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An array of surface-mounted prismatic resonators in the path of Rayleigh wave
propagation generates two distinct types of surface-wave bandgaps: longitudinal
and flexural-resonance bandgaps, resulting from the hybridization of the Rayleigh
wave with the longitudinal and flexural resonances of the resonators, respectively.
Longitudinal-resonance bandgaps are broad with asymmetric transmission drops,
whereas flexural-resonance bandgaps are narrow with nearly symmetric transmission
drops. In this paper, we illuminate these observations by investigating the resonances
and anti-resonances of the resonator. With an understanding of how the Rayleigh
wave interacts with different boundary conditions, we investigate the clamping con-
ditions imposed by prismatic resonators due to the resonator’s resonances and anti-
resonances and interpret the resulting transmission spectra. We demonstrate that, in
case of a single resonator, only the resonator’s longitudinal and flexural resonances are
responsible for suppressing Rayleigh waves. In contrast, for a resonator array, both
the resonances and the anti-resonances of the resonators contribute to the forma-
tion of the longitudinal-resonance bandgaps, unlike the flexural-resonance bandgaps
where only the flexural resonances play a role. We also provide an explanation for
the observed asymmetry in the transmission drop within the longitudinal-resonance
bandgaps by assessing the clamping conditions imposed by the resonators. Finally,
we evaluate the transmission characteristics of resonator arrays at the anti-resonance
frequencies by varying a few key geometric parameters of the unit cell. These findings
provide the conceptual understanding required to design optimized resonators based
on matching anti-resonance frequencies with the incident Rayleigh wave frequency in

order to achieve enhanced Rayleigh wave suppression.
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I. INTRODUCTION

In the past two decades, numerous investigations have shown how to control surface
waves using locally resonant metamaterials. These metamaterials comprise an array of res-
onators that exhibit bandgaps resulting from the hybridization of the incident wave with
the local resonances of the resonators! . There have been meta-barrier configurations with
near-surface buried spring-mass resonators®®, and meta-surface configurations comprising
surface-mounted prismatic resonators to suppress surface wave propagation® . The former
configuration yields bandgaps at the resonance frequencies of the spring-mass resonators,
whereas the latter configuration yields bandgaps at the longitudinal and flexural resonances
of the resonators. The state-of-the-art metasurface design is based on matching the longitu-
dinal resonance frequency of the resonators with the incident wave frequency, limiting the

systematic designs to mostly prismatic rod-like resonators.

Very recently, Hakoda et al. proposed a nonintuitive four-arm resonator design to sup-
press the incident SO Lamb wave mode in a plate!!. This design is based on matching the
anti-resonance frequency (corresponding to the horizontal displacement U;) of the resonator
with the incident SO Lamb wave frequency'?. Anti-resonance frequencies of the resonator
represent the frequencies at which a near-zero displacement (either horizontal (Uy) or ver-
tical (Us)) at the resonator’s base is achieved due to the dynamics of the system. It was
demonstrated that obtaining the U; displacement anti-resonance for a resonator subjected
to a horizontal harmonic traction loading at the resonator base is sufficient to suppress the
SO wave at the corresponding anti-resonance frequency'?. Similarly, obtaining the Us dis-
placement anti-resonance for a resonator subjected to vertical harmonic traction loading is

1213 " The predominant U; particle motion of the SO

sufficient for suppressing the A0 wave
wave and Us particle motion of the A0 wave at low frequencies could be a possible explana-
tion for these observations. However, unlike the Lamb wave modes A0 and SO, the surface
wave particle motion has displacement components in both the horizontal and vertical di-
rections (Fig. 1(a)), suggesting the need for a more robust analysis to realize anti-resonance
frequency-matching design strategies for surface wave control.

Earlier studies of metasurfaces with rod-like resonators show the existence of anti-

resonance frequencies (f4) for plate waves''™ and surface waves?!516 near the bandgap

frequencies. For ease of discussion, we use the terms “longitudinal resonance bandgap”
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FIG. 1. (a) Schematic of the Rayleigh wave incidence on an array of surface-mounted rod-like
resonators and the surface-wave bandgaps obtained because of the (b) longitudinal and (c) flexural
resonances of the resonator. The resonance (fgr) and anti-resonance (f4) frequencies of the res-
onator corresponding to the longitudinal-resonance and flexural-resonance bandgaps are schemat-

ically marked for reference.

and “flexural resonance bandgap” to refer to surface-wave bandgaps associated with res-
onator’s longitudinal and flexural resonances, respectively (Figs. 1(b) and 1(c)). Colombi
et al. demonstrated that the onset of the longitudinal resonance surface-wave bandgap
coincides with the coupled longitudinal resonance frequency (fgr) of the resonator and the
bandgap ends at the anti-resonance frequencies (Fig. 1(b))°. It is worth noting that the
anti-resonance frequencies are generally different from the coupled resonance frequencies of
the resonators, which represent the frequencies of maximum displacement response, eval-
uated by taking into account the frequency shift due to the stiffness contribution of the
half-space!”. For a rigid half-space, the coupled resonance frequency is the same as its corre-
sponding anti-resonance frequency. The coincidence of the longitudinal resonance bandgap’s
beginning with the resonator’s longitudinal resonance frequency (Fig. 1(b)) is attributed to
the hybridization between the incident Rayleigh wave and the longitudinal resonance of the

resonator that results in a 7 phase shift of the incident wave!”.

Very recently, Pu et al. presented an analytical formulation based on multiple scattering
theory to determine the coupled resonance frequencies for mass-spring resonators in the

path of Rayleigh wave propagation'”. These resonance frequencies are demonstrated to be
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dependent on the resonator mass, spring stiffness, and the equivalent frequency-dependent
half-space stiffness and require rigorous analytical derivations to be calculated for different
resonator geometries. These resonance frequency considerations were disregarded in the
closed-form solution of the surface wave bandgap width evaluated by Colquitt et al.'®, where
the bandgap between the coupled resonance frequency and the anti-resonance frequency has
not been considered. Currently, most of the meta-surface designs for elastic wave control are
based on computationally-expensive parametric tuning of the bandgaps using finite element
methods, performing eigenfrequency analysis of the unit cell by varying multiple geometric
constraints'® 2!, A rational design procedure for resonators to suppress Rayleigh waves by
generating bandgap at the desired frequency is lacking. An ideal design methodology should
be capable of designing the resonator without the need for coupling it to the half-space,
only requiring knowledge of the elastic wave propagation characteristics, desired bandgap

frequency range, and resonator material properties.

