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ARTICLE INFO ABSTRACT

Keywords: Next-Generation Radio Access Network (NG-RAN) is an emerging paradigm that provides flexible distribution
NG-RAN of cloud computing and radio capabilities at the edge of the wireless Radio Access Points (RAPs). Computation
Tasks offloading at the edge bridges the gap for roaming end users, enabling access to rich services and applications. In this

Convex optimization
OpenAirInterface (OAI)
Testbed

paper, we propose a multi-edge node task offloading system, i.e., QLRan, a novel optimization solution for
latency and quality tradeoff task allocation in NG-RANs. Considering constraints on service latency, quality
loss, edge capacity, and task assignment, the problem of joint task offloading, latency, and Quality Loss of
Result (QLR) is formulated in order to minimize the User Equipment (UEs) task offloading utility, which is
measured by a weighted sum of reductions in task completion time and QLR cost. The QLRan optimization
problem is proved as a Mixed Integer Nonlinear Program (MINLP) problem, which is a NP-hard problem.
To efficiently solve the QLRan optimization problem, we utilize Linear Programming (LP)-based approach
that can be later solved by using convex optimization techniques. Additionally, a programmable NG-RAN
testbed is presented where the Central Unit (CU), Distributed Unit (DU), and UE are realized by USRP boards
and fully container-based virtualization approaches. Specifically, we use OpenAirlnterface (OAI) and Docker
software platforms to deploy and perform the NG-RAN testbed for different functional split options. Then, we
characterize the performance in terms of data input, memory usage, and average processing time with respect
to QLR levels. Simulation results show that our algorithm performs significantly improves the network latency
over different configurations.

1. Introduction using a generic-computing platform. Hence, the edge cloud node has

ability to execute the offloading applications in close proximity to

Motivation: Mobile platforms (e.g., smartphones, tablets, IoT mo-
bile devices) are becoming the predominant medium of access to
Internet services due to a tremendous increase in their computation
and communication capabilities. However, enabling applications that
require real-time, in-the-field data collection and mobile platform pro-
cessing is still challenging due to (i) the insufficient computing capa-
bilities and unavailable aggregated/global data on individual mobile
devices and (ii) the prohibitive communication cost and response time
involved in offloading data to remote computing resources such as
cloud datacenters for centralized computation. In light of these lim-
itations, the edge computing term was introduced to unite telco, IT,
and cloud computing and provide cloud services directly from the
network edge. In general, the edge cloud servers or nodes are usu-
ally deployed directly at the mobile Base Stations (BSs) of a Radio
Access Network (RAN), or at the local wireless Access Points (APs)

end users. In this way, the network end-to-end (e2e) latency and
the back/mid/fronth-haul cost will be reduced. Recently, Cloud Radio
Access Network (C-RAN) [2] has been emerged as a clean-slate redesign
of the mobile network architecture in which parts of physical-layer
communication functionalities are decoupled from distributed, possibly
heterogeneous, Radio Access Points (RAPs), i.e., BSs or WiFi hotspots,
and are then consolidated into a baseband unit pool for centralized
processing. However, the centralized C-RAN design follows a “one size
fits all" architectural approach, which makes it difficult to address the
wide range of Quality of Service (QoS) requirements and support dif-
ferent types of traffic [3]. Also, a fully centralized architecture imposes
high capacity requirements on fronthaul links [4]. Therefore, Next
Generation RANs (NG-RAN) [5] has been introduced as a resource-
efficient solution to address the above issues and reduce deployment
costs. It is worthy of note that, due to the flexibility of NG-RAN architecture,
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mobile network operators will have high degree of freedom to move from
a “full centralization” in C-RAN to a “partial centralization” in NG-RAN
with a specific functional splitting option to a ““distributed approach” in edge
cloud [6]—enabling rich services and applications in close proximity to the
end users.

Task offloading can enhance the performance of mobile devices
because servers in the edge cloud have higher computation capabilities
than mobile devices. Therefore, enabling task offloading in NG-RAN
is proposed to address the limitations (e.g., storage and computing
resources) in the existing RANs. Meanwhile, in some cases, processing
the entire input data in edge cloud servers would require more than the
available computing resources to meet the desired latency/throughput
guarantees. In the context of NG-RAN applications (e.g., IoT, AR/VR),
transferring, managing, and analyzing large amounts of data in an edge
cloud would be prohibitively expensive. Hence, the tradeoff between
service latency and the tolerance of quality loss can improve key
network performance metrics like the user’s QoS [7,8]. In this paper,
we define the Quality Loss of Results (QLR) term as the level of
relaxing/approximating in data processing while the user’s QoS is still
at an acceptable level. Accordingly, our key idea is motivated by the
observation that in several NG-RAN applications such as media processing,
image processing, and data mining, a high-accuracy result is not always
necessary and desirable; instead, obtaining a suboptimal result with low
latency cost is more acceptable by vendors or end users. Consequently,
relaxing QLR in such applications alleviates the required computation
workload and enables a significant reduction of latency and computing
cost in NG-RAN.

