

Annual Review of Phytopathology

Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens

Yongli Qiao,¹ Rui Xia,² Jixian Zhai,³ Yingnan Hou,⁴
Li Feng,³ Yi Zhai,⁴ and Wenbo Ma^{4,5}

¹Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; email: qyl588@gmail.com

²State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China

³School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China

⁴Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA

⁵The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK;
email: wenbo.ma@tsl.ac.uk

Annu. Rev. Phytopathol. 2021. 59:265–88

First published as a Review in Advance on
June 2, 2021

The *Annual Review of Phytopathology* is online at
phyto.annualreviews.org

<https://doi.org/10.1146/annurev-phyto-121520-023514>

Copyright © 2021 by Annual Reviews.
All rights reserved

ANNUAL
REVIEWS CONNECT

www.annualreviews.org

- Download figures
- Navigate cited references
- Keyword search
- Explore related articles
- Share via email or social media

Keywords

RNA interference, gene silencing, host–pathogen arms race, nucleotide-binding leucine-rich repeat receptor, pentatricopeptide repeat protein, small RNA trafficking

Abstract

Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves *trans*-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host–pathogen interactions. We highlight secondary

small interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of *trans*-species gene silencing at the host-pathogen interface are discussed.

INTRODUCTION

RNA interference (RNAi) by small RNAs (sRNAs) has a broad impact on cellular processes in eukaryotes (50). Based on sequence complementarity, sRNAs regulate their target gene(s) by transcription repression, transcript cleavage, or translation inhibition. sRNA-mediated silencing is quantitative, making it particularly suitable for fine-tuning gene expression (4, 6). Furthermore, sRNAs can be mobile, enabling a systemic response to environmental signals as well as target gene manipulation in organisms engaged in an intimate symbiosis (61, 85, 109). These features place sRNA-mediated regulation in a uniquely important position during plant-pathogen interactions with the potential of conferring precise temporal and spatial controls.

Constantly challenged by potential microbial pathogens in the surrounding environment, plants have evolved a sophisticated and robust immune system. Pattern-triggered immunity (PTI) relies on the recognition of microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs) (18, 150). Classic responses triggered by the activation of PTI include reactive oxygen species (ROS) production, cell wall reinforcement, and antimicrobial compound secretion (150). Among the antimicrobial agents are specific sRNAs, which have recently been shown to be enriched in the extracellular space (8) and to silence target genes in invading filamentous pathogens (19, 58, 145). Although PTI prevents the colonization of the majority of potential pathogens, successful pathogens are able to defeat this line of defense through activities of virulence proteins called effectors (38). In particular, filamentous pathogens produce suppressors of RNA silencing, illustrating an arms race centered on sRNA-mediated defense (58, 102, 137, 139). As a counteractive strategy, plants evolved another layer of defense that depends on the recognition of pathogen effectors by the nucleotide-binding leucine-rich repeat (NLR) receptors (30, 67). Activation of the NLR immune receptors results in effector-triggered immunity (ETI), which often associates with programmed cell death to restrict the spread of the pathogen (33). However, the *NLR* genes must be precisely regulated to prevent fitness cost and detrimental autoimmunity. One of the mechanisms that keep the *NLRs* in check is gene silencing. In some plants, sRNAs potentially regulate *NLR* genes in a global manner (21, 47, 143).

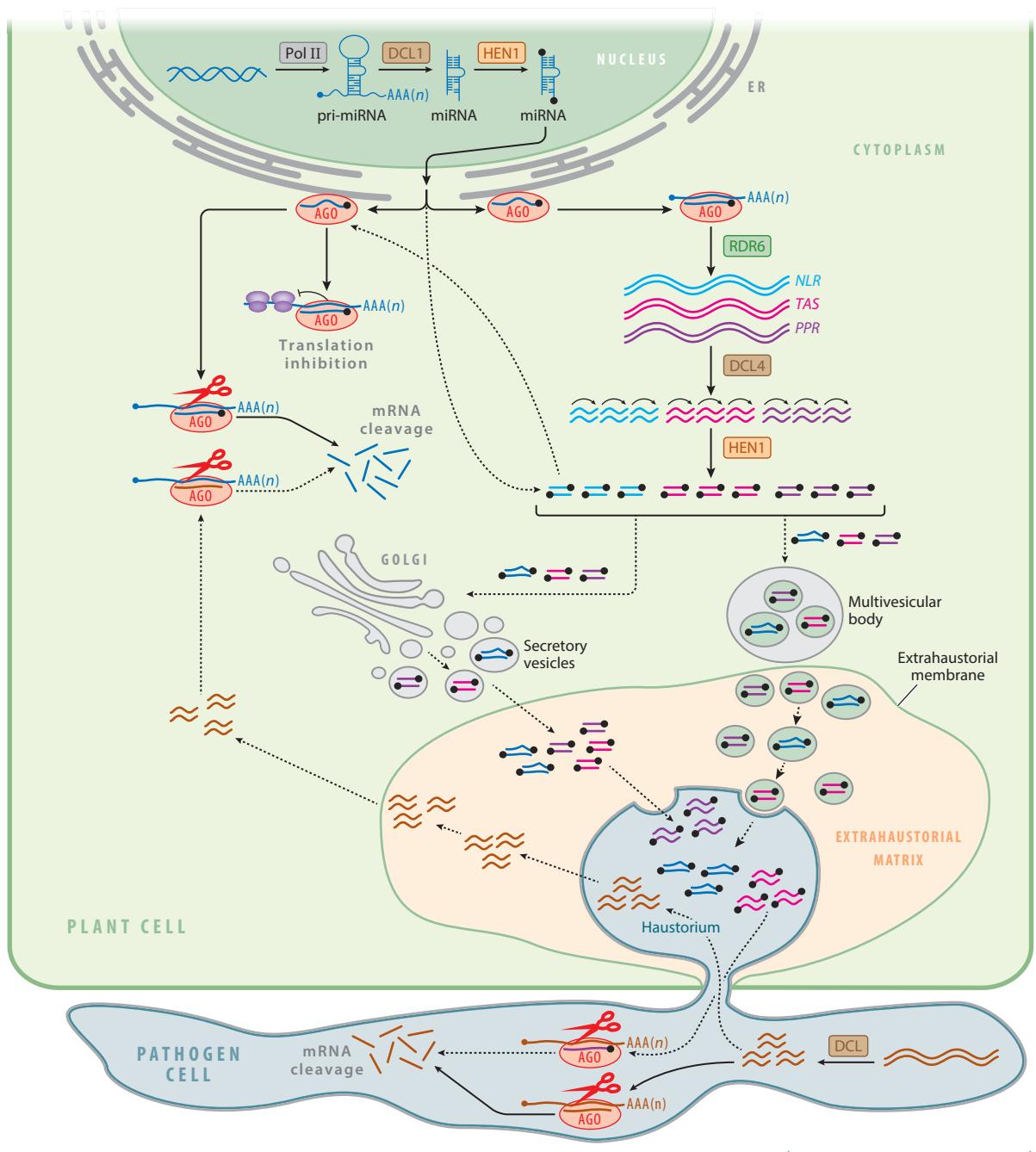
As a ubiquitous gene regulation mechanism in eukaryotes, sRNAs are also produced by eukaryotic pathogens to regulate virulence. Many fungal and oomycete pathogens have been analyzed for sRNA profiles, and gene silencing has been implicated in regulating the virulence of some of these pathogens. For example, silencing of effector genes is a mechanism utilized by the oomycete pathogens *Phytophthora* to evade host recognition (99, 103). In addition, pathogen-derived sRNAs have also been shown to affect host gene expression as a virulence mechanism (40, 124). A potential bidirectional, *trans*-species trafficking of sRNAs during plant-pathogen interaction is an active area of research (61).

Here, we summarize the increasing body of evidence indicating the mechanisms by which sRNAs influence disease development through endogenous and *trans*-species gene silencing. Gaps of knowledge and future perspectives are also discussed. We focus on nonviral diseases caused by filamentous pathogens, including fungi and oomycetes. For the critical role of RNA silencing in antiviral immunity, please refer to a recent review (56).

SMALL RNA REGULATION OF PLANT IMMUNITY

Plant Small RNAs: Classification, Biogenesis, and Function

Plant sRNAs are generally 20–24 nucleotides (nt) in length and regulate gene expression at the transcriptional and posttranscriptional levels (16, 17). sRNAs can mediate transcriptional gene silencing (TGS) through RNA-directed DNA methylation or histone methylation (89); they can also trigger target degradation or translation repression by pairing to mRNAs, thus mediating posttranscriptional gene silencing (PTGS) (107).


Plant sRNAs can be classified into two major categories, microRNAs (miRNAs) and small interfering RNAs (siRNAs), based on differences in precursor sources, biosynthetic pathways, and molecular functions (16). miRNAs are generated from RNA polymerase II transcribed single-stranded precursors, which fold into imperfectly paired stem-loop structures. These precursors are then processed by the RNase III-type ribonuclease Dicer-like 1 (DCL1) to produce miRNA/miRNA* duplexes, which are subsequently methylated by HUA ENHANCER1 (HEN1) to protect the 3' terminal nucleotide from 3'→5' degradation (64, 106). One strand of the duplex, also called the miRNA strand, is loaded into ARGONAUTE (AGO) proteins, which form RNA-induced silencing complexes (RISC) and carry out the target gene-silencing functions at the PTGS level (Figure 1) (106).

Compared to miRNAs, siRNAs are derived from perfectly matched complementary double-stranded RNAs (dsRNAs), often the products of RNA-dependent RNA polymerases (RDRs) (16). Production of siRNAs can be triggered by exogenous RNAs such as transgenes or viruses, but there are also numerous siRNAs whose biogenesis requires the cleavage of specific endogenous transcripts guided by a subset of miRNAs and the subsequent RDR6-dependent synthesis of dsRNA precursors (16). The dsRNAs are then processed by DCL3 or DCL4 homologs to produce an array of siRNAs that are often spaced at 21- or 24-nt phased intervals. As such, these secondary siRNAs are also called phased siRNAs (phasiRNAs) (27). For example, the plant-specific, 21-nt *trans*-acting siRNAs (tasiRNAs) are generated following the miRNA-guided cleavage of the noncoding *TAS* transcripts (2, 49). Transcripts of coding genes, especially *NLR* and pentatricopeptide repeat (*PPR*) genes, can also spawn 21-nt secondary siRNAs (46). Similar to miRNAs, secondary siRNAs are methylated by HEN1 and subsequently loaded into the AGO complexes to induce targeted gene silencing (Figure 1) (17, 64). The functional significance of the secondary siRNA pathway lies in potential widespread silencing through a regulatory cascade in which genes can be silenced by both the primary miRNA and the siRNAs. Importantly, secondary siRNAs could also target genes that are not regulated by the primary miRNAs (46), expanding the impact of gene silencing.

miRNA Regulation of Defense/Growth Tradeoff

Activation of the defense response usually comes with a cost to growth (62, 71). Because miRNAs are key regulators of plant growth and development, activation of plant immunity is often correlated with upregulation of growth-regulating miRNAs upon pathogen perception. These pathogen-responsive miRNAs act as fine-tuners to balance the defense/growth tradeoff by mainly influencing the phytohormone signaling pathways (76, 87, 96).