Rather than dealing with resonances, the resonator design based on tailoring anti-
resonances under a dynamic load emulating the incident wave propagation could enable a
rational design strategy for designing resonators using topology optimization. In contrast to
the resonance frequencies, which decide the lower bound of the bandgap, the anti-resonance
frequencies of the resonator are observed to fall within and close to the upper bound of

the bandgap for rod-like resonators, as schematically represented in Fig. 1(b)°.

However,
this holds only for the case of anti-resonances of the resonator undergoing longitudinal
vibrations but not the flexural vibrations (Fig. 1(c)), as will be demonstrated in this pa-
per. It was numerically demonstrated that imposing a type of Cauchy boundary conditions
(BCs), called Mindlin BCs, which is equivalent to having Us displacement anti-resonance
for a resonator, can effectively suppress Rayleigh wave propagation!®. This observation can
be exploited to design nonintuitive resonators based on anti-resonance matching through
topology optimization.

A BC-based design strategy requires an in-depth understanding of the interaction of
Rayleigh waves with the clamping boundary conditions imposed by surface-mounted res-
onators and the role of resonator resonances and anti-resonances (longitudinal and flexural)
in tailoring surface-wave bandgaps. A recent study revealed that constraining the horizontal
component of displacement (Auld BCs) in the path of Rayleigh wave propagation does not

suppress Rayleigh waves; instead, the Rayleigh wave mode transmits as surface propagat-
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ing transverse waves'®.

Therefore, the role of U; displacement anti-resonance in creating
flexural resonance bandgaps needs to be further investigated. In addition, previous investi-
gations show that local resonance-based bandgaps are asymmetric in shape”??, with more
transmission drop near the lower bound compared to the upper bound. It is interesting to
investigate whether the asymmetry in the transmission spectrum within the bandgap corre-
lates with the BCs imposed by resonators at the resonance and anti-resonance frequencies
on the half-space. Finally, it was demonstrated that both the A0 and SO Lamb waves can be
significantly suppressed using only a 1D array of resonators at the resonator’s anti-resonance
frequency'?, giving rise to the question of whether we can achieve similar control over sur-
face waves. To that end, it is important to analyze separately the influence of clamping
conditions imposed by a single resonator and an array of resonators at the resonance and

anti-resonance frequencies on the incident Rayleigh wave propagation and investigate its

implications on the transmission spectra.

To the best of the authors” knowledge, this is the first study that demonstrates how the
longitudinal and flexural resonance bandgaps are shaped in relation to resonances and anti-
resonances of surface-mounted prismatic resonators using our understanding of Rayleigh
wave interaction with different boundary conditions along its wave propagation path. We
draw key conclusions from the behavior of rod-like resonators under Rayleigh wave propaga-
tion and hypothesize a rational meta-surface design strategy based on topology optimization.
The remainder of the paper is organized as follows. Section II reviews the mode-conversions
that result due to the incidence of Rayleigh waves on different surface BCs and provide
frequency-domain finite element analyses to understand the interplay between the clamping
conditions imposed by resonators and the observed transmission spectra for a single res-
onator (Section I A) and an array of resonators (Section IIB) mounted on the surface in
the path of Rayleigh wave propagation. Section III illustrates the influence of few essential
geometric parameters on the resonance and anti-resonance frequencies and their integrated
effect on the resulting transmission spectra. Finally, we present a set of conclusions in
Section IV that motivate and inform possible nonintuitive resonator designs based on anti-

resonance-matching using topology optimization.
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II. CLAMPING CONDITIONS IMPOSED BY SURFACE-MOUNTED
RESONATORS IN THE PATH OF RAYLEIGH WAVE PROPAGATION

Manipulating the BCs on an elastic half-space was recently shown to achieve control
over the Rayleigh wave propagation'®. An analytical study aimed at finding surface wave
solutions for different BCs on an elastic half-space showed that clamping the vertical (Us)
displacement component (termed as Mindlin BCs) on the surface enables Rayleigh wave

6 as the incident Rayleigh wave predominantly mode converts to a transverse

suppression!
wave propagating at an angle into the half-space. Moreover, clamping both the U; and Us
displacement components (Dirichlet BCs) is expected to prevent the propagation of surface
waves. On the other hand, constraining the horizontal (U;) displacement component on the
surface of the half-space (termed as Auld BCs) results in possible shear-vertical surface wave
solutions and was therefore hypothesized not to play a role in Rayleigh wave suppression!S.
These analytical results can be conceptually understood. Since the shear-vertical waves
propagate by pure shear deformation without inducing volume change, they can be sup-
ported at the surface even if the horizontal displacement component is constrained (Auld
BCs). On the contrary, constraining the vertical displacement component (Mindlin BCs)
prevents both the pure shear deformation and the volume change. The lack of pure shear
deformation prevents shear-vertical wave propagation, and the constraint on the volume
change prevents longitudinal wave propagation on the surface. The time-domain simula-

tions corroborating the above analytical findings are demonstrated in the Supplementary

material (See Fig. SM2).

Though imposing frequency-independent BCs is unrealistic, it is possible to impose
frequency-dependent Mindlin BCs (or U; displacement anti-resonance) and Auld BCs (or Uy
displacement anti-resonance) using surface-mounted resonators at their anti-resonance fre-
quencies, as previously demonstrated for the control of A0 and SO wave modes in a plate!?
and the control of Rayleigh waves on the half-space'®. For example, a rod-like resonator con-
straining the Uz displacement component at its anti-resonance frequencies is equivalent to
imposing Mindlin BCs, whereas constraining the U; displacement component is equivalent
to imposing Auld BCs. The former scenario is realized when the anti-resonance frequency
involves longitudinal vibrations, whereas the latter results if the anti-resonance frequency

involves flexural vibrations.
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If we are to impose Mindlin BCs in the path of Rayleigh waves by a surface-mounted
resonator, it is rational to assume that a single resonator is insufficient to suppress Rayleigh
waves at its anti-resonance frequency considering the parametric study on the Mindlin BC
patch length illustrated in'®. For example, to suppress a 500 kHz (Ag = 5.8 mm) Rayleigh
wave, the required length (L) of the prismatic rod-like resonator should be around 2.5 mm
(anti-resonance frequency ~ 500 kHz under Rayleigh wave propagation). Assuming an
aspect ratio (L/W) of at least 5 constrains the resonator width (W) to 0.5 mm (~ Agr/10),
which is shown to provide minimal Rayleigh wave suppression from the study on frequency-
independent Mindlin BC patches'®. Though a single resonator is expected to exhibit a
poor Rayleigh wave suppression, studying its dynamic response and the imposed clamping
conditions on the half-space under Rayleigh wave propagation can provide key insights
into the anti-resonance-based resonator design methodology, as will be illustrated in the

subsequent section.