Our Vision: Our objective is to design a holistic decision-maker for
an optimal joint task offloading scheme with quality and latency aware-
ness in a multi-edge NG-RAN to minimize the UEs’ overall offloading
cost. Specifically, we consider a multi-edge node network where each
RAP is equipped with an edge node to provide computation offloading
services to UEs. In this way, several key benefits could be brought
up to NG-RAN system over the multi-node servers; (i) preventing
the resource-limited edge node/servers from becoming the bottleneck.
Usually, the cloud servers overload when serving a large number of
UEs with high processing priority. By directing many UEs to nearby
edge nodes, the overloaded can be alleviated; (ii) reducing the energy
consumption and network latency. Each UE has the capability to offload
its task to the RAP with a more favorable uplink channel condition;
(iii) getting better network collaboration. The NG-RAN with multi-
RAP set could coordinate with each other to manage and balance the
computation resources between the edge servers. In this work, a Latency
and Quality tradeoffs task offloading problem, QLRan, is formulated to
trade off between the service latency and the acceptable level of QLR under
specific application requirements (e.g, QoS, computing, and transmitting
demands). Additionally, the process of task allocation across edge nodes is
formulated as an objective optimization problem. The optimization objectives
include both minimizing the average service latency and reducing the overall
quality loss.

Our Contributions: The main objective of this paper is to design
the QLRan algorithm, optimizing the trade-off between the application
completion time and QLR cost. The main contributions of this paper
are summarized as follows.

+ Subject to transmission and processing delays, quality loss, and
computing capacity constraints, we formulate and analyze math-
ematically the QLRan optimization problem in NG-RAN as a
Mixed Integer Nonlinear Program (MINLP) that jointly optimizes
the computational task allocation and QLR levels. The problem
formulation and analysis trade off optimizing the service latency
and the overall quality loss.

The QLRan optimization problem is proved as a non-deterministic
polynomial-time hard (NP-hard) problem. To solve the problem
efficiently, we first relax the binary computation offloading de-
cision variable and QLR level to real numbers. Then, we utilize
the Linear Programming (LP)-based method to solve the relaxed
QLRan problem by using convex optimization techniques.
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» We provide a set of tools to deploy the NG-RAN mobile network.
To explore the virtualization in the 5G system, we assign sev-
eral OpenAirInterface (OAI) [9] containers composing of a RAN
and the core of the 5G system. Specifically, we implement a
programmable testbed to demonstrate a connection between UE,
RAN, and Evolved Packet Core (EPC) implemented in the NG-RAN
virtualization environment. The real-time experiments are carried
out under various configurations in order to profile functional
splitting, the data input, memory usage, and average processing
time with respect to QLR levels.

We provide formal proofs on the convergence and optimality
of our algorithm and evaluate its performance under different
network conditions. In terms of computing capacity and num-
ber of tasks, the numerical results show that latency can be
reduced while decreasing the QLR level under practical physical
constraints.

Paper Organization: The remainder of this article is organized
as follows. The related work is introduced in Section 2. Section 3
includes system overview in terms of functional split options and task
offloading process. We present the system model in Section 4. The
QLRan problem is formulated in Section 5, followed by presenting a lin-
ear programming-based solution for QLRan optimization problem. The
performance evaluation is discussed in Section 6; finally, we conclude
the paper in Section 7.

2. Related work

In this section, we introduce the key concepts and papers from both
industry and academia over the past several years.

2.1. Related concepts and technologies

Several cloud-based task offloading frameworks have been proposed
in recent years. For example, Mobile Cloud Computing (MCC) has
been proposed as a cloud-based network that can provide mobile
devices with significant capabilities such as storage, computation, and
task offloading to a centralized cloud [10]. However, MCC has faced
several noticeable challenges to address the mobile next generation
in terms of end-to-end network latency, coverage, and security. To
tackle these challenges, Multi-access Edge Computing (MEC) has been
introduced by European Telecommunications Standards Institute (ETSI)
as an integration of the edge cloud computing systems and wireless
mobile networks [11]. One of the key-value features of MEC is to
enable rich services and applications in close proximity to end users.
With the MEC paradigm, mobile devices have options to offload their
computation-intensive tasks to a MEC server to meet the demanding
Key Performance Indicators (KPIs) of 5G and beyond, especially in
terms of low latency and energy efficiency. Similar to MEC systems,
fog computing networks are proposed by CISCO systems to bring cloud
services to the edge of an enterprise network [12]. In fog networks, the
computation processing is mainly executed in the local area networks
and in IoT gateways or fog nodes. Recently, the concept of NG-RAN has
been defined by 3GPP as a promising approach to merge edge cloud
features and RAN functionaries. In industry, many RAN organizations
have made significant progress in implementing open source-software
that supports NG-RAN technology. For instance, EURECOM has imple-
mented the OpenAirinterface (OAI) platform [9], which provides an
open, full software implementation of 5G and beyond systems com-
pliant with 3GPP standards under real-time algorithms and protocols.
Plus, ORAN [13], founded by AT&T, aims to drive the mobile industry
towards an ecosystem of innovative, multi-vendor, interoperable, and
autonomous NG-RAN with reduced cost, improved performance, and
greater agility. In general, these open RAN-software projects have a
high degree of flexibility, such as being able to run CU and DU entities
over a fully virtual environment such as VMs or Linux containers, as
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Fig. 1. Logical diagram for uplink/downlink of gNB with eight functional split options.

well as enabling promising next-generation features (e.g., network slic-
ing and functional splitting). Such NG-RAN software will undoubtedly
speed up the transition from monolithic and inflexible networks to
agile, distributed elements depending on virtualization, softwarization,
openness, and intelligence-fully interoperable RAN components.

