critical fields, and parameters of
the minimal model. Details on the first-order transitions are
delegated to the Appendix A. Spin excitations of the model
for all field-induced phases are discussed in Sec. III, which
provides details of the spin-wave formalism and results for
representative magnon eigenenergies and the eigenfunc-
tions. The fully analytical results for the polarized, 120°,
and plateau phases are given in Appendix B.
The Kondo coupling and its estimate, as well as

resistivity and some qualitative insight into it, are discussed
in Sec. IV. This consideration relies, not in a small way, on
a detailed derivation of the relaxation rates for the spin-flip
and non-spin-flip channels from the Boltzmann formalism,
provided in Appendix C, which also discusses possible
limitations of this approach and potential new phenomena

at large values of 2kF. The temperature dependence of
magnetoresistivity, results for various values of the key
model parameters and Fermi momentum, and an outlook
on the possible future extensions are given in Sec. V. We
provide a summary in Sec. VI.

II. PHENOMENOLOGY AND MODELING

A. Electronic structure of EuC6

The electronic structure of Eu-intercalated graphite EuC6

has been investigated experimentally and theoretically in
the mid-1990s [31], with the summary of these efforts
given in Ref. [17].
Structurally, EuC6 is the so-called stage-I intercalated

compound, meaning that the Eu layers alternate with those
of carbon. Viewed from a graphite layer, the rare-earth
atoms are located on top of the centers of the graphite
hexagons and form a

ffiffiffi
3

p
×

ffiffiffi
3

p
superstructure, as is

illustrated in Fig. 1(a). The material is characterized by
the so-called AαAβ stacking (space group P63=mmc), in
which Eu atoms form a hexagonal close-packed structure
with alternating positions α and β between consecutive
layers, while carbons follow the AA stacking [30,37,38].
This arrangement of carbon sheets is different from the AB,
or Bernal, stacking of graphite.
As a result, the principal unit associated with the

Eu-based triangular lattice can be seen as containing one
Eu and six carbon atoms, while the structural unit cell
contains two Eu atoms and twelve carbons. As is shown in
Fig. 2(b), the 2D Brillouin zone (BZ) of the triangular Eu
lattice is 3 times smaller than that of the graphene. The
lattice constants of the triangular Eu lattice and those of the
honeycomb graphene lattice are related as a ¼

ffiffiffi
3

p
agr

(see Fig. 2).
The key features of the electronic band structure of EuC6

can be understood within the “rigid-band” approximation
(see Chap. 5 of Ref. [17]). One assumes that the band
structure of the graphene layer is not changed by the Eu
intercalation, with the latter resulting only in a partial filling
of the graphene bands up to a Fermi energy EF, illustrated
in Fig. 2(a) by a horizontal line.
Upon folding onto the Eu-based Brillouin zone, the

Dirac bands are mapped from the proximities of the Kgr

and K0
gr points of the graphene Brillouin zone onto the

neighborhood of the Γ point (see Fig. 2). These bands are
equivalent up to a π=3 rotation, with a representative
constant-energy cut demonstrating characteristic “flower-
petal” Fermi surfaces originating from the trigonal C3

symmetry of the graphene lattice [see Fig. 2(b)]. These two
bands from the two valleys at Kgr and K0

gr are the ones
being filled away from the charge-neutrality point by the
doping provided by the intercalated Eu.
To estimate the size of the Fermi surfaces produced by

doping, one can approximate them as circles with a radius
kF, neglecting their trigonal warping. Naturally, the Fermi
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momentum kF is determined by the 2D density of
electrons donated to a graphene sheet by the Eu layer.
Taking into account band (valley) and spin degeneracy
factors yields n2De ¼ k2F=π [17]. The nominal valence
state of Eu is Eu2þ. Assuming that all 2e/Eu go into
the conduction bands and using the 2D volume of
the Eu unit cell Vc ¼ a2

ffiffiffi
3

p
=2, one obtains kF;2e ¼

ð4π=
ffiffiffi
3

p
a2Þ1=2 ≈ 0.86π=a. The same result can be

obtained by matching the area (2D volume) of the fully
occupied, doubly degenerate, triangular-lattice Brillouin
zone of the Eu lattice, VΔ

BZ ¼ 8π2=
ffiffiffi
3

p
a2, with the four-

fold degenerate (valley × spin) Fermi circle of radius
kF;2e. Altogether, the Fermi surface in EuC6, estimated
within this approach, is expected to be large.
The detailed calculations of electronic structure of EuC6

in Ref. [31] feature a band structure that is not unlike the
rigid-band picture in Fig. 2(a), with the bands that are
crossing the Fermi level clearly reminiscent of the folded
graphene bands. However, two key differences are a
significantly lower doping of the carbon π orbitals, which
accounts for about 0.5e per Eu2þ, and the rest of the
electrons filling up the Eu-derived spd-hybrid band, with
the latter absent in the rigid-band description [17,31]. These
findings are also supported by the angle-resolved photo-
emission studies of stage-I EuC6 and stage-II EuC12

materials, reported in Ref. [31].
The most direct implication of the first result for our

analysis of the Fermi surfaces is the 4-times-smaller density
of donated electrons, which straightforwardly translates
into the 2-times-smaller Fermi momentum in the graphene
conduction bands, kF;e=2 ≈ 0.43π=a. We also estimate the

Fermi momenta of the “true,” trigonally warped Fermi
surfaces from the band structure in Ref. [31] as kF;max ≈
0.7π=a and kF;min ≈ 0.45π=a, in qualitative agreement with
the estimate of kF;e=2 above. Our choice of the represen-
tative EF ¼ 0.83t (in units of t ¼ 3.16 eV [4]) in Fig. 2(a)
and of the resultant Fermi surfaces in Fig. 2(b) is made to
match the Fermi momenta from Ref. [31], which, in turn,
should approximately correspond to the 0.5e filling of
the bands.
The other shortcoming of the rigid-band approximation

is the omission of the Eu-derived, partially filled, sd-
hybrid band [17,31]. It was also argued that the hybridi-
zation of the Eu sd orbitals and graphene π orbitals is
responsible for the mediation of the strong Kondo
interaction between the localized 4f-orbital spins of Eu
and conduction π-orbital electrons of graphite, estimated
at JK ≈ 0.15 eV [24]. This key element of our study is
described in Sec. IVA.
In our analytical treatment of the scattering rate in

Sec. IV B and Appendix C, we are motivated by the
analysis and discussion provided in this section and
approximate the relevant electronic degrees of freedom
of EuC6 by the two degenerate bands with the circular
Fermi surfaces of radius kF centered around the Γ point.
We treat kF as a parameter and show how the key
features of the calculated magnetoresistivity evolve with
it (see Sec. V). We expect the renewed interest in the
problem to result in a convergence of the band-structure
calculations with the experimental data regarding the
relevant electronic structure and parameters of EuC6

and other GICs.

(a) (b)

FIG. 2. (a) Energy bands of graphene in its full BZ (dashed lines) and folded onto Eu-lattice BZ to represent the rigid-band structure of
Eu-intercalated graphite (solid lines) along the paths MgrΓMðKÞKgrMgr shown in diagram (b); high-symmetry points are highlighted.
Two Dirac bands are color-coded to indicate their origin before folding. Energies are in units of the graphene tight-binding hopping
parameter t ¼ 3.16 eV [4]. The horizontal line is the Fermi energy EF ¼ 0.83t ≈ 2.62 eV. It matches the Fermi momenta kF;min ≈
0.48π=a and kF;min ≈ 0.7π=a from Ref. [31] of the trigonally warped Fermi surfaces shown in diagram (b) that approximately
correspond to the 0.5e filling of the bands. Inset: crystal structure of Eu-GIC from Fig. 1 with primitive translational vectors of Eu and C
lattices. (b) Brillouin zones of the graphene and of the Eu-based triangular lattice. Fermi surfaces at EF are color-coded according to the
bands in diagram (a). Two representative circular Fermi surfaces are shown, with kF ¼ 0.4π=a and 0.7π=a (dashed lines). High-
symmetry paths are indicated by the arrows.
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B. Spin model and parameters

It has been proposed in Refs. [18,21–23] that the
minimal model that describes the phenomenology of the
magnetism in EuC6 is the triangular-lattice S ¼ 7=2 model

H ¼
X

hijin

JnSi · Sj − B
X

hiji1

ðSi · SjÞ2 − h ·
X

i

Si; ð1Þ

where hiji1ð2Þ denote the (next-)nearest-neighbor bonds
with the corresponding exchanges J1ð2Þ and h ¼ gμBH in
the Zeeman term. A crucial ingredient of this model is the
biquadratic term. While B may be small compared to the
exchanges, it is important because of the S2 amplification
factor.
It was argued in Refs. [18,21–23] that this minimal

model would not be complete without the ring-exchange
term, which is discussed below in some more detail. While
the biquadratic and ring-exchange terms play similar roles
in stabilizing the up-up-down (UUD or plateau) state in a
wide range of fields, our analysis of the EuC6 phenom-
enology provided below points to the values of the ring
exchange that are secondary to B, differing from the values
advocated in Refs. [18,21]. However, given a close sim-
ilarity of their effects, this variation is likely inconsequen-
tial and amounts to a different parametrization of such
effects within an effective model. In the spin-wave con-
sideration that follows, we ignore the ring-exchange term
entirely, citing the cumbersomeness of its treatment.
Another difference of our model from the consideration

of Refs. [18,21–23] is that the exchange terms in (1) are
taken as Heisenberg, not XY. This makes no difference for
the classical phase diagram in the in-plane field, which was
simulated using the classical Monte Carlo method in
Ref. [18] in the XY limit. However, the actual anisotropy
in EuC6 is unlikely to exceed 10%, as is evidenced by the
very similar saturation fields in the in-plane and out-of-
plane magnetization and by the nearly isotropic g-factors
[18], justifying our choice of the isotropic limit of
the model.

1. Classical ground states

In this work, we focus exclusively on the field orienta-
tion that is in the plane of Eu2þ ions (see Fig. 3). While for
the isotropic approximation that we choose in model (1) the
direction of the field is irrelevant, the phenomenology that
follows identifies with that of the in-plane field data for
EuC6, which exhibits a weak easy-plane (XXZ) anisotropy
[21]. The out-of-plane field direction in this latter case
yields a different, and much simpler, magnetization and
ground-state evolution [39].
Triangular-lattice antiferromagnets host a rather aston-

ishing variety of the unconventional field-induced phases
(see Refs. [40–42]). As we have noted above, EuC6 was
the first material in which the best known of such

unconventional phases, the UUD magnetization plateau
state, was identified [19].
For the model (1), the field evolution of the classical

ground states is known from the earlier works [20,21,41],
with the schematics of the evolution of magnetic order with
the field shown in Fig. 4(a). At H ¼ 0, spins assume a 120°
configuration that was confirmed for EuC6 by the muon-
spin spectroscopy [30]. A finite field continuously deforms
it into the so-called Y structure followed by a transition to
the UUD (plateau) state at Hc1. The spin angles and the
field direction are shown in Figs. 4(b) and 4(c). The higher
field induces a transition from the UUD phase to the V
phase at Hc2 and to the fully polarized FM phase at the
saturation field Hs. It is worth noting that in all ordered
phases, spin configurations are coplanar and belong to
the three-sublattice structure with the same unit cell (see
Figs. 3 and 4).
In the earlier studies of EuC6 [18,21–23], the minimal

model (1) was also augmented by the ring-exchange term

FIG. 3. Triangular lattice, its elementary translation vectors δα,
the primitive unit cell for the three-sublattice spin structures
(shaded) with its basis vectors aα, and an example of such a
structure with fA;B;Cg sublattices. The laboratory reference
frame fx0; y0; z0g and the field direction are indicated.

(a)

(b) (c)

FIG. 4. (a) Schematics of the evolution of magnetic order with
the field from the 120° state at H ¼ 0 to the Y phase, with the
transition to the UUD plateau phase at Hc1, from the UUD phase
to the V phase atHc2, followed by a transition to the saturated FM
phase at the saturation field Hs. The representative three-
sublattice spin structures are shown. (b) Angles of spins with
the laboratory z0 axis (field direction) for an arbitrary coplanar
three-sublattice structure. Angles α̃ ¼ fβ; α1; α2g correspond to
the α ¼ fA;B;Cg sublattices. (c) Sets of α̃ for all phases.
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HK ¼ K
X

hijkli
ðQijQkl þQilQjk −QikQjlÞ; ð2Þ

where Qij ¼ ðSi · SjÞ and spins belong to the elementary
nearest-neighbor four-site plaquettes hijkli.
After some deliberation, one can write the classical

energy of the model (1) with the ring-exchange term (2)
for an arbitrary coplanar three-sublattice structure as

Ecl

NS2J1
¼ ð1 − kÞðcos α̃AB þ cos α̃AC þ cos α̃BCÞ

þ 3j2 − bðcos2α̃AB þ cos2α̃AC þ cos2α̃BCÞ
− hðcos α̃A þ cos α̃B þ cos α̃CÞ
þ 2kðcos α̃AB cos α̃AC
þ cos α̃AB cos α̃BC þ cos α̃AC cos α̃BCÞ; ð3Þ

where N is the number of sites in the triangular lattice;
the dimensionless field and exchange parameters are in
units of the nearest-neighbor exchange J1, h¼ gμBH=3J1S,
j2 ¼ J2=J1, b ¼ BS2=J1, and k ¼ KS2=J1; spin angles
with the field direction α̃α ¼ fβ; α1;α2g correspond to the
α ¼ fA;B;Cg sublattices according to Figs. 4(b) and 4(c);
and mutual angles of spins are α̃AB ¼ β − α1, α̃AC ¼
β − α2, and α̃BC ¼ α1 − α2.

2. Tilt angles and critical fields

Energy minimization in Eq. (3) at a fixed field with
respect to spin angles should produce both the equilibrium
spin configurations and critical fields for the transitions
between phases. Figure 4 shows that in Y and V phases,
spin angles depend on the field continuously, while spins
are (anti)collinear with the field for the full extent of the
UUD and FM phases. In the Y and V phases, the general
form of the classical energy in Eq. (3) simplifies, with the
energy of the Y phase controlled by one independent angle
and for the V phase by two angles.
For the Y phase, a straightforward algebra gives an

equation for the angle α1,

∂EY
cl

∂α1 ¼ 0 ¼ ð1þ bÞx − a0 − 6kx2 − 4bx3; ð4Þ

where x ¼ cos α1 and a0 ¼ ð1þ h − 3kÞ=2. Since the
cubic equation allows for analytical solutions [43], the
angles of the spin configuration within the Y phase are fully
determined by such a solution of Eq. (4). In the spin-wave
treatment of the model (1) presented below, the equilibrium
spin configuration in the Y phase is obtained from a k ¼ 0
version of Eq. (4).
As was first noted in Ref. [21], the evolution of α1 with

H becomes discontinuous, and transition to the UUD phase
becomes first order at larger values of B > 0 and K > 0.
However, leaving this detail aside for a moment, one can

always find a solution for a transition field between the Y
and UUD phases by assuming it to be continuous and
putting cos α1 ¼ 1 in Eq. (4), which yields

hc1 ¼ 1 − 6b − 9k; ð5Þ

in agreement with Ref. [21].
The meaning of this critical field is twofold. It is the

true critical field for a phase transition at the smaller values
of B and K where it is continuous. In what follows, we
focus on K ¼ 0, “B-only” model (1), for which a continu-
ous transition can be shown to exist up to bc ¼ 1=11. For
the values of b > bc, the Y phase is stable up to the higher
critical field

h̃c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þ bÞ3

27b

r
− 1 ð6Þ

at which the angle changes discontinuously. However, the
critical field in Eq. (5) continues to define the region of
h̃c1 > h > hc1 where the plateau phase is (meta)stable,
meaning that the spin excitations defined within the
UUD phase are stable down to hc1 in Eq. (5). A detailed
consideration of the critical fields associated with the first-
order transitions is provided in Appendix A.
Somewhat fortuitously, our choice of parameters for

EuC6 discussed below corresponds to b only very slightly
larger than bc, so the transitions that we find are very
marginally first order. Experiments in EuC6 [18] have also
indicated small hysteresis effects in magnetoresistance
[18], suggesting a correspondence between the two.
For the V phase, energy minimization in Eq. (3) yields

the following equations in the angles, sin β ¼ 2 sin α1 and

h sin β ¼ 2 sin γð1þ kþ 2ðk − bÞ cos γÞ; ð7Þ

where γ ¼ α1 þ β. For the B-only model (1) that we focus
on below, one can simplify Eq. (7) to the equation for β in
the form h ¼ Fðcos β; bÞ, with

Fðx; bÞ ¼
"
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3

p #"
1 − b

"
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 3

p
− 1þ x2

##
;

ð8Þ

which can be solved numerically to find α1 and β angles of
the equilibrium spin configuration in the V phase.
An approach to the transitions from the UUD to V and

from V to the FM phases, by assuming their continuity and
(anti)collinearity of the spins in Eq. (7), yields

hc2 ¼ 1þ 2b − k; hs ¼ 3ð1 − 2bþ 3kÞ; ð9Þ

also in agreement with Ref. [21]. While a transition at hc2
remains continuous for a wide range of parameters, a
transition to the saturated phase for the B-only model (1)
becomes first order at the same bc ¼ 1=11 as the Y-to-UUD
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transition at hc1 discussed above, showing a similar
phenomenology. Given that the range of parameters dis-
cussed below is only weakly affected by the associated
discontinuities, we continue to refer to hc1, hc2, and hs in
Eqs. (5) and (9) as the “true” critical fields (see Appendix A
for more details).

3. Parameters

It is useful to consider the pure Heisenberg limit of the
model (1) as a reference. In that case, the dimensionless
critical fields h0c1 ¼ h0c2 ¼ 1 and h0s ¼ 3, all in units of
3J1S=gμB. Thus, as one can see from Eqs. (5) and (9), for
B;K > 0, the biquadratic and ring-exchange terms neces-
sarily open up a finite range of fields for the plateau phase.
However, while both terms drive down hc1 from its h0c1
value, their effects on hc2 and hs are opposite to each other.
Most importantly, if the additional terms are dominated by
the biquadratic one, the critical fields hc1 and hc2 split away
from their Heisenberg value in the opposite directions,
with hc1 below and hc2 above h0c1. If, however, the ring-
exchange term is the leading one, both hc1 and hc2 shift
down from h0c1.
This observation has a direct impact on the analysis of

the phenomenology of EuC6 and parameters of the model
that follow from it. A summary of the experimental data
that is relevant to such an analysis can be found in Ref. [18].
Eu2þ spins order antiferromagnetically at TN ≈ 40 K, with
the 120° structure of their zero-field ground state confirmed
more recently [30]. The critical fields of all the transitions
discussed above can be inferred directly from the T → 0
extrapolations of the associated anomalies in the resistivity
data in Fig. 1(b), which is reproduced from Ref. [18].
Thus, the experimental value of the saturation field is
Hexp

s ≈ 21.5 T, while the Y-to-UUD and UUD-to-V tran-
sitions are at Hexp

c1 ≈ 1.6 T and Hexp
c2 ≈ 9.0 T, respectively

(see also Table I).
Given Eqs. (5) and (9), the experimental values of the

three critical fields are sufficient to uniquely determine
three parameters of the model: J1, B, and K. In broad
strokes, an overall energy scale dictated by J1 sets an extent
of the ordered phases that is determined from the saturation
field Hs, while the width of the plateau between Hc1 and
Hc2 and their relation to Hs=3 fixes B and K. The results
are listed in the first line of Table I, where we have also used
the Lande g-factor g ¼ 1.94 [18].

