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An array of surface-mounted prismatic resonators in the path of Rayleigh wave

propagation generates two distinct types of surface-wave bandgaps: longitudinal

and flexural-resonance bandgaps, resulting from the hybridization of the Rayleigh

wave with the longitudinal and flexural resonances of the resonators, respectively.

Longitudinal-resonance bandgaps are broad with asymmetric transmission drops,

whereas flexural-resonance bandgaps are narrow with nearly symmetric transmission

drops. In this paper, we illuminate these observations by investigating the resonances

and anti-resonances of the resonator. With an understanding of how the Rayleigh

wave interacts with different boundary conditions, we investigate the clamping con-

ditions imposed by prismatic resonators due to the resonator’s resonances and anti-

resonances and interpret the resulting transmission spectra. We demonstrate that, in

case of a single resonator, only the resonator’s longitudinal and flexural resonances are

responsible for suppressing Rayleigh waves. In contrast, for a resonator array, both

the resonances and the anti-resonances of the resonators contribute to the forma-

tion of the longitudinal-resonance bandgaps, unlike the flexural-resonance bandgaps

where only the flexural resonances play a role. We also provide an explanation for

the observed asymmetry in the transmission drop within the longitudinal-resonance

bandgaps by assessing the clamping conditions imposed by the resonators. Finally,

we evaluate the transmission characteristics of resonator arrays at the anti-resonance

frequencies by varying a few key geometric parameters of the unit cell. These findings

provide the conceptual understanding required to design optimized resonators based

on matching anti-resonance frequencies with the incident Rayleigh wave frequency in

order to achieve enhanced Rayleigh wave suppression.

a)parisa@psu.edu

1

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
93

08
3

mailto:parisa@psu.edu


I. INTRODUCTION

In the past two decades, numerous investigations have shown how to control surface

waves using locally resonant metamaterials. These metamaterials comprise an array of res-

onators that exhibit bandgaps resulting from the hybridization of the incident wave with

the local resonances of the resonators1–3. There have been meta-barrier configurations with5

near-surface buried spring-mass resonators4,5, and meta-surface configurations comprising

surface-mounted prismatic resonators to suppress surface wave propagation6–10. The former

configuration yields bandgaps at the resonance frequencies of the spring-mass resonators,

whereas the latter configuration yields bandgaps at the longitudinal and flexural resonances

of the resonators. The state-of-the-art metasurface design is based on matching the longitu-10

dinal resonance frequency of the resonators with the incident wave frequency, limiting the

systematic designs to mostly prismatic rod-like resonators.

Very recently, Hakoda et al. proposed a nonintuitive four-arm resonator design to sup-

press the incident S0 Lamb wave mode in a plate11. This design is based on matching the

anti-resonance frequency (corresponding to the horizontal displacement U1) of the resonator15

with the incident S0 Lamb wave frequency12. Anti-resonance frequencies of the resonator

represent the frequencies at which a near-zero displacement (either horizontal (U1) or ver-

tical (U3)) at the resonator’s base is achieved due to the dynamics of the system. It was

demonstrated that obtaining the U1 displacement anti-resonance for a resonator subjected

to a horizontal harmonic traction loading at the resonator base is sufficient to suppress the20

S0 wave at the corresponding anti-resonance frequency12. Similarly, obtaining the U3 dis-

placement anti-resonance for a resonator subjected to vertical harmonic traction loading is

sufficient for suppressing the A0 wave12,13. The predominant U1 particle motion of the S0

wave and U3 particle motion of the A0 wave at low frequencies could be a possible explana-

tion for these observations. However, unlike the Lamb wave modes A0 and S0, the surface25

wave particle motion has displacement components in both the horizontal and vertical di-

rections (Fig. 1(a)), suggesting the need for a more robust analysis to realize anti-resonance

frequency-matching design strategies for surface wave control.