Several conserved miRNAs are key regulators of auxin signaling, which has an antagonistic interaction with the salicylic acid (SA)-mediated defense against pathogens feeding on living host cells (called biotrophs or hemibiotrophs) (51). For example, miR393, which targets the TIR1/AFB (transport inhibitor response 1/auxin-related F box) auxin co-receptors, is induced by MAMP/PAMP treatments (83, 96, 129). Reduced accumulation of miR393 in soybean led to

(Caption appears on following page)

Figure 1 (Figure appears on preceding page)

Small RNA (sRNA)-mediated gene silencing in plant-pathogen interactions. Plants produce two classes of sRNAs: microRNA (miRNA) and small interfering RNA (siRNA). miRNAs are processed by DCL1 from the precursor transcripts called pri-miRNA, and siRNAs are produced using long double-stranded RNAs as precursors via the RDR6/DCL4 pathway. Major siRNA-producing transcripts include *NLR*, *TAS*, and *PPR*. Both miRNAs and siRNAs are methylated by HEN1 and regulate target gene expression by transcript cleavage and translation inhibition. During infection, biotrophic and hemibiotrophic filamentous pathogens form specialized infection structures, haustoria, at the host-pathogen interaction interface. The plant cell and the pathogen cell are separated by the extrahaustorial matrix (EHMx). Putative secretion pathways of sRNAs from the plant cell to the EHMx include the extracellular vesicle (EV)-dependent route and EV-independent route that may involve secretory vesicles. Selected miRNAs could also be secreted through either or both routes. *TAS1/2*- and *PPR*-derived secondary siRNAs have been implicated in silencing target genes in invading fungal and oomycete pathogens. Some pathogens also secrete sRNAs to facilitate disease development by targeting host genes. So far, HEN1 orthologs are not found in filamentous pathogens, and pathogen-produced sRNAs are presumably unmethylated. Dashed lines represent events that require further experimental support. Abbreviations: AGO, Argonaute; DCL, Dicer-like protein; NLR, nucleotide-binding leucine-rich repeat; PPR, pentatricopeptide repeat protein; pri-miRNA, primary microRNA.

hypersusceptibility to *Phytophthora sojae*, suggesting that it is a positive regulator of plant defense (129). Several other auxin-regulating miRNAs, such as miR160, miR164, and miR167, are also upregulated in plants infected with filamentous pathogens (76). Increased levels of these miRNAs repress auxin signaling, contributing to a switch from growth to defense.

miRNA Regulation of Immune Receptors

Receptors are key components of the plant immune system. The membrane-embedded receptor-like kinases or receptor-like proteins sense non-self molecular signatures, leading to PTI, and the intracellular NLR receptors recognize pathogen effectors and activate ETI (150). However, inappropriate expression or activation of immune receptors, especially NLRs, can cause a general reduction in fitness and detrimental autoimmunity (71, 80, 116). sRNAs are implicated in controlling the expression of NLRs during different developmental stages (35) and in the absence of infection. *NLR* genes are common targets of miRNAs in a broad range of plants (47, 79, 111, 146). NLR proteins can be further classified into Toll interleukin 1 receptor (TIR)-NLRs (or TNLs) and coiled-coil (CC)-NLRs (or CNLs) based on distinctive N-terminal motifs. Both TNLs and CNLs can be regulated by miRNAs. The conserved, but also unusually diverse, miR482/2118 superfamily targets *NLR* genes by binding to the coding sequence of the highly conserved P-loop motif (111). Decreased accumulation of miR482/2118 family members was observed in soybean infected with *P. sojae* (55, 129) or the fungal pathogen *Phakopsora pachyrhizi* (77) as well as in cotton infected with the fungal pathogen *Verticillium dahliae* (135). Downregulation of these miRNAs presumably contributes to pathogen-inducible expression of NLRs. Importantly, attenuation of miR482/2118 functions in tomato led to enhanced resistance to *Phytophthora infestans* and the bacterial pathogen *Pseudomonas syringae*, demonstrating the biological significance of miRNA-mediated regulation of NLRs (21).

In addition to the direct silencing of targeted *NLR* transcripts, miR482/2118 triggers the production of secondary siRNAs, thereby having the potential to suppress an amplified number of NLRs in *trans* or in *cis* (21, 47, 111). Other miRNAs that target *NLR* genes, such as miR6019 in tobacco (79) and miR9863 in barley (84), also exert their functions through this dual mode of action, indicating an important role of secondary siRNA production in NLR regulation. Engaged in a constant coevolutionary arms race, NLRs represent large gene families with a high degree of diversification in plant genomes. Gene silencing that depends on miRNAs may not be sufficiently adapted to the fast evolution of NLRs, making secondary siRNA-based regulation an attractive strategy. Indeed, a search for siRNAs in *Medicago truncatula* found hundreds of siRNA-generating loci, the majority of which (79 out of 112) were *NLR* genes (45). Remarkably, three abundant

miRNA families, miR1507, miR2109, and miR2118, trigger the production of secondary siRNAs from 74 of the 79 siRNA-spawning *NLR* transcripts. These miRNAs target the conserved domains in NLRs: miR1507 has complementarity to sequences in *CNL* genes that encode the kinase-2 motif; miR2109 targets the TIR-1 motif in TNLs; and miR2118 targets sequences encoding the conserved P-loop in both TNLs and CNLs (143). As such, it was hypothesized that control of a large number of NLRs could be accomplished by a few miRNAs. However, a global impact of miRNAs on the *NLR* transcriptome through secondary siRNA production has not been experimentally confirmed, even though a minor but overall reduction of *NLR* transcript levels was observed to influence the defense response of tomato in a quantitative manner (21). Another possibility is that these secondary siRNAs may regulate NLR protein accumulations through translation inhibition. Further investigations are needed to determine the underlying regulatory mechanism and functional impact of secondary siRNAs on global NLR levels.

HOST-INDUCED GENE SILENCING IN INVADING FILAMENTOUS PATHOGENS

The non-cell-autonomous feature of RNA silencing suggests sRNAs can be mobile molecules that move cell-to-cell and silence a target gene(s) in the recipient cells. The motility of many siRNAs and some miRNAs within plants has been well documented (85). More recent research indicates that sRNAs may also traffic from plants to pathogens in a process termed host-induced gene silencing (HIGS) (10). The first observations of HIGS were made when specific gene transcripts showed reduced accumulation in nematodes and insects when they fed on transgenic plants that produced artificial RNAi constructs (11, 60). To date, examples of the successful application of HIGS have been expanded to control a broad range of pathogens, including parasitic plants, fungi, and oomycetes in various plant species (e.g., 52, 63, 97, 144). Importantly, specific plant sRNAs have recently been discovered to silence pathogen genes during natural infection as a native defense mechanism (19, 58, 145).

Two Plant miRNAs Target Virulence Genes in the Fungal Pathogen *Verticillium dahliae*

The first example of HIGS as a natural defense mechanism in nonviral pathogens was reported in cotton, where two miRNAs, miR159 and miR166, were found to silence virulence-related genes in the fungal pathogen *V. dahliae* (145). Both miR159 and miR166 were induced upon infection, and their sequences show complementarity to *V. dahliae* genes encoding a Ca^{2+} -dependent cysteine protease (*Clp-1*) and an isotrichodermin C-15 hydroxylase (*HiC-15*), respectively. Transcript levels of *Clp-1* and *HiC-15* were reduced in fungal hyphae recovered from infected cotton tissues, and miR159 and miR166 were also detected from the hyphae. Mutants of *V. dahliae* with *Clp-1* or *HiC-15* knocked out displayed reduced virulence, consistent with the hypothesis that miR159 and miR166 produced by the infected cotton plants entered the invading fungal cells and triggered cleavage of targeted pathogen transcripts that are required for virulence (144, 145).

This research provided strong evidence that plant-derived miRNAs were present in the fungal cells and available for gene silencing. miR159 and miR166 could not only be detected in *V. dahliae* cultured from hyphae recovered from infected cotton tissues but also remained detectable in the progenies of the fungal culture, suggesting a high level of stability in the pathogen cells. miR159 and miR166 are among the most abundant miRNAs in cotton and *Arabidopsis thaliana* (145). Whether the high abundances of these miRNAs are related to their movement and stability in the pathogen is an interesting question. In addition to targeting pathogen genes, miR159 regulates vegetative phase changes in plants (3) and miR166 is involved in root development (23). Both

miRNAs are conserved in plants with conserved endogenous targets and functions. It would be interesting to monitor the coevolutionary dynamics of these miRNAs with their pathogen targets.

Secondary siRNAs Enhance Plant Immunity Through Host-Induced Gene Silencing

Following this initial report of natural HIGS by miRNAs, studies in *A. thaliana* uncovered a role of secondary siRNAs in silencing pathogen genes during infection. Two tasiRNAs, derived from the noncoding *TAS1* and *TAS2* transcripts, respectively, were shown to silence target genes in the fungal pathogen *Botrytis cinerea*. Deletion of the tasiRNA-targeted genes in *B. cinerea* led to reduced virulence activity, suggesting that they contribute to disease development (19). In a separate study, a pool of secondary siRNAs derived from a subset of *PPR* gene transcripts can potentially target multiple genes in the oomycete pathogen *Phytophthora capsici*. One of the target genes encodes a U2-associated splicing factor and is required for sporulation and the full virulence of *P. capsici* (58). These findings are consistent with the hypersusceptibility phenotype of the *rdr6* mutant of *A. thaliana*, which is abrogated in secondary siRNA production, to both pathogens.

Further support for the biological significance of the secondary siRNA pathway in plant immunity comes from the discovery that filamentous pathogens encode effectors to suppress this pathway in plants (102, 137): The *Phytophthora* effector PSR2 specifically affects siRNAs produced from *TAS1*, *TAS2*, and *PPR* transcripts in *A. thaliana* (58), and the effector PgtSR1 of the wheat stem rust fungus *Puccinia graminis* f. sp. *tritici* also reduces the production of secondary siRNAs (139). Research on effector functions has facilitated the identification of novel host immune components and mechanisms. The virulence activities of PSR2 and PgtSR1 are consistent with a role of secondary siRNAs in plant defense during fungal and *Phytophthora* infection. It is noteworthy that the *rdr6* mutant of *A. thaliana* is also hypersusceptible to *V. dahliae* (42), raising the possibility that secondary siRNAs may contribute to plant defense against a broad range of pathogens.

HIGS requires sRNAs to traffic from the host to the invading pathogen. Differences in the biosynthetic pathways of miRNAs and siRNAs may affect their mobility. When the miRNAs and tasiRNAs were designed to have identical sequences, tasiRNA-based silencing spread into a broader area than miRNA-based silencing, indicating that secondary siRNAs may be more mobile and robust in non-cell-autonomous silencing (34). Furthermore, analysis of apoplastic sRNAs in *A. thaliana* revealed a striking extracellular accumulation of secondary siRNAs, including *TAS*-, *NLR*- and *PPR*-siRNAs, suggesting that they are specifically secreted by plant cells (8). Many miRNAs are less mobile: The sites of pri-miRNA transcription and miRNA function were found to be well correlated (4, 100). tasiRNAs and *PPR*-siRNAs were also detected from extracellular vesicles (EVs) (19, 58). These findings point to the possibility that secondary siRNAs may be a major contributor of HIGS.