In agreement with the prior estimates [18] and general
expectations, the biquadratic and ring-exchange terms are
much smaller than the leading exchanges, yet they are
essential for the existence of the unconventional UUD
phase. Importantly, the ring exchange is subleading to the
biquadratic term with the ratio B=K ≈ 3. With our dis-
cussion above, the dominance of B over K is clear already
from the fact that the UUD-to-V critical field Hexp

c2 is
substantially larger than Hexp

s =3.
Therefore, it is rather puzzling to find almost exactly

opposite hierarchy of B and K in Refs. [18,21–23], based
on the same data for EuC6. The reason for the difference is
the following. With the rest of the phenomenological
constraints being the same, the UUD-to-V critical field
in Refs. [18,21] is chosen as H̃exp

c2 ≈ 6.4 T, which is less
than Hexp

s =3, hence implying the dominance of K over B.
The smaller critical field is inferred from rather broad
magnetization data, which, given the second-order nature
of the UUD-to-V transition, are strongly affected by the
finite-temperature effects (see also Ref. [44] for a different
material highlighting the same effect). It is difficult for us to
understand why the lower H̃exp

c2 was insisted upon in the
prior works, except for the premeditated importance of the
ring-exchange terms.
The remaining parameter of the model (1) is the second-

neighbor exchange J2, which is necessary to reconcile
the value of the ordering temperature TN with that of the
saturation field, as the two are not fully compatible for the
model that contains only the nearest-neighbor exchanges.
Since the leading mechanism that provides spin couplings
in EuC6 is believed to be of the RKKY type [18], the J2
term with J2 < 0 is seen as natural.
Another element that is easy to justify is the use of the

mean-field approximation for the ordering temperature,
despite the quasi-2D character of EuC6 and continuous
symmetries of the model (1). The large spin value S ¼ 7=2,
the aforementioned XXZ anisotropy, and the presence of
small interplane couplings [18] that are ignored in our
model all give strong ground for the use of the mean-field
approach [45],

TMF
N ¼ −

SðSþ 1Þ
3kB

λminðQÞ; ð10Þ

where λminðQÞ is the lowest eigenvalue of the Fourier
transform of the exchange matrix in Eq. (1) at the ordering
vector Q. For the three-sublattice orders, Q ¼ ð%4π=3; 0Þ
and λminðQÞ can also be inferred from the classical energy
in Eq. (3) as λminðQÞ ¼ 2E120°

cl =NS2 to yield

TMF
N ≈ SðSþ 1ÞðJ1 − 2J2Þ; ð11Þ

where contributions of small interplane couplings are
ignored and we have also dropped even smaller and nearly
canceling contributions from the B and K terms. Since J1 is

TABLE I. Exchange parameters (K) and critical fields (T),
S ¼ 7=2. Experiment: experimental values of the fields defining
parameters of the model as described in the text. Model: chosen
parameters of the model (1) with the resultant critical fields.

J1 J2 BS2 KS2 Hc1 Hc2 Hs

Experiment 0.974 −0.783 0.086 0.029 1.6 9.0 21.5
Model 1.085 −0.728 0.1 0 3.91 10.35 21.39
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already determined from the critical fields, Texp
N ¼ TMF

N in
Eq. (11) gives J2 in the first line of Table I.
We note that the experimental constraint on the param-

eters that is an alternative to Texp
N could have been the

Curie-Weiss temperature TCW. However, the value of
TCW ¼ þ1.3 K reported in Ref. [23] has a ferromagnetic
sign, contradicting all other evidence, including μSR
spectroscopy [30], that the H ¼ 0 state of EuC6 is a
120° state. This discrepancy is likely due to the uniform
susceptibility data taken at a too-high value of the field of
1 T [23] that is already close to the ferrimagnetic plateau
state. In addition, the mean-field value of TCW is propor-
tional to the sum of J1 and J2 exchanges, which are of
opposite sign and have close values, amplifying the errors
in the estimates of the individual exchange parameters.
Lastly, for the antiferromagnetic state, it is much more
natural to connect to the susceptibility at the corresponding
ordering vector, Eq. (10), not the uniform one.
Having established the secondary role of the ring-

exchange term in EuC6 phenomenology, we completely
ignore such a term in the model consideration of the
scattering of electrons by the spin excitations presented
next. This step is motivated by both the strong similarity of
the effects provided by the ring exchange to that of the
biquadratic terms and a considerable cumbersomeness of
the spin-wave treatment of the ring exchange in the
triangular lattice (see Refs. [46,47]).
With the number of model parameters reduced, there are

more phenomenological constraints than there are param-
eters. Fixing one of Hc2 or Hc1 to its experimental value
either narrows or widens the extent of the plateau by about
4 T compared to the data, with BS2 being 0.06 K and
0.17 K, respectively. Instead, we fix BS2 to an intermediate
value of 0.1 K, which leads to only a slightly narrower
plateau and somewhat higher critical fields than in experi-
ment, Hth

c1 ≈ 3.9 T and Hth
c2 ≈ 10.4 T (see Table I for a full

set of the model parameters). This is the set of parameters
that will be used henceforth in all calculations of the mag-
netoresistivity. It corresponds to the dimensionless param-
eters j2 ¼ J2=J1 ¼ −0.671 and b ¼ BS2=J1 ¼ 0.0922.
For the representative pictures of the spin-wave spectra
shown in Sec. III E below, we choose values of j2 ¼ −0.8
and b ¼ 0.1 that are close to the ones above.

III. SPIN EXCITATIONS

In this section, a general spin-wave approach is formu-
lated for all coplanar three-sublattice states in Fig. 4. In
Appendix B, we provide a consideration of the FM, 120°,
and UUD states for which a simplified approach is possible,
allowing us to obtain fully analytical results.
We note that the biquadratic exchange has been widely

employed to emulate quantum effects in a variety of spin
models, including Heisenberg and XXZ triangular-lattice
models to stabilize their plateau state. However, we are not

aware of the spin-wave theory consideration of the
model (1) in the literature, with the exception of the early
work [20], which provided a consideration of the zone-
center, k ¼ 0, modes. Next, we present a consistent spin-
wave expansion for an arbitrary coplanar three-sublattice
structure, which was motivated, in part, by the general
formalism in Ref. [48].

A. General case of a coplanar state

For a spin-wave expansion, the laboratory reference
frame fx0; y0; z0g in Figs. 3 and 4 needs to be rotated to
the local reference frame fx; y; zg on each site so that the z
axis is along the direction dictated by a classical spin
configuration obtained in Sec. II B 1. For the coplanar
states in Fig. 4, such a transformation is a simple rotation in
the x0–z0 plane, such that Sy0α ¼ Syα and

Sx0α ¼ Sxα cos α̃ − Szα sin α̃;

Sz0α ¼ Szα cos α̃þ Sxα sin α̃; ð12Þ

where α and α̃ are, respectively, the sublattices and
corresponding spin angles in Fig. 4(b).

B. 1=S expansion

Consider the 1=S expansion of each individual term in
the model (1) separately. For the nearest-neighbor J1 term,
it is convenient to rewrite it first as

HJ1 ¼ J1
X

hiji1

ðĥðeÞij þ ĥðoÞij Þ; ð13Þ

where the “even” (e) and “odd” (o) parts,

ĥðeÞij ¼ Syi S
y
j þ cos α̃ijðSxi Sxj þ SziS

z
jÞ;

ĥðoÞij ¼ sin α̃ijðSzi Sxj − Sxi S
z
jÞ; ð14Þ

are separated to distinguish their subsequent contribution
of the even and odd powers of the bosonic operators to the
1=S expansion; here, α̃ij ¼ α̃i − α̃j are the angles between
neighboring spins.
In the lowest orders, the even part yields a contribution to

the classical energy and to the harmonic,OðSÞ, linear spin-
wave theory (LSWT) order of the expansion

ĥðeÞij ⇒ S2 cos α̃ij þ ĥðeÞij;LSWT; ð15Þ

while the odd part in Eq. (14) gives the linear order
OðS3=2Þ, which must vanish upon a summation in
Eq. (13) for the classical energy minimum, followed by
the higher-order, OðS1=2Þ, anharmonic interactions that can
be neglected for the large spin values.
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However, for the biquadratic term of the model (1),

HB ¼ −B
X

hiji1

ðSi · SjÞ2 ¼ −B
X

hiji1

ðĥðeÞij þ ĥðoÞij Þ2; ð16Þ

both even and odd parts play a role in its LSWT order,

ðSi · SjÞ2 ⇒ 2S2 cos α̃ijĥ
ðeÞ
ij;LSWT þ ðĥðoÞij Þ2LSWT: ð17Þ

Their contributions, obtained from the standard Holstein-
Primakoff bosonization of spins in the rotated reference
frame, Szi ¼ S − a†i ai and S−i ¼ a†i

ffiffiffiffiffiffi
2S

p
, are

ĥðeÞij;LSWT ¼ −
S
2

h
ða†i − aiÞða†j − ajÞ þ cos α̃ij

"
2ða†i ai

þ a†jajÞ − ða†i þ aiÞða†j þ ajÞ
#i

;

ðĥðoÞij Þ2LSWT ¼ S3

2
sin2α̃ijða†i þ ai − a†j − ajÞ2: ð18Þ

Of the remaining terms in model (1), the Zeeman term is
particularly simple, and so is the next-nearest-neighbor J2
term; the former involves only local energy of bosons,
while the latter connects spins that belong to the same
sublattices, giving, in the LSWT order,

HH ¼ gμBH
X

i

cos α̃ia
†
i ai; ð19Þ

HJ2 ¼ −J2S
X

hiji2

ða†i ai þ a†jaj − ða†i aj þ a†jaiÞÞ: ð20Þ

We point out, as a side remark, that it is relatively
straightforward to modify model (1) and the resultant
LSWT Hamiltonian to include the effects of the easy-plane
anisotropy that is present in EuC6. However, we did not
find significant qualitative changes in the results for some
of the key phases studied in this work. Given the extra
cumbersomeness that this anisotropy would introduce in
the LSWT matrix below, we leave a detailed study of such
an extension to a future work.

C. LSWT Hamiltonian

The LSWT order of the model (1), explicated in
Eqs. (13)–(20), is obtained for a general coplanar state.
To make further progress, one needs to specify the spin
arrangement for the classical ground state. In our case, all
such states of interest can be represented as the three-
sublattice states, highlighted in Fig. 4. Thus, a general
approach to all of these states can be pursued [48].
The first step is to switch from the site notation i to the

one of the unit cells of the three-sublattice structure l and
sublattice index α: i → fα;lg. As a result, the Holstein-
Primakoff boson operators are split into three species
að†Þα;l ¼ fað†Þl ; bð†Þl ; cð†Þl g corresponding to α ¼ fA;B;Cg
sublattices. Their Fourier transformation is

aα;l ¼ 1ffiffiffiffiffiffi
Nc

p
X

q

aα;qe−iq·rα;l ; ð21Þ

where rα;l ¼ Rl þ ρα and Nc ¼ N=3 is the number of unit
cells. The sublattice coordinates within the unit cell can be
chosen as ρA ¼ 0, ρB ¼ −δ2, and ρC ¼ δ3 (see Fig. 3).
After some algebra, using these boson species and their

Fourier transforms, the LSWT Hamiltonian for an arbitrary
coplanar three-sublattice state reads as

Ĥð2Þ ¼ 3J1S
2

X

q

x̂†
qĤqx̂q; ð22Þ

where x̂†
q ¼ ða†q; b†q; c†q; a−q; b−q; c−qÞ and Ĥq is a matrix,

Ĥq ¼

 
Âq B̂q

B̂†
q Â&

−q

!

; ð23Þ

with the 3 × 3 matrices Âq and B̂q,

Âq ¼

0

B@
Aq Dq E&

q

D&
q Bq Fq

Eq F&
q Cq

1

CA; B̂q ¼

0

B@
G Jq K&

q

J&q H Lq

Kq L&
q I

1

CA:

ð24Þ

The elements of the Âq matrix are given by

Aq ¼ h cos β − cos α̃AB − cos α̃AC − 2j2ð1 − γð2Þq Þ
þ bð1þ 3ðcos 2α̃AB þ cos 2α̃ACÞ=2Þ;

Bq ¼ h cos α1 − cos α̃AB − cos α̃BC − 2j2ð1 − γð2Þq Þ
þ bð1þ 3ðcos 2α̃AB þ cos 2α̃BCÞ=2Þ;

Cq ¼ h cos α2 − cos α̃BC − cos α̃AC − 2j2ð1 − γð2Þq Þ
þ bð1þ 3ðcos 2α̃BC þ cos 2α̃ACÞ=2Þ;

Dq ¼ γqð1þ 2bð1 − 2 cos α̃ABÞÞcos2ðα̃AB=2Þ;
Eq ¼ γqð1þ 2bð1 − 2 cos α̃ACÞÞcos2ðα̃AC=2Þ;
Fq ¼ γqð1þ 2bð1 − 2 cos α̃BCÞÞcos2ðα̃BC=2Þ; ð25Þ

and those of the B̂q matrix by, respectively,

G ¼ −bðsin2α̃AB þ sin2α̃ACÞ;
H ¼ −bðsin2α̃AB þ sin2α̃BCÞ;
I ¼ −bðsin2α̃BC þ sin2α̃ACÞ;

Jq ¼ −γq(1 − 2bð1þ 2 cos α̃ABÞ)sin2ðα̃AB=2Þ;
Kq ¼ −γq(1 − 2bð1þ 2 cos α̃ACÞ)sin2ðα̃AC=2Þ;
Lq ¼ −γq(1 − 2bð1þ 2 cos α̃BCÞ)sin2ðα̃BC=2Þ; ð26Þ
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where h ¼ gμBH=3J1S, j2 ¼ J2=J1, and b ¼ BS2=J1 as
before, and α̃AB ¼ β − α1, α̃AC ¼ β − α2, α̃BC ¼ α1 − α2,
and

γq ¼ 1

3

X

α

eiq·δα ; γð2Þq ¼ 1

3

X

α

cosq · aα; ð27Þ

with the first- and second-neighbor translation vectors
δ1 ¼ ð1; 0Þa, δ2 ¼ ð−1;

ffiffiffi
3

p
Þa=2, δ3 ¼ −ð1;

ffiffiffi
3

p
Þa=2, and

a1 ¼ ð3;−
ffiffiffi
3

p
Þa=2, a3 ¼ ð0;

ffiffiffi
3

p
Þa, a2 ¼ −ð3;

ffiffiffi
3

p
Þa=2,

respectively (see Fig. 3); note that a is the lattice constant.

D. Diagonalization

The eigenvalues of ĝĤq in Eq. (23) give magnon
eigenenergies fω1q;ω2q;ω3q;−ω1−q;−ω2−q;−ω3−qg (in
units of 3J1S). Here, ĝ is a diagonal matrix ½1; 1; 1;−1;
−1;−1( (see Ref. [49]). While magnon energies are crucial
for our consideration of the spin-wave scattering of
electrons that follows, an essential role is also played by
the matrix elements, which are related to the U and V
parameters of the generalized Bogolyubov transformation
from the Holstein-Primakoff bosons to the ones of the
quasiparticle eigenmodes,

aα;q ¼
X

γ

ðUðγÞ
α;qAγ;q þ VðγÞ

α;qA†
γ;−qÞ; ð28Þ

with the quasiparticle operators Aγ;q ¼ fAq; Bq; Cqg and

X

γ

ðjUðγÞ
α;qj2 − jVðγÞ

α;qj2Þ ¼ 1: ð29Þ

The transformation (28) can be written in a matrix form,

x̂q¼
 

âq

â†−q

!
¼
 

Ûq V̂q

V̂&
−q Û&

−q

! 
Âq

Â†
−q

!
¼ Ŝq · ẑq; ð30Þ

where vectors âq ¼ ½aq; bq; cq(T , â†−q ¼ ½a†−q; b†−q; c†−q(T

and Âq ¼ ½Aq; Bq; Cq(T , Â†
−q ¼ ½A†

−q; B†
−q; C†

−q(T are intro-
duced. It follows that the transformation matrix Ŝq diag-

onalizes ĝĤq in Eq. (23) (see Refs. [49,50]). Thus, the U
ðγÞ
α

and VðγÞ
α parameters can be extracted as the elements of the

properly normalized eigenvectors of ĝĤq from a diago-
nalization procedure.
With all components of the Âq and B̂q matrices (24)

given explicitly in Eqs. (25) and (26), the 6 × 6 LSWT
Hamiltonian (23) has to be diagonalized numerically. We
have implemented such a procedure using MATHEMATICA.
In Sec. III E, we provide plots of magnon energies
throughout the BZ in Fig. 5 for the representative field
values from all the phases in Fig. 4(a).

We also point out that although the approach to the
multiflavor boson problem discussed here is very general,
there are significant simplifications in our case owing to the
high symmetry of the model (1) and the lattice. Specifically,
Â&

−q ¼ Âq and B̂†
q ¼ B̂q in Eq. (23) as their off-diagonal

matrix elements Eqs. (25) and (26) are simply proportional
to the complex hopping amplitude γ&−q ¼ γq in Eq. (27).
As a result, all eigenenergies of ĝĤq are reciprocal,
ωγ−q ¼ ωγq, and fV̂&

−q; Û
&
−qg ¼ fV̂q; Ûqg in Eq. (30).

E. Magnon eigenenergies

In Fig. 6, we provide plots of magnon eigenenergies for
several representative field values from all of the phases
sketched in Fig. 4(a) and for the parameters in model (1),
j2 ¼ J2=J1 ¼ −0.8 and b ¼ BS2=J1 ¼ 0.1. Energies
are in units of 3SJ1, and the dimensionless field is
h ¼ gμBH=3J1S. All plots are along a representative cut
KΓMK through the full Brillouin zone shown in Fig. 5.
In the zero field, h ¼ 0, magnetic order is the canonical

120° phase with the Oð3Þ symmetry that is spontaneously
broken. Since it is broken fully by the choice of the
ordering plane and by the spin arrangement within the
plane, there are three Goldstone modes that one can observe
in Fig. 6(a). As we discuss in some more detail in
Appendix B for the 120° case, the three magnon branches
that are defined within the magnetic BZ can be related to a
single branch defined within the full BZ using a “rotated”
reference frame for the spin quantization axes. This allows
us to represent the full spectrum as the “original” branch,
labeled by ωk in Fig. 6(a), and two modes that are “shifted”
by the ordering vector %Q ¼ ð4π=3; 0Þ.
For a finite in-plane field, the symmetry of the model (1)

is lowered to Uð1Þ by the field. Spontaneous breaking
of the Uð1Þ symmetry within the Y phase in Fig. 4(a) at
h < hc1 results in a single magnon branch with a Goldstone
mode and two gapped branches, as is shown in Fig. 6(b) for
h ¼ 0.3. A characteristic feature of the gapless branch is an
upward curvature of the dispersion in the long-wavelength
limit, ωk ≈ cjkjþ rjkj3, with r > 0.