Earlier studies of metasurfaces with rod-like resonators show the existence of anti-

resonance frequencies (fA) for plate waves11–14 and surface waves9,15,16 near the bandgap30

frequencies. For ease of discussion, we use the terms “longitudinal resonance bandgap”
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FIG. 1. (a) Schematic of the Rayleigh wave incidence on an array of surface-mounted rod-like

resonators and the surface-wave bandgaps obtained because of the (b) longitudinal and (c) flexural

resonances of the resonator. The resonance (fR) and anti-resonance (fA) frequencies of the res-

onator corresponding to the longitudinal-resonance and flexural-resonance bandgaps are schemat-

ically marked for reference.

and “flexural resonance bandgap” to refer to surface-wave bandgaps associated with res-

onator’s longitudinal and flexural resonances, respectively (Figs. 1(b) and 1(c)). Colombi

et al. demonstrated that the onset of the longitudinal resonance surface-wave bandgap

coincides with the coupled longitudinal resonance frequency (fR) of the resonator and the35

bandgap ends at the anti-resonance frequencies (Fig. 1(b))9. It is worth noting that the

anti-resonance frequencies are generally different from the coupled resonance frequencies of

the resonators, which represent the frequencies of maximum displacement response, eval-

uated by taking into account the frequency shift due to the stiffness contribution of the

half-space17. For a rigid half-space, the coupled resonance frequency is the same as its corre-40

sponding anti-resonance frequency. The coincidence of the longitudinal resonance bandgap’s

beginning with the resonator’s longitudinal resonance frequency (Fig. 1(b)) is attributed to

the hybridization between the incident Rayleigh wave and the longitudinal resonance of the

resonator that results in a π phase shift of the incident wave17.

Very recently, Pu et al. presented an analytical formulation based on multiple scattering45

theory to determine the coupled resonance frequencies for mass-spring resonators in the

path of Rayleigh wave propagation17. These resonance frequencies are demonstrated to be
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dependent on the resonator mass, spring stiffness, and the equivalent frequency-dependent

half-space stiffness and require rigorous analytical derivations to be calculated for different

resonator geometries. These resonance frequency considerations were disregarded in the50

closed-form solution of the surface wave bandgap width evaluated by Colquitt et al.15, where

the bandgap between the coupled resonance frequency and the anti-resonance frequency has

not been considered. Currently, most of the meta-surface designs for elastic wave control are

based on computationally-expensive parametric tuning of the bandgaps using finite element

methods, performing eigenfrequency analysis of the unit cell by varying multiple geometric55

constraints18–21. A rational design procedure for resonators to suppress Rayleigh waves by

generating bandgap at the desired frequency is lacking. An ideal design methodology should

be capable of designing the resonator without the need for coupling it to the half-space,

only requiring knowledge of the elastic wave propagation characteristics, desired bandgap

frequency range, and resonator material properties.60

Rather than dealing with resonances, the resonator design based on tailoring anti-

resonances under a dynamic load emulating the incident wave propagation could enable a

rational design strategy for designing resonators using topology optimization. In contrast to

the resonance frequencies, which decide the lower bound of the bandgap, the anti-resonance

frequencies of the resonator are observed to fall within and close to the upper bound of65

the bandgap for rod-like resonators, as schematically represented in Fig. 1(b)9. However,

this holds only for the case of anti-resonances of the resonator undergoing longitudinal

vibrations but not the flexural vibrations (Fig. 1(c)), as will be demonstrated in this pa-

per. It was numerically demonstrated that imposing a type of Cauchy boundary conditions

(BCs), called Mindlin BCs, which is equivalent to having U3 displacement anti-resonance70

for a resonator, can effectively suppress Rayleigh wave propagation16. This observation can

be exploited to design nonintuitive resonators based on anti-resonance matching through

topology optimization.

A BC-based design strategy requires an in-depth understanding of the interaction of

Rayleigh waves with the clamping boundary conditions imposed by surface-mounted res-75

onators and the role of resonator resonances and anti-resonances (longitudinal and flexural)

in tailoring surface-wave bandgaps. A recent study revealed that constraining the horizontal

component of displacement (Auld BCs) in the path of Rayleigh wave propagation does not

suppress Rayleigh waves; instead, the Rayleigh wave mode transmits as surface propagat-
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ing transverse waves16. Therefore, the role of U1 displacement anti-resonance in creating80

flexural resonance bandgaps needs to be further investigated. In addition, previous investi-

gations show that local resonance-based bandgaps are asymmetric in shape9,22, with more

transmission drop near the lower bound compared to the upper bound. It is interesting to

investigate whether the asymmetry in the transmission spectrum within the bandgap corre-

lates with the BCs imposed by resonators at the resonance and anti-resonance frequencies85

on the half-space. Finally, it was demonstrated that both the A0 and S0 Lamb waves can be

significantly suppressed using only a 1D array of resonators at the resonator’s anti-resonance

frequency12, giving rise to the question of whether we can achieve similar control over sur-

face waves. To that end, it is important to analyze separately the influence of clamping

conditions imposed by a single resonator and an array of resonators at the resonance and90

anti-resonance frequencies on the incident Rayleigh wave propagation and investigate its

implications on the transmission spectra.

