
Computer Communications 184 (2022) 107–117

L
R
A
E

A

K
N
T
C
O
T

1

b
I
a
r
c
b
d
i
c
i
a
n
a
A

✩

h
R
A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

atency and quality-aware task offloading in multi-node next generation
ANs✩,✩✩

yman Younis ∗, Brian Qiu, Dario Pompili
lectrical and Computer Engineering, Rutgers University–New Brunswick, NJ, USA

R T I C L E I N F O

eywords:
G-RAN
asks offloading
onvex optimization
penAirInterface (OAI)
estbed

A B S T R A C T

Next-Generation Radio Access Network (NG-RAN) is an emerging paradigm that provides flexible distribution
of cloud computing and radio capabilities at the edge of the wireless Radio Access Points (RAPs). Computation
at the edge bridges the gap for roaming end users, enabling access to rich services and applications. In this
paper, we propose a multi-edge node task offloading system, i.e., QLRan, a novel optimization solution for
latency and quality tradeoff task allocation in NG-RANs. Considering constraints on service latency, quality
loss, edge capacity, and task assignment, the problem of joint task offloading, latency, and Quality Loss of
Result (QLR) is formulated in order to minimize the User Equipment (UEs) task offloading utility, which is
measured by a weighted sum of reductions in task completion time and QLR cost. The QLRan optimization
problem is proved as a Mixed Integer Nonlinear Program (MINLP) problem, which is a NP-hard problem.
To efficiently solve the QLRan optimization problem, we utilize Linear Programming (LP)-based approach
that can be later solved by using convex optimization techniques. Additionally, a programmable NG-RAN
testbed is presented where the Central Unit (CU), Distributed Unit (DU), and UE are realized by USRP boards
and fully container-based virtualization approaches. Specifically, we use OpenAirInterface (OAI) and Docker
software platforms to deploy and perform the NG-RAN testbed for different functional split options. Then, we
characterize the performance in terms of data input, memory usage, and average processing time with respect
to QLR levels. Simulation results show that our algorithm performs significantly improves the network latency
over different configurations.
. Introduction

Motivation: Mobile platforms (e.g., smartphones, tablets, IoT mo-
ile devices) are becoming the predominant medium of access to
nternet services due to a tremendous increase in their computation
nd communication capabilities. However, enabling applications that
equire real-time, in-the-field data collection and mobile platform pro-
essing is still challenging due to (i) the insufficient computing capa-
ilities and unavailable aggregated/global data on individual mobile
evices and (ii) the prohibitive communication cost and response time
nvolved in offloading data to remote computing resources such as
loud datacenters for centralized computation. In light of these lim-
tations, the edge computing term was introduced to unite telco, IT,
nd cloud computing and provide cloud services directly from the
etwork edge. In general, the edge cloud servers or nodes are usu-
lly deployed directly at the mobile Base Stations (BSs) of a Radio
ccess Network (RAN), or at the local wireless Access Points (APs)

✩ A preliminary/shorter version of this work appeared in the Proc. of the IEEE/IFIP Wireless On-demand Network Systems and Services Conference (WONS),
Mar’21 [1].

✩ This work was supported by the US NSF Grant No. ECCS-2030101.
∗ Corresponding author.

E-mail addresses: a.younis@rutgers.edu (A. Younis), brian.qiu@rutgers.edu (B. Qiu), pompili@rutgers.edu (D. Pompili).

using a generic-computing platform. Hence, the edge cloud node has
ability to execute the offloading applications in close proximity to
end users. In this way, the network end-to-end (e2e) latency and
the back/mid/fronth-haul cost will be reduced. Recently, Cloud Radio
Access Network (C-RAN) [2] has been emerged as a clean-slate redesign
of the mobile network architecture in which parts of physical-layer
communication functionalities are decoupled from distributed, possibly
heterogeneous, Radio Access Points (RAPs), i.e., BSs or WiFi hotspots,
and are then consolidated into a baseband unit pool for centralized
processing. However, the centralized C-RAN design follows a ‘‘one size
fits all" architectural approach, which makes it difficult to address the
wide range of Quality of Service (QoS) requirements and support dif-
ferent types of traffic [3]. Also, a fully centralized architecture imposes
high capacity requirements on fronthaul links [4]. Therefore, Next
Generation RANs (NG-RAN) [5] has been introduced as a resource-
efficient solution to address the above issues and reduce deployment
costs. It is worthy of note that, due to the flexibility of NG-RAN architecture,
ttps://doi.org/10.1016/j.comcom.2021.11.026
eceived 30 July 2021; Received in revised form 27 October 2021; Accepted 29 N
vailable online 24 December 2021
140-3664/© 2021 Elsevier B.V. All rights reserved.
ovember 2021

https://doi.org/10.1016/j.comcom.2021.11.026
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2021.11.026&domain=pdf
mailto:a.younis@rutgers.edu
mailto:brian.qiu@rutgers.edu
mailto:pompili@rutgers.edu
https://doi.org/10.1016/j.comcom.2021.11.026


A. Younis, B. Qiu and D. Pompili Computer Communications 184 (2022) 107–117

a
i
o
Q
e
p
t

2

i

2

i
b
d
t
s
i
t
i
a
m
e
W
c
K
t
f
s
c
a
b
f
h
t
m
o
p
P
t
a
g
h

mobile network operators will have high degree of freedom to move from
a ‘‘full centralization’’ in C-RAN to a ‘‘partial centralization’’ in NG-RAN
with a specific functional splitting option to a ‘‘distributed approach’’ in edge
cloud [6]—enabling rich services and applications in close proximity to the
end users.

Task offloading can enhance the performance of mobile devices
because servers in the edge cloud have higher computation capabilities
than mobile devices. Therefore, enabling task offloading in NG-RAN
is proposed to address the limitations (e.g., storage and computing
resources) in the existing RANs. Meanwhile, in some cases, processing
the entire input data in edge cloud servers would require more than the
available computing resources to meet the desired latency/throughput
guarantees. In the context of NG-RAN applications (e.g., IoT, AR/VR),
transferring, managing, and analyzing large amounts of data in an edge
cloud would be prohibitively expensive. Hence, the tradeoff between
service latency and the tolerance of quality loss can improve key
network performance metrics like the user’s QoS [7,8]. In this paper,
we define the Quality Loss of Results (QLR) term as the level of
relaxing/approximating in data processing while the user’s QoS is still
at an acceptable level. Accordingly, our key idea is motivated by the
observation that in several NG-RAN applications such as media processing,
image processing, and data mining, a high-accuracy result is not always
necessary and desirable; instead, obtaining a suboptimal result with low
latency cost is more acceptable by vendors or end users. Consequently,
relaxing QLR in such applications alleviates the required computation
workload and enables a significant reduction of latency and computing
cost in NG-RAN.

Our Vision: Our objective is to design a holistic decision-maker for
an optimal joint task offloading scheme with quality and latency aware-
ness in a multi-edge NG-RAN to minimize the UEs’ overall offloading
cost. Specifically, we consider a multi-edge node network where each
RAP is equipped with an edge node to provide computation offloading
services to UEs. In this way, several key benefits could be brought
up to NG-RAN system over the multi-node servers; (i) preventing
the resource-limited edge node/servers from becoming the bottleneck.
Usually, the cloud servers overload when serving a large number of
UEs with high processing priority. By directing many UEs to nearby
edge nodes, the overloaded can be alleviated; (ii) reducing the energy
consumption and network latency. Each UE has the capability to offload
its task to the RAP with a more favorable uplink channel condition;
(iii) getting better network collaboration. The NG-RAN with multi-
RAP set could coordinate with each other to manage and balance the
computation resources between the edge servers. In this work, a Latency
and Quality tradeoffs task offloading problem, QLRan, is formulated to
trade off between the service latency and the acceptable level of QLR under
specific application requirements (e.g., QoS, computing, and transmitting
demands). Additionally, the process of task allocation across edge nodes is
formulated as an objective optimization problem. The optimization objectives
include both minimizing the average service latency and reducing the overall
quality loss.