2.2. Task offloading in cloud-based RANs

As part of task offloading in cloud-based RAN, several papers have
focused on enhancing overall system performance in network energy,
system latency, and energy efficiency. For instance, the work in [14]
formulates a joint task offloading and resource allocation to maximize
the users’ task offloading gains in MEC. Then the main optimization
problem has been decomposed into several sub-optimal problems that
are solved using convex and quasi-convex optimization techniques.
The authors in [15] study the energy-latency tradeoff problem for
IoT partial task offloading in the MEC network by jointly optimizing
the local computing frequency, task splitting, and transmit power.
Then, the optimization is solved by an alternate convex search-based
algorithm. In [16], by considering a cloud—fog computing network,
the authors design a computation offloading algorithm to minimize
total cost with respect to the energy consumption and offloading la-
tency. To maximize the energy efficiency of task offloading, Vu et al.
propose an approach based on the interior point method and bound
algorithm. Exploiting machine learning methods in task offloading has
also attracted several types of research in cloud-based RAN systems.
Using reinforcement learning, the work in [17] introduces a MEC-
based blockchain network where multi-mobile users act as miners to
offload their data processing and mining tasks to a nearby MEC server
via wireless channels. Although the focus of our article is in the line
direction of mentioned works, applying different offloading schemes
and constraints within the joint optimization NG-RAN framework could
open up new, interdisciplinary avenues for researchers in the context
of the 5G and beyond systems. Previously mentioned works consider
a single remote server as the offloading destination. In contrast, with
considering constraints on service latency, quality loss, and edge capac-
ity, our paper proposes an algorithmic approach for latency and quality
tradeoff task offloading in multi-node NG-RANs. Furthermore, our work
is based on real-world NG-RAN testbed experiments that allow us to
characterize the performance in terms of data input, memory usage,
and average processing time with respect to QLR levels.

3. System overview
We describe here the functional split options and introduce the

task allocation procedure for NG-RAN. Table 1 summarizes the key
notations used.

Table 1
Summary of key notations.
Symbol Description
v Set of UEs
S Set of edge nodes
K Set of computational tasks
ay Indicator to show whether the task k is generated by UE u
a,, Indicator to show whether edge node s is available for UE u
ag Indicator to show whether task k is assigned to the edge node s
ar QLR level assigned to task k
D, (q;) Input data transfer the computing task k from UE u to the edge
C.(g) Workload of computation to accomplish the task k
R, Transmission data rate of the link between edge node s and UE u
7’ Uplink transmission time
A Execution time of task k at the edge
Sus Assigned CPU-clock frequency on edge s of UE u
B(q;) Computing demanded from task k& with QLR level

Weight of latency consumption time for task k
Weight of QLR level for task k

3.1. NG-RAN functional split options

As a part of the NG-RAN study, 3GPP proposed several functional
splits between CUs and DUs. Accordingly, it has been proposed 8
possible options shown in Fig. 1 [18]. The choice of how to split
the NG-RAN architecture depends on several factors related to ra-
dio network status, traffic size and network providers’ services, such
as low latency, high throughput, UE density, and the geographical
location of DUs. By moving from Option 1 to Option 8, a tradeoff
can be established between fronthaul latency and processing complex-
ity. Basically, by adding more baseband functions at the DUs, the
required fronthaul rate can be reduced, while the processing complex-
ity will be increased, and the energy consumption at the DUs will
be increased [19]. Specifically, computationally costly operations like
Fast Fourier Transformation (FFT), Inverse Fast Fourier Transforma-
tion (IFFT), Rate Matching, and Turbo encoding/decoding are shifted
to the CU side, resulting in variation in energy consumption at the
CU and the DU. It is worth noting that, in an actual NG-RAN testbed
implementation, both the CU and DU can be implemented through
virtualization. For example, in the OAI platform, each CU can be
initialized by one container image and linked to a DU container image.
We will provide the functional spilled-based testbed design in detail to
provide real-time NG-RAN experiments.

3.2. Task allocation process

The main process of the task allocation in our proposed NG-RAN
system can be summarized as follows:
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1. Edge cloud nodes: Initially, a UE searches its communication area
for the best edge cloud node to connect to. Hence, the UE will
send a pilot signal and collects response from edge cloud nodes.
Any edge cloud node that responds will be considered to be
a potential candidate. For instance, in Fig. 2, the edge cloud
candidate of the UE is the edge node within the coverage area
of LTE eNB DU.

. Task classification: After the edge cloud node assignment, the UE
starts uploading the task information to the edge node. Some
key information include; (i) the unique ID of the uploading task;
(ii) the application’s layers and requirements; (iii) the task pro-
file, which include the task constraints (e.g., tolerable latency,
QLR level, workload).

. Task executing: After task classification, the RAP will run a
resource allocation algorithm to determine: (i) the service time
required for task accomplishment; (ii) computing capacity that is
available for the task executing; (iii) the compare these estimates
to the tasks’ tolerated latency requirement.