A Role of Pentatricopeptide Repeat Gene-Derived Secondary siRNAs in Host-Induced Gene Silencing

In eudicots, *PPR* genes are one of the main sources of secondary siRNA production (130). PPRs constitute a large gene family in plants, with more than 400 members in most eudicots. PPR proteins can be categorized into subclasses based on the nature of their PPR motifs (9). Most functionally characterized PPR proteins have sequence-specific nucleotide-binding activities and function as molecular adaptors that direct RNA processing complexes to target transcripts in mitochondria and chloroplasts (9). A subset of *PPR* genes is recruited to the miRNA-triggered

Table 1 siRNA production from pentatricopeptide repeat genes and their trigger miRNAs in various plant species

Plant family	Species	miRNA trigger	Putative mechanism	Reference(s)	
Araliaceae	<i>Panax notoginseng</i>	miR1509	<i>TAS</i> mediation	25	
Brassicaceae	<i>Arabidopsis thaliana</i>	miR173, miR161	Direct targeting or <i>TAS</i> mediation	59	
	<i>Capsella rubella</i>	miR173, miR161		113	
Euphorbiaceae	<i>Manihot esculenta</i>	NA	NA	73	
Fabaceae	<i>Glycine max</i>	miR1508, miR1509	Direct targeting or <i>TAS</i> mediation	130	
	<i>Medicago truncatula</i>	miR1509	<i>TAS</i> mediation		
Pinaceae	<i>Picea abies</i>	miR11425a	Direct targeting	131	
Rosaceae	<i>Malus × domestica</i>	miR7122	<i>TAS</i> mediation	130	
	<i>Prunus persica</i>	miR7122	Direct targeting or <i>TAS</i> mediation		
	<i>Frugaria vesca</i>	fve-PPRtri1/2			
Salicaceae	<i>Populus trichocarpa</i>	miR6427	Direct targeting	130	
Sapindaceae	<i>Litchi chinensis</i>	NA	NA	88	
Solanaceae	<i>Nicotiana tabacum</i>	miR7122	<i>TAS</i> mediation	130	
Rutaceae	<i>Citrus sinensis</i>	miRC1	Direct targeting	130, 148	
Vitaceae	<i>Vitis vinifera</i>	miR7122	Direct targeting or <i>TAS</i> mediation	130	

Abbreviation: NA, not available.

secondary siRNA-generating pathway. For instance, the vast majority of *PPR*-siRNAs in *A. thaliana* are produced from 17 *PPR* genes clustered in chromosome 1 (59).

NLRs are targeted by miRNA triggers at the highly conserved regions, leading to miRNA-mediated regulation and subsequent siRNA generation from a large number of genes (132, 143). This was proposed to be an efficient way to maintain the overall low expression level of genes belonging to the same gene family (46). However, *PPRs* seem to be different. Although *PPR* is one of the largest gene families associated with sRNAs, only a small set generates siRNAs through a more complicated mechanism (59). The miR7122 superfamily, containing evolutionarily related miRNAs, directs the generation of siRNAs from a limited number of *PPR* transcripts in a wide range of plant species (130). Production of siRNAs can be triggered both by direct targeting of miRNAs, i.e., via the miRNA-*PPR* circuit, and through the mediation of noncoding *TAS* genes, i.e., via the miRNA-*TAS*-*PPR* circuit (130). In *A. thaliana*, *PPR* transcripts are directly targeted by miR161 and indirectly regulated by *PPR*-targeting tasiRNAs generated by the miR173-*TAS1/2* module (59, 130). In legumes, miR1509 relies on two layers of *TAS* actions to incite siRNA production from *PPR* transcripts (130). In addition to the miR7122 family members, new and species-specific miRNAs have also evolved to direct siRNA production from *PPRs* (Table 1). Interestingly, similar to miR7122, these miRNAs trigger *PPR*-siRNA generation via direct targeting, *TAS*-mediated targeting, or both. The complexity in the miRNA-(*TAS*)-*PPR* transcripts-siRNA routes potentially provides multiple checkpoints to fine-tune the accumulation of *PPR*-siRNAs as a highly conserved process in dicots, hence indicating a functional importance of these siRNAs.

PPR proteins are characterized by 2–30 tandem repeats of ~35 amino acid peptides (9). Because the *PPR* motifs are often degenerated, *PPR* genes share low sequence identity at the nucleotide level. Intriguingly, the sequences of *PPR* genes that generate siRNAs exhibit a unique

pattern of intraspecific expansion and diversification (59, 91), a feature that could be explained by engagement in a coevolutionary arms race with pathogens. On one hand, the fast evolution of siRNA-producing *PPR* genes would drive the rapid evolution of the sRNA triggers, which is indeed observed in the sequence divergent miR7122 family and *PPR*-targeting tasiRNAs. On the other hand, it would also lead to the generation of siRNAs with diverse sequences; this is consistent with a proposed shotgun mechanism that involves a pool of sRNAs and the potential of targeting multiple genes in various pathogens (57, 58, 61). In addition, the remarkable intraspecific diversification may also reflect species-specific gene silencing in adapted pathogens. Future research is warranted to examine how widespread the role of *PPR*-siRNAs is in host-pathogen interactions and how this novel defense mechanism can be incorporated into breeding programs to enhance disease resistance.

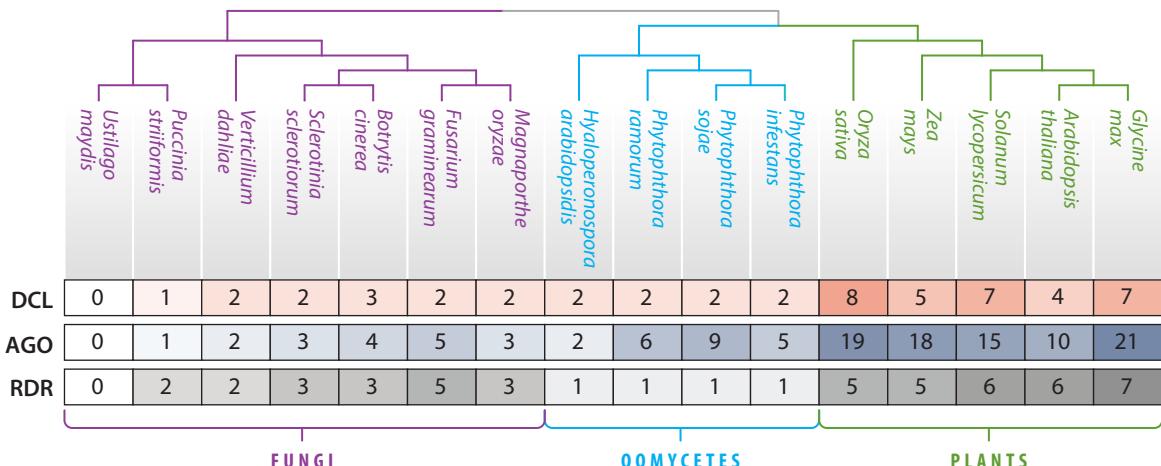
SMALL RNA PRODUCED BY FILAMENTOUS PATHOGENS

sRNAs are widely produced by eukaryotes, including fungal and oomycete pathogens. Target prediction indicates that sRNAs from these pathogens may regulate both endogenous genes and potential host targets during infection. However, the RNAi pathway has been characterized in only a handful of model organisms, and very few sRNAs have been studied experimentally for their biogenesis and function (Table 2). This is in part due to technical challenges to generate mutants in these organisms, which also utilize diverse sRNA biosynthetic pathways. Here, we summarize the core components of the RNAi pathway and sRNA profile of representative fungal pathogens and the oomycete pathogen *Phytophthora* and discuss their potential role in regulating virulence. It is important to note that these pathogens have different infection styles ranging from biotroph (feeding from living host cells throughout its life cycle) or necrotroph (feeding from killed host cells) to hemibiotroph (two-phased infection with an initial biotrophic stage and a subsequent necrotrophic stage) (51). Therefore, the virulence strategies and mechanisms utilized by these pathogens are also different.

Small RNAs from Phytopathogenic Fungi

The fungal kingdom exhibits enormous diversity in ecology, morphology, and lifestyle. It has been suggested that a patrimonial RNAi pathway composed of RDRs, DCLs, and AGOs has undergone numerous adaptations, leading to gene losses as well as evolution of novel sRNA biogenesis mechanisms in various fungal species (13, 24). For example, the core components of the RNAi machinery are absent from some fungal species, including *Ustilago maydis*, a biotrophic pathogen that causes the smut disease of maize (48, 95). In addition, the model filamentous fungus *Neurospora crassa* produces distinct sRNA populations through at least four different biosynthetic pathways that utilize different combinations of enzymes (78). Similar to plants and animals, fungal sRNAs contribute to antiviral immunity (20, 93) and maintenance of genomic stability and integrity (13). Below, we summarize phytopathogenic fungal species from which the sRNA pathway has been functionally characterized in pathogenesis (Figure 2).

***Magnaporthe oryzae*.** The hemibiotrophic ascomycete *M. oryzae* is the causal agent of rice blast, one of the most devastating diseases of cultivated rice (128). *M. oryzae* encodes two DCLs, three AGOs, and three RDRs (69, 105). Gene silencing by sRNAs was first demonstrated by using a hairpin RNA of *GFP*, which triggered the accumulation of 19–23-nt siRNAs that lead to *GFP* silencing (68). *MoDCL2*, but not *MoDCL1*, is required for the production of the *GFP*-siRNAs (69). A comprehensive analysis of mutants of the RNAi core components revealed a key role of sRNAs in regulating conidia development. In addition, *mordr1* and *moago3* mutants also showed


Table 2 Summary of small RNAs identified in plant filamentous pathogens that have validated targets and potential functions

Pathogens	Small RNA	Length (nt)	Mature sequences	Predicted target	Putative function	Reference(s)
<i>Botrytis cinerea</i>	<i>Bc</i> -siR3.1	21	CGGGUGGGAUGUUCUAGGUGUU	<i>AtMPK1/2</i>	Silence host genes	122, 124
	<i>Bc</i> -siR3.2	21	UGGAUGUUCUAGGUGUUACAU	<i>AtPRXIIIF</i>		
	<i>Bc</i> -siR5	21	UUCAUAUGUAAGGCUCAGUUU	<i>AtWAK</i>		
	<i>Bc</i> -siR37	21	UAGUAGUAGUAGAAGGAGGAA	<i>AtWRKY7/AtFEI2</i>		
<i>Cordyceps militaris</i>	<i>Cm</i> -milR4	19	AGUCCGACGACGAGGAGCC	ND	Sexual development	110
	<i>Cm</i> -milR16	21	AGUAGUUGGGUCGGUGACGAC	ND		
<i>Fusarium graminearum</i>	<i>Fg</i> -milR2	22	UAGGAAAGGCAGUAACUAGGA	<i>FgbioH1</i>	Biotin biosynthesis	54, 114
	<i>Fg</i> -ex-siRNA1	24	UCACGCGUUGGGACUUGGGUCCUU	<i>FgSG_10502</i>		
	<i>Fg</i> -ex-siRNA2	25	AAAGAGACUCGACCUCUGGCGCCCU	<i>FgSG_03222</i>		
<i>Magnaporthe oryzae</i>	<i>Mo</i> -milR146-3	20	AGCGAGCGCUGCAGUGCCUG	ND	Appressorium formation and virulence	82
	<i>Mo</i> -milR236-5p	20	UGUCUGGAUCGAUACGGAUG	<i>MoHAT1</i>		
	<i>Mo</i> -milR293-5p	20	CCAUGGGAACUGUUUCUGGU	ND		
<i>Penicillium italicum</i>	<i>Pit</i> -milR7	22	UGGCUGGGAGCAUGCCUUGAUU	<i>PitAP2/B3</i> transcription factor	Unknown	140
<i>Puccinia striiformis</i> f. sp. <i>tritici</i>	<i>Pst</i> -milR1	20	GGAAGGAAAUGGUGAGGAAU	<i>TaPR2</i>	Silence a host gene	120
<i>Sclerotinia sclerotiorum</i>	<i>Ss</i> -milR1	22	UCUCGAGCCGUAGACAGUGU	ND	Sclerotial development	149
	<i>Ss</i> -milRC2	21	GGUGUUGUGGUUUAGUGGUAU	ND		
<i>Verticillium dahliae</i>	<i>Vd</i> -milR1	21	AUUGGUGAGCUGAUUAGCCUU	<i>VdHY1</i>	Virulence	66
<i>Valsa mali</i>	<i>Vm</i> -milR16	19	GUUUCGGGUUGCACGGGUU	<i>VmSNF1</i> , <i>VmDODA</i> , and <i>VmHY1</i>	Virulence	133
<i>Hyaloperonospora arabidopsis</i>	<i>Hpa</i> -sRNA2	21	CCUCAGGGCUCUUUAUUUCU	<i>AtWNK2</i>	Silence host genes	40
	<i>Hpa</i> -sRNA30	21	GUCUAAAUCUUUACCUUUA	<i>AtWNK5</i>		
	<i>Hpa</i> -sRNA90	21	CGAUACAAAGUACUAGUAUUU	<i>AtAED3</i>		
<i>Phytophtthora infestans</i>	<i>Pi</i> -miR8788	21	CUACCAAGCGUACCAGCGCCG	<i>PiAAP</i>	Unknown	44
<i>Phytophtthora sojae</i>	<i>Ps</i> -miR8788	22	CUACCAAGCGUACCAAUACCGU	<i>PsAAP</i>	Unknown	44
<i>Phytophtthora ramorum</i>	<i>Pr</i> -miR8788	21	CUACCAAGCGUACCAAACGCCG	<i>PrAAP</i>	Unknown	44