Our Contributions: The main objective of this paper is to design
the QLRan algorithm, optimizing the trade-off between the application
completion time and QLR cost. The main contributions of this paper
are summarized as follows.

• Subject to transmission and processing delays, quality loss, and
computing capacity constraints, we formulate and analyze math-
ematically the QLRan optimization problem in NG-RAN as a
Mixed Integer Nonlinear Program (MINLP) that jointly optimizes
the computational task allocation and QLR levels. The problem
formulation and analysis trade off optimizing the service latency
and the overall quality loss.

• The QLRan optimization problem is proved as a non-deterministic
polynomial-time hard (NP-hard) problem. To solve the problem
efficiently, we first relax the binary computation offloading de-
cision variable and QLR level to real numbers. Then, we utilize
the Linear Programming (LP)-based method to solve the relaxed
QLRan problem by using convex optimization techniques.
 o

108
• We provide a set of tools to deploy the NG-RAN mobile network.
To explore the virtualization in the 5G system, we assign sev-
eral OpenAirInterface (OAI) [9] containers composing of a RAN
and the core of the 5G system. Specifically, we implement a
programmable testbed to demonstrate a connection between UE,
RAN, and Evolved Packet Core (EPC) implemented in the NG-RAN
virtualization environment. The real-time experiments are carried
out under various configurations in order to profile functional
splitting, the data input, memory usage, and average processing
time with respect to QLR levels.

• We provide formal proofs on the convergence and optimality
of our algorithm and evaluate its performance under different
network conditions. In terms of computing capacity and num-
ber of tasks, the numerical results show that latency can be
reduced while decreasing the QLR level under practical physical
constraints.

Paper Organization: The remainder of this article is organized
s follows. The related work is introduced in Section 2. Section 3
ncludes system overview in terms of functional split options and task
ffloading process. We present the system model in Section 4. The
LRan problem is formulated in Section 5, followed by presenting a lin-
ar programming-based solution for QLRan optimization problem. The
erformance evaluation is discussed in Section 6; finally, we conclude
he paper in Section 7.

. Related work

In this section, we introduce the key concepts and papers from both
ndustry and academia over the past several years.

.1. Related concepts and technologies

Several cloud-based task offloading frameworks have been proposed
n recent years. For example, Mobile Cloud Computing (MCC) has
een proposed as a cloud-based network that can provide mobile
evices with significant capabilities such as storage, computation, and
ask offloading to a centralized cloud [10]. However, MCC has faced
everal noticeable challenges to address the mobile next generation
n terms of end-to-end network latency, coverage, and security. To
ackle these challenges, Multi-access Edge Computing (MEC) has been
ntroduced by European Telecommunications Standards Institute (ETSI)
s an integration of the edge cloud computing systems and wireless
obile networks [11]. One of the key–value features of MEC is to

nable rich services and applications in close proximity to end users.
ith the MEC paradigm, mobile devices have options to offload their

omputation-intensive tasks to a MEC server to meet the demanding
ey Performance Indicators (KPIs) of 5G and beyond, especially in

erms of low latency and energy efficiency. Similar to MEC systems,
og computing networks are proposed by CISCO systems to bring cloud
ervices to the edge of an enterprise network [12]. In fog networks, the
omputation processing is mainly executed in the local area networks
nd in IoT gateways or fog nodes. Recently, the concept of NG-RAN has
een defined by 3GPP as a promising approach to merge edge cloud
eatures and RAN functionaries. In industry, many RAN organizations
ave made significant progress in implementing open source-software
hat supports NG-RAN technology. For instance, EURECOM has imple-
ented the OpenAirInterface (OAI) platform [9], which provides an

pen, full software implementation of 5G and beyond systems com-
liant with 3GPP standards under real-time algorithms and protocols.
lus, ORAN [13], founded by AT&T, aims to drive the mobile industry
owards an ecosystem of innovative, multi-vendor, interoperable, and
utonomous NG-RAN with reduced cost, improved performance, and
reater agility. In general, these open RAN-software projects have a
igh degree of flexibility, such as being able to run CU and DU entities

ver a fully virtual environment such as VMs or Linux containers, as



A. Younis, B. Qiu and D. Pompili Computer Communications 184 (2022) 107–117
Fig. 1. Logical diagram for uplink/downlink of gNB with eight functional split options.
well as enabling promising next-generation features (e.g., network slic-
ing and functional splitting). Such NG-RAN software will undoubtedly
speed up the transition from monolithic and inflexible networks to
agile, distributed elements depending on virtualization, softwarization,
openness, and intelligence-fully interoperable RAN components.

2.2. Task offloading in cloud-based RANs

As part of task offloading in cloud-based RAN, several papers have
focused on enhancing overall system performance in network energy,
system latency, and energy efficiency. For instance, the work in [14]
formulates a joint task offloading and resource allocation to maximize
the users’ task offloading gains in MEC. Then the main optimization
problem has been decomposed into several sub-optimal problems that
are solved using convex and quasi-convex optimization techniques.
The authors in [15] study the energy-latency tradeoff problem for
IoT partial task offloading in the MEC network by jointly optimizing
the local computing frequency, task splitting, and transmit power.
Then, the optimization is solved by an alternate convex search-based
algorithm. In [16], by considering a cloud–fog computing network,
the authors design a computation offloading algorithm to minimize
total cost with respect to the energy consumption and offloading la-
tency. To maximize the energy efficiency of task offloading, Vu et al.
propose an approach based on the interior point method and bound
algorithm. Exploiting machine learning methods in task offloading has
also attracted several types of research in cloud-based RAN systems.
Using reinforcement learning, the work in [17] introduces a MEC-
based blockchain network where multi-mobile users act as miners to
offload their data processing and mining tasks to a nearby MEC server
via wireless channels. Although the focus of our article is in the line
direction of mentioned works, applying different offloading schemes
and constraints within the joint optimization NG-RAN framework could
open up new, interdisciplinary avenues for researchers in the context
of the 5G and beyond systems. Previously mentioned works consider
a single remote server as the offloading destination. In contrast, with
considering constraints on service latency, quality loss, and edge capac-
ity, our paper proposes an algorithmic approach for latency and quality
tradeoff task offloading in multi-node NG-RANs. Furthermore, our work
is based on real-world NG-RAN testbed experiments that allow us to
characterize the performance in terms of data input, memory usage,
and average processing time with respect to QLR levels.

3. System overview

We describe here the functional split options and introduce the
task allocation procedure for NG-RAN. Table 1 summarizes the key
notations used.
109
Table 1
Summary of key notations.