4. System model

In this section, we describe the network setting, quality loss of result
tradeoff, and task uploading model.

4.1. Network description

For the NG-RAN system model, we consider a multi-cell, multi-
node edge system as illustrated in Fig. 2, in which each RAP (e.g., BS,
eNodeB (eNB), gNodeB (gNB), etc.) engages with a set S = {1,2,...,.5}
of S edge nodes (e.g., neighboring DU servers) to supply computa-
tion offloading services to the limited-resource mobile devices such as
smartphones, tablets, and IoT devices. Specifically, each edge cloud
node can be realized either by a physical server, or by Virtual Ma-
chine (VM)/container, which can communicate with the UE through
wireless channels provided by the corresponding RAP. Plus, each UE
can select to offload its computation task to an edge node from the
candidate nearby severs. Accordingly, we denote the set of UEs in the
mobile system and the set of computation tasks as V" = {1,2,...,U}
and £ = {1,2,..., K}, respectively. To define the association between
UEs and RAPs, we define two binary indicators as follows, a,, € {0,1}
is presented to indicate whether the task k is generated by UE u, while
b,s € {0,1} is presented to indicate whether edge node s is available for
UE u (i.e., the edge node s has an acceptable channel state condition to
be in the list of edge candidate). Hence,

1, kek,

L,
. ’ aus
{0, Otherwise

_ {0,

where S, C S is denoted as the set of edge candidates for UE u, and
K, C K is defined as the set of tasks generated by UE u. Thus, from (1),
we can denote ay as a binary variable to indicate whether task k is
assigned to edge node s or not. If the edge node s is available for UE u,
the task k will be successfully assigned to the edge node s. Hence, a
will be satisfy the following requirement,

sES,
€))

a =
uk . >
otherwise

ag <min{a,,a,},Vvue U, ke KL,s€S. (2)

The modeling of user computation tasks, task uploading transmissions,
edge computation resources, and offloading utility are presented here
below.

4.2. Quality loss of result tradeoff
Many emerging applications in cloud-based computing networks

(e.g., online recommender, video streaming, object recognition, and
image processing) exhibit variant optional parameters that authorize

110
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end-users to take advantage of the tradeoff between QLR and ser-
vice latency. For instance, many object recognition algorithms basi-
cally demand specific extraction methods of several numbers of lay-
ers with given wavelengths and orientations from image datasets for
advanced analysis [20]. Hence, the achieved QLR managing the pro-
cessing time in the object recognition can be relaxed if the number
of extracted layers are properly adapted. Another example is multi-
bitrate video streaming, in which the Over-The-Top (OTT) video con-
tent providers (e.g., YouTube, Amazon Prime, Netflix, ...) offer to
end-users different video quality levels to fit within the device’s display
and network connection [6,21]. Adjusting the video quality levels can
save extra computational energy and time for OTT video providers at
the same time make users experience good video watching without
interruption. In this paper, we denote g, as QLR level assigned to task k.
Hence, we allow each UE u to select different g, values to exploit the
trade-off between processing cost and latency. We define QLR as five
levels in which level 1 refers to the strictest demand for quality, while
level 5 represents the highest tolerance for quality loss. In practice, QLR
levels are determined at an application-specific level.

4.3. Task uploading

The computation task uploading in NG-RAN system can be de-

scribed as a tuple of two parameters, (D,(g;),C,(q,)), where Du(g,)
[bits] represents the amount of input data required to transfer the
application execution (including system settings, application codes,
and input parameters) from the local device to the edge node, and
C,(q;) [cycles] denotes the workload, i.e., the amount of computation
to accomplish the task. Each UE u € U has one computation task at
a time that is atomic and cannot be divided into subtasks. The values
of D,(¢,) and C,(q;) can be obtained through carefully profiling of the
task execution [14].

In Section 6, we will provide more details about the modeling of
these metrics. Besides, the computation task associated with UE can be
executed locally or offloaded to an edge cloud node. The Mobile device
would save battery bower by offloading part of its task application to
the remote edge; however, a considered cost, time and energy, from
uploading the input data would be added in the task offloading sce-
nario. Therefore, similar to [14], we consider several time parameters
in the case of the UE u offloads its task k to one of the edge nodes,
the overall uploading time delay consists of the follows: (i) the time
rl’:” [s] to transmit the input to the edge node on the uplink, (ii) the time
7.7 to perform the computation task at the edge node, and (iii) the
time to bring the output data from the edge node back to UE on the
downlink. In general, the size of the output data is much smaller than
the input data, and the downlink data rate is much higher than that
of the uplink. Therefore, similar to [14,22,23], we neglect the delay
of sending the output in our computation model. Note that when the
delay of the downlink transmission of output data is non-negligible, our
proposed approach can still be directly applied for a given downlink
rate allocation scheme and known output data size. The transmission
time of UE u, that is required to send its task data input D(g,) in the
uplink, can be determined as,

up _ Du(qk)

7 NueU,keK,sES, 3

us
where R, is the transmission data rate of the link between the selected
edge node s and UE u. Given the computing resource assignment, the
execution time of task k at edge node s is,
Texe j—

- Cu(qk)
k J us

where f,, denotes the assigned CPU-clock frequency on edge s to UE u
of task k.