A. A single surface-mounted resonator

Let us start by analyzing the clamping conditions imposed by a surface-mounted resonator
in the path of Rayleigh wave propagation and its corresponding transmission characteristics.
For that purpose, we re-visit the COMSOL? frequency-domain finite element analysis of a
single resonator presented in'S. The finite element model considered is of thickness (along
the x3 direction) 6Ag, partitioned into a “buffer” region of length Ag, “incident” region
of length 4\g, "resonator” region of length equivalent to the resonator base dimensions,
and a “transmitted” region of length 4\g, as shown in Fig. 2(a). In a 2D plane strain
model of half-space and resonator, the resonator will act as a wall of infinite thickness, and
therefore an accurate representation of the resonator’s flexural resonances/anti-resonances
is not possible. Therefore, a 3D model is required for this analysis. Material properties of
Aluminum (Young’s modulus = 69 GPa, poisson ratio = 0.33, and density = 2700 kg/m?) are
used for both the half-space and resonators for simulations throughout the paper. Targeting
the first fixed-free longitudinal eigenfrequency (fixed-free configuration) around 500 kHz (510
kHz), a 2.5 mm long (L) resonator with a 0.5 mm x 0.5 mm (W x W) cross-sectional area
(aspect ratio, L/W = 5) is considered. The width of half-space (along the z5 direction)
is considered to be Agr/4, where Ag is the Rayleigh wavelength corresponding to 500 kHz

7
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FIG. 2. (a) Schematic of a traction-free elastic half-space with a single resonator surface-mounted
on the "resonator” region. (b) Anti-resonance profiles (abs(U;) and abs(Us)) of the resonator
base, (c) Rayleigh wave transmission spectrum, and (d) Volume averaged relative displacement
profiles indicating longitudinal and flexural resonance frequencies for a sweep of Rayleigh wave
excitation frequencies. The vertical lines in (c) indicate the resonance (fr) and anti-resonance

(fa) frequencies of the resonator.

frequency. The periodic BCs are applied to all the lateral surfaces of the half-space to ensure
planar wave solutions. The consideration of periodic BCs will assume periodic arrangement
of an infinite number of resonators in the x5 direction, with the width of the half-space

dictating the resonator spacing.

A line-load excitation mimicking the wave structure of Rayleigh wave is applied to the

s left edge of the “incident” region, across the half-space thickness, as shown in Fig. 2 (a).

8
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A cubic mesh size of Ag/14 (for the half-space) and a more refined tetrahedral mesh (for
the resonator) are used to perform a frequency-domain study by parametric sweeping the
excitation frequencies from 200 kHz to 900 kHz in 5 kHz increments. The frequency response
(displacement versus frequency) of the resonator to the Rayleigh wave propagation (for de-
termining the exhibited anti-resonances) and the corresponding Rayleigh wave transmission

characteristics will be discussed in the subsequent sections.

1. Anti-resonance analysis

The spatially averaged value of the displacements (abs(U;) and abs(Us)) over the res-
onator base, representative of the clamping conditions imposed by the resonator under dy-
namic loading, plotted for the range of excitation frequencies, is depicted in Fig. 2(b).The
eigenfrequencies of the resonator under the free-free, fixed-free, Mindlin-free, and Auld-free
BCs applied to the bottom and top resonator surfaces, respectively, are marked for refer-
ence. As shown in Fig. 2(b), the U; displacement anti-resonance frequency (510 kHz) nearly
coincides with the Mindlin-free (505 kHz) and fixed-free (509.1 kHz) eigenfrequencies cor-
responding to longitudinal vibrations. In other words, the resonator base strictly imposes
Mindlin BCs on the half-space at this anti-resonance frequency. In contrast, we observe that
the U displacement anti-resonance frequencies (335 kHz and 815 kHz) are not close to the
Auld-free eigenfrequencies (261.4 kHz and 729.2 kHz) corresponding to flexural vibrations,
suggesting imperfect imposing of Auld BCs. Please note that the cyan line close to 805
kHz does not correspond to the flexural mode. Although the resonator mounted in the path
of Rayleigh wave propagation is subjected to vertical and horizontal tractions as well as
moments at its base, we further simplify the problem by decoupling the resonator from the
half-space to compute the displacement response (U; for the horizontal traction loading and
Us for the vertical traction loading) at the resonator base in the free-free configuration in
response to the horizontal and vertical harmonic traction loadings applied to all the nodes
of the resonator base (Fig. 3(a)). Obvious dips in the displacement profiles (abs(U;) and
abs(Usz)) can be observed in Fig. 3(a), where the dip in abs(U;) profile corresponds to the
first-mode longitudinal vibrations (Fig. 3(b)), and the dips in abs(Us) profile correspond to
the first (Fig. 3(c)) and second (Fig. 3(d)) mode flexural vibrations.

Drawing a comparison between Figs. 2(b) and 3(a) the U; displacement anti-resonance

9
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FIG. 3. (a) The displacement response (abs(U;) for the horizontal traction loading and abs(Us) for
the vertical traction loading) at the resonator base for the vertical and horizontal harmonic forced
excitation applied to the resonator base, respectively. The mode shapes of the resonator at the
(b) Us displacement anti-resonance frequency and the U; displacement anti-resonance frequencies

corresponding to the (c) first and (d) second flexural modes.

frequencies (335 kHz and 815 kHz) computed for the resonator mounted in the path of
Rayleigh wave propagation do not match the U; displacement anti-resonance frequencies
(260 kHz and 730 kHz ) of the same resonator decoupled from the half-space undergoing
horizontal forced excitation. This suggests the inability of horizontal harmonic traction
loading in emulating a similar anti-resonance behavior to that of a resonator mounted in the
path of Rayleigh wave propagation. However, emulating the U; displacement anti-resonance
frequencies under a simplified loading is not beneficial for Rayleigh wave suppression due to

the inefficiency of Auld BCs in suppressing Rayleigh waves (see Supplementary material).