Symbol Description

 Set of UEs
 Set of edge nodes
 Set of computational tasks
𝑎𝑢𝑘 Indicator to show whether the task 𝑘 is generated by UE 𝑢
𝑎𝑢𝑠 Indicator to show whether edge node 𝑠 is available for UE 𝑢
𝑎𝑠𝑘 Indicator to show whether task 𝑘 is assigned to the edge node 𝑠
𝑞𝑘 QLR level assigned to task 𝑘
𝐷𝑢(𝑞𝑘) Input data transfer the computing task 𝑘 from UE 𝑢 to the edge
𝐶𝑢(𝑞𝑘) Workload of computation to accomplish the task 𝑘
𝑅𝑢𝑠 Transmission data rate of the link between edge node 𝑠 and UE 𝑢
𝜏𝑢𝑝𝑘 Uplink transmission time
𝜏𝑒𝑥𝑒𝑘 Execution time of task 𝑘 at the edge
𝑓𝑢𝑠 Assigned CPU-clock frequency on edge 𝑠 of UE 𝑢
𝐵(𝑞𝑘) Computing demanded from task 𝑘 with QLR level
𝛿𝜏 Weight of latency consumption time for task 𝑘
𝛿𝑞 Weight of QLR level for task 𝑘

3.1. NG-RAN functional split options

As a part of the NG-RAN study, 3GPP proposed several functional
splits between CUs and DUs. Accordingly, it has been proposed 8
possible options shown in Fig. 1 [18]. The choice of how to split
the NG-RAN architecture depends on several factors related to ra-
dio network status, traffic size and network providers’ services, such
as low latency, high throughput, UE density, and the geographical
location of DUs. By moving from Option 1 to Option 8, a tradeoff
can be established between fronthaul latency and processing complex-
ity. Basically, by adding more baseband functions at the DUs, the
required fronthaul rate can be reduced, while the processing complex-
ity will be increased, and the energy consumption at the DUs will
be increased [19]. Specifically, computationally costly operations like
Fast Fourier Transformation (FFT), Inverse Fast Fourier Transforma-
tion (IFFT), Rate Matching, and Turbo encoding/decoding are shifted
to the CU side, resulting in variation in energy consumption at the
CU and the DU. It is worth noting that, in an actual NG-RAN testbed
implementation, both the CU and DU can be implemented through
virtualization. For example, in the OAI platform, each CU can be
initialized by one container image and linked to a DU container image.
We will provide the functional spilled-based testbed design in detail to
provide real-time NG-RAN experiments.

3.2. Task allocation process

The main process of the task allocation in our proposed NG-RAN
system can be summarized as follows:



A. Younis, B. Qiu and D. Pompili Computer Communications 184 (2022) 107–117

4

t

4

n
e
o
t
s
n
c
w
c
c
m
a
U

T
e
b

4

(
i

e
v
c
e
a
c
o
b
t
e
a
s
t
i

l

a
a
𝐶
t
a
o
t

t
e
w
t
u
n
i
t
𝜏
𝜏
t
d
t
o
o
d
p
r
t
u

𝜏

1. Edge cloud nodes: Initially, a UE searches its communication area
for the best edge cloud node to connect to. Hence, the UE will
send a pilot signal and collects response from edge cloud nodes.
Any edge cloud node that responds will be considered to be
a potential candidate. For instance, in Fig. 2, the edge cloud
candidate of the UE is the edge node within the coverage area
of LTE eNB DU.

2. Task classification: After the edge cloud node assignment, the UE
starts uploading the task information to the edge node. Some
key information include; (i) the unique ID of the uploading task;
(ii) the application’s layers and requirements; (iii) the task pro-
file, which include the task constraints (e.g., tolerable latency,
QLR level, workload).

3. Task executing: After task classification, the RAP will run a
resource allocation algorithm to determine: (i) the service time
required for task accomplishment; (ii) computing capacity that is
available for the task executing; (iii) the compare these estimates
to the tasks’ tolerated latency requirement.

. System model

In this section, we describe the network setting, quality loss of result
radeoff, and task uploading model.

.1. Network description

For the NG-RAN system model, we consider a multi-cell, multi-
ode edge system as illustrated in Fig. 2, in which each RAP (e.g., BS,
NodeB (eNB), gNodeB (gNB), etc.) engages with a set  = {1, 2,… , 𝑆}
f 𝑆 edge nodes (e.g., neighboring DU servers) to supply computa-
ion offloading services to the limited-resource mobile devices such as
martphones, tablets, and IoT devices. Specifically, each edge cloud
ode can be realized either by a physical server, or by Virtual Ma-
hine (VM)/container, which can communicate with the UE through
ireless channels provided by the corresponding RAP. Plus, each UE

an select to offload its computation task to an edge node from the
andidate nearby severs. Accordingly, we denote the set of UEs in the
obile system and the set of computation tasks as  = {1, 2,… , 𝑈}

nd  = {1, 2,… , 𝐾}, respectively. To define the association between
Es and RAPs, we define two binary indicators as follows, 𝑎𝑢𝑘 ∈ {0, 1}

is presented to indicate whether the task 𝑘 is generated by UE 𝑢, while
𝑏𝑢𝑠 ∈ {0, 1} is presented to indicate whether edge node 𝑠 is available for
UE 𝑢 (i.e., the edge node 𝑠 has an acceptable channel state condition to
be in the list of edge candidate). Hence,

𝑎𝑢𝑘 =

{

1, 𝑘 ∈ 𝑢

0, Otherwise
, 𝑎𝑢𝑠 =

{

1, 𝑠 ∈ 𝑢

0, otherwise
, (1)

where 𝑢 ⊆  is denoted as the set of edge candidates for UE 𝑢, and
𝑢 ⊆  is defined as the set of tasks generated by UE 𝑢. Thus, from (1),
we can denote 𝑎𝑠𝑘 as a binary variable to indicate whether task 𝑘 is
assigned to edge node 𝑠 or not. If the edge node 𝑠 is available for UE 𝑢,
the task 𝑘 will be successfully assigned to the edge node 𝑠. Hence, 𝑎𝑠𝑘
will be satisfy the following requirement,

𝑎𝑠𝑘 ≤ min{𝑎𝑢𝑘, 𝑎𝑢𝑠},∀𝑢 ∈  , 𝑘 ∈ , 𝑠 ∈  . (2)

he modeling of user computation tasks, task uploading transmissions,
dge computation resources, and offloading utility are presented here
elow.

.2. Quality loss of result tradeoff

Many emerging applications in cloud-based computing networks
e.g., online recommender, video streaming, object recognition, and
mage processing) exhibit variant optional parameters that authorize
110
nd-users to take advantage of the tradeoff between QLR and ser-
ice latency. For instance, many object recognition algorithms basi-
ally demand specific extraction methods of several numbers of lay-
rs with given wavelengths and orientations from image datasets for
dvanced analysis [20]. Hence, the achieved QLR managing the pro-
essing time in the object recognition can be relaxed if the number
f extracted layers are properly adapted. Another example is multi-
itrate video streaming, in which the Over-The-Top (OTT) video con-
ent providers (e.g., YouTube, Amazon Prime, Netflix, . . . ) offer to
nd-users different video quality levels to fit within the device’s display
nd network connection [6,21]. Adjusting the video quality levels can
ave extra computational energy and time for OTT video providers at
he same time make users experience good video watching without
nterruption. In this paper, we denote 𝑞𝑘 as QLR level assigned to task 𝑘.

Hence, we allow each UE 𝑢 to select different 𝑞𝑘 values to exploit the
trade-off between processing cost and latency. We define QLR as five
levels in which level 1 refers to the strictest demand for quality, while
evel 5 represents the highest tolerance for quality loss. In practice, QLR

levels are determined at an application-specific level.

4.3. Task uploading

The computation task uploading in NG-RAN system can be de-
scribed as a tuple of two parameters, ⟨𝐷𝑢(𝑞𝑘), 𝐶𝑢(𝑞𝑘)⟩, where 𝐷𝑢(𝑞𝑘)
[bits] represents the amount of input data required to transfer the
pplication execution (including system settings, application codes,
nd input parameters) from the local device to the edge node, and
𝑢(𝑞𝑘) [cycles] denotes the workload, i.e., the amount of computation

o accomplish the task. Each UE 𝑢 ∈  has one computation task at
time that is atomic and cannot be divided into subtasks. The values

f 𝐷𝑢(𝑞𝑘) and 𝐶𝑢(𝑞𝑘) can be obtained through carefully profiling of the
ask execution [14].