NueU,keK,sES, ()]
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Fig. 2. System overview of QLRan, in which the gray circle represents the communication range of the RAP.

4.4. System constraints

We now introduce the following four constraints to capture the
features of a task offloading multi-node NG-RAN system.

1. QLR constraint: As we will describe in 4.2, ¢, can be modeled
based on a specific key metric in an application. In our scenario,
we adopt the video resolution level as gy in the video streaming
application. Under these considerations, which will be described
in more details in Section 6 the QLR constraint for the task k is
defined as, ¢, = {1,2,3,4,5},Vk e K

. Task association constraint: We assume each computation task of
the UE must be assigned to one edge cloud node. Hence, the
offloading policy would satisfy the task association constraint,
expressed as,

Y ag =1,YkeK.

SES

)

. Service latency constraint: In many graphic applications with
multiple tasks, the reduction of computation workload at the
edge node considerably affects the task execution latency. For
instance, real-time gaming applications have a preferred re-
sponse time around 50 ms latency to enjoy a higher Quality
of Experience (QoE) [24]. Achieving appropriate latency for a
graphic video application demands tradeoffs processing time,
uploading time, and quality. In this paper, we denote parameter
7™ to define the maximum tolerable system latency for the task
k. To guarantee that the task is accomplished in the allowed
threshold time, the service latency constraint is expressed as,

(6)

up exe max
L S P 7 ,Vk € K.

4. Resource constraint: In multi-node NG-RAN with intensive work-
loads, the computation capacity should be taken into account
while designing a latency-quality optimization algorithm. The
computation capacity could refer to several hardware metrics
such as GPU, CPU, and memory. Adjusting these parameters
is directly affected by the service latency and the required
quality. However, the computational processing capacity at the
edge cloud node cannot exceed its limited capacity. Therefore,
we present the parameter, B, as the maximum computation
capacity of edge node s, while B(g,) is defined as the require

111

computation capacity generated from processing task k at QLR
q;.- Hence, the capacity constraint is model as,

Y, B(gay < B™,Vs € S. )

ke

5. Problem formation

In this section, we mathematically formulate the QLRan optimiza-
tion problem, which optimizes the trade-off between the service latency
and quality loss while offloading tasks in NG-RAN edge nodes. Due to
the intractability of the problem and the need for a practical solution,
we then present a step-by-step solution based on a linear programming-
based solution, which is employed to transform the QLRan problem into
a convex optimization problem.

5.1. Latency and quality tradeoffs problem

For a given A = {ay|s € S,k € K}, the set of selected edge nodes,
and Q = {gk|lk € K}, the set of selected QLR levels, we define the
system utility as the weighted-sum of all the UEs’ offloading utilities,

J(A,Q) =677, +8%, Y ay, Vs €S, keK, (8)

SES

where 7, = (7,7 + 1), 0 < 6" < 1 and 0 < 67 < 1 denote the weights
of latency consumption time and QLR levels for task k, respectively.
Note that we define the latency and quality tradeoffs utility, J; (A, Q)
of task k as a linear combination of the two metrics because both of
them can concurrently reflect the latency-quality tradeoff of executing
a task, i.e., both higher longer computation completion time and high
accuracy of result lead to higher computational cost. To meet task-
specific demands, we allow different UEs to select different weights,
which are denoted by 67 and 64, in decision making. For example, a UE
with low accuracy application demand would like to choose a larger
57 to save more computational cost. On the other hand, when a UE
is running some delay-sensitive applications (e.g., online movies), it
may prefer to set a larger 57 to reduce the latency. We now formulate
the Latency and Quality Tradeoffs (QLRan) problem as a system utility
minimization problem, i.e.,

P1:min Y Ji(A,Q) (9a)
AQ kex

s.t. @
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ag €1{0,1},g€ {1,2,3,4,5},Vs € S,k e K, (9b)
X (@ + 1 )ay < T, Vk €K, (90)
SES
2 B(q)ag < BY™,Vs € S, (9d)
kek
Y ay=1YkeK. (9e)
SES

The constraints in the formulation above can be explained as fol-
lows: constraint (9b) secure that the computation task can be accom-
plished in the time that cannot exceed than the demanded maximum
threshold time, r,'(“a"; constraint (9¢) implies that the demand for com-
putation capacity must not exceed its edge node capacity; finally,
constraint (9d) indicates that each task must be assigned as a whole
to one edge node.

Proposition 1. P1 is an NP-hard problem.

Proof. To demonstrate that P1 is an NP-hard, let first consider the
case, where 6 = 0, §7 = 1. That means the time spent for uploading
and executing a task is neglected for this case and the focusing is done
only on the second part of J, (A, Q), where the QLR term is important.
We assume that g, represents the opposite value of g, and denotes as
the quality level in the result of task k. Accordingly, we can reformulate
the P1 as Pl, in which the new objective function J(A,Q) will be
maximized. Plus, constraint (9c) can be omitted for simplicity. Besides,
Constraint (9d) is rewritten to imply that the resource requirement of
task k is exactly equal to its quality value §,. Each edge cloud node in
the NG-RAN system can only handle one task generated from the UE
in the RAP coverage area. Let 4, is defended as a binary indicator to
show whether the task k is assigned to the edge node, and B to denote
the resource capacity of the edge node. With these considerations, the
optimization problem in (9) can be relaxed as,

P1 : max z 4 ay (10a)
SES

st.: ) 4 <B, (10b)
kek

a, €{0,1}. (10¢)

It is obvious that problem 71 is a standard weighted-sum problem that
is an NP-complete problem [25]. Therefore, P1 also can be character-
ized as an NP-hard problem. The proof is completed. W

Next, we will propose an iterative approach to solve P1 based on
Linear Programming-based (LP) optimization. By utilizing the standard
optimization solver (e.g., MOSEK [26]), the proposed system can gen-
erate an efficient task allocation decision with an acceptable latency
tolerance constraint.