Abbreviations: *AtAED3*, *Arabidopsis thaliana* apoplastic, enhanced disease susceptibility1-dependent 3; *AtMPK1/2*, *Arabidopsis thaliana* mitogen-activated protein kinase 1/2; *AtPRXIIIF*, *Arabidopsis thaliana* peroxiredoxin IIF; *AtWAK*, *Arabidopsis thaliana* cell wall-associated kinase; *AtWNK2/5*, *Arabidopsis thaliana* with no lysine (K) kinase 2/5; *AtWRKY7*, *Arabidopsis thaliana* WRKY DNA-binding protein 7; *FgbioH1*, *Fusarium graminearum* pimeloyl-ACP methyl ester carboxylesterase; *MoHAT1*; *Magnaporthe oryzae* histone acetyltransferase; ND, not determined; *PiAAP*, *Phytophtthora infestans* amino acid/auxin permease; *PitAP2/B3*, *Penicillium italicum* AP2/B3-like; *TaPR2*, *Triticum aestivum* pathogenesis-related protein 2; *VdHY1*, *Verticillium dahliae* hypothetical protein 1; *VmDODA*, *Valsa mali* 4,5-DOPA dioxygenase extradiol; *VmHY1*, *Valsa mali* hypothetical protein 1; *VmSNF1*, *Valsa mali* sucrose nonfermenting 1.

reduced hyphae growth in vitro and decreased virulence activity in rice. Whether the impact of these mutants on virulence activity was attributed to growth deficiency is unknown (105).

Profiling the endogenous sRNAs revealed 20–21-nt miRNA-like sRNAs (milRNAs), long terminal repeat (LTR) retrotransposon-siRNAs (LTR-siRNAs), and methylguanosine-capped and polyadenylated sRNAs (CPA-sRNAs) in *M. oryzae* (53, 98). sRNAs of 19–23 nt are enriched from intergenic regions and repetitive elements in mycelia; however, a greater proportion of 28–35-nt sRNAs mapped to tRNA loci, protein-coding genes, and LTR retrotransposons was found in

Figure 2

A summary of core enzymes in the RNA silencing pathway of representative fungal pathogens, oomycetes, and plants. The phylogenetic tree was generated using the amino acid sequences of β -tubulin by RAxML (randomized accelerated maximum likelihood) and the model PROTGAMMALG. None of the pathogenic fungal or oomycete species encode orthologs of the methyltransferase HUA-ENHANCER 1 (HEN1), which is highly conserved in plants and plays a key role in RNAi by protecting sRNAs from degradation. Abbreviations: AGO, Argonaute; DCL, Dicer-like protein; RDR, RNA-dependent RNA polymerase.

appressoria, the specialized hyphal organ formed at the penetration site, indicating differential accumulations of sRNA species during development and infection (53, 98). Furthermore, a 22-nt miRNA, miR236, was shown to target the histone acetyltransferase type B catalytic subunit gene *MoHAT1*, which is required for appressorium formation (82). As such, sRNAs may regulate virulence gene expression in *M. oryzae*.

***Botryotinia cinerea*.** *B. cinerea* is a necrotrophic pathogen that causes gray mold diseases in more than 1,400 plant species (127). The *B. cinerea* genome encodes two DCLs, three RDRs, and four AGOs (43). A detailed examination of sRNA profiles in *B. cinerea*-infected *A. thaliana* revealed three 21-nt sRNAs (*Bc-siR3.1*, *Bc-siR3.2*, and *Bc-siR5*) that had increased accumulations in infected tissues. These pathogen-derived siRNAs were found to coprecipitate with AGO1 of *A. thaliana*, indicating that they can potentially regulate host targets. Indeed, *Bc-siR3.2* and *Bc-siR5* were predicted to silence defense-related genes in *A. thaliana*, and transgenic plants overexpressing *Bc-siR3.2* or *Bc-siR5* showed increased susceptibility to *B. cinerea* (124). Later, another sRNA *Bc-siR37* was also shown to increase the susceptibility of *A. thaliana* by targeting defense-related genes in transgenic plants (122). These results indicate that *B. cinerea* produces multiple siRNAs that contribute to pathogenesis through cross-species gene silencing. Consistent with this hypothesis, the *Bcdcl1* *Bcdcl2* double mutant, but not *Bcdcl1* or *Bcdcl2* single mutants, exhibited reduced virulence activity (124).

Necrotrophic pathogens are generalists with a broad host range. Major virulence factors of necrotrophs are toxins and cell-degrading enzymes, which are usually nonspecific to host species. Studies on the evolutionary dynamics of the siRNA-generating sequences in *B. cinerea* isolates and their target genes in a variety of host plants will provide insight into the conservation of this virulence mechanism. Single mutants of *Bcdcl1* or *Bcdcl2* showed reduced growth and delayed sporulation, and the *Bcdcl1* *Bcdcl2* double mutant exhibited a stronger developmental deficiency (124), suggesting that sRNAs also regulate endogenous genes in *B. cinerea*. It will be interesting to

investigate whether the sRNAs that exert gene-silencing functions inside the pathogen can affect pathogenesis.

***Verticillium dahliae*.** *V. dahliae* is a hemibiotrophic pathogen that causes Verticillium wilt, a disease that has devastated many economically important crops (75). The genome of *V. dahliae* encodes three RDRs, two AGOs, a canonical DCL (*VdDCL1*), and an atypical *VdDCL2*, which lacks one of the two RNase III domains (66). Mutants of *Vddcl1*, *Vddcl2*, *Vdago1*, and *Vdago2* showed defects in hyphal growth and spore development, indicating a major role of the RNAi pathway in development (66). *V. dahliae* produces sRNAs of 18–25 nt in size without a size preference. A highly expressed 21-nt miRNA, *VdmilR1*, has been functionally characterized. The precursor transcript of *VdmilR1* is predicted to generate a typical stem-loop structure, similar to miRNAs of plants (66). Unexpectedly, the biogenesis of *VdmilR1* did not rely on *VdDCL1* or *VdDCL2*; rather, another RNase III domain-containing protein, *VdR3*, was required for the biogenesis of *VdmilR1*, although the precise activity of this enzyme remains to be determined (117). *VdmilR1* targets a hypothetical protein-coding gene, *VdHy1*, for TGS associated with increased levels of histone H3K9 methylation. Importantly, a *VdHy1* deletion mutant showed reduced hyphal growth and melanin production when growing in media and markedly reduced virulence in cotton plants, which may or may not be an indirect consequence of the growth defect (66). It is also unknown whether and how *VdmilR1* may be regulated during infection to derepress *VdHy1* and enhance disease.

***Fusarium graminearum*.** *F. graminearum* causes Fusarium head blight (FHB) of wheat, barley, and other cereals, which not only results in severe yield loss but also mycotoxin contamination of the grain (29). Analysis of the *F. graminearum* genome revealed two DCLs, two AGOs, and five RDRs (28). *FgAGO1* and *FgDCL2* are required for hairpin RNA-induced gene silencing, confirming the activity of a canonical RNAi pathway in *F. graminearum*. Analysis of sRNAs in mycelia showed a size distribution of 17–32 nt, with the highest number of sequences appearing at 27–28 nt (28); however, a different sRNA profile and size distribution were found in the peritheciium, with the highest number of sequences appearing at 24 nt (142). These observations suggest that distinct sRNA populations are produced at different developmental stages. Mutants of *Fgago* and *Fgdcl* genes displayed increased sensitivity to stresses caused by DNA damage or osmotic agents (28) and defects in ascospore formation and discharge (142). However, no detectable changes in mycelial growth or virulence were observed in these mutants (28), indicating that sRNAs may not play a significant role in pathogenesis.

***Puccinia striiformis* f. sp. *tritici*.** *P. striiformis* is an obligate biotrophic fungus that causes stripe rust on wheat (22). Core enzymes of the canonical RNAi pathway include one DCL, one AGO, and two RDRs, but their function in gene silencing has not been comprehensively studied. The sRNA population of *P. striiformis* shows a broad size distribution of 18–40 nt with a pronounced peak at 20–22 nt and another smaller peak at 24 nt. Some predicted sRNA precursors possess a pri-miRNA-like stem-loop structure, indicating a biosynthesis pathway similar to miRNAs in plants and animals; others originate from inverted repeat-containing sequences, similar to siRNAs (120). Whether there are additional dicing enzymes to process these precursors and produce sRNAs with different sizes is unknown. sRNA profiling in infected wheat tissue identified 18 highly accumulated *Pst*-siRNAs (94), including the 20-nt *Pst*-miR1. Produced in a *Pst*DCL-dependent manner, *Pst*-miR1 is predicted to target the *pathogenesis-related 2* (*PR2*) gene of wheat and potentially enhances *P. striiformis* infection. However, infection progression was unchanged when *Pstdcl* was knocked down even though subtle morphological changes were

observed (120). Further experiments are needed to provide clearer evidence on the function of *Pst*-sRNAs during infection.

In addition to the species discussed above, the sRNA complements of many other phytopathogenic fungi have also been investigated, including *Zymoseptoria tritici* (134), *Puccinia triticina* (39), *Fusarium oxysporum* (26), *Aspergillus flavus* (7), *Metarhizium robertsii* (92), *Curvularia lunata* (86), *Penicillium italicum* (140), and *Valsa mali* (133). These studies relied mainly on sRNA-seq data and bioinformatic predictions of potential targets of the predicted sRNAs. The biogenesis and function of the RNAi pathway and the predicted sRNAs have not been characterized. One exception is *Z. tritici*, a wheat pathogen that causes the Septoria tritici blotch disease. Mutants of *Ztdcl* and *Ztago* genes did not show altered virulence in wheat, suggesting the canonical RNAi pathway is dispensable for pathogenicity. Although some sRNAs of *Z. tritici* were predicted to have potential targets in wheat, silencing of these predicted targets during infection was not observed (72). This study is a good example demonstrating the importance of experimental confirmation of bioinformatic predictions. In particular, the short RNA reads from sequencing data should be confirmed as true sRNAs that are produced through specific biosynthetic pathways and can exert gene-silencing functions. A desirable approach is to determine the sRNA population associated with the AGO complexes, which would lend support to their activity as gene-silencing agents. For organisms in which genetic manipulation is possible, targeted mutagenesis of genes encoding predicted RNAi core enzymes provides unambiguous evidence for the biological significance of sRNAs in the pathogen of interest.

Small RNA from *Phytophthora* Species

Resembling fungi in morphology and lifestyle, the filamentous eukaryotic microorganisms oomycetes belong to the kingdom Stramenopile (12). Some oomycetes, including species of the genus *Phytophthora*, are devastating plant pathogens that cause enormous economic damage in agriculture and forestry (70). Well-studied species include *P. infestans*, which causes the potato and tomato late blight; *P. sojae*, which causes root and stem rot of soybean; and *Phytophthora ramorum*, which causes sudden oak death.