FIG. 5. Full BZ of the triangular lattice (outer hexagon) and
magnetic BZ of the three-sublattice structures (inner hexagon),
high-symmetry points in units of inverse lattice spacing 1=a, and
the direction of a representative KΓMK cut.
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The UUD phase in Fig. 4(a) is sandwiched between two
critical fields, hc1 ¼ 1–6b ¼ 0.4 and hc2 ¼ 1þ 2b ¼ 1.2.
Since the Uð1Þ symmetry is preserved throughout this
phase, the spectrum is generally gapped except at the
transition points [see Fig. 6(c), which shows magnon
spectra at both hc1 and hc2 and at intermediate h ¼ 0.8].
The partially polarized, Uð1Þ-preserving UUD state is,
in a way, similar to the fully polarized FM phase, with
the spectra for the latter for the fields at and above the
saturation field hs ¼ 3ð1 − 2bÞ shown in Fig. 6(e). Because
of the continuous Uð1Þ symmetry of the model (1), the
magnetic field couples to a conserved total magnetization
in both the UUD and FM cases, which leads to the linear
dependence of magnon energies in Figs. 6(c) and 6(e)
on the field. This also makes the transitions at hs and
hc1ð2Þ analogous to the Bose-Einstein condensation (BEC)
[51,52]. We note that the absolute minima of ωk and the
corresponding BEC condensation points in the FM case
are at the ordering vectors of the three-sublattice order,

%Q ¼ %K, not at the Γ point. To emphasize this feature
of the FM phase, the magnon energies in Fig. 6(e) are
shown without folding on the magnetic BZ (see also
Appendix B 1).
The last phase of the model (1) with a spontaneously

broken Uð1Þ symmetry that is realized at hc2 < h < hs is
the V phase [see Fig. 4(a)]. Its spectrum is similar to that of
the Y phase, having one concave Goldstone and two
gapped modes [see Fig. 6(d)]. It can be seen as interpolat-
ing between the spectra of the UUD phase at hc2 and that of
the FM phase at the saturation field.

IV. KONDO COUPLING AND RESISTIVITY

In this section, we derive the electron-magnon interac-
tion Hamiltonian, originating from the Kondo coupling, for
a general case of a coplanar spin arrangement. We present
the expression for the electronic transport relaxation rate
due to such a scattering mechanism.

(a) (b)

(c)

(f)

(d)

(e)

FIG. 6. Magnon energies in units of 3SJ1 for several representative field values from the phases sketched in Fig. 4, j2 ¼ J2=J1 ¼ −0.8
and b ¼ BS2=J1 ¼ 0.1. (a) 120°-phase, h ¼ 0; (b) Y phase, h ¼ 0.3; (c) UUD phase, h ¼ hc1 ¼ 0.4, h ¼ 0.8, and h ¼ hc2 ¼ 1.2;
(d) V phase, h ¼ 2.0; (e) FM phase h ¼ hs ¼ 2.4, h ¼ hs þ 1, and h ¼ hs þ 2. Transitions are at hc1 ¼ 1–6b, hc2 ¼ 1þ 2b, and
hs ¼ 3ð1 − 2bÞ. The 1D phase diagram vs field with representative field values is sketched in panel (f).
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A. Kondo coupling

The most reasonable minimal model for the interaction
of conduction electrons with the local spins in the magnetic
layers of EuC6 is the Kondo coupling

Hint ¼ JK
X

i

si · Si; ð31Þ

where electron spin operators are sai ¼ 1
2 f

†
i;ασ̂

a
αβfi;β, with σ̂i

being Pauli matrices. With the external field providing a
spin quantization axis, it is natural to split Eq. (31) into
spin-flip and non-spin-flip parts, Hint ¼ Hþ−

int þHzz
int,

Hþ−
int ¼ JK

2

X

i

ðf†i;↑fi;↓S
−0
i þ f†i;↓fi;↑S

þ0
i Þ;

Hzz
int ¼

JK
2

X

i

ðf†i;↑fi;↑ − f†i;↓fi;↓ÞS
z0
i ; ð32Þ

where fð†Þi;↑ð↓Þ are operators of the conduction electrons and
the f−0;þ0; z0g indices in the operators of local spins refer
to the “laboratory” reference frame fx0; y0; z0g associated
with the field direction (see Figs. 3 and 4).
The Kondo coupling is a standard low-energy approxi-

mation, which describes interactions of localized spins with
electrons at the Fermi surface. In our case, the correspond-
ing electronic states respect the C3 and sublattice sym-
metries of the graphene layer. In Fig. 2(a), we demonstrate
the folding of the two graphenelike bands, originally
affiliated with the vicinities of the Kgr and K0

gr points,
onto the proximity of the Γ point in the Brillouin zone of
the Eu lattice (see discussion in Sec. II A). It is only these
two bands that cross the Fermi surface and are encoded in
our Fermi operators fi;σ in Eq. (31). Therefore, by con-
struction, our Kondo term accounts for the coupling to a
linear combination of orbitals of the surrounding carbons
that respects the lattice symmetries mentioned above but
are also projected onto the electronic states that belong to
these low-energy conduction bands. The coupling to the
neighboring carbons also involves other electronic states,
but they are unrelated to the states near the Fermi surfaces.
Thus, the Kondo coupling in Eq. (31) provides the most
reasonable minimal description of the interaction of local
spins and conduction electrons. In addition, since we treat
the two low-energy bands as independent, the coupling
to local spins is treated as diagonal in the band index
in Eq. (31).
For the general coplanar spin configuration in Fig. 4, the

local axes are rotated from the laboratory ones (12) to
introduce quantized spin excitations for a given spin
arrangement. Consider the non-spin-flip part. Here, accord-
ing to Eq. (12), Sz0i ¼ Szi cos α̃þ Sxi sin α̃, with α̃ being
the angle of the spin’s z axis on a site i with z0. Upon
quantization, Szi converts into a two-magnon term, while Sxi

yields one-magnon emission or absorption. Similarly to the
problem of electron-phonon scattering, it is the lowest-
order coupling that needs to be considered, unless it is
forbidden for symmetry reasons or its scattering kinematics
is suppressed. In our case, there are no such constraints,
and the Sz part is also of higher order in the 1=S sense.
Therefore, we approximate the local spin operators in
Eq. (32) by their single-magnon components

Sþ0
i ≈ 2

ffiffiffi
S
2

r
ðcos2 ðα̃=2Þai − sin2 ðα̃=2Þa†i Þ;

Sz0i ≈
ffiffiffi
S
2

r
sin α̃ðai þ a†i Þ; ð33Þ

where the angle α̃ depends on the sublattice.
Using the Fourier transform (21) in Eq. (32) together

with Eq. (33), one arrives at

Hþ−
int ¼ 2J̃Kffiffiffiffiffiffiffi

3N
p

X

k;q

h
f†k−q↑fk↓

X

α

ðcos2ðα̃=2Þa†α;q

− sin2ðα̃=2Þaα;−qÞ þ H:c:
i
;

Hzz
int ¼

J̃Kffiffiffiffiffiffiffi
3N

p
X

k;q

½f†k−q↑fk↑ − f†k−q↓fk↓(

×
X

α

sin α̃ða†α;q þ aα;−qÞ; ð34Þ

where J̃K ¼ 1
2 JK

ffiffiffiffiffiffiffiffi
S=2

p
, N is the total number of sites, and

summation in k and q is over the full Brillouin zone of the
triangular lattice (Fig. 5). We note that the single-magnon
non-spin-flip terms are nonzero in the 120°, Y, and V
phases, in which the angles α̃ ≠ f0; πg because, in these
states, the symmetry of the Hamiltonian (1) is broken
completely and a spin flip does not correspond to a
particular spin value.
The last transformation is to the quasiparticle operators

given by Eq. (28), which yields

Hþ−
int ¼ J̃Kffiffiffiffiffiffiffi

3N
p

X

k;q

h
f†k−q↑fk↓

X

γ

ðMþ−
γ;qA

†
γ;q

þ Nþ−
γ;qAγ;−qÞ þ H:c:

i
;

Hzz
int ¼

J̃Kffiffiffiffiffiffiffi
3N

p
X

k;q

½f†k−q↑fk↑ − f†k−q↓fk↓(

×
X

γ

Mzz
γ;qðA†

γ;q þ Aγ;−qÞ; ð35Þ

with the matrix elements
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Mþ−
γ;q ¼ 2

X

α

ðcos2 ðα̃=2ÞUðγÞ
α;−q − sin2 ðα̃=2ÞVðγÞ

α;−qÞ;

Nþ−
γ;q ¼ 2

X

α

ðcos2 ðα̃=2ÞVðγÞ
α;−q − sin2 ðα̃=2ÞUðγÞ

α;−qÞ;

Mzz
γ;q ¼

X

α

sin α̃ðUðγÞ
α;−q þ VðγÞ

α;−qÞ: ð36Þ

One can see that while the structure of the non-spin-flip
term in Eq. (35) is similar to that of the electron-phonon
scattering, the spin-flip part is different as the amplitudes
of magnon emission and absorption by the same ↑ ð↓Þ
electron are generally different. This is, of course, most
obvious in the polarized FM state, in which magnons
have a definite spin and, therefore, can be emitted only
by electrons with spin ↓ and absorbed only by electrons
with spin ↑.
With the electron-magnon couplings explicated in

Eqs. (35) and (36), one has a clear path toward a calculation
of the electron’s relaxation rate and, therefore, resistivity as
a function of the field and temperature.
The derivation of the electron-magnon interaction above

and the calculation of the relaxation rate that follows can
be repeated for individual particular cases of the 120°, FM,
and UUD phases with an alternative spin-wave formulation
considered in Appendix B. Each of these considerations
follows the same structure with a varying degree of
simplification compared to the general case described
above. While we do not expose these alternative solutions
here, as they lead to identical outcomes, they do offer an
important verification and analytical insight into the
makeup of our solution.
We have repeatedly emphasized the importance of the

field-induced changes in magnon energies and in electron-
magnon matrix elements for our key results that follow
next. With the representative magnon energies shown in
Fig. 6, we complement them with similar representative
plots of the combinations of matrix elements given in
Eq. (39), which enter the integral expression for the
resistivity [see Eq. (38) below]. In Fig. 7, we show
combinations Φγ;k from Eq. (39) for the three representa-
tive field values from different phases: the Y phase at
h ¼ 0.3, the UUD phase at h ¼ 0.8, and the V phase at
h ¼ 2.0. The plot is along a representative cut KΓMK
through the full BZ as in Fig. 6 and for the same parameter
choices in model (1) as above, j2 ¼ J2=J1 ¼ −0.8 and
b ¼ BS2=J1 ¼ 0.1.
Since the numeration of magnon modes in Figs. 6(b)–

6(d) is from the lowest to highest in energy, the solutions
for the matrix elements in Fig. 7 switch between branches
whenever branches cross. Some of the crossings are at the
high symmetry points and some are not. A general trend
that can be observed in Fig. 7 is that some of the matrix
elements are strongly suppressed around the Γ point and are
either maximal or singular at the K point.

An interesting feature of the matrix elements in the UUD
phase can be noted. There is no dependence of Φγ;k on the
field, only switching between branches according to their
numeration. In other words, while there is a definite
reshuffling of the magnon modes vs field that can be seen
in Fig. 6(c), the same combination of matrix elements as
depicted in the middle panel of Fig. 7 corresponds to
any other point on the magnetization plateau (UUD)
phase. This observation provides an interesting connection
between the structure of the quasiparticle states, encoded in
their wave functions, and conserved magnetization.

B. Resistivity

Similarly to the theory of electron-phonon scattering in
the resistivity of metals, Fermi energy EF is by far the most
dominant energy scale of the problem, perhaps even more
so in our case, as the magnon bandwidth, field strengths,
and temperature range of interest are all less than or close to
50 K while EF ∼ 1–3 eV [31]. Therefore, magnon-induced
scattering of electrons happens within a thin energy shell
around the Fermi surface. For the effectively 2D magnetic
excitations, the transport scattering rate reduces to a 1D
integral that is limited by that shell.
With the technical details of the Boltzmann equation

approach to the electron-magnon scatterings in Eq. (35)
delegated to Appendix C and a mild assumption of the
circular 2D Fermi surface, we obtain the transport relax-
ation rate for electrons with both spin projections,

ℏ
τF

¼
ffiffiffi
3

p

π
jJ̃Kj2

EF
ðkFaÞ2IkFðT;HÞ; ð37Þ

FIG. 7. CombinationsΦγ;k in Eq. (39) of the matrix elements in
Eq. (36) for several representative field values along a represen-
tative cut KΓMK through the full BZ (see Fig. 5): Y phase,
h ¼ 0.3; UUD phase, h ¼ 0.8; and V phase, h ¼ 2.0.
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where J̃K ¼ 1
2 JK

ffiffiffiffiffiffiffiffi
S=2

p
, EF ¼ ℏ2k2F=2m, with m being the

effective electron mass, kF the Fermi momentum, and the
1D integral given by

IkFðT;HÞ ¼
Z

1

0

z2dzffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ×
1

3

X

γ

Φγ;qn0γ;qðn0γ;q þ 1Þ
ωγ;q

T
;

ð38Þ

with the 2D momentum parametrization along the 1D
contour q ¼ 2kFðz2; z

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Þ, Bose distribution function

n0γ;q for a magnon with energy ωγ;q, γ numerating magnon
branches, and Φγ;q being an abbreviated matrix element
contribution

Φγ;q ¼ 2jMzz
γ;qj2 þ jMþ−

γ;q j2 þ jNþ−
γ;q j2: ð39Þ

This result in Eqs. (37)–(39) combines the effort of the
entire work in a concise form. It accumulates the solution
of the transport theory that proves the validity of the 1=τ
approximation in our case; implicitly contains the field
dependence of the magnon spectra and matrix elements
(36) via the spin angles α̃ and parameters of the genera-
lized Bogolyubov transformation (28); incorporates field-
induced transitions between different phases; and includes
the effect of thermal population of magnetic scatterers on
the resistivity. As is discussed in Sec. V, contributions of the
thermal distribution of magnons and matrix element com-
ponent (39) are both essential for the resistivity results.
While the general expressions (37) and (38) may not be too
intuitive, the following consideration will provide essential
ingredients for such an intuition.

1. Large-q insights

The key elements of the physics in Eq. (37) can be
extracted from the kernel of the integral in Eq. (38).

We begin by noting that the z2 factor in Eq. (38) originates
from a suppression of the small-angle scattering processes
of electrons in the transport relaxation rate. Thus, the
integral is dominated by the large-q scattering events that
correspond to z → 1 and q → 2kF. The 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
factor is

due to angular integration in 2D and also contributes to an
enhancement of the large-q contributions.
Further intuition, which also lays out expectations for the

results presented in the next section, is provided by the
remainder of the kernel in the second line of Eq. (38)
taken at a “typical” momentum q& ¼ ð2kF; 0Þ and in the
high-temperature limit, approximating Bose factors as
n0γ;q ≈ T=ωγ;q and omitting an overall prefactor T=3,

K2kF ¼
X

γ

Φγ;q&

ωγ;q&
: ð40Þ

Referred to as the “kernel” below, K2kF is a sum over the
branch index γ of the ratios of the matrix elements (39) and
magnon energies, taken at q&. We also note that the high-
temperature approximation is closely relevant to the EuC6

phenomenology discussed in Sec. V.
The kernel K2kF allows one to analyze contributions

of different magnon modes to the resistivity and also to
compare the relative importance of the spin-flip and non-
spin-flip channels in the scattering. While the latter is
absent in the collinear UUD and FM phases, it is present in
the noncollinear Y and V phases, where sin α̃ ≠ 0 [see
Eq. (36)]. This partitioning of Eq. (40) into the channels is
completed by separating the non-spin-flip matrix element
contribution jMzz

γ;q& j2 in Φγ;q& from the rest [see Eq. (39)].
Figure 8 shows K2kF [Eq. (40)] vs magnetic field for a

representative kF ¼ π=4 and for two values of the biqua-
dratic parameter b in model (1): (a) Heisenberg, b ¼ 0, and
(b) b ¼ bc ¼ 1=11. The rest of the parameters are from

(a) (b)

S
T

S
T

FIG. 8. Kernel K2kF , Eq. (40), vs H for kF ¼ π=4 and for (a) b ¼ 0 and (b) b ¼ 1=11. Contributions of the spin-flip and non-spin-flip
channels are represented by shadings; Y, UUD, V, and FM phases and transitions between them are indicated.
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Table I (see Sec. II B 3). In the Heisenberg limit, the UUD
phase reduces to a critical point separating the Y and V
phases. Contributions of the spin-flip and non-spin-flip
scattering channels are shaded in different colors.
The key lesson of Fig. 8 is that the non-spin-flip

scattering channel, although secondary to the spin-flip
one, is responsible for an enhancement of K2kF in the
noncollinear Y and V phases relative to the collinear UUD
and FM phases where it is not available. Accordingly, one
should expect the higher transport relaxation rates (37) and
higher resistivity in these noncollinear phases. Figure 8 also
shows that the biquadratic interaction enhances non-spin-
flip scattering and causes stronger variations of the kernel
near the Y-UUD and V-FM transitions. One can anticipate
all of these trends to persist in the results for the resistivity
discussed in Sec. V.