To the best of the authors’ knowledge, this is the first study that demonstrates how the

longitudinal and flexural resonance bandgaps are shaped in relation to resonances and anti-

resonances of surface-mounted prismatic resonators using our understanding of Rayleigh95

wave interaction with different boundary conditions along its wave propagation path. We

draw key conclusions from the behavior of rod-like resonators under Rayleigh wave propaga-

tion and hypothesize a rational meta-surface design strategy based on topology optimization.

The remainder of the paper is organized as follows. Section II reviews the mode-conversions

that result due to the incidence of Rayleigh waves on different surface BCs and provide100

frequency-domain finite element analyses to understand the interplay between the clamping

conditions imposed by resonators and the observed transmission spectra for a single res-

onator (Section II A) and an array of resonators (Section II B) mounted on the surface in

the path of Rayleigh wave propagation. Section III illustrates the influence of few essential

geometric parameters on the resonance and anti-resonance frequencies and their integrated105

effect on the resulting transmission spectra. Finally, we present a set of conclusions in

Section IV that motivate and inform possible nonintuitive resonator designs based on anti-

resonance-matching using topology optimization.
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II. CLAMPING CONDITIONS IMPOSED BY SURFACE-MOUNTED

RESONATORS IN THE PATH OF RAYLEIGH WAVE PROPAGATION110

Manipulating the BCs on an elastic half-space was recently shown to achieve control

over the Rayleigh wave propagation16. An analytical study aimed at finding surface wave

solutions for different BCs on an elastic half-space showed that clamping the vertical (U3)

displacement component (termed as Mindlin BCs) on the surface enables Rayleigh wave

suppression16, as the incident Rayleigh wave predominantly mode converts to a transverse115

wave propagating at an angle into the half-space. Moreover, clamping both the U1 and U3

displacement components (Dirichlet BCs) is expected to prevent the propagation of surface

waves. On the other hand, constraining the horizontal (U1) displacement component on the

surface of the half-space (termed as Auld BCs) results in possible shear-vertical surface wave

solutions and was therefore hypothesized not to play a role in Rayleigh wave suppression16.120

These analytical results can be conceptually understood. Since the shear-vertical waves

propagate by pure shear deformation without inducing volume change, they can be sup-

ported at the surface even if the horizontal displacement component is constrained (Auld

BCs). On the contrary, constraining the vertical displacement component (Mindlin BCs)

prevents both the pure shear deformation and the volume change. The lack of pure shear125

deformation prevents shear-vertical wave propagation, and the constraint on the volume

change prevents longitudinal wave propagation on the surface. The time-domain simula-

tions corroborating the above analytical findings are demonstrated in the Supplementary

material (See Fig. SM2).

Though imposing frequency-independent BCs is unrealistic, it is possible to impose130

frequency-dependent Mindlin BCs (or U3 displacement anti-resonance) and Auld BCs (or U1

displacement anti-resonance) using surface-mounted resonators at their anti-resonance fre-

quencies, as previously demonstrated for the control of A0 and S0 wave modes in a plate12

and the control of Rayleigh waves on the half-space16. For example, a rod-like resonator con-

straining the U3 displacement component at its anti-resonance frequencies is equivalent to135

imposing Mindlin BCs, whereas constraining the U1 displacement component is equivalent

to imposing Auld BCs. The former scenario is realized when the anti-resonance frequency

involves longitudinal vibrations, whereas the latter results if the anti-resonance frequency

involves flexural vibrations.
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If we are to impose Mindlin BCs in the path of Rayleigh waves by a surface-mounted140

resonator, it is rational to assume that a single resonator is insufficient to suppress Rayleigh

waves at its anti-resonance frequency considering the parametric study on the Mindlin BC

patch length illustrated in16. For example, to suppress a 500 kHz (λR = 5.8 mm) Rayleigh

wave, the required length (L) of the prismatic rod-like resonator should be around 2.5 mm

(anti-resonance frequency ∼ 500 kHz under Rayleigh wave propagation). Assuming an145

aspect ratio (L/W) of at least 5 constrains the resonator width (W) to 0.5 mm (∼ λR/10),

which is shown to provide minimal Rayleigh wave suppression from the study on frequency-

independent Mindlin BC patches16. Though a single resonator is expected to exhibit a

poor Rayleigh wave suppression, studying its dynamic response and the imposed clamping

conditions on the half-space under Rayleigh wave propagation can provide key insights150

into the anti-resonance-based resonator design methodology, as will be illustrated in the

subsequent section.