On the other hand, the Us displacement anti-resonance frequency computed for the res-
onator mounted in the path of Rayleigh wave propagation matches well the Uz displacement
anti-resonance frequency of the same resonator decoupled from the half-space under vertical
forced excitation, which in turn matches the fixed-free and Mindlin-free eigenfrequencies of
the resonator (Figs. 2(b) and 3(a)). In other words, vertical harmonic traction loading ap-
plied to a resonator base under free-free configurations can emulate a similar anti-resonance
behavior to that of a resonator mounted under Rayleigh wave propagation. These obser-

vations motivate a systematic design of resonators based on matching the U; displacement

10
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anti-resonance frequency with the incident Rayleigh wave frequency using topology opti-
mization. One of the main benefits of this approach is that it enables designing nonintuitive
resonators alleviating the need to couple the resonator to the half-space and using vertical

harmonic traction loading.

2. Transmaission characteristics

Although anti-resonance matching offers a pathway to systematic resonator design, a
single resonator designed based on tailoring its Us displacement anti-resonance frequency
will have inherent limitations. This is because the transmission characteristics of a Rayleigh
wave incident on a finite sized Mindlin BC patch depends on the length of the BC patch®®.
To demonstrate this point, the Rayleigh wave transmission beyond a single resonator is eval-
uated at each frequency by performing a spatial Fourier transform (SFT) over the complex

7

displacement data (U; + Us) extracted along the top surface of the “incident” and “trans-
mitted” regions (Fig. 2(a)). The transmission spectrum shown in Fig. 2(c) is the ratio of
the spectral content corresponding to Rayleigh wave peaks in the wavenumber spectra for
“transmitted” and “incident” regions plotted versus frequency. We observe three drops in
the transmission spectrum at frequencies: 325 kHz, 460 kHz, and 775 kHz. These are the
coupled resonance frequencies, i.e., the frequencies at which the resonator exhibits maxi-
mum displacement response upon Rayleigh wave incidence. For a resonator in the path of
Rayleigh wave propagation, the coupled resonance frequencies (longitudinal and flexural)

can be determined by estimating the relative volume-averaged displacements (U; and Us;)

of the resonators for a sweep of Rayleigh wave excitation frequencies:

T S>> abs (Uy)dV .
" Y (abs(Uy) + abs (Us))dV

=1, 3. (1)

We observe the longitudinal resonance (maximum of Us) around 455 kHz and two flex-
ural resonances (maximum of U;) at 325 kHz and 775 kHz (Fig. 2(d)). These resonance
frequencies have a good correspondence with the frequencies where we observe transmission
drops (Fig. 2(c)). On the other contrary, neither the Us (imposing Mindlin BCs) nor U
(imposing Auld BCs) displacement anti-resonances of the resonator exhibits Rayleigh wave
suppression at the anti-resonance frequencies (335 kHz, 510 kHz, and 815 kHz). The lat-

ter is expected because U; displacement anti-resonances (Auld BCs) do not play a role in

11
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suppressing the Rayleigh wave, whereas the Us displacement anti-resonances (Mindlin BCs)
require a sufficient width of the resonator base (~10Ag) to provide significant suppression®.
It is worth noting that unlike a coupled resonator in the path of Rayleigh wave propagation,
a resonator decoupled from the half-space under vertical or horizontal traction loading at
the base will have resonance frequencies coincident with its eigenfrequencies (corresponding
to their respective eigenmode) under a free-free configuration, as shown in Fig. 3(a). The
above analysis of a single resonator’s transmission characteristics showcases a significant
limitation of the proposed anti-resonance matching methodology to design resonators, as
the anti-resonance (imposing Mindlin BCs) does not readily suppress the Rayleigh wave
in comparison to resonance, which is a result of local-resonance hybridization of the res-

onator with the incident wavel!”.

However, a significant Rayleigh wave suppression at the
U; displacement anti-resonance frequency can be obtained using an array of resonators, as
an array of Mindlin BC patches can effectively suppress Rayleigh waves with each patch

mode-converting a part of the Rayleigh waves into transverse waves!®,

B. An array of closely spaced surface-mounted resonators

To corroborate the presence of anti-resonances for an array of resonators and their effi-
ciency in suppressing Rayleigh waves, an investigation of the clamping conditions imposed
by a resonator array including anti-resonance and transmission analyses is provided in this

section.

1. Unat cell dispersion analysis

Before proceeding with the anti-resonance analysis of a resonator array, we present the
details of the unit cell dispersion analysis to obtain the surface wave dispersion curves for
an infinite 1D array of resonators (in the wave propagation direction) and the corresponding
bandgaps following??. The unit cell length is considered to be the same as the half-space
width (Ag/4) used in the earlier investigation resulting in a 2D square lattice configura-
tion for resonators (Fig. 4(a)). The Bloch Floquet periodic BCs are imposed on the four
lateral sides of the half-space part of the unit cell, leaving the lateral resonator surfaces

2

traction-free??. Fixed BCs are applied to the bottom surface of the half-space to remove

12
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FIG. 4. (a) Unit cell used to compute the (b) surface wave dispersion curves exhibiting three
surface-wave bandgaps formed due to a longitudinal resonance and two flexural resonances of the
resonator. The mode shape of the resonator-half space unit cell at the lower bound of the surface-
wave bandgap corresponding to the (c) first longitudinal resonance, (d) first flexural resonance,
and (e) second flexural resonance. The mode shape of the resonator-half space unit cell at the
upper bound of the surface-wave bandgap corresponding to the (f) first longitudinal resonance, (g)
first flexural resonance, and (h) second flexural resonance. The horizontal lines in (b) indicate the

resonance (fr) and anti-resonance (f4) frequencies of the resonator.

the possible surface wave solutions that propagate on the bottom of the half-space. Fi-
nally, eigenfrequency analysis is performed by sweeping the Bloch wavenumber within the
irreducible Brillouin zone to obtain the dispersion curves??. The commonly employed solid
cone method is used to eliminate non-surface wave solutions by limiting the possible wave
speeds in the dispersion curves to be less than the transverse wave speed??. Three surface-
wave bandgaps are observed from the dispersion curves in Fig. 4 (b), one corresponding to
the longitudinal resonance (449-532 kHz) and the other two due to the flexural resonances
(323-329 kHz and 767-803 kHz) of resonators. It is clear from the dispersion curves that the
longitudinal resonance creates a wide bandgap that can be exploited for different applica-
tions. On the other hand, band gaps due to flexural resonances are narrow, in agreement

with the findings from previous studies!®.