2. JK estimate and other scatterings

Using considerations of the electronic structure of EuC6

provided in Sec. II A and assuming two doubly degenerate
bands with cylindrical Fermi surfaces to describe it, the 3D
electronic concentration n is related to the value of the
Fermi momentum kF via

n ¼ k2F
πc

; ð41Þ

where c is the interplane distance between Eu layers. With
that and some rearranging, the expression for the resistivity
can be cast in the following form:

ρ ¼ m
ne2τF

¼ c
4
RK ·

ℏ
EFτF

; ð42Þ

in which the von Klitzing constant RK ¼ h=e2 ≈ 25.8 kΩ
and interplane distance c set the proper units and the
relaxation rate of Eq. (37) is made dimensionless by a
normalization to the Fermi energy.
One can use the expression for ρ in Eq. (42) with ℏ=τF

from Eq. (37) to estimate the Kondo coupling constant JK
in Eq. (31) that is needed to reproduce experimental values
of ρ in EuC6. By taking ρH¼0ð24 KÞ ≈ 12.5 μΩ cm from
Fig. 1(b) and c¼ 4.87 Å [21], one obtains ℏ=EFτF ≈ 0.040,
which, if matched to the theory results for kFa ¼ π=3 in
Fig. 1(c), yields JK=EF ≈ 0.275. By scaling of the value of
the Fermi energy in Fig. 2(a) to what it would be for
kFa ¼ π=3, one has EF ≈ 1.17 eV and JK ≈ 0.32 eV. This
estimate is of the same order, albeit somewhat larger,
than the value 0.15 eV quoted in the early literature [24].
However, it seems that most of the discrepancy could be in
the factor-of-2 difference in the definition of electronic spin
in the Kondo coupling (31), making the remaining differ-
ence rather academic.
Empirically, the resistivity of EuC6 changes from about

2 μΩ cm at 4 K, to nearly 50 μΩ cm at room temperature
[see Fig. 1(b) and Ref. [18]]. While the low-temperature

value is in the same range as in the other graphite-
intercalated compounds (see Ref. [16]), the room-
temperature resistivity in EuC6 exceeds that of the nearly
isostructural nonmagnetic GICs such as LiC6 by more than
an order of magnitude, clearly suggesting that it is the
scattering on magnetic degrees of freedom, such as the ones
considered in this work, that must dominate the usual
phonon and impurity scattering [18].
For the phonon scattering effect in the resistivity of EuC6

for the temperature range relevant to our work, the phonon
Debye temperatures in various GICs, estimated from the
specific heat measurements, range from 300 K to 700 K
[16], with the phonon spectrum of graphite [53] suggesting
a similar value. This implies that the phonon-induced
resistivity for T ≲ 30 K should follow the strongly non-
linear Bloch-Grüneisen behavior, inconsistent with experi-
ments. Moreover, as is discussed in Sec. V below, the
magnon Debye temperature is about an order of magnitude
smaller than that of phonons, making the phonon contri-
bution to scattering completely negligible in the relevant
low-temperature regime, even for an unphysically large
electron-phonon coupling. Thus, this consideration sug-
gests a strongly subleading role of phonons in the resistivity
of EuC6 at all temperatures.
As is implied by a comparison of our theory results to

experiments in Fig. 1 and by the results in Sec. V below,
one can assume that the “residual” resistivity ρres of about
2 μΩ cm at 4 K in Fig. 1(b) is mostly associated with
impurity scattering. It is easy to infer from Eq. (42) that this
value corresponds to the mean-free path of

Λmfp ¼
cRK

2ρres
k−1F ≈ 300k−1F ; ð43Þ

which yields Λmfp ≈ 1.3 × 10−5 cm for kF ¼ π=3a and
a ¼ 4.31 Å [21]. This is about a factor 102 smaller than
the mean-free path in pristine graphite, but it is of the same
order as in the other GICs [16], as the similarity of their
residual resistivities has already indicated.
Although many types of defects may play an important

role in GICs [54], one can model their effect as that of the
screened Coulomb centers of charge e in order to infer an
overall nominal impurity concentration. This is in accord
with the textbook approach [55] to the impurity scattering
in resistivity. For that, we obtain a modified relation
between the mean-free path and impurity concentration
for the quasi-2D cylindrical Fermi surface

1

ΛmfpkF
¼ 2Fðz2Þ

nimp

n
; ð44Þ

with the angular averaging of scattering contained in

Fðz2Þ ¼
Z

1

0

x2dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ð1þ z2x2Þ2

; ð45Þ
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where z ¼ 2kFλ, λ is a screening length, and n is the
electronic concentration from Eq. (41). For the doubly
degenerate, cylindrical Fermi surfaces of electrons that we
use here as an approximation, one can find the screening
parameter as z2 ¼ EF=ðe2=cÞ, where c is the interplane
distance. Using Eqs. (43) and (44) for EF corresponding to
kF ¼ π=3a and the lattice constants quoted above, we find
that ρres ¼ 2 μΩ cm corresponds to nimp=n ≈ 2.3 × 10−3.
Using the same kF, one can convert the impurity

concentration per electron to the concentration per carbon
to obtain nper Cimp ≈ 1.2 × 10−4, which is about 120 ppm. In
graphite, solubility limits of most impurities are very low
[56,57], with the major residual impurities that reach the
obtained value often being that of Fe. This observation may
provide additional ground for the scenario outlined below
in Sec. V D in our discussion of the remaining problems, in
which we suggest that sizable variations in the residual
resistivity versus field may be related to the magnetic nature
of the impurities and to the scattering due to spin textures
induced by them.

V. RESULTS

With all the elements of our approach and qualitative and
quantitative considerations and estimates provided above,
we can now offer a detailed overview of the results that
follow from our theory. A comparison of the experimental
data for the magnetoresistivity in EuC6 vs field with our
calculations for the model parameters from Table I and for
a representative value of kF ¼ π=3 is given in Figs. 1(b)
and 1(c). Given the simplicity of our model and potential
additional unaccounted effects discussed in more detail in
Sec. V D, the similarity between experiment and theory is
rather astounding.
This similarity includes high resistivity in the Y phase

and its quick roll-down near the Y-UUD transition, a gentle
downward slope of ρ vsH in the UUD phase, followed by a
smooth rise in the V phase. The temperature evolution of
the ρðHÞ curves is also consistent with the data, perhaps
with the exception of the lowest temperatures. A discrep-
ancy can also be seen in the larger values of ρ in the FM
phase and a strong rise toward it near the V-FM transition in
the theory results. This is likely due to the proximity to
the H–T phase transition boundary, where interactions
between magnetic excitations, neglected in our consider-
ation, become important.
This successful comparison strongly suggests the cor-

rectness of the advocated mechanism of the magnetoresist-
ance in magnetically intercalated graphite as dominated by
electron scattering on magnetic excitations, which, in turn,
allows insights into the nature of such excitations.
In the following, we present further evidence of the

success of our theory, together with a detailed analysis of
the dependence of our results on the key model parameters,
such as biquadratic interaction of spins b and electron

Fermi momentum kF, summarized in Figs. 9–11. This
analysis provides implications for the microscopic para-
meters that should describe EuC6 and also offers a glimpse
of the prospective new phenomena that can be induced in
intercalated magnetic materials and similar systems by
means of chemical, pressure, or gate doping.

A. T dependence of resistivity

We complement our results for the field dependence of
1=τF in Fig. 1(c) by the temperature dependence of ρðH; TÞ
at fixed H. Figure 9(a) shows the results for two field
values: theH ¼ 0, 120° spin state, and for the middle of the
UUD phase, H ¼ ðHc2 þHc1Þ=2. The results are for the
same optimal choice of parameters used to describe EuC6

from Table I as in Fig. 1(c), and for kF ¼ π=3.
Our Fig. 9(b) shows the same data on the log-log scale in

order to emphasize two distinct temperature regimes, the
low-T and the high-T regimes. The overall energy scale for
scattering is set by the magnon bandwidth, which plays the
role analogous to that of the Debye energy in the electron-
phonon resistivity [55]. Drawing from this analogy, a
transition between the low- and high-T regimes can be
expected at a fraction of the magnetic Debye energy
[55,58,59], which can be estimated from the magnon
spectra in Fig. 6 as Wm ≈ 10J1S, with some variation
between phases. Using J1 ≈ 1.1 K (see Table I) and S ¼
7=2 yields Wm ≈ 40 K. Indeed, the transition between the
two regimes can be observed in Fig. 9 at Wm=5 ≈ 8 K.
This consideration implies that the majority of exper-

imental results on EuC6 in Refs. [21–23], in our Fig. 1(b)
(which is reproduced from Ref. [18]), and in all our

(a) (b)

FIG. 9. The T dependence of ρmag due to magnetic scattering
(37) on the (a) linear and (b) log-log scale in the 120°
state, H ¼ 0, and in the middle of the UUD phase, H ¼
ðHc2 þHc1Þ=2, for the parameters from Table I and kF ¼ π=3.
Dashed lines are Bloch-Grüneisen’s law, T4 in 2D, Ohm’s law, T,
and exponential asymptotics, see text.
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theoretical plots are in that high-T regime, T ≳ 8 K. The
nature of this regime, where resistivity crosses over to a
linear T dependence, as is indicated by the asymptotes
in Fig. 9, is simply an equivalent of Ohm’s law.
Approximating Bose factors in Eq. (38) by their high-
temperature limit, n0γ;q ≈ T=ωγ;q, naturally yields 1=τF ∝ T.
Parenthetically, this also motivates our high-T approxima-
tion used in the consideration of the kernel in Sec. IV B 1.
Thus, the nearly linear T dependence of ρðTÞ in EuC6

observed in Ref. [24] above 8 K is simply within the onset
of Ohm’s regime, with no need for an artificial backflow
scenario proposed in that work. Needless to say, details of
the spectra do not matter at high temperatures, and the same
ρðTÞ ∝ T dependence should hold for all field-induced
phases, as is shown by a comparison of the UUD and 120°
states in Fig. 9. Naturally, in very high fields, the field-
induced gaps gμBðH −HsÞ ≫ kBT will lead to a freeze-out
of the magnon scattering.
The low-T regime is a bit more subtle and depends on the

magnetic phase. The case of the 120° state and, by proxy, of
the Yand V phases with the Goldstone modes that are linear
at lowenergies,ωq ∝ q [seeFigs. 6(a), 6(b), and6(d)], is very
much similar to the textbook case of acoustic phonons. For
the 120° state, one can show from Appendix B 2 that the
matrix element contribution (39) associated with the cou-
pling to such a mode is also linear in q in that limit,Φγ;q ∝ q.
Then, a simple power counting in Eq. (38) for T ≳ ωq using
z ∝ q ∝ T yields a 2D analogue of the Bloch-Grüneisen
asymptotic regime 1=τF ∝ T4 shown in Fig. 9.
As opposed to the gapless phases, the UUD and FM

phases are gapped away from the transition points [see
Fig. 6(c) and 6(e)]. Thus, one can expect to see an activated
behavior of the resistivity, ρ ∝ e−Δ=T , at sufficiently low
temperatures. While this regime can be visible in Fig. 9(b),
in practice, its detection requires reaching temperatures
T ≪ Δ. There is also an additional smallness due to a
prefactor T7=2 of the exponent associated with a suppressed
coupling to the lowest mode, Φγ;q ∝ q4. An estimate for
the gap in the middle of the UUD phase for EuC6

gives Δ ≈ 1.1SJ1 ≈ 4.2 K, providing guidance for future
observations.
The locus of magnon momenta q that are involved in the

scattering depends on the value of kF as we discuss below.
However, in the field-polarized FM case, it is generally
away from the energy minimum in Fig. 6(e), leading to a
larger gap in the exponent, which is further increased by the
Zeeman energy gμBðH −HsÞ away from the saturation
field, accompanied by a more favorable prefactor propor-
tional to T1=2, so the freezing out should be readily
observable in the FM phase at higher temperatures.
Lastly, one can naively expect a power law that is

different from T4 near the Y-UUD and UUD-V transition
points as both are affiliated with the BEC-like transitions in
which magnon energy is quadratic, ωq ∝ q2 [see Fig. 6(c)].

Although we refrain from discussing it in any significant
detail, the situation is more complicated as the coupling to
these BEC modes is different at Hc1 and Hc2. In the first
case, the coupling vanishes, maintaining an exponential
trend due to higher energy modes, while in the second case,
it indeed leads to a different power law T7=2 due to a
suppressed coupling, Φγ;q ∝ q4.
Altogether, the consideration given above presents fur-

ther evidence of the validity of our theoretical approach,
providing a physically transparent description of the
temperature dependence of the resistivity of EuC6 in the
previously accessed temperature regime. It also invites
further studies in finite fields and especially at lower
temperatures, where resistivity should be a sensitive probe
of the spin excitation spectra.

B. Magnetoresistivity vs biquadratic exchange

The discussion provided below serves two goals. The
first one is to investigate how prevalent the strong anoma-
lies are in the magnetoresistivity, ρ vsH, in the model of the
conduction electrons coupled via a coupling (31) to the
spins that are described by the Heisenberg-biquadratic
model (1). The second goal is to demonstrate that the
magnetoresistivity of EuC6 is consistent with the substan-
tial biquadratic-exchange parameter b in such a model.
In Fig. 10, we present the transport relaxation rate vs

field obtained from Eq. (37) for several representative
temperatures, Fermi momentum kF ¼ π=3, and exchange
parameters from Table I, except that now we vary the key
biquadratic-exchange parameter b ¼ BS2=J1. The corre-
sponding magnetoresistivity is related to these results by a
dimensional constant factor [see Eq. (42)].
Figure 10(a) shows two sequences of curves, offset for

clarity, with the biquadratic exchange increasing in nearly
equal steps from the Heisenberg limit, b ¼ 0, to the value
b ¼ 0.0922 that we use as an optimal choice for EuC6 (see
Sec. II B 3). Figure 10(b) shows results for the biquadratic
exchange b ¼ 0.13 that substantially exceeds the “critical”
value bc ¼ 1=11, which corresponds to a change of the
Y-UUD and V-FM transitions to the first-order type as
discussed in detail in Sec. II B 2 and Appendix A.
The evolution of 1=τF with b in Fig. 10(a) features

already-anticipated trends. First, the opening of the
1=3-magnetization plateau (UUD) phase away from the
Heisenberg limit (see Sec. II B) is clearly visible. Second,
the results in Fig. 10(a) are in a close accord with the
behavior of the kernel, discussed in Sec. IV B 1 and
illustrated in Fig. 8, providing an explicit confirmation
that the transport relaxation rate and magnetoresistivity are
dominated by the 2kF scattering processes.
The key observation from the results in Fig. 10(a) is that

strong roller-coaster-like variations in magnetoresistivity,
such as the ones observed in EuC6, must be associated
with the nearly critical values of the biquadratic exchange
within our model. Although some aspects resembling
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strong variations and indicating clear differences of ρ vs H
dependence between different phases can already be
observed in the pure Heisenberg model [see, for example,
a kinklike feature at the Y-V boundary in the upper curves
in Fig. 10(a)], others are much less pronounced (see a rather
small change of slope at the V-FM transition at Hs in the
same results).
Our Fig. 10(a) demonstrates that the role of the biquad-

ratic term in model (1) goes far beyond just establishing the
UUD phase boundaries, which are clearly marked by the
kinks in 1=τF. With increasing b, the Y-UUD transition
becomes steeper upon shifting to the lower fields, showing
a divergent derivative for b ¼ 0.0922 that is related to
a similar behavior of spin angles in Fig. 12. Still, the
biggest change takes place at the V-FM transition, which
also becomes weakly first order, as is elaborated on in
Appendix A. Here, the 1=τF field dependence evolves
from a nearly featureless one in the Heisenberg limit to a
“shock-wave”-like shape for b ¼ 0.0922. In contrast, the
UUD-V transition remains continuous throughout these
transformations, although the slope of 1=τF at Hc2 also
changes visibly.
Increasing b beyond the critical bc should lead to a

hysteresis in the magnetoresistance. Figure 10(b) illustrates
the case of b ¼ 0.13 > bc. These results are obtained by
using the local stability of the solutions for the magnetic
configurations, of their corresponding spin-wave energies,
and of electron-magnon matrix elements within the overlap
regions of the coexisting phases. For example, from within
the Y phase, the Y magnetic configuration persists up to
h̃c1, as is described in Appendix A 1. From within the UUD
phase, the same field region can be accessed starting from
hc1 < h̃c1. Therefore, in the overlap region, hc1 < h < h̃c1,
the relaxation rate 1=τF can be calculated in two different
ways, resulting in the sizable discontinuities in Fig. 10(b),

indicated by vertical dotted lines marking the overlap
intervals of hc1<h<h̃c1 for the Y-UUD and hs <h< h̃s
for the V-FM transition.
We note that the transition regions and discontinuities

in Fig. 10(b) are only illustrative. As is discussed in
Appendix A 1, the transition between the two overlapping
phases should take place at h&c, at which the energies of the
two phases become equal. At a finite temperature, a proper
consideration of the first-order transition should include an
entropic contribution to the free energy of the competing
phases. In addition, one can expect the coexistence
region to be affected by secondary anisotropies that are
neglected in our minimal model. Nonetheless, we believe
that Fig. 10(b) faithfully represents a qualitative effect of a
strong biquadratic interaction on the magnetoresistance
across the first-order transition.
Altogether, the results presented in this section provide

an important overview of the characteristic evolution of the
magnetotransport within the model of electrons coupled to
the spin subsystem, which is described by the Heisenberg-
biquadratic model.
As is discussed in Sec. II B 3, the microscopic para-

meters of the spin model (1) describing EuC6 are deter-
mined entirely from the thermodynamic quantities, such as
critical fields and transition temperature. Therefore, for
claiming the success of a theoretical description, it is crucial
that the resulting set of microscopic parameters yields
distinctive features that are in accord with a wider phe-
nomenology of the material, especially the one that
involves less trivial quantities such as dynamical response
and transport. We can claim such a success here, as the
parameters chosen to describe EuC6 in Table I are also the
ones that produce sharp, nearly singular features in mag-
netoresistivity results that follow from our theory and also
match closely the observed ones.

(a) (b)

FIG. 10. We show 1=τF vs H from Eq. (37) for representative kF ¼ π=3 and temperatures. Exchange parameters are from Table I.
(a) Results for the biquadratic exchange b ¼ 0, 0.03, 0.06, and 0.0922 displaced down for clarity by increments of 0.05 in the given
units. Circles and squares mark transitions between magnetic phases. (b) b ¼ 0.13, j2 ¼ 0.08. Dotted lines indicate discontinuities.