A rich resource in genome sequences of *Phytophthora* and their related oomycetes enables the comprehensive analyses of sRNAs in these organisms. The presence of active RNAi is supported by the well-established target gene knockdown approach, which has been employed as a tool to study gene functions in several *Phytophthora* species by using hairpin or antisense RNA constructs (1, 147). Canonical RNAi core enzymes in *Phytophthora* include a single RDR, two DCLs (14, 44), and variable numbers of AGOs (15). The two DCLs in each *Phytophthora* species form two well-supported clusters, consistent with the accumulation of two major classes of sRNAs, predominantly 21 nt and 25/26 nt, respectively (14, 44, 119). Indeed, production of the 21-nt sRNAs in *P. infestans* has been shown to associate with the activity of *PiDCL1* (118); whether the 25/26-nt sRNAs are associated with *PiDCL2* is unknown.

Compared to fungal pathogens, *Phytophthora* has an expanded number of AGOs (Figure 2), which are also variable in different species. For example, *P. infestans*, *P. ramorum*, and *P. sojae* encode five, six, and nine *AGO* genes, respectively (15). These AGOs form two well-supported clades, with *AGO1* from each species clustered together and separated from the other homologs. The expression patterns of *AGO* genes also showed a wide range of diversity. In *P. sojae*, *PsAGO1* is expressed at a high level during all developmental and infection stages. A similar pattern was also observed for *PsDCLs* and *PsRDR*. Other *PsAGOs* had low expression levels overall but some were induced in zoospores, indicating a role in reproduction (15). Co-immunoprecipitation assays in *P. infestans* revealed that *PiAGO1* was predominantly associated with 20–22-nt sRNAs and *PiAGO4*

primarily bound to 24–26-nt sRNAs, whereas *PiAGO5* did not appear to have a size preference for sRNA binding (5). These findings suggest distinct contributions of different AGOs by loading specific sRNA classes for target gene silencing (15). However, knockdown mutants of *Piago1/2* and *Pidd1* did not show obvious changes in morphology, development, or pathogenicity (119). This could be due to insufficient silencing of the *AGO* and *DCL* genes by the transient RNAi approach used in *P. infestans* or potential functional redundancy of the homologous genes.

The 21-nt sRNAs in *Phytophthora* are primarily derived from inverted repeats and specific gene families, such as Crinkle and Necrosis effectors (CRNs) and type III fibronectins (44), whereas the 25/26-nt sRNAs are predominantly associated with genomic regions with low gene density and harboring transposable elements (44). *Phytophthora* species encode a large complement of cytoplasmic effectors and the effector-encoding genes tend to localize to repeat-rich compartments in the genome (37), raising the possibility of sRNA-mediated regulation. Indeed, abundant sRNAs have been found to be derived from CRN genes and LTR retrotransposons in *P. infestans* (44, 118). Furthermore, RNA silencing of transposons may also influence the expression of nearby effector genes through heterochromatin formation (121, 126). As such, sRNAs may affect effector expression, thereby altering the interaction with the host (36). For example, naturally silenced alleles of the effector *Avr3a* were found in field isolates of *P. sojae* that can evade *Avr3a*-triggered ETI. sRNAs of 24–26 nt accumulated from the *Avr3a* locus, suggesting a link between the silencing of *Avr3a* and sRNA-mediated RNAi (103). In *Phytophthora parasitica*, 25/26-nt sRNAs, but not 21-nt sRNAs, are associated with efficient gene silencing. The 25/26-nt sRNA–generating loci reside predominantly in gene-sparse and repeat-rich regions, which also harbor approximately 50% of the effector genes and some immune elicitor-encoding genes (65). This genome localization bias may allow epigenetic regulation of effector expression, which could facilitate the rapid evolution of *Phytophthora* in the arms race with their hosts (36, 99).

Although *Phytophthora* species have a conserved RNAi pathway, only one conserved sRNA, miR8788, has been identified from *P. infestans*, *P. sojae*, and *P. ramorum*. miR8788 induces cleavage of its target gene, *AAAP*, which encodes an amino acid/auxin permease (44). In addition, many tRNA-derived sRNAs, which regulate gene expression by inducing sequence-specific degradation of target RNAs, were found in *P. sojae* (123). However, the biological significance of target regulation by miR8788 and tRNA-derived sRNAs has not been demonstrated.

SMALL RNA TRAFFICKING BETWEEN HOSTS AND PATHOGENS

sRNAs are mobile molecules that can function beyond the cells from which they are synthesized (85). In plants, both miRNAs and siRNAs have been found to move locally from cell to cell through plasmodesmata and over long distances via the phloem (90). In antiviral immunity, siRNAs may move in advance of the spread of infection to prime silencing of viral RNAs in uninfected cells (41). Whether sRNAs could also prime plant defense against nonviral pathogens by functioning as systemic signaling molecules is an attractive possibility remaining to be tested. Compared to siRNAs, miRNAs are considered to be less mobile and the sites of their synthesis were found to be correlated with the sites of action (4, 100). Nonetheless, local, systemic, and *trans*-species movement of a few plant miRNAs has been reported. Importantly, sRNA mobility is not directly correlated with abundance, indicating a sorting mechanism that could potentially be based on and influenced by biosynthesis, sequence, and structure of the sRNA molecule as well as their interaction with RNA-binding proteins.

Recent research has highlighted *trans*-species gene silencing, in which sRNAs derived from one partner of an interacting pair silence target transcripts in the other organism. Although *trans*-species gene silencing has been indicated in a few plant pathosystems, the current evidence is

mostly based on sRNA sequencing data obtained from infected plant tissues and bioinformatic prediction of potential targets. In two studies, foreign sRNAs were demonstrated to associate withAGO complexes (40, 124). In these studies, sRNAs produced by the necrotrophic fungal pathogen *B. cinerea* (124) and the biotrophic oomycete pathogen *Hyaloperonospora arabidopsis* (40) guide target gene silencing in their host plant, *A. thaliana*. Because these host targets are components of the plant immune system, the pathogen sRNAs dampen plant defense and promote disease (Table 2). However, how these sRNAs are secreted and translocated from the pathogen into the host cells has not been explored. Therefore, the mechanisms underlying sRNA movement, which is a central process of *trans*-species gene silencing, remain unclear. Here, we focus on discussing the potential mechanisms by which plant sRNAs may traffic to invading pathogens.

Small RNA Secretion from Plant Cells

In eukaryotes, the general secretory pathways include the classic endoplasmic reticulum (ER)–Golgi route, in which proteins with an N-terminal secretion peptide are translated in membrane-bound polysomes (MBPs) on rough ER and transferred to Golgi apparatus through budding vesicles. Contents in these secretory vesicles are released to the extracellular compartment after being fused to the plasma membrane (104). These contents can be subsequently taken up by another cell through endocytosis. The unconventional Golgi-independent secretion pathway involves the release of EVs whose cargo includes proteins lacking the secretion peptide, RNA, lipids, and metabolic compounds (108). EVs are enclosed in endosomal compartments called multivesicular bodies (MVBs) in the cytosol and released after MVBs are fused with the plasma membrane. The contents of EVs are delivered into the cytosol of a recipient cell after the EV membrane is fused with the plasma membrane of the recipient cell. In animals, RNA cargos are essential for cell–cell communication through EVs (32).

EVs of plants have been investigated for sRNA transportation (Figure 1). In *A. thaliana*, secondary siRNAs, including tasiRNAs and *PPR*-siRNAs, that can exert host-induced gene silencing were found to be present in EVs (19, 58). Importantly, mutants of *A. thaliana* genes involved in the exosome formation (a class of EVs) were unable to silence target genes in *B. cinerea*, indicating that exosomes are required for the delivery of tasiRNAs into the fungal cells. Furthermore, the loading of tasiRNAs in the exosomes was selective, suggesting potential sorting mechanisms that facilitate the transport of host-targeting tasiRNAs (19). However, a study on extracellular sRNA profiling found that the overall abundance of the 20–24-nt miRNAs and siRNAs was very low in EVs extracted from the apoplastic space of *A. thaliana*; rather, 10–17-nt tiny RNAs (tRNAs) were highly enriched in these vesicles (8). Although the function of these tRNAs in gene silencing is unknown, a recent finding that 14-nt sRNAs in humans can guide sequence-specific cleavage of target transcripts by a specific AGO protein (101) raised the exciting possibility that the EV-cargoed tRNAs in plants may function as silencing agents. Furthermore, the abundance of *PPR*-siRNAs increased in EVs isolated from *P. capsici*-infected *A. thaliana*, indicating that EV cargos may change after pathogen perception (58). Monitoring the dynamics of EV cargos at various infection stages would help clarify the contribution of EVs to sRNA movement in *trans*-species gene silencing.

Despite the lack of enrichment of 20–24-nt sRNAs in EVs, many secondary siRNAs and some miRNAs were found to be enriched in apoplastic spaces (8), suggesting that these sRNAs could be secreted through an EV-independent route. Intriguingly, the initiation of secondary siRNA production requires the association of the triggering miRNAs with MBPs and rough ER (81). Furthermore, essential proteins for secondary siRNA production, including RDR6, were found in siRNA bodies that are often adjacent to Golgi (141). It is therefore tempting to speculate that the biosynthesis and secretion of secondary siRNAs could be linked, facilitating a potential secretion

of siRNAs via the ER–Golgi route (Figure 1). As such, the cytoplasmic partitioning of miRNAs versus siRNAs may underlie the difference in their mobility. It is also important to note that a pool of diverse secondary siRNAs is constitutively produced but can be further induced upon pathogen perception (58), possibly as a surveillance mechanism. Therefore, the export of these siRNAs may be an important mechanism to avoid unintended silencing of endogenous genes.

Small RNA Trafficking at the Host–Pathogen Interaction Interface

Biotrophic/hemibiotrophic filamentous pathogens form haustoria, specialized infection structures at the host interaction interface, to facilitate nutrient uptake and effector delivery. Enveloped by a modified plant plasma membrane called the extrahaustorial membrane (EHM), haustoria are separated from the host cell by the extrahaustorial matrix (EHMx) where the plant cell wall is absent (125). In the haustoriated plant cells, numerous organelles accumulate in the vicinity of the EHM, including Golgi stacks, ER, secretory vesicles, and MVBs, presumably secreting antimicrobial compounds to arrest pathogen colonization (115, 138). It is possible that sRNAs are secreted from plant cells via EV-dependent and/or EV-independent pathways through the EHM and then concentrated in the EHMx for subsequent uptake by the pathogen (Figure 1). The lack of plant cell wall in the EHMx may facilitate the secretion of sRNAs. As such, haustoria might be a major gateway for sRNA translocation. Targeted secretion of sRNAs at the host–pathogen interaction interface would also increase the local concentration of sRNAs, thereby enhancing the silencing of target genes in the pathogen.

FUTURE PERSPECTIVES

The past few years have seen rapid development in the research field of sRNAs in plant–pathogen/parasite interactions. sRNA profiles have been documented for many pathogens and plants. Some sRNAs have been functionally characterized for their role in disease development. Accumulating evidence suggests that sRNA-mediated gene silencing may occur in a *trans*-species manner, which is an exciting extension of the known function of sRNAs as mobile regulatory and signaling molecules. Understanding how HIGS works is an important step toward implementing sRNA-based defense in disease management.