A. A single surface-mounted resonator

Let us start by analyzing the clamping conditions imposed by a surface-mounted resonator

in the path of Rayleigh wave propagation and its corresponding transmission characteristics.155

For that purpose, we re-visit the COMSOL23 frequency-domain finite element analysis of a

single resonator presented in16. The finite element model considered is of thickness (along

the x3 direction) 6λR, partitioned into a “buffer” region of length λR, “incident” region

of length 4λR, ”resonator” region of length equivalent to the resonator base dimensions,

and a “transmitted” region of length 4λR, as shown in Fig. 2(a). In a 2D plane strain160

model of half-space and resonator, the resonator will act as a wall of infinite thickness, and

therefore an accurate representation of the resonator’s flexural resonances/anti-resonances

is not possible. Therefore, a 3D model is required for this analysis. Material properties of

Aluminum (Young’s modulus = 69 GPa, poisson ratio = 0.33, and density = 2700 kg/m3) are

used for both the half-space and resonators for simulations throughout the paper. Targeting165

the first fixed-free longitudinal eigenfrequency (fixed-free configuration) around 500 kHz (510

kHz), a 2.5 mm long (L) resonator with a 0.5 mm × 0.5 mm (W × W) cross-sectional area

(aspect ratio, L/W = 5) is considered. The width of half-space (along the x2 direction)

is considered to be λR/4, where λR is the Rayleigh wavelength corresponding to 500 kHz
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FIG. 2. (a) Schematic of a traction-free elastic half-space with a single resonator surface-mounted

on the ”resonator” region. (b) Anti-resonance profiles (abs(U1) and abs(U3)) of the resonator

base, (c) Rayleigh wave transmission spectrum, and (d) Volume averaged relative displacement

profiles indicating longitudinal and flexural resonance frequencies for a sweep of Rayleigh wave

excitation frequencies. The vertical lines in (c) indicate the resonance (fR) and anti-resonance

(fA) frequencies of the resonator.

frequency. The periodic BCs are applied to all the lateral surfaces of the half-space to ensure170

planar wave solutions. The consideration of periodic BCs will assume periodic arrangement

of an infinite number of resonators in the x2 direction, with the width of the half-space

dictating the resonator spacing.

A line-load excitation mimicking the wave structure of Rayleigh wave is applied to the

left edge of the “incident” region, across the half-space thickness, as shown in Fig. 2 (a).175
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A cubic mesh size of λR/14 (for the half-space) and a more refined tetrahedral mesh (for

the resonator) are used to perform a frequency-domain study by parametric sweeping the

excitation frequencies from 200 kHz to 900 kHz in 5 kHz increments. The frequency response

(displacement versus frequency) of the resonator to the Rayleigh wave propagation (for de-

termining the exhibited anti-resonances) and the corresponding Rayleigh wave transmission180

characteristics will be discussed in the subsequent sections.

1. Anti-resonance analysis

The spatially averaged value of the displacements (abs(U1) and abs(U3)) over the res-

onator base, representative of the clamping conditions imposed by the resonator under dy-

namic loading, plotted for the range of excitation frequencies, is depicted in Fig. 2(b).The185

eigenfrequencies of the resonator under the free-free, fixed-free, Mindlin-free, and Auld-free

BCs applied to the bottom and top resonator surfaces, respectively, are marked for refer-

ence. As shown in Fig. 2(b), the U3 displacement anti-resonance frequency (510 kHz) nearly

coincides with the Mindlin-free (505 kHz) and fixed-free (509.1 kHz) eigenfrequencies cor-

responding to longitudinal vibrations. In other words, the resonator base strictly imposes190

Mindlin BCs on the half-space at this anti-resonance frequency. In contrast, we observe that

the U1 displacement anti-resonance frequencies (335 kHz and 815 kHz) are not close to the