In Section 6, we will provide more details about the modeling of
hese metrics. Besides, the computation task associated with UE can be
xecuted locally or offloaded to an edge cloud node. The Mobile device
ould save battery bower by offloading part of its task application to

he remote edge; however, a considered cost, time and energy, from
ploading the input data would be added in the task offloading sce-
ario. Therefore, similar to [14], we consider several time parameters
n the case of the UE 𝑢 offloads its task 𝑘 to one of the edge nodes,
he overall uploading time delay consists of the follows: (i) the time
𝑢𝑝
𝑘 [s] to transmit the input to the edge node on the uplink, (ii) the time
𝑒𝑥𝑒
𝑘 to perform the computation task at the edge node, and (iii) the
ime to bring the output data from the edge node back to UE on the
ownlink. In general, the size of the output data is much smaller than
he input data, and the downlink data rate is much higher than that
f the uplink. Therefore, similar to [14,22,23], we neglect the delay
f sending the output in our computation model. Note that when the
elay of the downlink transmission of output data is non-negligible, our
roposed approach can still be directly applied for a given downlink
ate allocation scheme and known output data size. The transmission
ime of UE 𝑢, that is required to send its task data input 𝐷(𝑞𝑘) in the
plink, can be determined as,

𝑢𝑝
𝑘 =

𝐷𝑢(𝑞𝑘)
𝑅𝑢𝑠

,∀𝑢 ∈  , 𝑘 ∈ , 𝑠 ∈  , (3)

where 𝑅𝑢𝑠 is the transmission data rate of the link between the selected
edge node 𝑠 and UE 𝑢. Given the computing resource assignment, the
execution time of task 𝑘 at edge node 𝑠 is,

𝜏𝑒𝑥𝑒𝑘 =
𝐶𝑢(𝑞𝑘)
𝑓𝑢𝑠

,∀𝑢 ∈  , 𝑘 ∈ , 𝑠 ∈  , (4)

where 𝑓𝑢𝑠 denotes the assigned CPU-clock frequency on edge 𝑠 to UE 𝑢
of task 𝑘.



A. Younis, B. Qiu and D. Pompili Computer Communications 184 (2022) 107–117

4

f

Fig. 2. System overview of QLRan, in which the gray circle represents the communication range of the RAP.
o
N
o
t
a
a
s
w
w
𝛿
i
m
t
m



.4. System constraints

We now introduce the following four constraints to capture the
eatures of a task offloading multi-node NG-RAN system.

1. QLR constraint: As we will describe in 4.2, 𝑞𝑘 can be modeled
based on a specific key metric in an application. In our scenario,
we adopt the video resolution level as 𝑞𝐾 in the video streaming
application. Under these considerations, which will be described
in more details in Section 6 the QLR constraint for the task 𝑘 is
defined as, 𝑞𝑘 = {1, 2, 3, 4, 5},∀𝑘 ∈ 

2. Task association constraint: We assume each computation task of
the UE must be assigned to one edge cloud node. Hence, the
offloading policy would satisfy the task association constraint,
expressed as,
∑

𝑠∈
𝑎𝑠𝑘 = 1,∀𝑘 ∈ . (5)

3. Service latency constraint: In many graphic applications with
multiple tasks, the reduction of computation workload at the
edge node considerably affects the task execution latency. For
instance, real-time gaming applications have a preferred re-
sponse time around 50 ms latency to enjoy a higher Quality
of Experience (QoE) [24]. Achieving appropriate latency for a
graphic video application demands tradeoffs processing time,
uploading time, and quality. In this paper, we denote parameter
𝜏max
𝑘 to define the maximum tolerable system latency for the task
𝑘. To guarantee that the task is accomplished in the allowed
threshold time, the service latency constraint is expressed as,

𝜏𝑢𝑝𝑘 + 𝜏𝑒𝑥𝑒𝑘 ≤ 𝜏max
𝑘 ,∀𝑘 ∈ . (6)

4. Resource constraint: In multi-node NG-RAN with intensive work-
loads, the computation capacity should be taken into account
while designing a latency-quality optimization algorithm. The
computation capacity could refer to several hardware metrics
such as GPU, CPU, and memory. Adjusting these parameters
is directly affected by the service latency and the required
quality. However, the computational processing capacity at the
edge cloud node cannot exceed its limited capacity. Therefore,
we present the parameter, 𝐵max

𝑠 , as the maximum computation
capacity of edge node 𝑠, while 𝐵(𝑞 ) is defined as the require
𝑘

111
computation capacity generated from processing task 𝑘 at QLR
𝑞𝑘. Hence, the capacity constraint is model as,
∑

𝑘∈
𝐵(𝑞𝑘)𝑎𝑠𝑘 ≤ 𝐵max

𝑠 ,∀𝑠 ∈  . (7)

5. Problem formation

In this section, we mathematically formulate the QLRan optimiza-
tion problem, which optimizes the trade-off between the service latency
and quality loss while offloading tasks in NG-RAN edge nodes. Due to
the intractability of the problem and the need for a practical solution,
we then present a step-by-step solution based on a linear programming-
based solution, which is employed to transform the QLRan problem into
a convex optimization problem.

5.1. Latency and quality tradeoffs problem

For a given  = {𝑎𝑠𝑘|𝑠 ∈  , 𝑘 ∈ }, the set of selected edge nodes,
and  = {𝑞𝑘|𝑘 ∈ }, the set of selected QLR levels, we define the
system utility as the weighted-sum of all the UEs’ offloading utilities,

𝐽𝑘(,) = 𝛿𝜏𝜏𝑘 + 𝛿𝑞𝑞𝑘
∑

𝑠∈
𝑎𝑠𝑘,∀𝑠 ∈  , 𝑘 ∈ , (8)

where 𝜏𝑘 =
(

𝜏𝑢𝑝𝑘 + 𝜏𝑒𝑥𝑒𝑘
)

, 0 ≤ 𝛿𝜏 ≤ 1 and 0 ≤ 𝛿𝑞 ≤ 1 denote the weights
f latency consumption time and QLR levels for task 𝑘, respectively.
ote that we define the latency and quality tradeoffs utility, 𝐽𝑘(,)
f task 𝑘 as a linear combination of the two metrics because both of
hem can concurrently reflect the latency-quality tradeoff of executing
task, i.e., both higher longer computation completion time and high

ccuracy of result lead to higher computational cost. To meet task-
pecific demands, we allow different UEs to select different weights,
hich are denoted by 𝛿𝜏 and 𝛿𝑞 , in decision making. For example, a UE
ith low accuracy application demand would like to choose a larger
𝑞 to save more computational cost. On the other hand, when a UE
s running some delay-sensitive applications (e.g., online movies), it
ay prefer to set a larger 𝛿𝜏 to reduce the latency. We now formulate

he Latency and Quality Tradeoffs (QLRan) problem as a system utility
inimization problem, i.e.,

1 ∶ min
,

∑

𝑘∈
𝐽𝑘(,) (9a)

s.t. ∶



A. Younis, B. Qiu and D. Pompili Computer Communications 184 (2022) 107–117

l
p
t
p
c
t

P

L
o
e
t

5

t
M
T
o
i
t
f
𝑥
b
L



s

0

0

𝑞

𝑎𝑠𝑘 ∈ {0, 1}, 𝑞 ∈ {1, 2, 3, 4, 5},∀𝑠 ∈  , 𝑘 ∈ , (9b)
∑

𝑠∈
(𝜏𝑢𝑝𝑘 + 𝜏𝑒𝑥𝑒𝑘 )𝑎𝑠𝑘 ≤ 𝜏max

𝑘 ,∀𝑘 ∈ , (9c)

∑

𝑘∈
𝐵(𝑞𝑘)𝑎𝑠𝑘 ≤ 𝐵max

𝑠 ,∀𝑠 ∈  , (9d)

∑

𝑠∈
𝑎𝑠𝑘 = 1,∀𝑘 ∈ . (9e)

The constraints in the formulation above can be explained as fol-
ows: constraint (9b) secure that the computation task can be accom-
lished in the time that cannot exceed than the demanded maximum
hreshold time, 𝜏max

𝑘 ; constraint (9c) implies that the demand for com-
utation capacity must not exceed its edge node capacity; finally,
onstraint (9d) indicates that each task must be assigned as a whole
o one edge node.

roposition 1. 1 is an NP-hard problem.