A. L. CHERNYSHEV and O. A. STARYKH PHYS. REV. X 12, 021010 (2022)

021010-18



C. Magnetoresistivity, role of kF
Two more aspects of our study merit further discussion.

First, as is mentioned in Sec. II, the electronic band filling
fraction in EuC6 and the Fermi momentum kF parametriz-
ing it are not well determined. While the nominal Eu2þ

valence naively implies a large Fermi surface, the electronic
structure and angle-resolved photoemission study [31]
suggested a substantially smaller electron fraction in the
relevant carbon orbitals and a smaller kF. We would like to
weigh in on this subject, with the magnetoresistivity in our
model arguing for a still somewhat smaller Fermi surface,
with kF ≲ π=3.
Second, much of the interest in the synthetic materials, in

general, and in the graphite-derived systems, in particular,
is due to a significant flexibility regarding electronic
density manipulation. Then, in addition to varying para-
meters of the spin model, it is also important to explore the
outcomes of our theory in a wider range of electronic
parameters in order to anticipate potential new effects that
can be accessible due to such flexibility. To that end, we
discuss some of the larger-kF results.
Figure 11 shows the constant-T curves of the transport

relaxation rate 1=τF vs H calculated using Eq. (37) as in

Figs. 1(c) and 10 for a set of representative temperatures
from T ¼ 24 K down to 2 K in 2 K steps. Results are for
the model parameters from Table I that describe EuC6 and
for the four different values of the Fermi momentum,
kF ¼ π=4, 0.4π, 0.5π, and 0.6π. In this case, the field-
independent constant factor that relates 1=τF to magneto-
resistivity ρðH; TÞ, Eq. (42), is different for the four sets as
they correspond to different electronic concentrations n
via Eq. (41).
Consider kF ¼ π=4 results in Fig. 11(a) first. All of the

features in the data are the same as in Fig. 1(c) and as
discussed in Sec. V B for Fig. 10(a), including the steep
Y-UUD transition, a shock-wave feature at the V-FM
boundary, and a decline in the FM phase due to the
Zeeman-induced gap that is depleting magnon population.
In agreement with the analysis of ρ vs T in Sec. VA, the
temperature-induced offset of the curves is nearly linear in
T except for the lowest sets.
On a closer and more quantitative side, one can argue

that in terms of the overall trends in magnetoresistivity
curves, the kF ¼ π=3 results in Fig. 1(c) provide a some-
what better fit to the EuC6 data in Fig. 1(b) than the
kF ¼ π=4 ones. Moreover, to match experimental data, the

(a) (b)

(c) (d)

FIG. 11. We show 1=τF from Eq. (37) vs H for (a) kF ¼ π=4, (b) kF ¼ 0.4π, (c) kF ¼ 0.5π, and (d) kF ¼ 0.6π. Parameters are from
Table I.
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decrease of kF requires a nearly proportional increase of the
Kondo coupling constant (31) relative to the Fermi energy,
JK=EF, thus restricting kF from being too small.
A surprising trend starts to reveal itself by the results for

the larger kF ¼ 0.4π in Fig. 11(b). Although the features
in the constant-T curves are qualitatively similar to the
kF ¼ π=4 case, changes at the transitions are less steep and
less like the ones in the experimental data in Fig. 1(b). They
are nearly gone for the Y-UUD boundary in the kF ¼ 0.5π
results in Fig. 11(c), and the V-FM transition for this kF is
also marked by the spikelike structures, certainly unlike
anything observed in EuC6. The kF ¼ 0.6π results in
Fig. 11(d) complete this unexpected trend, with all
the transitions, including the formerly rather featureless
UUD-V one, showing spikes.
These qualitative transformations signify a change in

the dominant scattering that contributes to the resistivity.
Regardless of its nature, which we discuss below, an
immediate outcome of this analysis is in the phenomeno-
logical restriction on the size of the Fermi surface in EuC6.
As was described in Sec. II A, the trigonally warped Fermi
surfaces from the band structure in Ref. [31] have the extent
from kF;min ≈ 0.45π to kF;max ≈ 0.7π, in qualitative agree-
ment with a rigid-band estimate assuming a circular Fermi
surface and e=2 per Eu2þ doping of the carbon bands that
gives kF;e=2 ≈ 0.43π; see also Fig. 2. However, the mag-
netoresistivity of EuC6 within our theory suggests a still-
smaller Fermi surface with an optimal kF near π=3. These
results invite more research into the band structure and
direct measurements of the Fermi surface of EuC6.
To understand the transformation of the relaxation rates

with kF in Fig. 11, we need to return to the analysis of 1=τF
in Eq. (37) and in Sec. IV B 1. Because of the hierarchy
ωq; T ≪ EF, electrons participating in a conduction proc-
ess scatter between momenta that are in close vicinity of the
Fermi surface. With an assumption of the circular 2D Fermi
surface, the magnon momenta that are involved in such a
scattering also form a circular locus of points in the q space
[see Fig. 13(b) and Fig. 16 in Appendix C]. These momenta
extend from jqj ¼ 0 to the maximum of jqj ¼ 2kF, with the
small-momentum contribution to the transport scattering
rate in Eq. (37) suppressed and large-momentum contri-
bution enhanced, as is discussed in Sec. IV B 1.
Then, it follows for the kF ¼ π=3 case that the typical

large-momentum “2kF” magnons, responsible for most of
the scattering, are from the set of jqj near 2π=3. Referring to
the Brillouin zones in Fig. 5, this value corresponds to the
proximity of the M̃ point of the magnetic Brillouin zone
and to the high-energy magnons near the maxima of ωγ;q

(see Fig. 6).
However, further increase of kF drives the extent of the q

contour outside of the first magnetic BZ and also brings the
2kF-magnon energy down. Then, the truly “dangerous”
value of the Fermi momentum of the circular Fermi surface
is kF ¼ 2π=3, as it allows magnon momenta to reach the

corners of the full Brillouin zone, K and K0, which
correspond to the ordering vector of all ordered phases,
Q ¼ %ð4π=3; 0Þ, with gapless or nearly gapless modes.
Thus, it is the approach of kF → 2π=3, or, rather,
2kF → jQj, that is responsible for the dramatic changes
in Fig. 11 from (a) to (d).
This analysis also shows that at a given T, the population

of the relevant scatterers for kF ¼ π=3 is lower than that for
the larger kF values, which explains an order-of-magnitude
enhancement of 1=τF from kF ¼ π=3 in Fig. 1(c) to
kF ¼ 0.6π in Fig. 11(d), which is only partially accounted
for by the ðkFaÞ2 factors in Eq. (37).
Since the argument above relies only on 2kF → jQj, this

suggests a degree of universality. Specifically, we argue
that 1=τF in all gapless phases should diverge in this
limit as ∝ j2kF −Qj−1, with a field-dependent prefactor,
leading to an overall increase of the relaxation rates
observed in Fig. 11(d). In addition, the 2kF → jQj behavior
of 1=τF should apply equally to the pure Heisenberg
case, which offers an opportunity for a quantitative ana-
lytical insight. Using expressions for the FM and 120°
phases from Appendix B and high-T limit for the Bose
factors in Eq. (38), neglecting b and j2, and expanding q
near Q, after some algebra, indeed yields IkFðT;HsÞ ≈
ð8πT=3J1SÞð2kFj2kF −QjÞ−1 for the FM phase at the
gapless Hs point. The result is the same for the 120° phase
at H ¼ 0, but smaller by a factor 3=4.
Since Hs is the transition point that exhibits spikelike

features in Fig. 11, while the 120° state is away from the
transition, this result confirms our hypothesis that the entire
set of 1=τF is divergent, or nearly divergent in the weakly
gapped UUD phase, with the spikes being a quantitative
effect that is associated with ∝ q2 Goldstone modes at
the transitions compared to ∝ q modes inside the gapless Y
and V phases. We can also verify that the factor 3=4
between the Hs and H ¼ 0 (120° phase) points is indeed
in a reasonable accord with the results in Fig. 11(d). The
∝ j2kF −Qj−1 divergence is also consistent with the differ-
ence between kF ¼ 0.5π and kF ¼ 0.6π results at Hs in
Figs. 11(c) and 11(d).
This study of the divergence introduces another impor-

tant aspect of the problem that has been neglected so far.
We use a fairly reasonable and certainly simplifying
assumption of the cylindrical Fermi surface. However,
by itself, this assumption does not automatically make
1=τF independent of the direction of the electron momen-
tum k, with the angular dependence originating from the
discrete lattice symmetry that is still encoded in the spin
excitations and electron-magnon matrix elements.
As may be clear intuitively, the reason this issue is

important in the context of the ∝ j2kF −Qj−1 divergence is
that the “dangerous” Q vectors correspond to the discrete
points (BZ corners) in momentum space (see Fig. 5),
leading to the truly divergent 1=τF only for these directions.
This subject is considered in Appendix C 4 b for a closely
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related quasiparticle relaxation rate 1=τqp, for which the
effect of angular dependence can be taken into account
without any additional approximations.
In Appendix C 4 b, we demonstrate that the effect of

the angle dependence in 1=τqp is really negligible up to
kF ≈ 0.5π, and even for kF ≳ 0.6π, it is still very modest,
confirming the accuracy of our results presented in this
work and justifying our initial approximation that omitted
this effect.
Given the limitations of the cylindrical Fermi-surface

approximation, which should become problematic for
larger kF, and possible effects of the Fermi-surface
reconstruction at the magnetic zone boundaries, it is not
entirely clear whether the true divergences will survive, but
they may still have strong effects even if avoided. This
points to an interesting venue of potential studies of the
magnetic scattering effects in the large-Fermi-surface
EuC6, induced by chemical, pressure, or gate doping.
Some of the considered phenomenology is reminiscent

of the “hot spots” phenomena, which are much discussed in
the theory of cuprates [60], where certain parts of the Fermi
surface are suggested to experience strong scattering due to
the low-energy magnetic excitations with a particular Q
vector. It is not unthinkable that suggested further studies of
the large-Fermi-surface EuC6 may also be able to shed a
new light on this important problem.

D. Outlook

We would like to reiterate that the present study has
provided a thorough consideration of one of the iconic
models in frustrated magnetism, the triangular-lattice
Heisenberg model, enriched by the biquadratic exchange
and coupled to conduction electrons, with the goal of
understanding magnetoresistivity throughout its phase
diagram in an external magnetic field. The use of this
model as a microscopic description of EuC6, with addi-
tional approximations for electron bands and parameters
estimated from experimental critical fields and temperature,
is clearly a simplification. Yet, the evidence of the success
of such a description is undeniable, with many, if not most,
features of the magnetoresistivity reproduced, also leading
to constraints on the model parameters for both localized
spins and electron densities discussed above.
However, the presented description is not complete.

Below, we briefly discuss other possible terms in the
model that might be missing, their expected effects,
possible sources of the remaining discrepancies of our
theory with the experimental data, and desirable future
studies.
The first additional term in the spin model (1) is the ring-

exchange term (2), inspired by the early works [61,62] (see
Sec. II B for a discussion of this term and its secondary role
for EuC6). According to our estimates in Table I, the ring
exchange is about 3 times smaller than the biquadratic term.
Since the symmetry of the model is unaltered by this term

and the field-induced spin-angle dependencies on the
parameters that make transitions first order are very similar
to the biquadratic-only case [21], it was reasonable to
neglect it. The only unexplored outcome of the ring-
exchange term is a possible stabilization of an additional
magnetic state between the V and FM phases, with some
evidence of such a phase in EuC6 suggested by the data [see
Fig. 1(b) and Ref. [18]].
Next is the XXZ anisotropy in the J1 and J2 terms, which

is necessary to explain very different magnetization behav-
ior for the in- and out-of-plane field directions [18]. Given
close values of the saturation fields for these directions and
a nearly isotropic g-factor, it is expected to be relatively
weak, at the level of 10% [21] (see also Sec. II B). However,
unlike the ring exchange, it lowers the symmetry of the
model. Therefore, for the in-plane field, none of the
considered phases will have the true Goldstone modes,
and gapless excitations will exist only at the field-induced
transitions. This alters the low-T behavior of the resistivity
discussed in Sec. VA and also changes the dynamical
critical exponent at all critical fields from the BEC-like
(z ¼ 2, ωq ∝ q2) to the relativistic-like (z ¼ 1, ωq ∝ q)
one. However, as most of the experimentally relevant
theory results are pertinent to the high-T regime (see
Sec VA), the effect is expected to be secondary on them.
We have performed a limited study of the anisotropic XXZ
model for some of the phases and found no qualitatively
significant differences from the Heisenberg limit results in
that regime, even for strong anisotropy.
Since Eu2þ spins are large, the dipole-dipole interactions

are not necessarily negligible. However, using the analysis
of Ref. [63] and the size of the unit cell of EuC6, we
estimate this term to be at least an order of magnitude
smaller than the values of the exchanges. Since the dipolar
terms also break spin rotational symmetries, one can expect
effects similar to that of the XXZ anisotropy.
The spin and electronic degrees of freedom are not

purely 2D in EuC6, with the 3D interplane spin couplings
estimated to be of order 0.1J1 in Ref. [18]. While nominally
essential for the finite Néel temperature, the effect on the
spin excitations can be expected to be minimal. However,
even if they are small, both electron and spin 3D dis-
persions can be crucial for the softening of the 2kF
singularities discussed in Sec. V C.
Perhaps the most significant difference of the outcome of

our theory from the magnetoresistance data in EuC6 in
Figs. 1(b) and 1(c) are the larger values of ρ in the FM
phase and a strong increase toward it near the V-FM
transition. An obvious reason for the discrepancy is the
neglect of the temperature dependence of the phase
transition boundaries in our approach. While it can be
dismissed for the Y-UUD and UUD-V boundaries, for
which the results are in a close accord with the data, the
transition at the V-FM boundary has a substantial down-
ward suppression with T. One of the possible approaches,
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which we leave for future studies, is to include the
temperature dependence of Hs by accounting for the
interactions between magnetic excitations that are ignored
in our consideration.
A less-straightforward suggestion is related to the form

of the Kondo coupling (31). We have two Fermi surfaces,
originating from the downfolding of two Dirac graphene
bands onto the Brillouin zone of the Eu lattice. The
coupling to local spins is treated as fully diagonal in the
band index in Eq. (31). This may or may not be the full
story, with an intriguing prospect that the spin arrangement
can permit or forbid interband scattering. This is, again, an
interesting subject for a further investigation.
Another notable difference of our results in Fig. 1(c)

from the data in Fig. 1(b) is at the lowest temperatures that
are accessed experimentally. While scattering on magnetic
excitations dies out in our theory, magnetoresistivity data
retain sizable differences between magnetic phases. One of
the scenarios is due to the feedback of the spin orders on the
electronic density of states, producing a different imprint
onto the resistivity in different field-induced phases.
Further studies, with the help of electronic structure
calculations, can be envisioned here.
A different scenario for the same effect involves a

compelling picture associated with the impurity-induced
spin textures [64,65], which generally arise in frustrated
spin systems due to magnetic couplings that are modified in
the presence of impurities. While the impact of such
textures on the dynamical properties has been recently
investigated [66,67], their effect on the resistivity in the
field-induced phases is simply unknown. However, one can
expect the spin textures to exist readily in the noncollinear
phase and be suppressed in the collinear phase [64,66],
suggesting a profile that is similar to the one observed in
magnetoresistivity. Needless to say, this is yet another
direction for future investigations.
The hybridization between 4f electrons of Eu2þ ions

and conduction electrons also needs additional insights
from the first-principles perspective, as we comment on in
Sec. II A in explaining our choice of the “minimal” model
description of the Fermi surfaces in EuC6. This subject, as
well as the role of the valence fluctuations, requires
separate studies from both experiment and theory, which
are well outside the scope of the present work. The success
of the proposed effective spin model with the Kondo
coupling in explaining the “roller-coaster” resistivity sug-
gests that both of these open issues, while interesting on
their own, may only be relevant to the low-energy effective
model at the level of phenomenological parameters.
Our results can be of direct relevance to the graphite-

derived and related materials of significant current interest
that discuss realizations of the conducting electrons that are
Kondo coupled to localized spins S ¼ 1=2 in frustrated
lattices, such as transition metal dichalcogenides [34–36].
However, a different physical regime dominated by a large

Kondo temperature may intervene and prevent the ordering
in a frustrated magnetic system, placing the physics of the
S ¼ 1=2 case in a new regime. The details of how these
energy scales compete, whether the present discussion
holds, and what new insights are required in this case
need further investigation.
We conclude this section by suggesting several exten-

sions of experimental work in EuC6. As is discussed in
Sec. VA and above, precise low-temperature measurements
would provide a significant source of information on the
field-induced transitions to and from the UUD phase that
would allow us to study intriguing critical behaviors and
help determine the effective model more precisely. As we
have expounded on in Sec. V C, the tunable-kF experi-
ments can allow us to study a singular behavior in
resistivity that may have significant implications to other
systems, and as is briefly mentioned in Appendix C 4 b, a
significant violation of the Wiedemann-Franz law can be
expected at the field-induced transitions in EuC6.

VI. SUMMARY

The main goal of the present study has been to develop a
microscopic theoretical description of the highly dramatic
evolution of the resistivity in EuC6 with the magnetic field.
The results and discussions presented in the prior sections
provide strong affirmation that we have succeeded in that
goal, with our results capturing most of the qualitative and
quantitative features of the experimental data. This success
is based on a physical picture of the scattering of electrons
from the graphene-derived bands of the carbon layers by
spin excitations from the triangular-lattice Eu planes.
In the course of this work, we have provided a thorough

theoretical investigation of the ground states, field-induced
phase transitions, spin excitations, and their couplings
to the conduction electrons in the paradigmatic two-
dimensional triangular-lattice antiferromagnet with a
biquadratic exchange, throughout the phase diagram.
Our effort highlights the virtues of the full-scale micro-
scopic approach to the problem, not only to the spin model
but also to the transport formalism for the spin-flip and non-
spin-flip channels, allowing rigorously obtained numerical
results to receive comprehensive analytical and physical
insights and interpretations.

The research advanced in the present study yields
predictions of new field-induced and doping-induced
phenomena in magnetically intercalated graphite and
related systems, also offering an inspiration for bringing
together different approaches in the search of new effects in
the graphite-derived artificial magnetic materials. We
anticipate our effort to be relevant to broader research in
metallic magnets and to provide significant technical
guidance for similar theoretical studies. Presently, our
study invites more research into EuC6 electronic, thermo-
dynamic, transport, and magnetic properties.
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Lastly, our work has advocated for resistivity measure-
ments, combined with a detailed theoretical analysis, as a
very informative probe of not only field-induced phase
transitions but also of the unconventional spin excitations
in magnetic materials. We believe that synthetic 2D
materials may become a significant source of potentially
novel insights into the nature of exotic spin excitations such
as, for example, fractionalized spinons in a quantum spin
liquid.
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APPENDIX A: FIRST-ORDER TRANSITIONS

Here, we describe the analysis of the first-order Y-UUD
and V-FM transitions. We focus on the Heisenberg-
biquadratic model (1) and provide some technical details
on the classical ground states introduced in Sec. II B 1.

1. Y-UUD transition

Without the ring-exchange term k ¼ 0, the equation on
x ¼ cos α1 in the Y phase, Eq. (4), reduces to

x3 −
1þ b
4b

x ¼ −
1þ h
8b

: ðA1Þ

A substitution x ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bÞ=3b
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Comparison with the trigonometric identity

sin3 ϕ −
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4
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1

4
sin 3ϕ ðA3Þ

leads to the solution for x ¼ cos α1,
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It is now easy to check that the Y-UUD transition for
b ≤ bc ¼ 1=11 is continuous and takes place at hc1 ¼ 1–6b
[see Eq. (5)] at which cos α1 ¼ 1. For b > bc, the Y phase
remains locally stable up to a critical field h̃c1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þ bÞ3=27b

p
− 1 [see Eq. (6)], which is found from

the condition that the argument of arcsin in Eq. (A4)
reaches the maximal value of 1.
Given that the UUD phase remains locally stable for all

h ≥ hc1, we observe that the field interval hc1 ≤ h ≤ h̃c1
determines the overlap region of the Y and UUD phases.
Within our approach, however, the actual transition

between the two phases takes place when the classical
energies of the two phases become equal. This defines
another field, h&c1, which can be found as follows. First,
with the help of Eq. (A1), the per-site energy of the Y phase
ẼY ¼ EY=NS2J1 − 3j2 can be simplified to a quadratic
form of x ¼ cos α1,

ẼY ¼ ð1þ bÞx2 − 1.5ð1þ hÞxþ h − 1 − b; ðA5Þ

which, upon equating with the energy of the UUD phase
ẼUUD ¼ −1 − h − 3b, yields

x& ¼ 3ð1þ hÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð1þ hÞ2 − 32ð1þ bÞðhþ bÞ

p

4ð1þ bÞ
: ðA6Þ

For a given b > bc, the right-hand sides of Eqs. (A6) and
(A4) determine the transition field h&c1. The solution is
easily obtained numerically using MATHEMATICA.
For our choice of b ¼ 0.0922 (see Table I), which is

only slightly larger than bc ¼ 1=11, the resultant critical
fields are nearly indistinguishable from each other:
fhc1; h&c1; h̃c1g ¼ f0.4468; 0.446869; 0.446891g. For the
larger values of b, the three fields become sufficiently
different and allow one to study resistivity hysteresis.
For example, for b ¼ 0.13 considered in Sec. V B, we
have fhc1; h&c1; h̃c1g ¼ f0.22; 0.25556; 0.282313g.