Despite these advances, many challenges remain. In the burgeoning area of *trans*-species gene silencing, some major gaps need to be filled. One of the assumptions that is often made without sufficient experimental support is that sRNAs can silence predicted transcripts as long as there is sequence complementarity with a certain level of tolerance for mismatch. It is important to consider that sequence complementarity is not the sole factor dictating silencing efficiency. For example, it has recently been shown that miRNA cleavage efficiency is more affected by target site structure than sequence complementarity (136). This consideration is even more important when it comes to target prediction in another organism. It is important to optimize the target prediction and robustly confirm true targets using genetic and biochemical approaches. Verification of sRNAs loading in theAGO complexes of the combating organism and genetic analysis using mutants of the core enzymes of RNAi would lend key support to gene silencing guided by foreign sRNAs by hijacking the endogenous mechanism.

The efficiency of gene silencing is significantly affected by sRNA stability in addition to RNA structure. In plants, sRNA stability is determined by HEN1-mediated 2'-*O*-methyl modification of the 3' terminal nucleotide. Nonmethylated sRNAs are unstable and subject to rapid degradation by nucleases (64). Notably, clear orthologs of HEN1 have not been identified from any pathogenic fungi or oomycetes. At least in *P. infestans*, sRNAs were found to have unmodified 3' terminal nucleotides (118). Therefore, it is interesting to study potential mechanisms utilized by pathogens

to enhance sRNA stability during cell-to-cell transportation and facilitate efficient loading into plant AGOs. Furthermore, careful investigation is required to discover how pathogen sRNAs can effectively compete with endogenous plant sRNAs to bind to AGO and accumulate to sufficient levels to silence target genes and significantly affect their functions.

Another important research area is sRNA trafficking, in which many questions await answers. EV-independent pathways should be examined for their contribution to sRNA trafficking. Previous studies suggest that miRNA movement can be directional across specific cell–cell interfaces (112). Whether similar mechanisms can support directional trafficking of sRNAs at the host–pathogen interface is worth investigation. For sRNAs that are shuttled by EVs, it is important to elucidate sorting mechanisms that determine the selectivity. In animal parasitic nematodes, AGO-siRNA complexes are loaded in EVs for silencing host gene expression (31). Systemic examination of RNA-binding proteins will provide information on how they may be involved in the sRNA trafficking process. Both mRNA and sRNA are mobile. Thousands of mRNAs have been found to be exchanged between a parasitic plant and its host (74). The current evidence cannot rule out the possibility that RNA precursors may be the mobile molecules that trigger sRNA production in the combating organism. This could potentially remediate the compatibility issue of foreign sRNAs with the AGO complex.

A central concept in host–pathogen interaction is the coevolutionary arms race. An excellent example of this tug-of-war is pathogen effectors and the NLR receptors, both exhibiting patterns of diversifying evolution. If specific sRNAs are used to silence targets in the combating organisms, evolutionary features reflecting the antagonistic interactions are expected to be observed in both sRNA-generating sequences and the target genes. Interestingly, the maize pathogen *U. maydis* has lost the canonical RNAi machinery, possibly due to selective pressure imposed by host sRNA-based defense. Investigation of the evolutionary dynamics of components involved in *trans*-species gene silencing will provide essential insight into the role of sRNAs in host–pathogen interactions. A comparison of these evolutionary dynamics in pathosystems with different infection styles (biotrophy versus necrotrophy; broad host range versus narrow host range) will advance our understanding of this new perspective of host–pathogen interactions.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

We apologize for being unable to discuss or cite all related studies because of limited space. Research in W.M.’s laboratory is supported by the National Science Foundation (IOS-1340001) and Gatsby Charity Foundation. The research in Y.Q.’s laboratory is supported by grants from the National Natural Science Foundation of China (32072502), the Shuguang Program of the Shanghai Education Development Foundation and Shanghai Municipal Education Commission (18SG43), and the Science and Technology Commission of Shanghai Municipality (18DZ2260500). We thank Dr. Michelle Hulin for her help with **Figure 2**.

LITERATURE CITED

1. Ah-Fong AM, Bormann-Chung CA, Judelson HS. 2008. Optimization of transgene-mediated silencing in *Phytophthora infestans* and its association with small-interfering RNAs. *Fungal Genet. Biol.* 45:1197–205
2. Allen E, Xie Z, Gustafson AM, Carrington JC. 2005. microRNA-directed phasing during *trans*-acting siRNA biogenesis in plants. *Cell* 121:207–21

3. Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, et al. 2010. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in *Arabidopsis*. *Plant Physiol.* 154:757–71
4. Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y. 2006. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. *Plant Cell* 18:1134–51
5. Asman AK, Fogelqvist J, Vetukuri RR, Dixielius C. 2016. *Phytophthora infestans* Argonaute 1 binds microRNA and small RNAs from effector genes and transposable elements. *New Phytol.* 211:993–1007
6. Axtell MJ. 2013. Classification and comparison of small RNAs from plants. *Annu. Rev. Plant Biol.* 64:137–59
7. Bai Y, Lan F, Yang W, Zhang F, Yang K, et al. 2015. sRNA profiling in *Aspergillus flavus* reveals differentially expressed miRNA-like RNAs response to water activity and temperature. *Fungal Genet. Biol.* 81:113–19
8. Baldrich P, Rutter BD, Karimi HZ, Podicheti R, Meyers BC, Innes RW. 2019. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-nucleotide “tiny” RNAs. *Plant Cell* 31:315–24
9. Barkan A, Small I. 2014. Pentatricopeptide repeat proteins in plants. *Annu. Rev. Plant Biol.* 65:415–42
10. Baulcombe DC. 2015. VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts. *Curr. Opin. Plant Biol.* 26:141–46
11. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, et al. 2007. Control of coleopteran insect pests through RNA interference. *Nat. Biotechnol.* 25:1322–26
12. Beakes GW, Glockling SL, Sekimoto S. 2012. The evolutionary phylogeny of the oomycete “fungi.” *Protoplasma* 249:3–19
13. Billmyre RB, Calo S, Feretzaki M, Wang X, Heitman J. 2013. RNAi function, diversity, and loss in the fungal kingdom. *Chromosome Res.* 21:561–72
14. Bollmann SR, Fang Y, Press CM, Tyler BM, Grunwald NJ. 2016. Diverse evolutionary trajectories for small RNA biogenesis genes in the oomycete genus *Phytophthora*. *Front. Plant Sci.* 7:284
15. Bollmann SR, Press CM, Tyler BM, Grunwald NJ. 2018. Expansion and divergence of Argonaute genes in the oomycete genus *Phytophthora*. *Front. Microbiol.* 9:2841
16. Bologna NG, Voinnet O. 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in *Arabidopsis*. *Annu. Rev. Plant Biol.* 65:473–503
17. Borges F, Martienssen RA. 2015. The expanding world of small RNAs in plants. *Nat. Rev. Mol. Cell Biol.* 16:727–41
18. Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. *Annu. Rev. Phytopathol.* 55:257–86
19. Cai Q, Qiao L, Wang M, He B, Lin FM, et al. 2018. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. *Science* 360:1126–29
20. Campo S, Gilbert KB, Carrington JC. 2016. Small RNA-based antiviral defense in the phytopathogenic fungus *Colletotrichum higginsianum*. *PLOS Pathog.* 12(6):e1005640
21. Canto-Pastor A, Santos B, Valli AA, Summers W, Schornack S, Baulcombe DC. 2019. Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. *PNAS* 116:2755–60
22. Cantu D, Govindarajulu M, Kozik A, Wang M, Chen X, et al. 2011. Next generation sequencing provides rapid access to the genome of *Puccinia striiformis* f. sp. *tritici*, the causal agent of wheat stripe rust. *PLOS ONE* 6:e24230
23. Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, et al. 2010. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. *Nature* 465:316–21
24. Chang SS, Zhang Z, Liu Y. 2012. RNA interference pathways in fungi: mechanisms and functions. *Annu. Rev. Microbiol.* 66:305–23
25. Chen K, Liu L, Zhang X, Yuan Y, Ren S, et al. 2018. Phased secondary small interfering RNAs in *Panax notoginseng*. *BMC Genom.* 19:41
26. Chen R, Jiang N, Jiang Q, Sun X, Wang Y, et al. 2014. Exploring microRNA-like small RNAs in the filamentous fungus *Fusarium oxysporum*. *PLOS ONE* 9:e104956

27. Chen X. 2010. Small RNAs: secrets and surprises of the genome. *Plant J.* 61:941–58
28. Chen Y, Gao Q, Huang M, Liu Y, Liu Z, et al. 2015. Characterization of RNA silencing components in the plant pathogenic fungus *Fusarium graminearum*. *Sci. Rep.* 5:12500
29. Chen Y, Kistler HC, Ma Z. 2019. *Fusarium graminearum* trichothecene mycotoxins: biosynthesis, regulation, and management. *Annu. Rev. Phytopathol.* 57:15–39
30. Chisholm ST, Coaker G, Day B, Staskawicz BJ. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. *Cell* 124:803–14
31. Chow FW, Koutsovoulos G, Ovando-Vazquez C, Neophytou K, Bermudez-Barrientos JR, et al. 2019. Secretion of an Argonaute protein by a parasitic nematode and the evolution of its siRNA guides. *Nucleic Acids Res.* 47:3594–606
32. Colombo M, Raposo G, Thery C. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. *Annu. Rev. Cell Dev. Biol.* 30:255–89
33. Cui H, Tsuda K, Parker JE. 2015. Effector-triggered immunity: from pathogen perception to robust defense. *Annu. Rev. Plant Biol.* 66:487–511
34. de Felippes FF, Ott F, Weigel D. 2011. Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in *Arabidopsis thaliana*. *Nucleic Acids Res.* 39:2880–89
35. Deng Y, Wang J, Tung J, Liu D, Zhou Y, et al. 2018. A role for small RNA in regulating innate immunity during plant growth. *PLOS Pathog.* 14:e1006756
36. Dong S, Ma W. 2021. How to win a tug-of-war: the adaptive evolution of *Phytophthora* effectors. *Curr. Opin. Plant Biol.* 62:102027
37. Dong S, Raffaele S, Kamoun S. 2015. The two-speed genomes of filamentous pathogens: waltz with plants. *Curr. Opin. Genet. Dev.* 35:57–65
38. Dou D, Zhou JM. 2012. Phytopathogen effectors subverting host immunity: different foes, similar battleground. *Cell Host Microbe* 12:484–95
39. Dubey H, Kiran K, Jaswal R, Jain P, Kayastha AM, et al. 2019. Discovery and profiling of small RNAs from *Puccinia triticina* by deep sequencing and identification of their potential targets in wheat. *Funct. Integr. Genom.* 19:391–407
40. Dunker F, Trutzenberg A, Rothenpieler JS, Kuhn S, Prols R, et al. 2020. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. *eLife* 9:56096
41. Dunoyer P, Melnyk C, Molnar A, Slotkin RK. 2013. Plant mobile small RNAs. *Cold Spring Harb. Perspect. Biol.* 5(7):a017897
42. Ellendorff U, Fradin EF, de Jonge R, Thomma BP. 2009. RNA silencing is required for *Arabidopsis* defence against *Verticillium* wilt disease. *J. Exp. Bot.* 60:591–602
43. Espino J, Gonzalez M, Gonzalez C, Brito N. 2014. Efficiency of different strategies for gene silencing in *Botrytis cinerea*. *Appl. Microbiol. Biotechnol.* 98:9413–24
44. Fahlgren N, Bollmann SR, Kasschau KD, Cuperus JT, Press CM, et al. 2013. *Phytophthora* have distinct endogenous small RNA populations that include short interfering and microRNAs. *PLOS ONE* 8:e77181
45. Fei Q, Li P, Teng C, Meyers BC. 2015. Secondary siRNAs from *Medicago* NB-LRRs modulated via miRNA-target interactions and their abundances. *Plant J.* 83:451–65
46. Fei Q, Xia R, Meyers BC. 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. *Plant Cell* 25:2400–15
47. Fei Q, Zhang Y, Xia R, Meyers BC. 2016. Small RNAs add zing to the zig-zag-zig model of plant defenses. *Mol. Plant-Microbe Interact.* 29:165–69
48. Feldbrugge M, Zarnack K, Vollmeister E, Baumann S, Koepke J, et al. 2008. The posttranscriptional machinery of *Ustilago maydis*. *Fungal Genet. Biol.* 45(Suppl. 1):S40–46
49. Gascioli V, Mallory AC, Bartel DP, Vaucheret H. 2005. Partially redundant functions of *Arabidopsis* DICER-like enzymes and a role for DCL4 in producing *trans*-acting siRNAs. *Curr. Biol.* 15:1494–500
50. Ghildiyal M, Zamore PD. 2009. Small silencing RNAs: an expanding universe. *Nat. Rev. Genet.* 10:94–108
51. Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. *Annu. Rev. Phytopathol.* 43:205–27