Proof. To demonstrate that 1 is an NP-hard, let first consider the
case, where 𝛿𝜏 = 0, 𝛿𝑞 = 1. That means the time spent for uploading
and executing a task is neglected for this case and the focusing is done
only on the second part of 𝐽𝑘(,), where the QLR term is important.
We assume that 𝑞𝑘 represents the opposite value of 𝑞𝑘 and denotes as
the quality level in the result of task 𝑘. Accordingly, we can reformulate
the 1 as ̂1, in which the new objective function 𝐽 (,) will be
maximized. Plus, constraint (9c) can be omitted for simplicity. Besides,
Constraint (9d) is rewritten to imply that the resource requirement of
task 𝑘 is exactly equal to its quality value 𝑞𝑘. Each edge cloud node in
the NG-RAN system can only handle one task generated from the UE
in the RAP coverage area. Let 𝑎̂𝑘 is defended as a binary indicator to
show whether the task 𝑘 is assigned to the edge node, and 𝐵 to denote
the resource capacity of the edge node. With these considerations, the
optimization problem in (9) can be relaxed as,

̂1 ∶ max
∑

𝑠∈
𝑞𝑘𝑎̂𝑘 (10a)

s.t. ∶
∑

𝑘∈
𝑞𝑘𝑎̂𝑘 ≤ 𝐵, (10b)

𝑎̂𝑘 ∈ {0, 1}. (10c)

It is obvious that problem ̂1 is a standard weighted-sum problem that
is an NP-complete problem [25]. Therefore, 1 also can be character-
ized as an NP-hard problem. The proof is completed. ■

Next, we will propose an iterative approach to solve 1 based on
inear Programming-based (LP) optimization. By utilizing the standard
ptimization solver (e.g., MOSEK [26]), the proposed system can gen-
rate an efficient task allocation decision with an acceptable latency
olerance constraint.

.2. Linear programming-based solution

The key challenge in solving the optimization problem in 1 is
hat the integer constraints 𝑎𝑠𝑘 ∈ {0, 1} and 𝑞 ∈ [1, 5] make 1 a
IP problem, which is in general non-convex and NP complete [27].
hus, similar to works in [8,28], we first relax the binary computation
ffloading decision variable, 𝑎𝑠𝑘, and QLR level, 𝑞𝑘, to real numbers,
.e., 0 ≤ 𝑎𝑠𝑘 ≤ 1. Then we will discuss the convexity of 1 with
he relaxed optimization variables 𝑎𝑠𝑘 and 𝑞𝑘. Then, we consider the
ollowing; 𝐷(𝑞𝑘) = 𝑦𝑑𝑞𝑘 + 𝑧𝑑 , 𝐶(𝑞𝑘) = 𝑦𝑡𝑞𝑘 + 𝑧𝑡, 𝐵(𝑞𝑘) = 𝑦𝑏𝑞𝑘 + 𝑧𝑏, and
𝑠𝑘 = 𝑞𝑘𝑎𝑠𝑘. The parameters 𝑦𝑑 , 𝑧𝑑 , 𝑦𝑡, 𝑧𝑡, 𝑦𝑏, and 𝑧𝑏 can be estimated
y offline profiling of the NG-RAN testbed, as detailed in Section 6. The
P problem for the primal problem is given by,

2 ∶ min
,, ,𝑡

𝛿𝜏 𝑡 + 𝛿𝑞
∑

𝑠∈
𝑥𝑠𝑘 (11a)

.t. ∶
112
≤ 𝑎𝑠𝑘 ≤ 1, 1 ≤ 𝑞𝑘 ≤ 5, 𝑡 ≤ 𝜏𝑚𝑎𝑥𝑘 ,∀𝑠 ∈  , 𝑘 ∈ , (11b)

≤ 𝑥𝑠𝑘 ≤ 5𝑎𝑠𝑘,∀𝑠 ∈  , 𝑘 ∈ , (11c)

𝑘 − 5(1 − 𝑎𝑠𝑘) ≤ 𝑥𝑠𝑘 ≤ 𝑞𝑘∀𝑠 ∈  , 𝑘 ∈ , (11d)
∑

𝑠∈

(

𝑦𝑑
𝑅𝑢𝑠

+
𝑦𝑡
𝑓𝑢𝑠

)

𝑥𝑠𝑘 +
(

𝑧𝑑
𝑅𝑢𝑠

+
𝑧𝑡
𝑓𝑢𝑠

)

𝑎𝑠𝑘 ≤ 𝜏max
𝑘 , (11e)

∑

𝑠∈
𝑎𝑠𝑘 = 1,∀𝑘 ∈ . (11f)

Proposition 2. Constraints (11c) and (11d) can be relaxed to the
constraint 𝑥𝑠𝑘 = 𝑎𝑠𝑘𝑞𝑘.

Proof. Case 1: (𝑎𝑠𝑘 = 0, and 𝑞𝑘 ∈ [1, 5]). Form constraints (11c) and
(11d), we can conclude the follows,

𝑥𝑠𝑘 ≤ 0, 𝑥𝑠𝑘 ≥ 0, and 𝑥𝑠𝑘 ≤ 𝑞𝑘, 𝑥𝑠𝑘 ≥ 𝑞𝑘 − 5, (12)

After solving (12), we can get 𝑥𝑠𝑘 = 0.
Case 2: (𝑎𝑠𝑘 = 1, and 𝑞𝑘 ∈ [1, 5]).

𝑥𝑠𝑘 ≤ 5, 𝑥𝑠𝑘 ≥ 𝑞𝑘, and 𝑥𝑠𝑘 ≥ 𝑞𝑘, 𝑥𝑠𝑘 ≥ 0, (13)

From (13), we can conclude 𝑥𝑠𝑘𝑞𝑘 = 𝑞𝑘. From Case 1 and Case 2, we
demonstrate that the constraints (11c) and (11d) are equivalent to the
constraint 𝑥𝑠𝑘 = 𝑎𝑠𝑘𝑞𝑘. The proof is complete. ■

6. Performance evaluation

In this section, we describe the testbed experiments and simulation
results to provide more details about the QLR level model in terms of
memory and CPU usage, as well as to test the effectiveness of the QLRan
algorithm.

6.1. Testbed experiment

We present here our QLRan testbed, including the architecture, con-
figuration, and experiment methods. Then, we analyze the performance
of QLRan in terms of CPU processing time and latency.

6.1.1. Architecture
We conducted experiments on a testbed consisting of various com-

ponents, i.e.,

• End users: For our experiment we use a Samsung Galaxy S9
running on Android 10 that acts as the UE.

• Edge nodes: To simulate the edge node, we use Asus Laptop
equipped with an Intel Pentium III processor running Ubuntu
18.04. The cloud is represented by the more powerful desktop
PC Intel Xeon E5-1650, 12-core at 3.5 GHz and 32 GB RAM.

• Network: The structure of OAI consists of two components: one,
called oai, is used for building and running gNB units; the other,
called openair-cn, is responsible for building and running the
Evolved Packet Core (EPC) networks, as shown in Fig. 3. The
Openair-cn component provides a programmable environment to
implement and manage the following network elements: Mobility
Management Entity (MME), Home Subscriber Server (HSS), Serv-
ing Gateway (SPGW-C), and PDN Gateway (PGW-U). We use WiFi
as well as LTE to act as our physical link between the UE and
the edge. The edge is connected to the cloud through Ethernet.
As illustrated in Fig. 3, all the EPC and gNB components are
implemented by as container image by using Docker and docker
compose [29]. The UE and RF RAN are implemented in hardware,
conventional cell phone and USRP 210, respectively.