Mode shapes corresponding to the lower bounds of the bandgaps depict the longitudinal

13
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(Fig. 4 (c)) and flexural (Figs. 4 (d) and 4 (e)) vibrations of the resonator. As expected,
the frequencies defining these lower bounds closely match the coupled resonance frequencies
(marked in Fig. 4(b)) estimated earlier from the analysis of a single resonator (Fig. 3(d)).
However, a slight discrepancy between the coupled resonance frequencies determined for a
single resonator and an array of resonators is expected, as the coupled resonance frequency
is influenced by the number of resonators'”. All the three mode shapes at the lower bounds
exhibit significant displacement in the resonator with near-zero displacement of the half-
space, suggesting no possible surface waves propagating at these frequencies. The mode
shapes at the upper bounds (Figs. 4(f), 4(g), and 4(h)) are similar to those observed at
lower bounds, but show slight deformations of the half-space. Since the mode shapes at the
upper bounds are extracted along the transverse wave sound line, the observed deformations
of the half-space correspond to the propagating transverse waves. The U; and Us displace-
ment anti-resonance frequencies of the resonator estimated earlier from the single resonator
analysis are marked in Fig. 4(b). The U; displacement anti-resonance frequency lies within
the longitudinal-resonance bandgap obtained from the dispersion analysis, suggesting the
efficiency of an array of Mindlin BC patches (imposed by resonators) in suppressing Rayleigh
waves'®. In contrast, the U; displacement anti-resonance frequencies fall outside the flexural-
resonance bandgaps, as expected considering the inefficiency of Auld BC patches (imposed

16 Next, we study how the presence of an

by resonators) in suppressing Rayleigh waves
array of resonators influences the clamping conditions at the resonance and anti-resonance

frequencies.

2. Anti-resonance analysis

Here, we perform a frequency-domain finite element analysis similar to that shown in
Fig. 2(a), but with an array of 30 resonators (along the wave propagation) mounted on the
“resonator” region (Fig. 5(a)). The spacing between the resonators is consistent with the
size of the unit cell used for generating dispersion curves (Fig. 4 (a)). A frequency sweep
from 250 kHz to 850 kHz with increments of 5 kHz is employed to perform a parametric
frequency-domain study. As an example, the anti-resonance displacement (abs(U;) and
abs(Us)) profiles at the base of the 20" resonator are shown in Fig. 5 (b). The surface-

wave bandgaps obtained from the dispersion analysis are highlighted in grey for comparison.
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Similar to the case of a single resonator, the Us (510 kHz) and U; (335 kHz and 815 kHz)
displacement anti-resonance frequencies (marked in Fig. 5(b)) can be observed for an array
of resonators, suggesting that the anti-resonance frequencies are not changed by the presence
of multiple resonators. Analyzing the Us; and U, displacements at the base of the 1%, 10",
20" and 30" resonators, confirms the presence of Us and U, displacement anti-resonances
across the resonator array (Fig. 5(c)). The observed gradually decreasing displacement
amplitude for the later resonators (the 10" 20" and 30') is expected considering the
successive mode conversion of Rayleigh wave to transverse waves by the resonators, which

transmits energy away from the surface!S.

To further corroborate the imposing of Mindlin and Auld BCs at the corresponding
anti-resonance frequencies, we compare the frequency-domain displacement (real(Us)) fields
for an array of BC patches and an array of resonators at the resonator’s anti-resonance
frequencies. To that end, we consider a similar COMSOL model as in Fig. 5(a) but with 30
frequency-independent BC patches, each having the size of one resonator base, positioned in
the place of resonators. The boundary conditions over these patches are varied as Mindlin,
Auld, and Dirichet BCs. The displacement (real(Us)) fields corresponding to the anti-
resonance frequencies (335 kHz, 510 kHz, 815 kHz) observed in Fig. 5 (b) are shown in Figs.
5(e), 5(g), and 5(i). The simulation results for an array of Mindlin BC patches at frequencies
510 kHz ((Fig. 5 (m)), and an array of Auld BCs at frequencies 335 kHz and 815 kHz (Figs.
5 (k) and 5 (0)) are shown in Fig. 5. A close similarity between the displacement fields at
510 kHz for the simulations involving resonators and Mindlin BC patches can be observed
(Figs. 5 (g) and 5 (m)). Although the Auld BC patch simulation results match closely
the results corresponding to the case with the resonator array at 815 kHz anti-resonance
frequency (Figs. 5 (i) and 5 (o)), they do not seem to match at the 335 kHz (Figs. 5 (e)
and 5 (k)) anti-resonance frequency. A possible reason is that the resonators do not impose
perfect Auld BCs. Some deviations between the two sets of displacement fields are expected
as the resonators constrain both the displacement components, whereas over the Mindlin

and Auld BC patches, one of the displacement components remains unconstrained.