2. V-FM transition

In the V phase, denoting y ¼ cos β, introducing t ¼
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ y2

p
, and rewriting Eq. (8) as a cubic equation for

the variable t defined in the interval 1 ≤ t ≤ 3 yields
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t3 −
2þ 5b

b
t ¼ −

2h
b
: ðA7Þ

This equation is solved by mapping to the same identity
(A3) as above, with the result given by

t ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 5b
3b

r
sin

 
1

3
arcsin

"
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27b

ð2þ 5bÞ3

s #!
; ðA8Þ

from which the angles are obtained as

cos β ¼ t2 − 3

2t
; cos α1 ¼

t2 þ 3

4t
: ðA9Þ

It is easy to check that the V-FM transition is continuous for
b ≤ bc, with the same bc ¼ 1=11 as above, and the critical
field of the transition is given by hs ¼ 3–6b [see Eq. (9)].
For b > bc, the V phase remains locally stable up to a larger
field h̃s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ 5bÞ3=27b

p
, which is found from the

argument of arcsin in Eq. (A8) being equal to 1.
Similarly to the case of the discontinuous Y-UUD

transition described above, the actual V-FM transition field
h&s is found by equating energies of the V and FM phases.
Some tedious algebra gives the energy of the V phase,

ẼV ¼ −
b
8
t4 þ 2þ 5b

4
t2 − ht −

33b
8

−
3

2
; ðA10Þ

while ẼFM ¼ 3ð1 − h − bÞ. Solving ẼV ¼ ẼFM numeri-
cally, with t given by Eq. (A8), we find that the actual
transition field h&s satisfies hs < h&s < h̃s.

For b ¼ 0.0922 used in our work, we find fhs; h&s ; h̃sg ¼
f2.4468; 2.44689; 2.44692g, which are, again, essentially
identical. For b ¼ 0.13 considered in Sec. V B, these fields
become fhs; h&s ; h̃sg ¼ f2.22; 2.28231; 2.30258g.
The evolution of the cosines and sines of spin angles α1

and β with h throughout the Y-UUD-V-FM sequence of the
phases in Fig. 4 is shown in Fig. 12 for two representative
values of b.

APPENDIX B: PARTICULAR CASES

With the general spin-wave approach for the coplanar
three-sublattice states outlined in Sec. III A, it is still
immensely useful to have a fully analytical approach
developed for some of the states. This is for the sake of
both explicit analytical results and for an independent
verification of the partially numerical approach of Sec. III.
For the fully polarized FMand 120° states, a single-sublattice
formulation of the LSWT is possible. For the UUD state, the
Hamiltonian matrix in Eq. (23) can be reduced to a 3 × 3
matrix and solved in a compact form.

1. Polarized state

In the fully polarized FM state [see Fig. 4(a)], all angles
are the same, α̃α ¼ 0. In the absence of the easy-plane
anisotropy, the off-diagonal aa (a†a†) terms cancel out and
the LSWTHamiltonians in Eqs. (13)–(20) reduce to a tight-
binding form similar to that of Eq. (20). Since there is no
distinction between the sublattices in this case, a Fourier
transform of the Holstein-Primakoff bosons,

ai ¼
1ffiffiffiffi
N

p
X

q

ãqe−iq·ri ; ðB1Þ

where N is the total number of sites and q belongs to the
full Brillouin zone of the triangular lattice, is sufficient to
diagonalize the LSWT model. The magnon energy is

ωq ¼ 3J1Sðh− 2ð1− 2bÞð1− γ̄qÞ− 2j2ð1− γð2Þq ÞÞ; ðB2Þ

where h ¼ gμBH=3J1S, j2 ¼ J2=J1, b ¼ BS2=J1 as
before, γð2Þq is given in Eq. (27), and

γ̄q ¼ 1

3

X

α

cosq · δα: ðB3Þ

Here, consideration of the Kondo coupling (31) simplifies
substantially as the single-magnon spin-conserving terms
in the electron-magnon interaction in Eq. (32) are not
present, laboratory and local spin axes are the same, and all
sublattices are equivalent. Using Fourier transform (B1) in
Eq. (32) with Eq. (33) and α̃α ¼ 0 yields

Hþ−
int ¼ 2J̃Kffiffiffiffi

N
p

X

k;q

½f†k−q↑fk↓ã
†
q þ H:c:(; ðB4Þ

(a)

(b)

FIG. 12. (a) Cosines and (b) sines of angles α1 and β vs h
throughout the Y-UUD-V-FM sequence of the phases in Fig. 4,
h ¼ gμBH=3J1S. Dashed lines are for the pure Heisenberg
model, b ¼ 0; solid lines are for b ¼ BS2=J1 ¼ 0.0922 from
Table I. Small discontinuities due to very weakly first-order
transitions can be seen at the Y-UUD and V-FM transitions,
as b ¼ 0.0922 > bc ¼ 1=11 ≈ 0.0909.
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where J̃K ¼ 1
2 JK

ffiffiffiffiffiffiffiffi
S=2

p
as before. The spin-flip scattering

term is simple, with a matrix element containing no
momentum dependence.
According to Appendix C 3, the spin-flip scattering

straightforwardly leads to the relaxation rate in the form
of Eq. (37) with the 1D integral in Eq. (38), taking the form

IkFðT;HÞ ¼ 4

Z
1

0

z2dzffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p n0qðn0q þ 1Þ
ωq

T
; ðB5Þ

with the same momentum parametrization along the 1D
contour q ¼ 2kFðz2; z

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Þ and Bose distribution func-

tion n0q with the magnon energy ωq from Eq. (B2).
Given the simplicity of the polarized FM state, it may be

instructive to demonstrate a relation of the single-sublattice
formalism to the general three-sublattice one described in
Secs. III C and III D, as the latter is supposed to give an
identical description.
For all spins polarized, α̃α ¼ 0, the off-diagonal term in

the Hamiltonian matrix (23), B̂q ≡ 0, and

Âq ¼ CqÎþ ð1 − 2bÞΛ̂q;

Cq ¼ h − 2ð1 − 2bÞ − 2j2ð1 − γð2Þq Þ; ðB6Þ

where Î is a 3 × 3 identity matrix and

Λ̂q ¼

0

B@
0 γq γ&q
γ&q 0 γq
γq γ&q 0

1

CA; ðB7Þ

with γq from Eq. (27). Since ½Λ̂q; Î( ¼ 0, the three magnon
branches have the energies

ωγq ¼ 3J1SðCq þ ð1 − 2bÞλγqÞ; ðB8Þ

where λγq are the eigenvalues of Λ̂q. A straightforward
algebra with Eq. (B7) gives λ1q ¼ 2γ̄q and λ2ð3Þq ¼ 2γ̄q%Q,
with γ̄q ¼ ðγq þ γ&qÞ=2 from Eq. (B3) and Q ¼ ð4π=3; 0Þ.
Thus, the three magnon branches are the “original” single-
sublattice result in Eq. (B2), ω1q ¼ ωq, and the other two
are “shifted” by the ordering vectors, ω2ð3Þq ¼ ωq%Q.
In the single-sublattice treatment shown above, the one-

magnon coupling involves ãq (ã
†
q) operators from Eq. (B1)

with a constant matrix element [see Eq. (B4)]. In the three-
sublattice approach, matrix elements (36) of the general
form of the electron-magnon coupling in Eq. (35) require
knowledge of the Hamiltonian eigenfunctions. In the
polarized FM case, anomalous terms in the transformation
to quasiparticles (30) are absent, V̂q ¼ 0, and all angles are
α̃α ¼ 0, immediately simplifying Eq. (36) to just

Hþ−
int ¼ J̃Kffiffiffiffiffiffiffi

3N
p

X

k;q;γ

½Mþ−
γ;qf

†
k−q↑fk↓a

†
γ;q þ H:c:(; ðB9Þ

with the matrix elements Mþ−
γ;q ¼ 2

P
α U

ðγÞ
α;−q, where the

matrix of vectors Ûq should diagonalize Λ̂q in Eq. (B7).
A simple algebra yields

Uð1Þ ¼ 1ffiffiffi
3

p ð1; 1; 1ÞT; Uð2;3Þ ¼ 1ffiffiffi
3

p ð1; e%iθ; e∓iθÞT;

ðB10Þ

for the “original” ω1q and “shifted” ω2ð3Þq, respectively;
here, θ ¼ 4π=3.
Because of the local nature of the Kondo interaction,

the matrix element of the coupling to an eigenmode γ in
Eq. (B9) is simply proportional to the sum of the compo-
nents of a corresponding vector,

P
α U

ðγÞ
α . Thus, as it

trivially follows from Eq. (B10), the resultant matrix
elements of the coupling to the shifted q%Q modes are
identically zero, and only the original ω1q mode contributes
to Eq. (B9) with Mþ−

γ;q ¼ 2
ffiffiffi
3

p
.

Needless to say, this renders the coupling Hamiltonians
in the single-sublattice and three-sublattice treatment,
Eqs. (B4) and (B9), equivalent. Their resultant scattering
rate is given in Eqs. (37) and (B5).
A closely associated problem is the relation between

the single-sublattice operators ãq (ã†q) to the three-flavor
operators aαq (a†αq). A simple algebra gives

aq ¼ 1ffiffiffi
3

p ðãq þ ãqþQ þ ãq−QÞ;

bq ¼ 1ffiffiffi
3

p ðãq þ eiθãqþQ þ e−iθãq−QÞ;

cq ¼ 1ffiffiffi
3

p ðãq þ e−iθãqþQ þ eiθãq−QÞ; ðB11Þ

with the same θ ¼ 4π=3. These expressions are general and
apply to the other cases where both single- and three-
sublattice approaches are possible, such as the 120° case
discussed next.

2. 120° state
For the 120° state [see Fig. 4(a)] for a sketch, the angles α̃

that define the spin configuration and transformation to the
local reference frame in Eq. (12) can be written as

α̃ ¼ α̃A −Q ·Ri; ðB12Þ

where, according to the choice in Fig. 4, α̃A ¼ β ¼ π,Ri ¼
Rl þ ρα with ρA ¼ 0, ρB ¼ −δ2, and ρC ¼ δ3 (see Fig. 3),
and Q ¼ ð4π=3; 0Þ as before. As a result, all mutual angles
are the same up to a sign, α̃ij ¼ %2π=3, making the LSWT
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Hamiltonian terms in Eq. (18) the same on each bond and
rendering the division of the lattice in three sublattices
unnecessary. The Fourier transform (B1) leads to a standard
LSWT Hamiltonian [68–72]

Ĥð2Þ ¼
X

q

$
Aqã

†
qãq −

Bq

2
ðã†qã†−q þ H:c:Þ

%
; ðB13Þ

where

Aq ¼ 3J1Sð1þ γ̄q=2 − bð1 − 4γ̄qÞ=2 − 2j2ð1 − γð2Þq ÞÞ;
Bq ¼ 3J1Sð3ðγ̄q þ bÞ=2Þ; ðB14Þ

with γ̄q from Eq. (B3) and the magnon energy with the
parameters of the Bogolyubov transformation given by

ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
q − B2

q

q
;

U2
q þ V2

q ¼
Aq

ωq
; 2UqVq ¼

Bq

ωq
: ðB15Þ

Similarly to the FM phase considered above, the relation
of the single-sublattice branch ωq to the three-sublattice
energies is straightforward, with the three branches
given by the original ω1q ¼ ωq and the two shifted ones,
ω2ð3Þq ¼ ωq%Q [see Fig. 6(a)].
The relationship of the three-flavor operators aαq (a

†
αq) to

the single-sublattice operators ãq (ã†q) is the same as in
Eq. (B11) as it is simply a relation between one- and three-
sublattice Fourier transforms in Eqs. (21) and (B1). The
eigenvectors of the generalized Bogolyubov transformation
in the three-sublattice case (28) are related to the single-
sublattice ones in Eq. (B15) via a combination of shifts by
%Q and the phase factors as in Eq. (B11) in the latter.
The electron-magnon Hamiltonian is obtained from the

Kondo coupling (32) using spin-rotation transformation
(12) with the angles (B12), subsequent spin-operator
bosonization, and Fourier (B1) and Bogolyubov (B15)
transforms. Because of the noncollinear structure, it con-
tains both spin-flip and non-spin-flip terms that have the
same structure as the general form of electron-magnon
coupling in Eq. (35), which we will not rewrite here.
Following the steps outlined in Appendixes C 2 and C 3,

we obtain the relaxation rate in the form of Eq. (37) with the
1D integral in Eq. (38) given by

IkFðT;HÞ ¼
Z

1

0

z2dzffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ×
X

γ

Φ̃γ;qn0γ;qðn0γ;q þ 1Þ
ωγ;q

T
;

ðB16Þ

with q ¼ 2kFðz2; z
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Þ and Bose function n0γ;q as

before, and with γ now numerating q and q%Q branches.

The advantage of the form (B16) over the general
expression (38) is in an explicit analytical form of the
matrix element contributions Φ̃γ;q, given by

Φ̃1;q ¼ 2ðUq − VqÞ2; Φ̃2ð3Þ;q ¼ ðUq%Q þ Vq%QÞ2:

ðB17Þ

Using this result, an analytic insight into the contributions
of q → 0 or q → Q regions of integration into the relax-
ation rate becomes possible.

3. Plateau state

The UUD, or magnetization plateau, state is special as it
does not break rotational Uð1Þ symmetry about the field
direction, with the spins parallel (up) or antiparallel (down)
to the field. For our choice in Fig. 4, sublattice A spins are
down, α̃A ¼ β ¼ π, while B and C spins are up, α̃BðCÞ ¼ 0.
With these angles, six out of twelve independent matrix
elements in the matrices Âq and B̂q in Eq. (24) of the
Hamiltonian matrix (23) vanish, and the remaining six are
complementary, suggesting a rearrangement in the vector
operator of the Holstein-Primakoff bosons that allows us to
reduce the rank of the Hamiltonian matrix to 3 × 3,

Ĥð2Þ ¼ 3J1S
2

X

q

ŷ†qĤqŷq; ðB18Þ

where ŷ†q ¼ ða−q; b†q; c†qÞ is the rearranged vector operator
with the Hamiltonian matrix

Ĥq ¼

0

B@

Āq P̄q P̄&
q

P̄&
q C̄q H̄q

P̄q H̄&
q C̄q

1

CA ðB19Þ

and matrix elements given by

Āq ¼ 2 − hþ 4b − 2j2ð1 − γð2Þq Þ;

C̄q ¼ hþ 4b − 2j2ð1 − γð2Þq Þ;
P̄q ¼ −ð1þ 2bÞγq;
H̄q ¼ ð1 − 2bÞγq; ðB20Þ

with all constants as before and γq and γð2Þq from Eq. (27).
This approach, first employed in Ref. [20], has been

used in a number of more recent works [40,41]. Physically,
such a rearrangement takes advantage of the conservation
of magnetization in the UUD state due to the remaining
Uð1Þ symmetry for the Heisenberg spins, which makes
creation (annihilation) of spin flips in the down-sublattice
equivalent to the annihilation (creation) of spin flips in the
up-sublattices.
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The standard diagonalization procedure of Eq. (B19)
now concerns ˆ̄gĤq, where ˆ̄g is a diagonal matrix ½−1; 1; 1(.
The characteristic equation jj ˆ̄gĤq − λÎjj ¼ 0 yields

λ3 þ bλ2 þ cλþ d ¼ 0; ðB21Þ

which is a cubic equation on λ with real coefficients,

b ¼ Āq − 2C̄q;

c ¼ C̄2
q − jH̄qj2 þ 2jP̄qj2 − 2ĀqC̄q;

d ¼ ĀqðC̄2
q − jH̄qj2Þ − 2C̄qjP̄qj2 þ 2ℜðP̄2

qH̄qÞ; ðB22Þ

that can be solved in a number of standard ways [43], with
the three roots fλ1; λ2; λ3g giving magnon eigenenergies
f−ω1−q;ω2q;ω3qg in units of 3J1S. At the Γ point, the
analytic solution of Eq. (B21) simplifies considerably,
making explicit the linear field dependence of the magnon
energies throughout the UUD phase. Note that the numer-
ation of the magnon branches in Fig. 6(c) is from the lowest
to highest in energy, not necessarily according to the
numbering of the solutions above.
The transformation from Holstein-Primakoff bosons in

Eq. (B18) to the quasiparticles is similar to the generalized
Bogolyubov transformation in Eq. (28),

āα;q ¼
X

γ

UðγÞ
α;qĀγ;q; ðB23Þ

but without the “anomalous” VðγÞ
α terms and with the

“mixed” original āα;q ¼ fa†−q; bq; cqg and quasiparticle
operators Āγ;q ¼ fA†

−q; Bq; Cqg and normalization that
respects the metric ˆ̄g,

X

γ

σγjU
ðγÞ
α;qj2 ¼ σα; ðB24Þ

where σγ ≡ ˆ̄gγγ ¼ f−1; 1; 1g.
The transformation (B23) from ŷq ¼ ½a†−q; bq; cq(T to

ẑq ¼ ½A†
−q; Bq; Cq(T vectors, written in a matrix form, is

ŷq ¼ Ûq · ẑq; ðB25Þ

where the transformation matrix Ûq is given by the
normalized eigenvectors of ˆ̄gĤq, which can be obtained
via a somewhat tedious, but straightforward diagonaliza-
tion procedure using the explicit form of Ĥq in Eq. (B19),
yielding

UðγÞ
q ¼ 1

rγ;q

0

B@
R̃γ;q

Rγ;q

R&
γ;q

1

CA; ðB26Þ

with

R̃γ;q ¼ ðλγ;q − C̄qÞ2 − jH̄qj2;
Rγ;q ¼ P̄qH̄q þ P̄&

qðλγ;q − C̄qÞ;
r2γ;q ¼ σγð2jRγ;qj2 − R̃2

γ;qÞ; ðB27Þ

where λγ;q are the eigenvalues obtained from Eqs. (B21)
and (B22). While somewhat cumbersome, the outlined
formalism allows us to perform calculations without rely-
ing on numerical matrix diagonalization procedures.
The derivation of electron-magnon coupling and the

relaxation rate in the UUD phase bears a lot of similarity to
the polarized FM case in its three-sublattice formulation
(see Sec. B 1). Because of spin collinearity, only spin-flip
scattering is present, with either emission or absorption,

Hþ−
int ¼ 2J̃Kffiffiffiffiffiffiffi

3N
p

X

k;q;γ

½M̃γ;qf
†
k−q↑fk↓Ā

†
γ;q þ H:c:(; ðB28Þ

where Ā†
γ;q ¼ fA−q; B

†
q; C†

qg as in Eq. (B23) and matrix

elements M̃γ;q ¼
P

α U
ðγÞ
α;−q, with vectors UðγÞ

q from
Eq. (B26).
As in the polarized FM case, the coupling to a mode γ in

Eq. (B28) is given by the sum of the components of a
corresponding vector UðγÞ

q but without further simplifica-
tions that follow in the FM case.
Lastly, the 1D integral in the relaxation rate (37) is

identical to Eq. (38),

IkFðT;HÞ ¼
Z

1

0

z2dzffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ×
1

3

X

γ

Φ̃γ;qn0γ;qðn0γ;q þ 1Þ
ωγ;q

T
;

ðB29Þ

but with a simplified Φ̃γ;q ¼ jM̃γ;qj2.