6.1.2. NG-RAN testbed for different functional options
We endowed our testbed with several functional split options so as

to realize the CU and DU in gNB. All containers in Fig. 3 are hosted
by the desktop PC Intel Xeon E5-1650, 12-core at 3.5 GHz and 32 GB



A. Younis, B. Qiu and D. Pompili Computer Communications 184 (2022) 107–117

s
c
U
O
f
i
c
C

Fig. 3. Logical illustration of the fully containerized-based NG-RAN testbed.
Fig. 4. (a) CPU utilization vs. number of PRBs for DU and CU in Options IF1 and IF4.5; (b) Memory usage vs. number of PRBs for DU and CU in Options IF1 and IF4.5.
RAM. For the UE, we use a Samsung Galaxy S9 running on Android
10. For network configuration, we run our NG-RAN prototype for three
functional splits; Option F1, (PDCP/RLC, Option 2 in 3GPP TR 38.801
standard), Option IF4.5 (Lower PHY/Higher PHY, a.k.a Option 7.x in
3GPP TR 38.801 standard), and Option LTE eNB. We summarize the
testbed configuration parameters in Table 2.

Fig. 4(a) shows the CPU utilization percentage at DU and CU
containers. The CPU utilization percentage is measured by the docker
tats command in Ubuntu, which provides a live data stream for running
ontainers. The downlink UDP traffic repeatedly is sent from the SPGW-
container to the UE with various PRB settings in two functional split
ptions, F1 and IF4.5. It can be observed that the CPU consumption

or DU and CU is continuing to increase linearly as the number of PRBs
s increased in the two functional split options. However, Option IF1
onsumes more CPU percentage at DU than at the CU. For example, the
PU utilization percentage is 43.67% in DU while it is 14.42% in CU.
113
That is because the higher PHY operations such as RLC/MAC, L1/high,
tx precode, rxcombine, and L1/low operations reside in DU for split
Option IF1 [30]. In Option IF4.5, the pattern is reversed. We can see
from Fig. 4(a) that the CPU usage at CU is higher than at DU. Fig. 4(c)
shows the memory usage of DU and CU containers when the NG-RAN
testbed performs in Options IF1 and IF4.5 at different values of PRBs.
Similar to the CPU consumption pattern, the memory usage at DU is
higher than at DU in Option IF1. For example, the memory usage is
388 MB in DU while it is 145.3 MB in CU at Option IF1 and 25 PRB.

6.2. Application profiling

To test QLRan, we consider two applications: video streaming and
facial detection in smart surveillance cameras. These two tasks are both
video-based tasks that require varying degrees of quality.



A. Younis, B. Qiu and D. Pompili Computer Communications 184 (2022) 107–117

W
t
e
t
a
t
4

Fig. 5. (a) Memory usage for various QLR levels in video streaming; (b) CPU usage for various QLR levels in video streaming.
Fig. 6. (a) Relation between a video’s bitrate and CPU consumption in video streaming; and (b) Latency in facial recognition.
w
p

𝐷

Table 2
Testbed configuration parameters for gNB.

Mode FDD Options IF1, IF4.5, eNB
Frequency 2.68 GHz PRB 25, 50, 100
TX Power 150 dBm Env. Multi-container
MCS 28 SINR 15 − 20

Table 3
Configuration parameters for simulation.
𝑦𝑑 , 𝑧𝑑 4.3, 2.75 Capacity [GB] 1.5
𝑦𝑡, 𝑧𝑡 −5.24 , 3.31 𝛿𝜏∕𝛿𝑞 [50, 100, 150]
𝑦𝑏, 𝑧𝑏 −10.41 , 95.9 Data rate [Mbps] 2
𝑈 , 𝐾, 𝑆 10, 10, 20 Delay tolerance [ms] 300
𝐵max
𝑠 [GB] 3 QLR [1, 2, 3, 4, 5]

Video streaming application: Video streaming is run on two Dell
orkstations, each with two Xeon E6-1650 processors. Each worksta-

ion is equipped with 32 GB of RAM running Ubuntu 18.04. In our
xperiments, a prerendered movie of one minute is streamed between
hese two computers using ffmpeg, a video transcribing and streaming
pplication. On the other end, a ffplay is used to receive and render
he video stream. Four different video resolutions are used: 360 × 240,
80 × 360, 960 × 720, and 1920 × 1080. Additionally for the highest
114
resolution of 1920 × 1080, 30 fps as well as 60 fps is used as well
as a stereographic stream for 60 fps for potential 3D reconstruction
applications.

Facial recognition application: In addition to network streaming,
a basic facial detection and recognition application is tested against
the very same resolutions in the network stream. The facial recognition
algorithm is based on the popular and simple dLib library available for
python [31].

For both applications, we have chosen QLR 1 to represent the best
networking conditions while a QLR of 5 represents the worst network
conditions. Using the top utility, we were able to log in 1 second
intervals the CPU consumption as well as the memory consumption
of the process on the server streaming the video. Note that in both
Fig. 5(a) and (b) we witness a linear increase in both memory and CPU
consumption which can be expressed in the following equations,

𝐵(𝑞𝑘) = −10.4𝑞𝑘 + 95.9, 𝐶(𝑞𝑘) = −5.2𝑞𝑘 + 33.3,∀𝑘 ∈ . (14)

In Fig. 6(a), since we downsampled the video resolutions ourselves,
e are able to extract the exact average bitrate for various stream
rofiles to arrive at an equation,

(𝑞𝑘) = 4.30𝑥 + 2.75,∀𝑘 ∈ , (15)

where 𝑥 represents the achievable bit rate in Mbps. Similarly—as
shown in Fig. 6(b)—as video resolutions increase in facial recognition



A. Younis, B. Qiu and D. Pompili Computer Communications 184 (2022) 107–117

6

a
i
d
w
t
p

e
a
l
e
t
t
r
l
r
i
w
s
f
e
q
s
c

6

t
t
t
w
l
o
l
3

Fig. 7. System latency performance versus: (a) QLR levels; and (b) Computing capacities.
r

6

𝐵
c
l
(
b
s
w
s
t
i
c
l
1
t

6

a
b
f
i
1
o
p
i
l

6

m

application, so does processing time. Hence, the QLR processing time
can be modeled as,

𝑇 𝑝𝑟𝑜𝑐 = −0.08𝑞𝑘 + 0.51,∀𝑘 ∈ . (16)

.3. Numerical result

We consider a NG-RAN system consisting of 100 m×100 m cell with
RAP in the center. The mobile devices, 𝑁 = 25, are randomly located

nside the cell. The channel gains are generated using a distance-
ependent path-loss model given as 𝐿 [dB] = 140.7 + 36.7 log10 𝑑[km],
here 𝑑 is the distance between the mobile device and the BS, and

he log-normal shadowing variance is set to 8 dB. The other network
arameter values are listed in Table 3.

In general, the computational tasks can be classified into two differ-
nt categories: (i) approximatable, tasks that can be approximated to
chieve significant savings in execution time, with however a potential
oss of accuracy in the result; and (ii) non-approximatable, tasks whose
xecution without any approximation is necessary for the success of
he application, i.e., if any approximation technique were applied on
hese tasks, the application would not generate meaningful results. We
efer the interested readers to the work in [32], which introduces a
ightweight online algorithm that selects between these tasks to enable
eal-time distributed applications on resource-limited devices. Accord-
ngly, we consider video streaming and facial recognition applications,
hich can be considered as approximatable tasks, for profiling. The rea-

on for choosing these task applications is that they can highly benefit
rom the collaboration between mobile devices and edge platforms. In
xperimental results, we study the impact of the difference of service
uality level, which can be considered as the resolution level of video
treaming and facial applications, on the system latency and edge node
omputing capacity.