5.2. Linear programming-based solution

The key challenge in solving the optimization problem in P1 is
that the integer constraints ay, € {0,1} and ¢ € [1,5] make Pl a
MIP problem, which is in general non-convex and NP complete [27].
Thus, similar to works in [8,28], we first relax the binary computation
offloading decision variable, a,,, and QLR level, g,, to real numbers,
ie., 0 < ay < 1. Then we will discuss the convexity of P1 with
the relaxed optimization variables a,, and g,. Then, we consider the
following; D(qx) = yydy + 24> C(a) = Y4y + 25 B(ax) = Ypdy + 2, and
Xg = qidg,. The parameters y,, z4, Vs, Zs Yy, and z, can be estimated
by offline profiling of the NG-RAN testbed, as detailed in Section 6. The
LP problem for the primal problem is given by,

. s T q
P2 Jin 6't+6 szk (11a)

SES
s.t. :
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OSasksl,lquSS,ISTZ'”,VSGS,kGIC, (11b)
0<xy <5ay.VseS,kek, (110)
g —5(1—ay)<xy <qVseS,kek, 11d)
YVd Vi > ( 24 Zt ) max
+ 25 ) Xy, + + =L ) ag < ™, (11e)
S;g <RMS fMS ) RMS qu : k
Y ay=1YkeK. @a1f

SES

Proposition 2. Constraints (11c) and (11d) can be relaxed to the
constraint x, = ag.qy.

Proof. Case 1: (ay = 0, and g, € [1,5]). Form constraints (11c) and
(11d), we can conclude the follows,

Xg <0,xg > 0,and xg < g, Xy = g — 5, 12)

After solving (12), we can get x,, = 0.
Case 2: (ay =1, and ¢, € [L,5]).

Xge 5, X5 > q.and xg > gg, xg > 0, 13

From (13), we can conclude x;q; = g;. From Case 1 and Case 2, we
demonstrate that the constraints (11c) and (11d) are equivalent to the
constraint x, = ay.q,. The proof is complete.

6. Performance evaluation

In this section, we describe the testbed experiments and simulation
results to provide more details about the QLR level model in terms of
memory and CPU usage, as well as to test the effectiveness of the QLRan
algorithm.

6.1. Testbed experiment

We present here our QLRan testbed, including the architecture, con-
figuration, and experiment methods. Then, we analyze the performance
of QLRan in terms of CPU processing time and latency.

6.1.1. Architecture
We conducted experiments on a testbed consisting of various com-
ponents, i.e.,

+ End users: For our experiment we use a Samsung Galaxy S9
running on Android 10 that acts as the UE.

+ Edge nodes: To simulate the edge node, we use Asus Laptop
equipped with an Intel Pentium III processor running Ubuntu
18.04. The cloud is represented by the more powerful desktop
PC Intel Xeon E5-1650, 12-core at 3.5 GHz and 32 GB RAM.
Network: The structure of OAI consists of two components: one,
called odai, is used for building and running gNB units; the other,
called openair-cn, is responsible for building and running the
Evolved Packet Core (EPC) networks, as shown in Fig. 3. The
Openair-cn component provides a programmable environment to
implement and manage the following network elements: Mobility
Management Entity (MME), Home Subscriber Server (HSS), Serv-
ing Gateway (SPGW-C), and PDN Gateway (PGW-U). We use WiFi
as well as LTE to act as our physical link between the UE and
the edge. The edge is connected to the cloud through Ethernet.
As illustrated in Fig. 3, all the EPC and gNB components are
implemented by as container image by using Docker and docker
compose [29]. The UE and RF RAN are implemented in hardware,
conventional cell phone and USRP 210, respectively.

6.1.2. NG-RAN testbed for different functional options

We endowed our testbed with several functional split options so as
to realize the CU and DU in gNB. All containers in Fig. 3 are hosted
by the desktop PC Intel Xeon E5-1650, 12-core at 3.5 GHz and 32 GB
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Fig. 4. (a) CPU utilization vs. number of PRBs for DU and CU in Options IF1 and IF4.5; (b) Memory usage vs. number of PRBs for DU and CU in Options IF1 and IF4.5.

RAM. For the UE, we use a Samsung Galaxy S9 running on Android
10. For network configuration, we run our NG-RAN prototype for three
functional splits; Option F1, (PDCP/RLC, Option 2 in 3GPP TR 38.801
standard), Option IF4.5 (Lower PHY/Higher PHY, a.k.a Option 7.x in
3GPP TR 38.801 standard), and Option LTE eNB. We summarize the
testbed configuration parameters in Table 2.