An interesting observation is that the additional anti-resonances corresponding to the
displacements abs(U;) and abs(Us) at frequencies (325 kHz, 460 kHz, and 785 kHz - marked
in Fig 5(b)) are close to the coupled resonance frequencies (325 kHz, 455kHz, and 775
kHz) obtained earlier for the case of a single resonator (Figs. 2(d)). These additional
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anti-resonance frequencies match closely the frequencies at which maximum transmission
dips are observed (325 kHz, 455 kHz, and 780 kHz) in the transmission spectrum (as will
be demonstrated later) within the longitudinal and flexural bandgaps. Therefore, these
frequencies potentially represent the coupled resonance frequencies considering the influence
of a resonator array'”. Both displacement components, abs(U;) and abs(Us), are very small
around 460 kHz and 785 kHz, which may be interpreted as imposing Dirichlet BCs (U
= 0, U3 = 0) in the path of Rayleigh wave propagation. In line with these observations,
we observe that the displacement fields (real(Us)) for an array of resonators (Figs. 5(f)
and 5(h)) at these resonance frequencies (460 kHz and 785 kHz) correlate well with that
of an array of Dirichlet BC patches (Figs. 5(1) and 5(n)). Similarly, there is also a slight
drop in the U; displacement before the U; displacement anti-resonance at 335 kHz (Figs.
5(b)). However, the decrease is not significant compared to that observed at 460 kHz or
785 kHz, and U; displacement anti-resonance does not seem to exist at 325 kHz, unlike
what is observed at 785 kHz. This inconsistency can also be witnessed by comparing the
frequency-domain displacement fields (real(Us)) for an array of resonators (Fig. 5(d)) with
that of Dirichlet BC patches (Fig. 5(j)). Although the displacement fields for the resonators
at 325 kHz and Dirichlet BC patches are similar in terms of the mode-converted transverse
waves, we see the presence of slow-moving Rayleigh waves in the case of the resonator array
(Fig. 5(d)). This indicates that imposing Dirichlet BCs at frequencies within the surface-
wave bandgap - generated by the first flexural resonance of the resonator with the U; and
Us displacement anti-resonance in Fig. 5(b) - is obscured because of the narrow flexural
resonance bandgap. Preforming a frequency sweep with a finer resolution would possibly

provide a better visualization of imposing Dirichlet BCs at 325 kHz.

Moreover, Fig. 5(c) illustrates that the Us and U; anti-resonance displacement profiles of
the first resonator in the array match closely those of a single resonator (Fig. 2(b)) due to
the absence of Rayleigh wave dispersion and indicate no dips at the resonance frequencies
(325 kHz, 460 kHz, and 785 kHz). However, the dips are evident for the rest of the resonators
shown in Fig. 5(c). Fig. 6 shows the displacement (abs(U;) and abs(Us)) fields close to the
resonator array at the resonance frequencies (460 kHz and 785 kHz). At 460 kHz, we observe
the clamping conditions at the base of resonators in the array, excluding the first couple, to
resemble Dirichlet BCs ((abs(U;) ~ 0, abs(Us) ~ 0)), with resonators exhibiting longitudinal
mode shapes (Figs. 6 (a) and 6(b)). On the other hand, at the 785 kHz excitation frequency,
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FIG. 6. The frequency-domain simulation results depicting the displacement fields closer to the
surface-mounted resonators at frequencies 460kHz ((a) abs(U;) and (b) abs(Us)) and 785 kHz ((c)
abs(U7) and (d) abs(Us)).

Dirichlet BCs seem to be imposed at the base of the resonators after the 10" resonator, with

resonators exhibiting flexural mode shapes (Figs. 6(c) and 6(d)).

Next, we study the transmission characteristics demonstrated by the resonator array
in relation to the above analysis of the clamping conditions imposed by the resonators at
the resonance and anti-resonance frequencies. Such a study is necessary to comment on
the efficiency of the meta-surface to suppress Rayleigh waves at the Uz displacement anti-

resonance frequency.

3. Transmission characteristics

For each excitation frequency, the transmission spectrum (Fig. 7(a)) is obtained by
performing SFT over the complex displacement data (U; + Us) extracted along the top
surfaces of the “incident” and ”transmitted” regions. The surface-wave bandgaps obtained
earlier through the dispersion analysis, and the resonance and anti-resonance frequencies

obtained from the analysis of a single resonator are highlighted in the transmission spectrum
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FIG. 7. (a) The transmission spectrum obtained for an array of 30 resonators surface-mounted
on the ”resonator” region. (b) The wave speed-frequency dispersion curves, obtained by applying
the spatial Fourier transform on the complex displacement data extracted on the top surface of
the ”resonator” region in comparison to that obtained from the unit cell dispersion analysis. The
highlighted grey regions in (a) and (b) indicate the surface-wave bandgaps found through the unit
cell dispersion analysis. The vertical lines in (a) indicate the resonance ( fr) and anti-resonance (f4)
frequencies of the resonator. The horizontal lines in (b), colored in magenta and green, indicate

the transverse and Rayleigh wave speeds, respectively.

(Fig. 7(a)) for comparison. It is evident that the drops in the transmission spectrum
coincide with the expected longitudinal and flexural resonance bandgaps, suggesting that the
dispersion induced by local resonances is included in the numerical model with 30 resonators.
Coherent with our understanding of how the Rayleigh wave interacts with Mindlin BCs'®,
it appears that both resonance and anti-resonance of the resonators are responsible for the
longitudinal-resonance bandgap (Fig. 7(a)). However, only the resonance is responsible
for the flexural-resonance bandgap because the U; displacement ant-resonance (Auld BCs)

cannot suppress Rayleigh wave propagation'®.

By performing a similar SF'T analysis over the complex displacement data (U; + Us)
extracted along the top surface of the “resonator” region, it is also possible to generate the
Rayleigh wave dispersion curves for the metasurface. The wave speed-frequency dependency
obtained from the SF'T analysis for different excitation frequencies is plotted against the dis-

persion curves extracted from the unit cell, as shown in Fig. 7(b). As expected from a local-
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resonance phenomenon, the phase speed approaches a minimum (theoretically, it should
approach zero) at the coupled resonance frequencies (at the lower bounds of the bandgaps)
(Fig. 7(b)). Inside the bandgap, we see a sudden increase in wave speed with values reaching
above the transverse wave speed due to the mode-converted transverse waves propagating at
an oblique angle. It is important to note that the SE'T applied over the horizontally spaced
data points (along the x; direction), gives information on the wavenumber components in
the z; direction. Therefore, the apparent wave speed values will appear larger than the real
speed of transverse waves traveling into the half-space at an angle. On a related note, the
variation of wave speed within the bandgap, estimated using the x; wavenumber component,
is linked to the variation in the propagation angles of the mode-converted transverse waves
(Fig. 7(b)).