52. Govindarajulu M, Epstein L, Wroblewski T, Michelmore RW. 2015. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. *Plant Biotechnol. J.* 13:875–83
53. Gowda M, Nunes CC, Sailsbury J, Xue M, Chen F, et al. 2010. Genome-wide characterization of methylguanosine-capped and polyadenylated small RNAs in the rice blast fungus *Magnaporthe oryzae*. *Nucleic Acids Res.* 38:7558–69
54. Guo MW, Yang P, Zhang JB, Liu G, Yuan QS, et al. 2019. Expression of microRNA-like RNA-2 (Fgml-2) and bioH1 from a single transcript in *Fusarium graminearum* are inversely correlated to regulate biotin synthesis during vegetative growth and host infection. *Mol. Plant Pathol.* 20:1574–81
55. Guo N, Ye WW, Wu XL, Shen DY, Wang YC, et al. 2011. Microarray profiling reveals microRNAs involving soybean resistance to *Phytophthora sojae*. *Genome* 54:954–58
56. Guo Z, Li Y, Ding SW. 2019. Small RNA-based antimicrobial immunity. *Nat. Rev. Immunol.* 19:31–44
57. Hou Y, Ma W. 2020. Natural host-induced gene silencing offers new opportunities to engineer disease resistance. *Trends Microbiol.* 28:109–17
58. Hou Y, Zhai Y, Feng L, Karimi HZ, Rutter BD, et al. 2019. A *Phytophthora* effector suppresses trans-kingdom RNAi to promote disease susceptibility. *Cell Host Microbe* 25:153–65.e5
59. Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, et al. 2007. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in *Arabidopsis* reveals dependency on miRNA- and tasiRNA-directed targeting. *Plant Cell* 19:926–42
60. Huang G, Allen R, Davis EL, Baum TJ, Hussey RS. 2006. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. *PNAS* 103:14302–6
61. Hudzik C, Hou Y, Ma W, Axtell MJ. 2020. Exchange of small regulatory RNAs between plants and their pests. *Plant Physiol.* 182:51–62
62. Huot B, Yao J, Montgomery BL, He SY. 2014. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. *Mol. Plant* 7:1267–87
63. Jahan SN, Asman AK, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C. 2015. Plant-mediated gene silencing restricts growth of the potato late blight pathogen *Phytophthora infestans*. *J. Exp. Bot.* 66:2785–94
64. Ji L, Chen X. 2012. Regulation of small RNA stability: methylation and beyond. *Cell Res.* 22:624–36
65. Jia J, Lu W, Zhong C, Zhou R, Xu J, et al. 2017. The 25–26 nt small RNAs in *Phytophthora parasitica* are associated with efficient silencing of homologous endogenous genes. *Front. Microbiol.* 8:773
66. Jin Y, Zhao JH, Zhao P, Zhang T, Wang S, Guo HS. 2019. A fungal miRNA mediates epigenetic repression of a virulence gene in *Verticillium dahliae*. *Philos. Trans. R. Soc. Lond. B* 374:20180309
67. Jones JD, Dangl JL. 2006. The plant immune system. *Nature* 444:323–29
68. Kadotani N, Nakayashiki H, Tosa Y, Mayama S. 2003. RNA silencing in the phytopathogenic fungus *Magnaporthe oryzae*. *Mol. Plant-Microbe Interact.* 16:769–76
69. Kadotani N, Nakayashiki H, Tosa Y, Mayama S. 2004. One of the two Dicer-like proteins in the filamentous fungi *Magnaporthe oryzae* genome is responsible for hairpin RNA-triggered RNA silencing and related small interfering RNA accumulation. *J. Biol. Chem.* 279:44467–74
70. Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, et al. 2015. The top 10 oomycete pathogens in molecular plant pathology. *Mol. Plant Pathol.* 16:413–34
71. Karasov TL, Chae E, Herman JJ, Bergelson J. 2017. Mechanisms to mitigate the trade-off between growth and defense. *Plant Cell* 29:666–80
72. Kettles GJ, Hofinger BJ, Hu P, Bayon C, Rudd JJ, et al. 2019. sRNA profiling combined with gene function analysis reveals a lack of evidence for cross-kingdom RNAi in the wheat-*Zymoseptoria tritici* pathosystem. *Front. Plant Sci.* 10:892
73. Khatabi B, Arikit S, Xia R, Winter S, Oumar D, et al. 2016. High-resolution identification and abundance profiling of cassava (*Manihot esculenta* Crantz) microRNAs. *BMC Genom.* 17:85
74. Kim G, LeBlanc ML, Wafula EK, dePamphilis CW, Westwood JH. 2014. Plant science. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. *Science* 345:808–11
75. Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV. 2009. Diversity, pathogenicity, and management of *Verticillium* species. *Annu. Rev. Phytopathol.* 47:39–62
76. Kuan T, Zhai Y, Ma W. 2016. Small RNAs regulate plant responses to filamentous pathogens. *Semin. Cell Dev. Biol.* 56:190–200

77. Kulcheski FR, de Oliveira LF, Molina LG, Almerala MP, Rodrigues FA, et al. 2011. Identification of novel soybean microRNAs involved in abiotic and biotic stresses. *BMC Genom.* 12:307
78. Lee HC, Li L, Gu W, Xue Z, Crosthwaite SK, et al. 2010. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. *Mol. Cell* 38:803–14
79. Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, et al. 2012. MicroRNA regulation of plant innate immune receptors. *PNAS* 109:1790–95
80. Li L, Habring A, Wang K, Weigel D. 2020. Atypical resistance protein RPW8/HR triggers oligomerization of the NLR immune receptor RPP7 and autoimmunity. *Cell Host Microbe* 27:405–17.e6
81. Li S, Le B, Ma X, Li S, You C, et al. 2016. Biogenesis of phased siRNAs on membrane-bound polysomes in *Arabidopsis*. *eLife* 5:e22750
82. Li Y, Liu X, Yin Z, You Y, Zou Y, et al. 2020. MicroRNA-like miR236, regulated by transcription factor MoMsn2, targets histone acetyltransferase MoHat1 to play a role in appressorium formation and virulence of the rice blast fungus *Magnaporthe oryzae*. *Fungal Genet. Biol.* 137:103349
83. Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM. 2010. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. *Plant Physiol.* 152:2222–31
84. Liu J, Cheng X, Liu D, Xu W, Wise R, Shen QH. 2014. The miR9863 family regulates distinct *Mla* alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. *PLOS Genet.* 10:e1004755
85. Liu L, Chen X. 2018. Intercellular and systemic trafficking of RNAs in plants. *Nat. Plants* 4:869–78
86. Liu T, Hu J, Zuo Y, Jin Y, Hou J. 2016. Identification of microRNA-like RNAs from *Curvularia lunata* associated with maize leaf spot by bioinformation analysis and deep sequencing. *Mol. Genet. Genom.* 291:587–96
87. Ma KW, Ma W. 2016. Phytohormone pathways as targets of pathogens to facilitate infection. *Plant Mol. Biol.* 91:713–25
88. Ma W, Chen C, Liu Y, Zeng M, Meyers BC, et al. 2018. Coupling of microRNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA-mediated gene silencing. *New Phytol.* 217:1535–50
89. Matzke MA, Mosher RA. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. *Nat. Rev. Genet.* 15:394–408
90. Melnyk CW, Molnar A, Baulcombe DC. 2011. Intercellular and systemic movement of RNA silencing signals. *EMBO J.* 30:3553–63
91. Melonek J, Zhou R, Bayer PE, Edwards D, Stein N, Small I. 2019. High intraspecific diversity of restorer-of-fertility-like genes in barley. *Plant J.* 97:281–95
92. Meng H, Wang Z, Wang Y, Zhu H, Huang B. 2017. Dicer and Argonaute genes involved in RNA interference in the entomopathogenic fungus *Metarhizium robertsii*. *Appl. Environ. Microbiol.* 83(7):e03230-16
93. Mochama P, Jadhav P, Neupane A, Lee Marzano SY. 2018. Mycoviruses as triggers and targets of RNA silencing in white mold fungus *Sclerotinia sclerotiorum*. *Viruses* 10(4):214
94. Mueth NA, Ramachandran SR, Hulbert SH. 2015. Small RNAs from the wheat stripe rust fungus (*Puccinia striiformis* f.sp. *tritici*). *BMC Genom.* 16:718
95. Nakayashiki H, Kadotani N, Mayama S. 2006. Evolution and diversification of RNA silencing proteins in fungi. *J. Mol. Evol.* 63:127–35
96. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, et al. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. *Science* 312:436–39
97. Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, et al. 2010. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen *Blumeria graminis*. *Plant Cell* 22:3130–41
98. Nunes CC, Gowda M, Sailsbury J, Xue M, Chen F, et al. 2011. Diverse and tissue-enriched small RNAs in the plant pathogenic fungus, *Magnaporthe oryzae*. *BMC Genom.* 12:288
99. Pais M, Yoshida K, Giannakopoulou A, Pel MA, Cano LM, et al. 2018. Gene expression polymorphism underpins evasion of host immunity in an asexual lineage of the Irish potato famine pathogen. *BMC Evol. Biol.* 18:93
100. Parizotto EA, Dunoyer P, Rahm N, Hieber C, Voinnet O. 2004. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. *Genes Dev.* 18:2237–42