.3.1. Impact of control parameters 𝛿𝑡 and 𝛿𝑞

We discussed the definitions of the scalar weights 𝛿𝑡 and 𝛿𝑞 in Sec-
ion 5. In general, these parameters are used to make a tradeoff between
he service latency and quality. Specifically, When 𝛿𝑡∕𝛿𝑞 is increased,
he QLRan algorithm will be more sensitive to system latency; other-
ise, it will be the quality of result sensitive. Fig. 7(a) shows that the

atency cost decreases with a larger QLR parameter for different values
f 𝛿𝑡∕𝛿𝑞 , which are 50, 100, and 150. Specifically, the average system
atency value at the 𝛿𝑡∕𝛿𝑞 ratio is 50 and the QLR level is 1 is around
00 ms, while the average system latency values are 275 ms and 250 ms

for QLR level is 1 and 𝛿𝑡∕𝛿𝑞 ratio are 100 and 150, respectively. That is
because when QLR level is 1, which refers to the best accuracy that can
be obtained from processing the computational task in the edge cloud
115
node, the computational complexity at QLRan will increase as well as
the system latency. The system latency decreases with the tolerance
of quality becoming low. Plus, QLRan shows good performance when
the algorithm is acting towards the latency performance. For instance,
when the QLR level increases to 4, the average system latency of QLRan
turns down to 220 ms, 200 ms, and 180 ms, for 𝛿𝑡∕𝛿𝑞 = 50, 100, and 150,
espectively.

.3.2. Impact of computing capacity of edge cloud node
To evaluate the offloading performance in term of memory usage,

(𝑞𝑘), We run the QLRan algorithm for different values of computing
apacity 𝐵(𝑞𝑘) at 𝛿𝑡∕𝛿𝑞 ratio of 50, 100, and 150. We observe that as
ong as the memory requirements are sufficient, the computing capacity
CPU/GPU) requirements can be satisfied. Hence, the performance can
e evaluated with several memory sizes. As mentioned in Table 3, We
et the memory size of a edge node to 𝐵max

𝑠 = 1.5 GB by default,
hile the ratio of 𝛿𝑡∕𝛿𝑞 = 50, 100, and 150 are tuned to measure the

ystem latency and QLR with several memory capacity values. Also,
he memory size of each edge node is tuned from 0.5 to 2 GB. As
llustrated in Fig. 7(b), the system latency decreases when the memory
apacity of the QLRan algorithm increases. Specifically, the service
atency decreases by around 12% from tuning the 𝛿𝑡∕𝛿𝑞 ratio from 50 to
00 at computing capacity is 0.5 GB, while the overall pattern continues
o decrease as the computing capacity value is increased.

.3.3. Impact of increasing number of tasks
For the computation task, we use the face detection and recognition

pplication for airport security and surveillance [33], which can highly
enefit from the collaboration between mobile devices and edge plat-
orms. The setting value of 12 computational tasks are selected to be
n the range of 90 and 250 kB for the data size and between 890 and
150 Megacycles for the CPU cycles. Fig. 8(a) shows the performance
f different schemes versus the number of tasks. In this figure, the
arameter of task data input is a random variable following linearity
ncreasing with QLR levels. It can be seen that the case 𝛿𝑡∕𝛿𝑞 = 150 has
ess latency cost compared to the other.

.4. Comparing QLRan with other baseline approaches

We compare the QRan algorithm with the following existing bench-
arks:

• Cloud Edge Executing Only (CEO): Each UE 𝑢 ∈  has only one
option: to offload its task to cloud edge node within its communi-
cation coverage without considering the tradeoff between latency
and approximate computing;



A. Younis, B. Qiu and D. Pompili Computer Communications 184 (2022) 107–117

A
c
t
S
i
a
w
s

7

n
r
P
l
o
i
o
f
b
g
t
t
v
o
o
a
c

D

c
i

Fig. 8. (a) System latency performance versus number of computational tasks; and (b) System latency versus number of computation tasks under different execution schemes.
• Local Executing Only (LEO): Each UE 𝑢 ∈  has only one option:
to execute its task locally within its communication coverage
without considering the tradeoff between latency and approxi-
mate computing;

• Latency-aware ask Offloading (LO): Each UE 𝑢 ∈  can offload
its task to edge cloud within its communication coverage. Here,
only the latency is considered in the objective function, while
approximate computing is ignored.

s illustrated in Fig. 8(b), we evaluate the running performance of 12
omputational tasks under different offloading schemes. Our joint la-
ency and quality-aware offloading scheme outperforms other schemes.
pecifically, the performance gap between QLRan and other schemes
ncreases when the number of task increases. That is because the QLRan
lgorithm is designed to trade off between the latency and QLR level,
hile the other schemes only focus on the offloading and executing

cenarios.

. Conclusions

We presented latency-quality tradeoffs and task offloading in multi-
ode next-generation RANs. We designed our algorithm, QLRan, to
educe system service latency while adjusting the overall quality level.
ractical NG-RAN system constraints have been considered to formu-
ate the proposed task offloading problem. The constraints depend
n network latency, quality loss, and edge node computing capac-
ty, while the objective function is the weighted sum of all the UEs’
ffloading utilities. The QLRan is cast as an NP-hard problem; there-
ore, we propose a Linear Programming (LP)-based approach that can
e solved via convex optimization techniques. Simulation results are
enerated from running several real-time applications on the NG-RAN
estbed, which is completely implemented under container-based vir-
ualization and functional-split option technologies. We considered
ideo-streaming and facial-recognition applications as building blocks
f many cloud-based applications. We evaluated our solution and thor-
ugh simulation results showed that the performance of the QLRan
lgorithm significantly improves the network latency over different
onfigurations.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
116
References

[1] A. Younis, B. Qiu, D. Pompili, QLRan: Latency-quality tradeoffs and task
offloading in multi-node next generation RANs, in: Proc. IEEE/IFIP WONS, 2021,
pp. 1–8.

[2] A. Younis, T. Tran, D. Pompili, Energy-efficient resource allocation in C-RANs
with capacity-limited fronthaul, IEEE Trans. Mob. Comput. 20 (2) (2021)
473–487.

[3] I.A. Alimi, A.L. Teixeira, P.P. Monteiro, Toward an efficient C-RAN optical
fronthaul for the future networks: A tutorial on technologies, requirements,
challenges, and solutions, IEEE Commun. Surv. Tutor. 20 (1) (2017) 708–769.

[4] A. Younis, T.X. Tran, D. Pompili, Fronthaul-aware resource allocation for energy
efficiency maximization in C-RANs, in: Proc. IEEE ICAC, 2018, pp. 91–100.

[5] 3GPP TS 38.300 V2.0.0, NR; NR and NG-RAN overall description; Stage 2, 2017,
Release 15.

[6] A. Younis, T.X. Tran, D. Pompili, On-demand video-streaming quality of experi-
ence maximization in mobile edge computing, in: Proc. IEEE WoWMoM, 2019,
pp. 1–9.

[7] Y. Li, Y. Chen, T. Lan, G. Venkataramani, MobiQoR: Pushing the envelope of
mobile edge computing via quality-of-result optimization, in: Proc. IEEE ICDCS,
2017, pp. 1261–1270.

[8] A. Younis, T.X. Tran, D. Pompili, Energy-latency-aware task offloading and
approximate computing at the mobile edge, in: Proc. IEEE MASS, 2019, pp.
299–307.

[9] EURECOM, OAI, 2020, Available: http://www.openairinterface.org/.
[10] H.T. Dinh, C. Lee, D. Niyato, P. Wang, A survey of mobile cloud computing:

Architecture, applications, and approaches, Wirel. Commun. Mob. Comput. 13
(18) (2013) 1587–1611.

[11] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan, D. Purkayastha,
F. Jiangping, D. Frydman, G. Verin, et al., MEC in 5G Networks, ETSI White
Paper 28, 2018, pp. 1–28.

[12] CISCO, Fog Computing and the Internet of Things: Extend The Cloud to Where
the Things Are, Whit Paper, 2015, pp. 1–6.

[13] O-RAN alliance, O-RAN Use Cases and Deployment Scenarios, White Paper, 2020.
[14] T.X. Tran, D. Pompili, Joint task offloading and resource allocation for multi-

server mobile-edge computing networks, IEEE Trans. Veh. Technol. 68 (1) (2018)
856–868.