For example, we can observe the change in wave propagation angles of the mode-converted
waves within the longitudinal-resonance bandgap with change in clamping conditions from
Dirichlet BCs imposed at the resonance frequencies to Mindlin BCs imposed at the anti-
resonance frequencies (see Figs. 5 (f) and 5 (g)). As expected from the BC patch study (See
supplementary material), imposing the Dirichlet BCs will result in transferring more energy
from incident Rayleigh wave at broader angles deeper into the half-space. In comparison,
the Mindlin BCs result in mode-converted transverse waves that propagate closer to the
surface!®. The larger the mode-converted wave propagation angles, the greater will be the
transmission loss. In other words, this analysis suggests that the hybridization between
the incident Rayleigh wave and the coupled longitudinal resonance of the resonator offers
significant Rayleigh wave suppression compared to that obtained at the anti-resonance fre-
quency of the resonator where Mindlin BCs are imposed, providing a new perspective on
the asymmetry observed in the transmission drop profile. In contrast, since only the reso-
nance frequencies play a role in generating the flexural resonance bandgap, the transmission

bandgap appears more symmetric.

In comparison to the 8% Rayleigh wave suppression achieved for a single resonator (Fig.
2(c)) in the direction of wave propagation, an array of 30 resonators demonstrated 63%
suppression at the Us displacement anti-resonance frequency (Fig. 7(a)). This indicates
that though an array of Mindlin BC patches are effective in comparison to a single Mindlin
BC patch, the Rayleigh wave suppression could still be less because many factors such

as resonator width, resonator spacing, and a number of resonators are expected to play a
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role on the transmission characteristics for an array of Mindlin BC patches. The reported
frequency-independent BC patch investigations and frequency-dependent resonator studies
provide an in-depth understanding of the role of resonances and anti-resonances in shaping
the longitudinal and flexural resonance bandgaps. In the next session, we discuss the possible
widening of the longitudinal resonance bandgap by manipulating the resonances and anti-
resonances to motivate anti-resonance-matched resonator design strategies using topology

optimization.

ITII. DISCUSSION

The coupled resonance frequencies depends on many factors, such as the resonator mass,
equivalent stiffness of the resonator and substrate, and the number of resonators!”. Given
the complexity of the analytical framework to determine the coupled resonance frequencies
for rod-like resonators!” and solution to the boundary value problem of the rod resonators

° we resort to employing numerical finite element software to

mounted on the half-space’
evaluate these frequencies. As previously demonstrated, evaluating the onset of the bandgap
using the eigenfrequency analysis of a unit cell or the frequency corresponding to the res-
onator’s maximum relative displacement response can help determine the resonance frequen-
cies. On the other hand, estimating the anti-resonance frequency of the rod-like resonator
in the path of Rayleigh wave propagation is straightforward as it is equivalent to the eigen-
frequency of the resonator subject to fixed-free or Mindlin-free BCs.

It is important to note that resonance and anti-resonance corresponding to longitudinal
vibrations govern the extent of the longitudinal resonance bandgap, and it is possible to
broaden the bandgap by pushing the resonance frequency away from the anti-resonance
frequency. Earlier studies demonstrated the possible widening of the bandgap by varying the
filling fraction, resonator spacing, number of resonators etc.'”??> However, an understanding
of the influence of these parameters on the resonance and anti-resonance frequencies and
their integrated effect on the widening/narrowing of the bandgap is lacking. Here, we present
a parametric case study of an array of 30 resonators by varying the filling fraction and
resonator spacing to understand the influence of resonance and anti-resonance frequencies
in shaping the bandgaps (Fig. 8). In the first case, we keep the resonator spacing/lattice
length (A = 1 mm, 1.5 mm, and 2 mm) constant varying the filling fraction (W?2/A?) from
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0 to 0.5, whereas in the second case, we keep the resonator width constant (W = 0.5 mm,
0.75 mm, and 1 mm) and vary the lattice length (A) from 0.8 mm to 2 mm. In both cases,
a 2.5 mm resonator length is chosen to obtain the anti-resonance frequency around 500 kHz
(~ 510 kHz). We consider all the possible cases with a resonator width and a unit cell
filling fraction less than 1 mm and 0.5, respectively. An upper limit on the resonator width
is imposed to maintain an aspect ratio (/W) of at least 2.5 for the resonator, whereas an
upper limit on the filling fraction is considered because the flexural resonances at higher

filling fractions are observed to interfere with the longitudinal-resonance bandgaps.

A. Filling fraction

Increasing the filling fraction for a constant lattice length is observed to decrease the
resonance frequency (Fig. 8(b)), as expected due to the increase in resonator mass'”. More-
over, resonance frequency decreases with an increase in the lattice length for a constant
filling fraction (Fig. 8(b)). Although the anti-resonance frequency does not change with
the filling fraction or lattice length, the transmission characteristics at the anti-resonance
frequencies vary. Fig. 8(c) demonstrates a decrease in Rayleigh wave transmission for an
array of resonators at the anti-resonance frequency (510 kHz) with an increase in filling
fraction. For comparison, we also demonstrate the Rayleigh wave transmission for a similar
array of frequency-independent Mindlin BC patches, with each patch of the same size as
the resonator base. Fig. 8(d) shows a similar trend in comparison to Fig. 8(c) but with a
small difference in the Rayleigh wave transmission. This is expected because of slightly im-
perfect imposing of Mindlin BCs by resonators at the resonator’s anti-resonance frequency
compared to perfect Mindlin BC patches. For a given filling fraction, the Rayleigh wave
transmission increases with the lattice length for a smaller filling fraction but decreases for
a higher filling fraction (Figs. 8(c) and 8(d)). This is because of two competing mechanisms
exhibited by an array of Mindlin BC patches that influence the transmission characteristics
at the anti-resonance frequency: (1) increasing the Mindlin BC patch width for a constant
patch spacing decreases the Rayleigh wave transmission and (2) increasing the Mindlin BC
patch spacing for a constant patch length increases the Rayleigh wave transmission. There-
fore, for a smaller filling fraction, the influence of patch spacing dominates the transmission

spectrum, whereas the patch width dominates the transmission spectrum for a higher filling
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FIG. 8. Parametric analysis on an array of 30 resonators to study the influence of filling fraction
and lattice length on the resonance frequencies and the transmission characteristics at the anti-
resonance frequencies. (a) The transmission spectra obtained for a constant lattice length of 1.5
mm and a range of resonator widths (W = 0.2 mm to 1 mm). Variation of (b) resonance frequencies
and the Rayleigh wave transmission for an (c) array of resonators and an (d) array of Mindlin BC
patches with the filling fraction keeping the lattice length constant (A = 1 mm, 1.5 mm and 2
mm). (e) The transmission spectra obtained for a constant resonator width of 0.5 mm and a range
of lattice lengths (A = 1 mm to 2 mm). Variation of (f) resonance frequencies and the Rayleigh
wave transmission for an (g) array of resonators and an (h) array of Mindlin BC patches with the

lattice length keeping the resonator width constant (A = 0.5 mm, 0.75 mm and 1 mm).