Fig. 4(a) shows the CPU utilization percentage at DU and CU
containers. The CPU utilization percentage is measured by the docker
stats command in Ubuntu, which provides a live data stream for running
containers. The downlink UDP traffic repeatedly is sent from the SPGW-
U container to the UE with various PRB settings in two functional split
Options, F1 and IF4.5. It can be observed that the CPU consumption
for DU and CU is continuing to increase linearly as the number of PRBs
is increased in the two functional split options. However, Option IF1
consumes more CPU percentage at DU than at the CU. For example, the
CPU utilization percentage is 43.67% in DU while it is 14.42% in CU.
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That is because the higher PHY operations such as RLC/MAC, L1/high,
tx precode, rxcombine, and L1/low operations reside in DU for split
Option IF1 [30]. In Option IF4.5, the pattern is reversed. We can see
from Fig. 4(a) that the CPU usage at CU is higher than at DU. Fig. 4(c)
shows the memory usage of DU and CU containers when the NG-RAN
testbed performs in Options IF1 and IF4.5 at different values of PRBs.
Similar to the CPU consumption pattern, the memory usage at DU is
higher than at DU in Option IF1. For example, the memory usage is
388 MB in DU while it is 145.3 MB in CU at Option IF1 and 25 PRB.

6.2. Application profiling

To test QLRan, we consider two applications: video streaming and
facial detection in smart surveillance cameras. These two tasks are both
video-based tasks that require varying degrees of quality.
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Fig. 5. (a) Memory usage for various QLR levels in video streaming; (b) CPU usage for various QLR levels in video streaming.
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Fig. 6. (a) Relation between a video’s bitrate and CPU consumption in video streaming; and (b) Latency in facial recognition.

Table 2

Testbed configuration parameters for gNB.
Mode FDD Options IF1, IF4.5, eNB
Frequency 2.68 GHz PRB 25,50, 100
TX Power 150 dBm Env. Multi-container
MCS 28 SINR 15-20

Table 3

Configuration parameters for simulation.
Yar Z4 4.3, 2.75 Capacity [GB] 1.5
Vo> % -5.24, 3.31 67 /84 [50, 100, 150]
Vb Zp -10.41, 95.9 Data rate [Mbps] 2
U, K, S 10, 10,20 Delay tolerance [ms] 300
B [GB] 3 QLR [1.2,3,4,5]

Video streaming application: Video streaming is run on two Dell
Workstations, each with two Xeon E6-1650 processors. Each worksta-
tion is equipped with 32 GB of RAM running Ubuntu 18.04. In our
experiments, a prerendered movie of one minute is streamed between
these two computers using ffmpeg, a video transcribing and streaming
application. On the other end, a ffplay is used to receive and render
the video stream. Four different video resolutions are used: 360 x 240,
480 x 360, 960 x 720, and 1920 x 1080. Additionally for the highest
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resolution of 1920 x 1080, 30 fps as well as 60 fps is used as well
as a stereographic stream for 60 fps for potential 3D reconstruction
applications.

Facial recognition application: In addition to network streaming,
a basic facial detection and recognition application is tested against
the very same resolutions in the network stream. The facial recognition
algorithm is based on the popular and simple dLib library available for
python [31].

For both applications, we have chosen QLR 1 to represent the best
networking conditions while a QLR of 5 represents the worst network
conditions. Using the top utility, we were able to log in 1 second
intervals the CPU consumption as well as the memory consumption
of the process on the server streaming the video. Note that in both
Fig. 5(a) and (b) we witness a linear increase in both memory and CPU
consumption which can be expressed in the following equations,

B(qy) = —10.4g, +95.9, C(qy) = —5.2q; +33.3,Vk € K. (14

In Fig. 6(a), since we downsampled the video resolutions ourselves,
we are able to extract the exact average bitrate for various stream

profiles to arrive at an equation,
D(q,) =4.30x +2.75,Vk € K, (15)

where x represents the achievable bit rate in Mbps. Similarly—as
shown in Fig. 6(b)—as video resolutions increase in facial recognition
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application, so does processing time. Hence, the QLR processing time
can be modeled as,

TP = -0.08¢, + 0.51,Vk € K. (16)

6.3. Numerical result

We consider a NG-RAN system consisting of 100 mx 100 m cell with
a RAP in the center. The mobile devices, N = 25, are randomly located
inside the cell. The channel gains are generated using a distance-
dependent path-loss model given as L [dB] = 140.7 + 36.7 log;( djxm)>
where d is the distance between the mobile device and the BS, and
the log-normal shadowing variance is set to 8 dB. The other network
parameter values are listed in Table 3.

In general, the computational tasks can be classified into two differ-
ent categories: (i) approximatable, tasks that can be approximated to
achieve significant savings in execution time, with however a potential
loss of accuracy in the result; and (ii) non-approximatable, tasks whose
execution without any approximation is necessary for the success of
the application, i.e., if any approximation technique were applied on
these tasks, the application would not generate meaningful results. We
refer the interested readers to the work in [32], which introduces a
lightweight online algorithm that selects between these tasks to enable
real-time distributed applications on resource-limited devices. Accord-
ingly, we consider video streaming and facial recognition applications,
which can be considered as approximatable tasks, for profiling. The rea-
son for choosing these task applications is that they can highly benefit
from the collaboration between mobile devices and edge platforms. In
experimental results, we study the impact of the difference of service
quality level, which can be considered as the resolution level of video
streaming and facial applications, on the system latency and edge node
computing capacity.