[15] M. Qin, N. Cheng, Z. Jing, T. Yang, W. Xu, Q. Yang, R.R. Rao, Service-
oriented energy-latency tradeoff for IoT task partial offloading in MEC-enhanced
multi-RAT networks, IEEE Internet Things J. 8 (3) (2021) 1896–1907.

[16] Z. Zhao, S. Bu, T. Zhao, Z. Yin, M. Peng, Z. Ding, T.Q. Quek, On the design of
computation offloading in fog radio access networks, IEEE Trans. Veh. Technol.
68 (7) (2019) 7136–7149.

[17] D.C. Nguyen, P.N. Pathirana, M. Ding, A. Seneviratne, Privacy-preserved task
offloading in mobile blockchain with deep reinforcement learning, IEEE Trans.
Netw. Serv. Manag. 17 (4) (2020) 2536–2549.

[18] 3GPP TR 38.801, Study of new radio access technology: Radio access architecture
and interfaces, 2017, Release 14.

[19] L. Wang, S. Zhou, Flexible functional split and power control for energy
harvesting cloud radio access networks, IEEE Trans. Wirel. Commun. 19 (3)
(2019) 1535–1548.

[20] V. Kshirsagar, M. Baviskar, M. Gaikwad, Face recognition using eigenfaces, in:
Proc. IEEE ICCRD, 2011, pp. 302–306.

[21] I. de Fez, R. Belda, J.C. Guerri, New objective QoE models for evaluating ABR
algorithms in DASH, Elsevier Comput. Commun. 158 (2020) 126–140.

http://refhub.elsevier.com/S0140-3664(21)00465-5/sb2
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb2
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb2
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb2
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb2
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb3
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb3
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb3
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb3
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb3
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb5
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb5
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb5
http://www.openairinterface.org/
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb10
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb10
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb10
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb10
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb10
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb11
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb11
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb11
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb11
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb11
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb12
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb12
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb12
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb13
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb14
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb14
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb14
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb14
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb14
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb15
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb15
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb15
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb15
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb15
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb16
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb16
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb16
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb16
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb16
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb17
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb17
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb17
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb17
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb17
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb18
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb18
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb18
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb19
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb19
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb19
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb19
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb19
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb21
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb21
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb21


A. Younis, B. Qiu and D. Pompili Computer Communications 184 (2022) 107–117
[22] X. Chen, Decentralized computation offloading game for mobile cloud computing,
IEEE Trans. Parallel Distrib. Syst. 26 (4) (2014) 974–983.

[23] X. Lyu, H. Tian, C. Sengul, P. Zhang, Multiuser joint task offloading and resource
optimization in proximate clouds, IEEE Trans. Veh. Technol. 66 (4) (2016)
3435–3447.

[24] Y.W. Bernier, Latency compensating methods in client/server in-game protocol
design and optimization, in: Game Developers Conference, Vol. 98033, 2001.

[25] C.-P. Schnorr, M. Euchner, Lattice basis reduction: Improved practical algorithms
and solving subset sum problems, Math. Program. 66 (1–3) (1994) 181–199.

[26] MOSEK Aps, The MOSEK optimization toolbox v 9, 2019.
[27] E.D. Andersen, K.D. Andersen, Presolving in linear programming, Math. Program.

71 (2) (1995) 221–245.
[28] T.Q. Dinh, J. Tang, Q.D. La, T.Q. Quek, Offloading in mobile edge computing:

Task allocation and computational frequency scaling, IEEE Trans. Commun. 65
(8) (2017) 3571–3584.

[29] Docker, 2021, https://docs.docker.com/.
[30] OAI tutorials, 2021, https://gitlab.eurecom.fr/oai/openairinterface5g/blob/

develop/doc/FEATURE_SET.md#enb-phy-layer.
[31] D.E. King, Dlib-ml: A machine learning toolkit, J. Mach. Learn. Res. 10 (2009)

1755–1758.
[32] P. Pandey, D. Pompili, Exploiting the untapped potential of mobile distributed

computing via approximation, Pervasive Mob. Comput. 38 (2017) 381–395.
[33] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, W. Heinzelman, Cloud-

vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration
architecture, in: Proc. IEEE ISCC, 2012, pp. 59–66.

Ayman Younis received the B.Eng. and M.Sc. degrees
in Electrical Engineering from the U. of Basrah, Iraq, in
2008 and 2011, respectively. He is pursuing the Ph.D.
degree in ECE at Rutgers, NJ, USA, under the guidance
of Dr. Pompili. His research focuses on wireless commu-
nications and mobile cloud computing, with emphasis on
software-defined testbeds. He received the Best Paper Award
at the IEEE/IFIP Wireless On-demand Network Systems and
Services Conference (WONS) in 2021.
117
Brian Qiu obtained a M.S. in the Electrical and Computer
Engineering (ECE) at Rutgers University, NJ, in 2021, where
he also received his B.S. in 2019. He is interested in
distributed mobile computing and in general in networks
with a focus on anonymity and privacy.

Dario Pompili is an associate professor with the Dept. of
ECE at Rutgers University. Since joining Rutgers in 2007,
he has been the director of the CPS Lab, which focuses
on mobile edge computing, wireless communications and
networking, acoustic communications, and sensor networks.
He received his Ph.D. in ECE from the Georgia Institute
of Technology in 2007. He had previously received his
‘Laurea’ (combined BS and MS) and Doctorate degrees in
Telecommunications and System Engineering from the U. of
Rome ‘‘La Sapienza,’’ Italy, in 2001 and 2004, respectively.
He has received a number of awards in his career including
the NSF CAREER’11, ONR Young Investigator Program’12,
and DARPA Young Faculty’12 awards. In 2015, he was
nominated Rutgers-New Brunswick Chancellor’s Scholar.
He served on many international conference committees
taking on various leading roles. He published about 200
refereed scholar publications, some of which received best
paper awards: with more than 13K citations, Dr. Pompili
has an h-index of 44 and an i10-index of 111 (Google
Scholar, Oct’21). He is a Fellow of the IEEE Communica-
tions Society (2021) and a Distinguished Member of the
ACM (2019). He is currently serving as Associate Editor for
IEEE Transactions on Mobile Computing (TMC).

http://refhub.elsevier.com/S0140-3664(21)00465-5/sb22
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb22
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb22
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb23
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb23
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb23
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb23
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb23
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb24
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb24
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb24
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb25
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb25
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb25
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb26
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb27
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb27
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb27
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb28
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb28
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb28
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb28
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb28
https://docs.docker.com/
https://gitlab.eurecom.fr/oai/openairinterface5g/blob/develop/doc/FEATURE_SET.md#enb-phy-layer
https://gitlab.eurecom.fr/oai/openairinterface5g/blob/develop/doc/FEATURE_SET.md#enb-phy-layer
https://gitlab.eurecom.fr/oai/openairinterface5g/blob/develop/doc/FEATURE_SET.md#enb-phy-layer
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb31
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb31
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb31
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb32
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb32
http://refhub.elsevier.com/S0140-3664(21)00465-5/sb32

	Latency and quality-aware task offloading in multi-node next generation RANs
	Introduction
	Related work
	Related concepts and technologies
	Task offloading in cloud-based RANs

	System overview
	NG-RAN functional split options 
	Task allocation process

	System model
	Network description
	Quality loss of result tradeoff
	Task uploading
	System constraints

	Problem formation
	Latency and quality tradeoffs problem
	Linear programming-based solution

	Performance evaluation
	Testbed experiment
	Architecture
	NG-RAN testbed for different functional options

	Application profiling
	Numerical result
	Impact of control parameters t and q
	Impact of computing capacity of edge cloud node
	Impact of increasing number of tasks

	Comparing QLRan with other baseline approaches

	Conclusions
	Declaration of competing interest
	References