101. Park MS, Sim G, Kehling AC, Nakanishi K. 2020. Human Argonaute2 and Argonaute3 are catalytically activated by different lengths of guide RNA. *PNAS* 117:28576–78
102. Qiao Y, Liu L, Xiong Q, Flores C, Wong J, et al. 2013. Oomycete pathogens encode RNA silencing suppressors. *Nat. Genet.* 45:330–33
103. Qutob D, Chapman BP, Gijzen M. 2013. Transgenerational gene silencing causes gain of virulence in a plant pathogen. *Nat. Commun.* 4:1349
104. Rabouille C. 2017. Pathways of unconventional protein secretion. *Trends Cell Biol.* 27:230–40
105. Raman V, Simon SA, Demirci F, Nakano M, Meyers BC, Donofrio NM. 2017. Small RNA functions are required for growth and development of *Magnaporthe oryzae*. *Mol. Plant-Microbe Interact.* 30:517–30
106. Rogers K, Chen X. 2013. Biogenesis, turnover, and mode of action of plant microRNAs. *Plant Cell* 25:2383–99
107. Ronemus M, Vaughn MW, Martienssen RA. 2006. MicroRNA-targeted and small interfering RNA-mediated mRNA degradation is regulated by Argonaute, Dicer, and RNA-dependent RNA polymerase in *Arabidopsis*. *Plant Cell* 18:1559–74
108. Rutter BD, Innes RW. 2018. Extracellular vesicles as key mediators of plant-microbe interactions. *Curr. Opin. Plant Biol.* 44:16–22
109. Sarkies P, Miska EA. 2014. Small RNAs break out: the molecular cell biology of mobile small RNAs. *Nat. Rev. Mol. Cell Biol.* 15:525–35
110. Shao Y, Tang J, Chen S, Wu Y, Wang K, et al. 2019. miR4 and miR16 mediated fruiting body development in the medicinal fungus *Cordyceps militaris*. *Front. Microbiol.* 10:83
111. Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC. 2012. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. *Plant Cell* 24:859–74
112. Skopelitis DS, Hill K, Klesen S, Marco CF, von Born P, et al. 2018. Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional signals. *Nat. Commun.* 9:3107
113. Smith LM, Burbano HA, Wang X, Fitz J, Wang G, et al. 2015. Rapid divergence and high diversity of miRNAs and miRNA targets in the Camelinae. *Plant J.* 81:597–610
114. Son H, Park AR, Lim JY, Shin C, Lee YW. 2017. Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus *Fusarium graminearum*. *PLOS Genet.* 13:e1006595
115. Takemoto D, Jones DA, Hardham AR. 2003. GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of *Arabidopsis* by oomycete pathogens. *Plant J.* 33:775–92
116. Tian D, Traw MB, Chen JQ, Kretzman M, Bergelson J. 2003. Fitness costs of R-gene-mediated resistance in *Arabidopsis thaliana*. *Nature* 423:74–77
117. Trieu TA, Calo S, Nicolas FE, Vila A, Moxon S, et al. 2015. A non-canonical RNA silencing pathway promotes mRNA degradation in basal fungi. *PLOS Genet.* 11:e1005168
118. Vetukuri RR, Asman AK, Tellgren-Roth C, Jahan SN, Reimegard J, et al. 2012. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete *Phytophthora infestans*. *PLOS ONE* 7:e51399
119. Vetukuri RR, Avrova AO, Grenville-Briggs LJ, Van West P, Soderbom F, et al. 2011. Evidence for involvement of Dicer-like, Argonaute and histone deacetylase proteins in gene silencing in *Phytophthora infestans*. *Mol. Plant Pathol.* 12:772–85
120. Wang B, Sun Y, Song N, Zhao M, Liu R, et al. 2017. *Puccinia striiformis* f. sp. *tritici* microRNA-like RNA 1 (Pst-miR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. *New Phytol.* 215:338–50
121. Wang L, Chen H, Li J, Shu H, Zhang X, et al. 2020. Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen. *Nucleic Acids Res.* 48:1790–99
122. Wang M, Weiberg A, Dellota E Jr, Yamane D, Jin H. 2017. *Botrytis* small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. *RNA Biol.* 14:421–28
123. Wang Q, Li T, Xu K, Zhang W, Wang X, et al. 2016. The tRNA-derived small RNAs regulate gene expression through triggering sequence-specific degradation of target transcripts in the oomycete pathogen *Phytophthora sojae*. *Front. Plant Sci.* 7:1938

124. Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, et al. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. *Science* 342:118–23
125. Whisson SC, Boevink PC, Wang S, Birch PR. 2016. The cell biology of late blight disease. *Curr. Opin. Microbiol.* 34:127–35
126. Whisson SC, Vetukuri RR, Avrova AO, Dixelius C. 2012. Can silencing of transposons contribute to variation in effector gene expression in *Phytophthora infestans*? *Mol. Genet. Elements* 2:110–14
127. Williamson B, Tudzynski B, Tudzynski P, van Kan JA. 2007. *Botrytis cinerea*: the cause of grey mould disease. *Mol. Plant Pathol.* 8:561–80
128. Wilson RA, Talbot NJ. 2009. Under pressure: investigating the biology of plant infection by *Magnaporthe oryzae*. *Nat. Rev. Microbiol.* 7:185–95
129. Wong J, Gao L, Yang Y, Zhai J, Arikit S, et al. 2014. Roles of small RNAs in soybean defense against *Phytophthora sojae* infection. *Plant J.* 79:928–40
130. Xia R, Meyers BC, Liu Z, Beers EP, Ye S, Liu Z. 2013. MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA biogenesis in eudicots. *Plant Cell* 25:1555–72
131. Xia R, Xu J, Arikit S, Meyers BC. 2015. Extensive families of miRNAs and PHAS loci in Norway spruce demonstrate the origins of complex phasiRNA networks in seed plants. *Mol. Biol. Evol.* 32:2905–18
132. Xia R, Zhu H, An YQ, Beers EP, Liu Z. 2012. Apple miRNAs and tasiRNAs with novel regulatory networks. *Genome Biol.* 13:R47
133. Xu M, Guo Y, Tian R, Gao C, Guo F, et al. 2020. Adaptive regulation of virulence genes by microRNA-like RNAs in *Valsa mali*. *New Phytol.* 227:899–913
134. Yang F. 2015. Genome-wide analysis of small RNAs in the wheat pathogenic fungus *Zymoseptoria tritici*. *Fungal Biol.* 119:631–40
135. Yang L, Mu X, Liu C, Cai J, Shi K, et al. 2015. Overexpression of potato miR482e enhanced plant sensitivity to *Verticillium dahliae* infection. *J. Integr. Plant Biol.* 57:1078–88
136. Yang M, Woolfenden HC, Zhang Y, Fang X, Liu Q, et al. 2020. Intact RNA structurome reveals mRNA structure-mediated regulation of miRNA cleavage in vivo. *Nucleic Acids Res.* 48:8767–81
137. Ye W, Ma W. 2016. Filamentous pathogen effectors interfering with small RNA silencing in plant hosts. *Curr. Opin. Microbiol.* 32:1–6
138. Yi M, Valent B. 2013. Communication between filamentous pathogens and plants at the biotrophic interface. *Annu. Rev. Phytopathol.* 51:587–611
139. Yin C, Ramachandran SR, Zhai Y, Bu C, Pappu HR, Hulbert SH. 2019. A novel fungal effector from *Puccinia graminis* suppressing RNA silencing and plant defense responses. *New Phytol.* 222:1561–72
140. Yin C, Zhu H, Jiang Y, Shan Y, Gong L. 2020. Silencing Dicer-like genes reduces virulence and sRNA generation in *Penicillium italicum*, the cause of citrus blue mold. *Cells* 9(2):363
141. Yu Y, Jia T, Chen X. 2017. The ‘how’ and ‘where’ of plant microRNAs. *New Phytol.* 216:1002–17
142. Zeng W, Wang J, Wang Y, Lin J, Fu Y, et al. 2018. Dicer-like proteins regulate sexual development via the biogenesis of peritheciun-specific microRNAs in a plant pathogenic fungus *Fusarium graminearum*. *Front. Microbiol.* 9:818
143. Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, et al. 2011. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, *trans*-acting siRNAs. *Genes Dev.* 25:2540–53
144. Zhang T, Jin Y, Zhao JH, Gao F, Zhou BJ, et al. 2016. Host-induced gene silencing of the target gene in fungal cells confers effective resistance to the cotton wilt disease pathogen *Verticillium dahliae*. *Mol. Plant* 9:939–42
145. Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, et al. 2016. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. *Nat. Plants* 2:16153
146. Zhang Y, Xia R, Kuang H, Meyers BC. 2016. The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. *Mol. Biol. Evol.* 33:2692–705
147. Zhao Y, Li Y, Qiu M, Ma W, Wang Y. 2018. Generating gene silenced mutants in *Phytophthora sojae*. *Methods Mol. Biol.* 1848:275–86

148. Zheng Y, Wang Y, Wu J, Ding B, Fei Z. 2015. A dynamic evolutionary and functional landscape of plant phased small interfering RNAs. *BMC Biol.* 13:32
149. Zhou J, Fu Y, Xie J, Li B, Jiang D, et al. 2012. Identification of microRNA-like RNAs in a plant pathogenic fungus *Sclerotinia sclerotiorum* by high-throughput sequencing. *Mol. Genet. Genom.* 287:275–82
150. Zhou JM, Zhang Y. 2020. Plant immunity: danger perception and signaling. *Cell* 181:978–89

Contents

Research Advances in Potyviruses: From the Laboratory Bench to the Field <i>Xiuling Yang, Yinzi Li, and Aiming Wang</i>	1
Key Insights and Research Prospects at the Dawn of the Population Genomics Era for <i>Verticillium dahliae</i> <i>Jie-Yin Chen, Steven J. Klosterman, Xiao-Ping Hu, Xiao-Feng Dai, and Krishna V. Subbarao</i>	31
Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives <i>Kiwamu Tanaka and Martin Heil</i>	53
Characterization of Effector-Target Interactions in Necrotrophic Pathosystems Reveals Trends and Variation in Host Manipulation <i>Timothy L. Friesen and Justin D. Faris</i>	77
Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria <i>Wende Liu, Lindsay Triplett, and Xiao-Lin Chen</i>	99
Models of Plant Resistance Deployment <i>Loup Rimbaud, Frédéric Fabre, Julien Papaix, Benoît Moury, Christian Lannou, Luke G. Barrett, and Peter H. Thrall</i>	125
Interkingdom Signaling Interference: The Effect of Plant-Derived Small Molecules on Quorum Sensing in Plant-Pathogenic Bacteria <i>Janak Raj Joshi, Netaly Khazanov, Amy Charkowski, Adi Faigenboim, Hanoch Senderowitz, and Iris Yedidia</i>	153
Genetic Dissection of the <i>Erwinia amylovora</i> Disease Cycle <i>Roshni R. Kharadi, Jeffrey K. Schachterle, Xiaochen Yuan, Luisa F. Castiblanco, Jingyu Peng, Suzanne M. Slack, Quan Zeng, and George W. Sundin</i>	191

One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant–Pathogen Interactions <i>Lei Li and Detlef Weigel</i>	213
Regulation of Cell Death and Signaling by Pore-Forming Resistosomes <i>Guozhi Bi and Jian-Min Zhou</i>	239
Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens <i>Yongli Qiao, Rui Xia, Jixian Zhai, Yingnan Hou, Li Feng, Yi Zhai, and Wenbo Ma</i>	265
Harnessing Eco-Evolutionary Dynamics of Xanthomonads on Tomato and Pepper to Tackle New Problems of an Old Disease <i>Neha Potnis</i>	289
Genomic Approaches to Plant-Pathogen Epidemiology and Diagnostics <i>Alexandra J. Weisberg, Niklaus J. Grünwald, Elizabeth A. Savory, Melodie L. Putnam, and Jeff H. Chang</i>	311
Everything Is Faster: How Do Land-Grant University-Based Plant Diagnostic Laboratories Keep Up with a Rapidly Changing World? <i>Laura C. Iles, Ana C. Fulladolsa, Alicyn Smart, John Bonkowski, Tom Creswell, Carrie L. Harmon, Ray Hammerschmidt, R. Roz Hirch, and Lina Rodriguez Salamanca</i>	333
<i>Rice stripe virus</i> : Exploring Molecular Weapons in the Arsenal of a Negative-Sense RNA Virus <i>Yi Xu, Shuai Fu, Xiaorong Tao, and Xueping Zhou</i>	351
Mycotoxin Production in <i>Fusarium</i> According to Contemporary Species Concepts <i>Gary P. Munkvold, Robert H. Proctor, and Antonio Moretti</i>	373
Host Adaptation and Virulence in Heteroecious Rust Fungi <i>Sebastien Duplessis, Cecile Lorrain, Benjamin Petre, Melania Figueroa, Peter N. Dodds, and M. Catherine Aime</i>	403
An Emerging Role for Chloroplasts in Disease and Defense <i>Pradeep Kachroo, Tessa M. Burch-Smith, and Murray Grant</i>	423

Errata

An online log of corrections to *Annual Review of Phytopathology* articles may be found at <http://www.annualreviews.org/errata/phyto>