6.3.1. Impact of control parameters 5’ and 54

We discussed the definitions of the scalar weights 6’ and 67 in Sec-
tion 5. In general, these parameters are used to make a tradeoff between
the service latency and quality. Specifically, When §'/§9 is increased,
the QLRan algorithm will be more sensitive to system latency; other-
wise, it will be the quality of result sensitive. Fig. 7(a) shows that the
latency cost decreases with a larger QLR parameter for different values
of §'/84, which are 50, 100, and 150. Specifically, the average system
latency value at the /57 ratio is 50 and the QLR level is 1 is around
300 ms, while the average system latency values are 275 ms and 250 ms
for QLR level is 1 and &' /89 ratio are 100 and 150, respectively. That is
because when QLR level is 1, which refers to the best accuracy that can
be obtained from processing the computational task in the edge cloud
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Fig. 7. System latency performance versus: (a) QLR levels; and (b) Computing capacities.
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node, the computational complexity at QLRan will increase as well as
the system latency. The system latency decreases with the tolerance
of quality becoming low. Plus, QLRan shows good performance when
the algorithm is acting towards the latency performance. For instance,
when the QLR level increases to 4, the average system latency of QLRan
turns down to 220 ms, 200 ms, and 180 ms, for §’ /8% = 50, 100, and 150,
respectively.

6.3.2. Impact of computing capacity of edge cloud node

To evaluate the offloading performance in term of memory usage,
B(q;), We run the QLRan algorithm for different values of computing
capacity B(q;) at §'/67 ratio of 50, 100, and 150. We observe that as
long as the memory requirements are sufficient, the computing capacity
(CPU/GPU) requirements can be satisfied. Hence, the performance can
be evaluated with several memory sizes. As mentioned in Table 3, We
set the memory size of a edge node to B = 1.5 GB by default,
while the ratio of §'/8% = 50, 100, and 150 are tuned to measure the
system latency and QLR with several memory capacity values. Also,
the memory size of each edge node is tuned from 0.5 to 2 GB. As
illustrated in Fig. 7(b), the system latency decreases when the memory
capacity of the QLRan algorithm increases. Specifically, the service
latency decreases by around 12% from tuning the §’/54 ratio from 50 to
100 at computing capacity is 0.5 GB, while the overall pattern continues
to decrease as the computing capacity value is increased.

6.3.3. Impact of increasing number of tasks

For the computation task, we use the face detection and recognition
application for airport security and surveillance [33], which can highly
benefit from the collaboration between mobile devices and edge plat-
forms. The setting value of 12 computational tasks are selected to be
in the range of 90 and 250 kB for the data size and between 890 and
1150 Megacycles for the CPU cycles. Fig. 8(a) shows the performance
of different schemes versus the number of tasks. In this figure, the
parameter of task data input is a random variable following linearity
increasing with QLR levels. It can be seen that the case §’ /67 = 150 has
less latency cost compared to the other.

6.4. Comparing QLRan with other baseline approaches

We compare the QRan algorithm with the following existing bench-
marks:

+ Cloud Edge Executing Only (CEO): Each UE u € U has only one
option: to offload its task to cloud edge node within its communi-
cation coverage without considering the tradeoff between latency
and approximate computing;
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Fig. 8. (a) System latency performance versus number of computational tasks; and (b) System latency versus number of computation tasks under different execution schemes.

+ Local Executing Only (LEO): Each UE u € U has only one option:
to execute its task locally within its communication coverage
without considering the tradeoff between latency and approxi-
mate computing;

Latency-aware ask Offloading (LO): Each UE u € U can offload
its task to edge cloud within its communication coverage. Here,
only the latency is considered in the objective function, while
approximate computing is ignored.

As illustrated in Fig. 8(b), we evaluate the running performance of 12
computational tasks under different offloading schemes. Our joint la-
tency and quality-aware offloading scheme outperforms other schemes.
Specifically, the performance gap between QLRan and other schemes
increases when the number of task increases. That is because the QLRan
algorithm is designed to trade off between the latency and QLR level,
while the other schemes only focus on the offloading and executing
scenarios.

7. Conclusions

We presented latency-quality tradeoffs and task offloading in multi-
node next-generation RANs. We designed our algorithm, QLRan, to
reduce system service latency while adjusting the overall quality level.
Practical NG-RAN system constraints have been considered to formu-
late the proposed task offloading problem. The constraints depend
on network latency, quality loss, and edge node computing capac-
ity, while the objective function is the weighted sum of all the UEs’
offloading utilities. The QLRan is cast as an NP-hard problem; there-
fore, we propose a Linear Programming (LP)-based approach that can
be solved via convex optimization techniques. Simulation results are
generated from running several real-time applications on the NG-RAN
testbed, which is completely implemented under container-based vir-
tualization and functional-split option technologies. We considered
video-streaming and facial-recognition applications as building blocks
of many cloud-based applications. We evaluated our solution and thor-
ough simulation results showed that the performance of the QLRan
algorithm significantly improves the network latency over different
configurations.
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