APPENDIX C: TRANSPORT FORMALISM,
1=τ APPROXIMATION

Transport theory, including its Boltzmann version, is
an essential chapter in most of the advanced condensed
matter textbooks [55,58]. Discussion of the electron-
phonon scattering, which controls the resistivity of metals
in a wide range of temperatures, is also a necessary part of
the story. Still, the technical aspects of its theory are usually
avoided in this context, opting for some physically moti-
vated but not rigorous considerations. While some of the
required steps may indeed seem sufficiently cumbersome to
justify such an approach, in the following narrative, we
would like to dispel this accepted aura from the subject and
outline a step-by-step derivation of the transport scattering
rate under the assumption of the quasielastic scattering.
In the process of doing so, we also provide a solution of
the problem at hand, that is, make available a compact
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expression for the electron-magnon scattering rate in a 2D
setting relevant to EuC6.

1. Basics and conventions

For an electric current, the key quantity to find from the
Boltzmann formalism is δfk;σ ¼ fk;σ − f0k;σ, a deviation of
the nonequilibrium distribution function from the equilib-
rium one, where f0k;σ is a Fermi-distribution function. Then,
the current density is

j ¼
X

σ

X

k

evkδfk;σ; ðC1Þ

where vk ¼ ∂εk=∂k is the electron velocity.
The linearized Boltzmann equation (LBE)

eðE · vkÞ
∂f0k
∂εk ¼ Stk½fk( ðC2Þ

allows us to determine δfk in the linear-response approxi-
mation; here, E is an electric field, Stk½fk( is a collision
integral, and we ignore the electron spin for a moment.
The crucial step is the relaxation-time approximation,

Stk½fk( ≈ −
δfk
τk

; ðC3Þ

which yields the expected linear relation jα ¼ σαβEβ,
with σαβ being the conductivity tensor. Making a further
approximation of a continuum renders the conductivity
tensor diagonal and the Fermi surface spherical (circular in
2D), and naturally suggests the same scattering rate for all
jkj ¼ kF. Together with a realization that the left-hand side
of Eq. (C2) is singular at T≪EF as −∂f0k=∂εk≈δðεk−EFÞ
and using the relation of the density of states at EF to the
electronic density n, one obtains the standard

ρ ¼ σ−1 ¼ m
e2n

·
1

τF
; ðC4Þ

where 1=τF ¼ 1=τkF is responsible for all temperature and
field dependence of the resistivity in a metal.
While the achieved progress is not entirely hollow, it is

clear that the problem of finding resistivity is now con-
verted to the problem of finding the electron transport
relaxation rate. The latter depends on the type of scattering
and on the details of the microscopic interaction that
determine the functional form of the collision integral in
Eq. (C2). However, the technical problem at hand is
more involved, as one needs to rigorously prove that
the collision integral for a given type of scattering indeed
yields the relaxation-rate approximation (C3) and to
derive a microscopic expression for 1=τF from it at the
same time.

2. Phononlike spin-conserving scattering

Let us first consider the problem of the non-spin-flip
part of electron-magnon scattering in Eq. (35). Since
scattering channels for different magnon branches are
additive and electrons of opposite spin do not mix,
the interaction Hamiltonian can be written in a more
general form that is identical to that of electron-phonon
coupling,

Hint ¼
1ffiffiffiffi
N

p
X

k;q

ðVqf
†
k−qfka

†
q þ H:c:Þ; ðC5Þ

in which the coupling Vq depends only on the bosonic
momentum because of the adiabatic principle, EF ≫ ΘD,
where ΘD is a phonon (magnon) Debye energy.
The collision integral for the scattering (C5), schemati-

cally represented in Fig. 13(a), has a general form

Stk½fk(¼
2π
ℏN

X

q

jVqj2

×f½fk0ð1− fkÞnq− fkð1− fk0Þðnqþ1Þ(δεk0 ;εk−ωq

þðfk0ð1− fkÞðnqþ1Þ− fkð1− fk0ÞnqÞδεk0 ;εkþωq
g;

ðC6Þ

where k0 ¼ k − q and δε0;ε%ω ¼ δðε0 − ε ∓ ωÞ. Since
bosons are in equilibrium, nq ¼ n0q, linearization of
Eq. (C6) gives

Stk½fk( ¼
2π
ℏN

X

q

jVqj2

× f½δfk0ðn0q þ f0kÞ − δfkðn0q − f0k0 þ 1Þ(δεk0 ;εk−ωq

þ ½δfk0ðn0q − f0k þ 1Þ − δfkðn0q þ f0k0Þ(δεk0 ;εkþωq
g:

ðC7Þ

The physically justified shortcut from Eq. (C7) to the
relaxation-time form (C3) capitalizes on the adiabatic
approximation. It advocates an impuritylike, quasie-
lastic picture of the scattering of the “fast” electrons
on the “slow” bosons [55], which should adhere to the

(a) (b)

FIG. 13. (a) Schematics of different terms in the collision
integral. (b) Momenta of electrons and a magnon and their mutual
angles.
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relaxation-time form by construction. In this case,
bosonic thermal population plays the role of the ther-
mally excited “impurity” concentration. The resultant
transport relaxation rate yields qualitatively correct
answers for the resistivity of a metal due to phonon
scattering in both low- and high-temperature limits, the
Bloch-Grüneisen and Ohm’s laws, respectively.
Technically, this approach amounts to neglecting ωq in

the energy conservation in Eq. (C7), which is indeed
well justified, and neglecting everything but n0q in the
innermost brackets of the collision integral in Eq. (C7). The
last step is substantially harder to defend. While advanced
monographs such as Ref. [59] offer a significantly more
refined path that we partially follow, there are still addi-
tional constructs that seem unnecessary.

a. Ansatz and solution

A more intelligent way of dealing with the collision
integral in Eq. (C7) is to reflect on the ultimate form of δfk
that follows from the LBE (C2) and from the definition of
the current in Eq. (C1). This suggests an ansatz

δfk ¼ e
m
ðE · kÞ

&
−
∂f0k
∂εk

'
χ̃k; ðC8Þ

which adheres to the linear-response level under consid-
eration, δfk ∼ E, and respects the reflection antisymmetry
of δf−k ¼ −δfk that follows from Eq. (C1). It also
explicitly separates the part of the LBE solution (C2) that
is strongly peaked near the Fermi energy, ∂f0k=∂εk, from
the slowly varying χ̃k. By construction, the last quantity,
χ̃k, has the meaning of the relaxation time τk and is an even
function of k. Last but not least, in Eq. (C8), we also use
continuumlike approximations for electrons, which implies
a spherical (circular) Fermi surface and allows us to replace
vk with k=m, a move that makes the subsequent steps more
straightforward.
We also note that since the dependence of the

equilibrium distribution functions on the momentum is
only via the energy, f0k ≡ f0ðεkÞ and f0k0 ≡ f0ðεk % ωqÞ,
there is an effective separation of variables in the ansatz
(C8). This is because the singular component of the
ansatz, ∂f0k=∂εk, depends sensitively on the differences
%ωq due to scattering near the Fermi energy but not on
the direction of the momentum k. At the same time,
the ðE · kÞ factor in Eq. (C8) is solely responsible for the
directional dependence of k but is largely insensitive
to the variations in energy due to scattering, as is
argued next.
A significant simplification follows from the hierarchy

of energy scales, εk ≫ ωk. Since conducting electrons are
confined to the proximity of the Fermi energy, the energy
conservation with the emission or absorption of a boson
implies a quasielastic nature of the scattering process,

εk0 ≈ εk, in a full accord with the qualitative logic outlined
above. The implication of this result is jk0j ≈ jkj, which is
valid with accuracy OðΘD=EFÞ ≪ 1. Thus, while one
should keep small differences %ωq in the singular compo-
nent of δfkðk0Þ, it is only the direction of the momentum that
can change significantly. This makes the geometry of the
scattering in Fig. 13(b) particularly simple and allows us to
rewrite δ functions in Eq. (C7) as

δðεk0 − εk ∓ ωqÞ ≈
&

m
ℏ2kq

'
δ

&
cosφ −

q
2k

'
; ðC9Þ

where φ is the angle of k with q [see Fig. 13(b)].
The second important implication of this consideration

is for the relation of δfk0 to δfk. Using Eq. (C8),
we write

δfk0 ¼ e
m
ðE · k0Þ

&
−
∂f0k0

∂εk0

'
χ̃k0 : ðC10Þ

As discussed already, f0k0 ≡ f0ðεk % ωqÞ, and χ̃k0 is a slowly
varying even function of k0. Since jk0j ≈ jkj, it is natural to
assume χ̃k0 ≈ χ̃k. Consider Fig. 13(b). One can break k0

into components along and perpendicular to k,

k0 ¼ cos θkþ sin θk⊥; ðC11Þ

with the latter component being odd with respect to the
mirror reflection, θ → −θ. Making a reasonable assump-
tion that jVqj2 and magnon energies ωq are only weakly
dependent on the direction of q, it is easy to see that the rest
of the integrand in Eq. (C7) is even under the mirror
reflection. Physically, the k⊥ component of the contribu-
tion of a scattered k0 state to the collision integral is
identically canceled by its mirror pair.
Thus, up to a factor cos θ and a shift of energy in f0 from

εk to εk0 , the nonvanishing contribution of δfk0 to Eq. (C7)
can be written as

δfk0 ⇒
&
1 −

q2

2k2

'
δfkðεk % ωqÞ; ðC12Þ

where we have converted cos θ to ð1 − q2=2k2Þ using
the trigonometry of Fig. 13(b). Combining Eqs. (C8),
(C9), and (C12), we transform the collision integral in
Eq. (C7) to

Stk½fk( ¼
e
m
ðE · kÞχ̃k

2π
ℏ3N

X

q

jVqj2
&
m
kq

'

× δ

&
cosφ −

q
2k

'
f&g; ðC13Þ

with
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f&g ¼ 1

T

(&
1 −

q2

2k2

'
f0ε−ωð1 − f0ε−ωÞðn0ω þ f0εÞ

− f0εð1 − f0εÞðn0ω þ 1 − f0ε−ωÞ

þ
&
1 −

q2

2k2

'
f0εþωð1 − f0εþωÞðn0ω þ 1 − f0εÞ

− f0εð1 − f0εÞðn0ω þ f0εþωÞ
)
; ðC14Þ

where we use the shorthand notations f0k ¼ f0ε and
f0k0 ¼ f0ε%ω, with εk ¼ ε and ωq ¼ ω, and an identity

−
∂f0ε
∂ε ¼ 1

T
f0εð1 − f0εÞ: ðC15Þ

For the sake of the subsequent discussion of the spin-flip
scattering, which involves fewer terms in the collision
integral, we note that the first (last) two lines in Eq. (C14)
correspond to the first (second) line in the brackets in
Eq. (C7) and Fig. 13(a).
While Eq. (C14) seems cumbersome and not intuitive,

we demonstrate that it is, in fact, equivalent to a compact
and substantially more physical expression, Eq. (C20),
which, upon an appropriate linearization, will yield both
the proof of the 1=τ approximation for the collision integral
and the sought-after transport relaxation rate (C23).
We note that the advocated approach of using the ansatz

of Eq. (C8), and further manipulations with it, is not
unfamiliar (see Refs. [59,73,74]). However, this approach
typically resorts to an additional integration of both sides of
the LBE (C2) over electronic energy in order to eliminate
the singular component that is strongly peaked near the
Fermi energy. Below, we demonstrate that such an ad hoc
step is unnecessary.
The first reorganization in Eq. (C14) is an “extraction” of

the bosonic distribution function that makes explicit the
dependence of the scattering on the boson population,

f0ε−ωðn0ω þ f0εÞ ¼ eω=Tf0εn0ω;

f0εþωðn0ω þ 1 − f0εÞ ¼ f0εn0ω; ðC16Þ

which, together with a trade-off of ω,

eω=Tf0εð1 − f0ε−ωÞ ¼ f0ε−ωð1 − f0εÞ; ðC17Þ

reduces Eq. (C14) to

f&g ¼ −
&
q2

2k2

'
n0ω
T
ff0ε−ωð1 − f0εÞ þ f0εð1 − f0εþωÞg: ðC18Þ

The last part is a “bosonization” of the double-fermionic
terms

f0ε−ωð1 − f0εÞ ¼ ðn0ω þ 1Þðf0ε−ω − f0εÞ; ðC19Þ

which leads to the final form

f&g≡ 1

T

&
q2

2k2

'
n0ωðn0ω þ 1Þff0εþω − f0ε−ωg; ðC20Þ

where the naturally occurring factor q2=2k2 ¼ ð1 − cos θÞ
differentiates the transport scattering rate from the con-
ventional one. The brackets in Eq. (C20) can now be
expanded as

ff0εþω − f0ε−ωg ≈ 2ω
&∂f0ε
∂ε

'
ðC21Þ

to yield the singular part of δfk. Combining Eqs. (C20)
and (C21), we rewrite the collision integral (C13) as

Stk½fk( ¼ −
$
e
m
ðE · kÞ

&
−
∂f0k
∂εk

'
χ̃k

%

×
2π
ℏ3N

X

q

jVqj2
&
mq
k3

'
δ

&
cosφ −

q
2k

'

×
ωq

T
n0qðn0q þ 1Þ; ðC22Þ

in the long-pursued relaxation-time form (C3), which
naturally replicates the δfk ansatz (C8) highlighted with
the square brackets, also yielding the transport relaxation
rate

ℏ
τk

¼ π
εkN

X

q

jVqj2
&
q
k

'
δ

&
cosφ −

q
2k

'

×
&
ωq

T

'
n0qðn0q þ 1Þ; ðC23Þ

where we have used εk ¼ ℏ2k2=2m. We also point out that
a comparison of the LBE (C2) with the collision integral in
Eq. (C22) makes explicit the equivalence of the auxiliary
function χ̃k from the ansatz (C8) with the transport
relaxation time τk in Eq. (C23).
One can easily check by power counting that for the

scattering on acoustic phonons (Vq ∝ ffiffiffi
q

p
, ωq ∝ q), the

relaxation rate (C23) yields Ohm’s law, ρ ∼ T, for T ≫ ΘD
and Bloch-Grüneisen’s law, ρ ∼ T5 in 3D, for T ≪ ΘD.
We also note that while the provided consideration is for

a spherical (circular) Fermi surface, there is no question in
our mind that the results concerning the validity of the 1=τ
approximation remain correct, in general. The main modi-
fication in the relaxation rate (C23) should be expected in
the constraint on the surface of integration (contour in 2D),
dictated by the actual shape of the Fermi surface. Thus, one
can expect the results obtained using this approximation to
be quantitatively correct.
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b. 2D case

In the present study, magnons are 2D, and the relaxation
rate (C23) is given by an integral along a circular 1D
contour in Fig. 13(b) of the radius kF with the magnon
momentum varying from 0 to 2kF. Assuming that 2kF is
less than the size of the full BZ, one can make further
progress and simplify Eq. (C23) by an appropriate para-
metrization. Let us first rewrite the summation over the BZ
in Eq. (C23) as an integral in polar coordinates,

1

VBZ

Z
qdq

Z
2π

0
dφ

&
q
kF

'
δ

&
cosφ −

q
2kF

'
F̃q; ðC24Þ

where we have abbreviated part of the integrand as

F̃q ¼ jVqj2
&
ωq

T

'
n0qðn0q þ 1Þ; ðC25Þ

and VBZ ¼ 8π2=a2
ffiffiffi
3

p
is the 2D volume of the triangular-

lattice BZ in Fig. 5.
Introducing new variables z ¼ cosφ and y ¼ q=2kF and

using the mirror symmetry of F̃q with respect to φ → −φ
simplifies Eq. (C24) to

ffiffiffi
3

p
ðkFaÞ2

π2

Z
y2dy

Z
1

0

dzffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p δðz − yÞ2F̃q; ðC26Þ

with the momentum q belonging to the 1D contour given
by the parametrization q ¼ 2kFðz2; z

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Þ. Finally,

Eq. (C23) transforms to

ℏ
τF

¼
ffiffiffi
3

p
ðkFaÞ2

πEF

Z
1

0

z2dzffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p 2F̃q; ðC27Þ

with F̃q from Eq. (C25) and EF ¼ ℏ2k2F=2m, and we have
explicitly separated a factor of 2 for the sake of combining
this relaxation rate result with the one due to the spin-flip
scattering processes, discussed next.