fraction. To summarize, increasing the filling fraction for a constant lattice length /resonator
spacing decreases the coupled resonance frequency and the Rayleigh wave transmission at
the anti-resonance frequency and widens the longitudinal resonance surface-wave bandgap
by expanding both the lower and upper bounds. As an example, the transmission spectrum
for different resonator widths (0.2 mm to 1 mm) at a constant lattice length (1.5 mm) is

shown in Fig. 8(a), demonstrating the widening of bandgap in both the directions.
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B. Lattice length

In contrast to the effect of filling fraction, increasing the lattice length for a given res-
onator width seems to have a minimal influence on the coupled resonance frequency, as
shown in Fig 8(f). As expected from earlier observations, the Rayleigh wave transmission
increases with the lattice length, both for the cases of resonators at the anti-resonance fre-
quency (Fig. 8(g)) and perfect Mindlin BC patches (Fig. 8(h)). However, the increase
in transmission is significantly smaller at higher lattice lengths for larger resonator widths
(Figs. 8(g) and 8(h)). To summarize, increasing the lattice length for a given resonator
diameter has a minimal influence on the resonance frequency but increases the Rayleigh
wave transmission at the anti-resonance frequency. This results in narrowing the longitudi-
nal bandgap at the upper bound with minimal frequency shift observed at the lower bound,
as demonstrated in the transmission spectra (Fig 8(e)) for different lattice lengths (1 mm
to 2 mm) while maintaining the resonator width constant (0.5 mm). On the other hand, an
increase in the number of resonators is expected to decrease the Rayleigh wave transmission
at the anti-resonance frequency as each of the Mindlin BC patches converts a portion of
the Rayleigh wave to a transverse wave. Therefore an increase in the number of resonators
is expected to broaden the longitudinal resonance bandgap towards the upper bound until

zero transmission at the anti-resonance frequency is achieved.

These observations indicate possible enhanced suppression of Rayleigh waves at the anti-
resonance frequencies, motivating a systematic design of optimized resonators based on
matching the anti-resonance frequency corresponding to the Us displacement with the in-
cident Rayleigh wave frequency through topology optimization. Moreover, exploiting the
design parameters that maximize the separation between the resonance and anti-resonance
frequencies, for example by increasing the mass of the resonator, wide bandgaps can be re-
alized. One of the main benefits of such an approach is that it enables designing resonators
without the need to couple the resonator to the half-space. Therefore, a rational design
procedure for resonators is possible beyond the state-of-the-art approach, which requires an
extensive parametric eigenfrequency analysis over a unit cell comprising a resonator and

half-space'® 2,
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IV. CONCLUSION

Drawing insights from the interaction of Rayleigh waves with different frequency-
independent BCs (Mindlin, Auld and Dirichlet BCs)!®, we study how the resonances and
anti-resonances of prismatic surface-mounted resonators in the path of a Rayleigh wave
shape the longitudinal and flexural-resonance surface-wave bandgaps. Two cases are pre-
sented: a single resonator and an array of closely spaced resonators. A single resonator
demonstrates poor Rayleigh wave suppression at both its vertical (Us) and horizontal (Uy)
displacement anti-resonance frequencies; the former is because of the inefficiency of Auld
BCs to suppress Rayleigh waves, and the latter is due to the small resonator width, hence
the small-sized imposed Mindlin BC patch . Despite its poor transmission characteristics,
through an analysis of a single resonator, we demonstrate that a vertical harmonic traction
loading to the resonator base emulates a similar Us displacement anti-resonance behavior to
that of a resonator mounted in the path of Rayleigh wave propagation. These findings sug-
gest a possible rational design methodology using topology optimization based on matching
the Us displacement anti-resonance frequencies under vertical forced excitation, the details

of which will be reported in a future publication.

For a resonator array, in addition to the longitudinal resonances of the resonators, the
U; displacement anti-resonances also play a role in the longitudinal resonance surface-wave
bandgap formation because an array of Mindlin BCs patches can significantly suppress sur-
face wave motion. However, only the flexural resonances of the resonator appear to be
responsible for flexural bandgap formation since flexural anti-resonances resulting in an ar-
ray of Auld BCs patches do not help suppress Rayleigh waves. Moreover, we demonstrate
clamping of both the horizontal and vertical displacement components (Dirichlet BCs) at
the longitudinal and flexural resonances of the resonators arranged in a closely-spaced ar-
ray after the first few resonators, possibly a result of local-resonance induced hybridization.
With reference to the clamping conditions realized at the resonances and anti-resonance,
we demonstrate poor Rayleigh wave suppression capability at the resonator’s anti-resonance
frequencies in comparison to that at resonance frequencies. Finally, we demonstrate how
the surface-wave bandgaps are shaped in relation to the resonator’s resonances and anti-
resonances as a result of varying a few key geometric parameters of the unit cell, focusing

more on the transmission characteristics of an array of resonators at their anti-resonance
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frequencies. Our results demonstrate that the Us displacement anti-resonances of closely-
spaced resonators having larger base dimensions, can significantly suppress Rayleigh waves.
These findings motivate the resonator designs based on matching anti-resonances for appli-

cations ranging from seismic isolation of structures to acoustic wave devices.

SUPPLEMENTARY MATERIAL

See supplementary material for the time-domain finite element analysis of the Rayleigh

wave interaction with different BCs.
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