3. Spin-flip scattering

The spin-flip component of electron-magnon scattering
in Eq. (35) generally contains two parts, one with emission
by spin-down and one by spin-up electrons, yielding
scattering rates that have the same structure and are
additive. Therefore, we consider only one of them and
write the interaction Hamiltonian in a general form that
is identical to that of electron-magnon coupling in a
ferromagnet,

Hint ¼
1ffiffiffiffi
N

p
X

k;q

ðV%
q f

†
k−q↑fk↓a

†
q þ H:c:Þ: ðC28Þ

Here, similarly to Eq. (C5), the coupling V%
q depends only

on q because of its local (Kondo) nature.
Owing to its relevance to the electron-magnon scattering

mechanism of the resistivity in ferromagnets, the kinetic
theory for the model (C28) has been the subject of a number
of works [73–76], which, while yielding correct results,
have also used unnecessary ad hoc integrations.
The principal difference of the problem from the spin-

conserving scattering is in having two Boltzmann equa-
tions, one per spin projection, with their collision integrals
each containing only half of the terms of Eq. (C6),

Stk½fk↓( ¼
2π
ℏN

X

q

jV%
q j2δðεk0↑ − εk↓ þ ωqÞ

× f½fk0↑ð1 − fk↓Þnq − fk↓ð1 − fk0↑Þðnq þ 1Þ(g;

Stk½fk↑( ¼
2π
ℏN

X

q

jV%
q j2δðεk0↓ − εk↑ − ωqÞ

× f½fk0↓ð1 − fk↑Þðnq þ 1Þ − fk↑ð1 − fk0↓Þ(nqg;
ðC29Þ

with the energy δ functions as in the first and second rows
of Eq. (C6), respectively (see also Fig. 14), and k0 ¼ k − q
as before. Linearization in Eq. (C29) gives

Stk½fk↓( ¼
2π
ℏN

X

q

jV%
q j2δðεk0↑ − εk↓ þ ωqÞ

× fðδfk0↑ðn0q þ f0k↓Þ − δfk↓ðn0q − f0k0↑ þ 1Þg;

Stk½fk↑( ¼
2π
ℏN

X

q

jV%
q j2δðεk0↓ − εk↑ − ωqÞ

× f½δfk0↓ðn0q − f0k↑ þ 1Þ − δfk↑ðn0q þ f0k0↓Þ(g:

ðC30Þ

We follow the narrative of the non-spin-flip consideration,
with the ansatzes for δfkσ as in Eq. (C8),

δfkσ ¼
e
m
ðE · kÞ

&
−
∂f0kσ
∂εkσ

'
χ̃kσ; ðC31Þ

and with the same continuumlike approximation for
electrons. In the present case, it is also important to recall
that the equilibrium distribution functions depend on the
momentum and spin only via energy, f0kσ ≡ f0ðεkσÞ, so that
f0ðεk0↑Þ≡ f0ðεk↓ − ωqÞ and f0ðεk0↓Þ≡ f0ðεk↑ þ ωqÞ.
In the considered case of the field-induced effects in an

otherwise spin-compensated system, the only source of
the difference in the Fermi momenta for the electrons of
different spin is Zeeman energy. Because gμBH ≪ EF,
using the same consideration of the quasielastic nature of
electron-magnon scattering that is given before Eq. (C9),
we get εk0 ≈ εk and jk0j ≈ jkj in all scattering processes
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regardless of the spin, keeping the geometry of the
scattering the same as in Fig. 13(b) and allowing us to
rewrite δ functions in Eq. (C30) in the form of Eq. (C9).
In principle, the same consideration implies kF↑ ≈ kF↓

with the same accuracy of OðgμBH=EFÞ ≪ 1 and suggests
that χ̃k↑ ≈ χ̃k↓, but we will arrive at the same conclusion via
a different path.
Using the logic leading to Eq. (C12), we can rewrite the

nonvanishing contributions of δfk0σ to Eq. (C30) as

δfk0↑ ⇒
&
1 −

q2

2k2

'
δfk↑ðεk↓ − ωqÞ;

δfk0↓ ⇒
&
1 −

q2

2k2

'
δfk↓ðεk↑ þ ωqÞ: ðC32Þ

Combining Eqs. (C9), (C31), and (C32) transforms the
collision integrals in Eq. (C30) to

Stk½fkσ( ¼
e
m
ðE · kÞ 2π

ℏ3N

X

q

jV%
q j2

&
m
kq

'

× δ

&
cosφ −

q
2k

'
fσg; ðC33Þ

with

f↓g ¼ 1

T
fχ̃k↑

&
1 −

q2

2k2

'
f0ε−ωð1 − f0ε−ωÞðn0ω þ f0εÞ

− χ̃k↓f0εð1 − f0εÞðn0ω þ 1 − f0ε−ωÞg;

f↑g ¼ 1

T
fχ̃k↓

&
1 −

q2

2k2

'
f0εþωð1 − f0εþωÞðn0ω þ 1 − f0εÞ

− χ̃k↑f0εð1 − f0εÞðn0ω þ f0εþωÞg; ðC34Þ

where ε ¼ εkσ and ω ¼ ωq.
The same sequence of manipulations as in Eqs. (C16),

(C17), and (C19) reduces Eq. (C34) identically to

f↓g≡ 1

T
n0ωðn0ω þ 1Þ

$
χ̃k↓ − χ̃k↑

&
1 −

q2

2k2

'%
ff0ε − f0ε−ωg;

f↑g≡ 1

T
n0ωðn0ω þ 1Þ

$
χ̃k↑ − χ̃k↓

&
1 −

q2

2k2

'%
ff0εþω − f0εg;

ðC35Þ

which, in retrospect, shows that the two groups of terms in
the non-spin-flip consideration (C14) and Fig. 13, asso-
ciated with two different energy δ functions, can be reduced
to a compact form (C20) individually.
Linearization in the last brackets in Eq. (C35) yields

f…g ≈ ω

&∂f0ε
∂ε

'
; ðC36Þ

where we note the factor of 2 difference with the result of an
equivalent step in Eq. (C21). Bringing together Eqs. (C35)
and (C36) transforms the collision integrals in Eq. (C33) to

Stk½fkσ( ¼
$
e
m
ðE · kÞ

&∂f0kσ
∂εkσ

'%
ðAkχ̃kσ − Bkχ̃kσ̄Þ; ðC37Þ

where σ̄ ¼ −σ and Ak and Bk are auxiliary functions.
Given the symmetry of Eq. (C37) under f↑↔ ↓g, one can
anticipate the following result. The easiest way to proceed
is to realize that the content of the square brackets in the
collision integrals in Eq. (C37) is exactly the left-hand side
of the corresponding LBEs. Substitution of Eq. (C37) into
LBEs with a cancellation in both sides reduces them to the
two identical equations

1 ¼ Akχ̃kσ − Bkχ̃kσ̄; ðC38Þ

which finally gives χ̃k↑ ¼ χ̃k↓ and provides the relaxation
rate for both spin projections in the form

ℏ
τkσ

¼ π
2εkN

X

q

jV%
q j2

&
q
k

'
δ

&
cosφ −

q
2k

'

×
&
ωq

T

'
n0qðn0q þ 1Þ; ðC39Þ

where we note an extra factor 1=2 compared to Eq. (C23).
Further adaptation to the 2D case with spins on a

triangular lattice considered in the preceding section gives
the same result as in Eq. (C27),

ℏ
τFσ

¼
ffiffiffi
3

p
ðkFaÞ2

πEF

Z
1

0

z2dzffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p F̃%
q ; ðC40Þ

up to a factor of 2, which can be traced to the expansion
in Eqs. (C21) and (C36), and, ultimately, to the fact that
the spin-flip scattering in Eq. (C28) involves only half the
terms of the non-spin-flip one in Eq. (C5) for each spin
species. Here, F̃%

q is given by

F̃%
q ¼ jV%

q j2
&
ωq

T

'
n0qðn0q þ 1Þ: ðC41Þ

For the full interaction given in Eq. (C35), collecting all
contributions to the scattering rate yields the final formula

FIG. 14. Schematics of the collision integrals in Eq. (C29).
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in Eqs. (37) and (38), which takes into account three
different branches of magnons and all channels of scatter-
ing, whether spin-flip and not.

4. Quasiparticle 1=τqp, angular dependence

Our consideration of the transport relaxation rate due to
magnon scattering would not be complete without a brief
note on the regular, or quasiparticle, relaxation rate and
an equally brief remark on the relationship between the
two. In turn, this analysis also allows us to discuss the
angular dependence of the quasiparticle relaxation rate,
originating from the discrete lattice symmetry that is
encoded in the energies of spin excitations and matrix
elements of the coupling to them, while leaving a sub-
stantially more involved study of their effect on the trans-
port counterpart to a future work.

a. Quasiparticle vs transport 1=τ

The quasiparticle relaxation rate characterizes the
probability of the scattering of an electron from the
momentum-k state. It is given by

ℏ
τqp;k

¼ −2Im½ΣkðεkÞ(; ðC42Þ

where ΣkðεkÞ is the on-shell electron self-energy.
The phononlike non-spin-flip scattering of the form (C5)

yields a well-known answer for Im½ΣkðεkÞ( via a standard
second-order diagrammatic treatment [77],

ℏ
τqp;k

¼ 2π
N

X

q

jVqj2fðn0q − f0k0 þ 1Þδεk0 ;εk−ωq

þ ðn0q þ f0k0Þδεk0 ;εkþωq
g; ðC43Þ

where k0 ¼ k − q and δε0;ε%ω ¼ δðε0 − ε ∓ ωÞ as before.
While looking deceitfully different from its transport

counterpart in Eq. (C13), simple manipulations using
Eqs. (C17) and (C19) bring the combinations of the
distribution functions in the first and second terms of
Eq. (C43) to

∓ n0ωðn0ω þ 1Þ
ðf0ε − f0ε∓ωÞ
f0εð1 − f0εÞ

; ðC44Þ

respectively. Recognizing the denominator in Eq. (C44) for
ð−TÞð∂f0ε=∂εÞ and expanding the numerators in ω gives

ℏ
τqp;k

≈
4π
N

X

q

jVqj2
ωq

T
n0qðn0q þ 1Þδðεk−q − εkÞ; ðC45Þ

where we have also neglected ωq in the delta function.
Further simplification of the latter for the spherical (cylin-
drical) Fermi surface (C9) and parametrization of the

electron mass with energy εk ¼ ℏ2k2=2m used above,
bring the quasiparticle relaxation rate in Eq. (C45) close
to an expression of its transport version (C23),

ℏ
τqp;k

¼ π
εkN

X

q

jVqj2
&
2k
q

'
δ

&
cosφ −

q
2k

'

×
&
ωq

T

'
n0qðn0q þ 1Þ: ðC46Þ

As is expected, the only difference between the two rates
is an extra factor q2=2k2 ≡ ð1 − cos θÞ ¼ 2 cos2 φ in the
integrand of the transport relaxation rate, which is respon-
sible for the suppression of the small-angle scattering in it;
as before, θ and φ are the angles between k and k0 and k
and q, respectively [see Fig. 13(b)].
Using the same approximations as in Appendix C 2 and

considering the case of 2D, the quasiparticle relaxation
rate (C46) at k ¼ kF reduces to

ℏ
τqp;F

¼
ffiffiffi
3

p
ðkFaÞ2

πEF

Z
1

0

dzffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p F̃q; ðC47Þ

with F̃q from Eq. (C25), q ¼ 2kFðz2; z
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Þ, and the

difference from the transport rate in Eq. (C27) given by an
extra factor 2z2 in the latter. Needless to say, for the spin-
flip scattering (C28), an equivalent of the self-energy
in Eq. (C43) contains only half the terms, resulting in
an extra factor 1=2 in Eqs. (C46) and (C47), identically
to the transport case (C39) and (C40) considered in
Appendix C 3.
While the technical tricks of converting the standard

expression for the quasiparticle relaxation rate (C43) into
the form that is akin to the transport one (C46) may
not be well known, the resultant similarity between them
is in a full accord with the textbook expectations.
Thus, it is prudent for us to investigate the resulting
difference between the two rates for our problem with
the actual electron-magnon couplings and energies using
Eqs. (37)–(39) and their quasiparticle analogues.
The result of such a comparison is presented in Fig. 15

for representative values of b ¼ 0.06 and kF ¼ π=3. The
transport rates reproduce the results shown in Fig. 10(a).
Although the overall field dependence of the rates is quite
similar, the quasiparticle 1=τqp exhibits more pronounced
variations from phase to phase, with the exception of the
polarized FM region, which shows only a modest overall
offset from the transport one.
The evolution of 1=τqp with the biquadratic exchange

reveals more dramatic differences. Upon approaching the
first-order transition, b → bc, the Y-UUD and V-FM phase
boundaries in 1=τqp become sharper, turning into disconti-
nuities at b ¼ bc. A further increase to b > bc suggests that
truly divergent relaxation rates occur at the (metastable)
boundaries discussed in Appendix A. This is in contrast
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with the evolution of the transport relaxation rate, which
remains continuous at these phase boundaries up to b ¼ bc
and develops finite discontinuities for b > bc, as is demo-
nstrated in Figs. 10(a) and 10(b), respectively.
Since the difference of the rates is in the suppression of

the small-angle scattering in the transport case, the small-
momentum contribution to the quasiparticle rate is an
obvious culprit for such a dichotomy. Detailed analysis
reveals the key role of the non-spin-flip scattering, present
in the noncollinear Y and V phases, in precipitating the
singular behavior of 1=τqp.
In the proximity of the transitions, h → hc1ðsÞ, where the

Goldstone mode softens to ωq ∝ q2 (see Fig. 6), these
processes provide a dangerous ∝ 1=ωq term to the small-
momentum equivalent of the kernel (40), resulting in
the leading contribution to 1=τqp that scales as
sin2 α1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hc − h

p
. From Appendix A, sin2 α1 ∝ ðhc − hÞ

for b < bc, still giving a continuous behavior of 1=τqp
vs h, as is shown in Fig. 15. However, for b → bc, the field
dependence of the angle switches to sin2 α1 ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hc − h

p
,

resulting in a finite contribution to 1=τqp at hc and culmi-
nating in a discontinuity. A further increase to b > bc leaves
the angle finite at the transition field hc [see Fig. 12(b)],
producing a true singularity, 1=τqp ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hc − h

p
.

This discussion opens up an interesting possibility of the
studies of the field-tuned singular behavior in the scattering
rate due to small-angle scattering processes that can lead to
a number of observables, including catastrophic violation
of the Wiedemann-Franz law.

b. Angular dependence of 1=τqp
Another aspect of the quasiparticle relaxation rate makes

its consideration worthwhile. The diagrammatics-derived
expression for it in Eq. (C43) is exact to the second order in
the coupling. The approximations leading to Eq. (C45)

involve only a highly justified energy hierarchy, ωq ≪ EF.
The next step, resulting in Eq. (C46), is a fairly reasonable
assumption of the spherical (cylindrical) Fermi surface.
However, this last assumption does not automatically make
1=τqp independent of the direction of the momentum k on
the Fermi surface. What makes it independent is an
additional step of assuming an even mirror symmetry of
the entire kernel F̃q with respect to a reflection of the
momentum q about the direction of the momentum k,
leading to the final expression (C47) [see the line preced-
ing Eq. (C26)].
Although this assumption is valid for k along the high-

symmetry directions, dictated by the C6 symmetry of the
triangular lattice in our case, the angular dependence of the
quasiparticle relaxation rate, encoded in the energies of spin
excitations and matrix elements of the coupling to them,
should remain.
A proper consideration of this problem for the transport

relaxation rate has an additional complicating factor
because it also requires a consistency in the assumption
of the angle dependence in relating scattered-state distri-
bution function δfk0 to δfk, thus modifying Eq. (C12).
However, the simplicity of this problem for the quasipar-
ticle relaxation rate makes it particularly appealing to solve.
Thus, we return to the relaxation rate in Eq. (C46) and
advance it one step further to include such an angular
dependence properly, leaving its study in the transport
counterpart to a future work.
Although the direction of the electron momentum k is

not explicitly present in Eq. (C46), it is implicitly tied to
that of the magnon momentum q via the mutual angle φ;
see the scattering diagram in the right inset of Fig. 16.
This figure shows that in the reference frame formed by
ðk̂; k̂⊥Þ, where k̂⊥ is the axis perpendicular to the unit
vector k̂, the magnon momentum q is parametrized as

FIG. 15. Transport and quasiparticle relaxation rates from
Eqs. (37)–(39) and their quasiparticle analogues vs field for
representative temperatures, b ¼ 0.06, and kF ¼ π=3. Other
parameters are from Table I. Transport rates are from Fig. 10(a).

FIG. 16. We show 1=τqp vs α0 for H ¼ Hs normalized to its
value at α0 ¼ π=6 for the parameters in Table I and several values
of kF. Upper inset: τqpðπ=6Þ=τqpð0Þ for the FM state (solid line)
and 120° state (dashed line) vs kF. Right inset: scattering
diagram, angles, and laboratory axes, cf. Fig. 13(b).
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q ¼ qðcosφ; sinφÞ. However, this frame itself is rotated by
the angle α0 with respect to the laboratory reference frame,
represented here by ðx; yÞ, with the x axis tied to one of the
bond directions of the triangular lattice. Then, straightfor-
wardly, the momentum q parametrization in the ðx; yÞ
reference frame is q ¼ qðcosðφþ α0Þ; sinðφþ α0ÞÞ.
Since the absolute value of the momentum q is tied to the

angle φ via q ¼ 2kF cosφ, the integral in Eq. (C46) can still
be reduced to a 1D form,

ℏ
τqp;F

¼
ffiffiffi
3

p
ðkFaÞ2

πEF

Z
π=2

−π=2
dφ

1

2
F̃α0ðφÞ; ðC48Þ

where F̃α0ðφÞ≡ F̃q with

F̃q ¼ jVqj2
&
ωq

T

'
n0qðn0q þ 1Þ;

q ¼ 2kF cosφðcosðφþ α0Þ; sinðφþ α0ÞÞ: ðC49Þ

We note that Eq. (C48) does not have any additional
approximations beyond the ones already present in
Eq. (C46). Ignoring α0, using the symmetry of F̃q to
φ → −φ, and introducing z ¼ cosφ brings Eq. (C48) back
to Eq. (C47). Obviously, the same considerations can be
used to obtain the spin-flip equivalent of Eq. (C48).
With the result (C48), we can study the effect of the

angular dependence of the quasiparticle relaxation rate. The
findings for the polarized FM phase at the saturation field
H ¼ Hs and for the 120° H ¼ 0 state as representative
points of our analysis are summarized in Fig. 16. In this
figure, we use the same model parameters as in the rest of
the paper when applied to EuC6 (see Table I) and inves-
tigate the angle dependence of 1=τqp as a function of kF,
with very similar results in both cases.
As is discussed in Sec. V for the transport case, the

overall rates grow with kF. Since we are interested in the
angular dependence, but not the absolute values, the main
panel in Fig. 16 shows the quasiparticle relaxation rate from
Eq. (C48) as a function of α0 normalized to its minimum
value, which is in the middle of the two principal (bond)
directions of the triangular lattice, denoted as π=6. The
results are shown for the FM phase and for several values
of kF. The upper inset shows the ratio of the rates at the
maximum (α0 ¼ 0) and minimum (α0 ¼ π=6) vs kF for
both the FM and 120° states.
One can see that the effect of the angle dependence in

1=τqp is really negligible up to kF about π=2 and is still very
modest up to kF ≳ 0.6π, justifying our initial approxima-
tion that neglected it and confirming the correctness of our
results presented throughout the main body of the paper.
In a sense, the effect is reminiscent of the accuracy of
the sextupole field as nearly circular away from the close
vicinity of the poles.

However, upon approaching the value of kF ¼ 2π=3,
the rates for the principal directions diverge while the rates
at α0 ¼ π=6 stay finite. As is discussed in Sec. V, this effect
is due to a singularity associated with the scattering by the
gapless Goldstone magnons with Q ¼ %ð4π=3; 0Þ and
equivalent ordering vectors matching 2kF for the momenta
k in the principal directions. In that sense, the α0 ¼ 0
and α0 ¼ π=6 directions of the electron momentum k for
kF → 2π=3 become close analogues of the “hot” and
“cold” spots for the scattering, familiar from the cuprate
superconductors [60]. As is mentioned above, while the
same behavior is expected to occur for the transport
scattering rates, the derivation becomes more complicated
as one needs to account for the angular dependence in
relating nonequilibrium distribution functions for different
directions self-consistently.
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