Auld-free eigenfrequencies (261.4 kHz and 729.2 kHz) corresponding to flexural vibrations,

suggesting imperfect imposing of Auld BCs. Please note that the cyan line close to 805

kHz does not correspond to the flexural mode. Although the resonator mounted in the path195

of Rayleigh wave propagation is subjected to vertical and horizontal tractions as well as

moments at its base, we further simplify the problem by decoupling the resonator from the

half-space to compute the displacement response (U1 for the horizontal traction loading and

U3 for the vertical traction loading) at the resonator base in the free-free configuration in

response to the horizontal and vertical harmonic traction loadings applied to all the nodes200

of the resonator base (Fig. 3(a)). Obvious dips in the displacement profiles (abs(U1) and

abs(U3)) can be observed in Fig. 3(a), where the dip in abs(U3) profile corresponds to the

first-mode longitudinal vibrations (Fig. 3(b)), and the dips in abs(U3) profile correspond to

the first (Fig. 3(c)) and second (Fig. 3(d)) mode flexural vibrations.

Drawing a comparison between Figs. 2(b) and 3(a) the U1 displacement anti-resonance205
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FIG. 3. (a) The displacement response (abs(U1) for the horizontal traction loading and abs(U3) for

the vertical traction loading) at the resonator base for the vertical and horizontal harmonic forced

excitation applied to the resonator base, respectively. The mode shapes of the resonator at the

(b) U3 displacement anti-resonance frequency and the U1 displacement anti-resonance frequencies

corresponding to the (c) first and (d) second flexural modes.

frequencies (335 kHz and 815 kHz) computed for the resonator mounted in the path of

Rayleigh wave propagation do not match the U1 displacement anti-resonance frequencies

(260 kHz and 730 kHz ) of the same resonator decoupled from the half-space undergoing

horizontal forced excitation. This suggests the inability of horizontal harmonic traction

loading in emulating a similar anti-resonance behavior to that of a resonator mounted in the210

path of Rayleigh wave propagation. However, emulating the U1 displacement anti-resonance

frequencies under a simplified loading is not beneficial for Rayleigh wave suppression due to

the inefficiency of Auld BCs in suppressing Rayleigh waves (see Supplementary material).

On the other hand, the U3 displacement anti-resonance frequency computed for the res-

onator mounted in the path of Rayleigh wave propagation matches well the U3 displacement215

anti-resonance frequency of the same resonator decoupled from the half-space under vertical

forced excitation, which in turn matches the fixed-free and Mindlin-free eigenfrequencies of

the resonator (Figs. 2(b) and 3(a)). In other words, vertical harmonic traction loading ap-

plied to a resonator base under free-free configurations can emulate a similar anti-resonance

behavior to that of a resonator mounted under Rayleigh wave propagation. These obser-220

vations motivate a systematic design of resonators based on matching the U3 displacement
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anti-resonance frequency with the incident Rayleigh wave frequency using topology opti-

mization. One of the main benefits of this approach is that it enables designing nonintuitive

resonators alleviating the need to couple the resonator to the half-space and using vertical

harmonic traction loading.225

2. Transmission characteristics

Although anti-resonance matching offers a pathway to systematic resonator design, a

single resonator designed based on tailoring its U3 displacement anti-resonance frequency

will have inherent limitations. This is because the transmission characteristics of a Rayleigh

wave incident on a finite sized Mindlin BC patch depends on the length of the BC patch16.230

To demonstrate this point, the Rayleigh wave transmission beyond a single resonator is eval-

uated at each frequency by performing a spatial Fourier transform (SFT) over the complex

displacement data (U1 + U3) extracted along the top surface of the “incident” and “trans-

mitted” regions (Fig. 2(a)). The transmission spectrum shown in Fig. 2(c) is the ratio of

the spectral content corresponding to Rayleigh wave peaks in the wavenumber spectra for235

“transmitted” and “incident” regions plotted versus frequency. We observe three drops in

the transmission spectrum at frequencies: 325 kHz, 460 kHz, and 775 kHz. These are the

coupled resonance frequencies, i.e., the frequencies at which the resonator exhibits maxi-

mum displacement response upon Rayleigh wave incidence. For a resonator in the path of

Rayleigh wave propagation, the coupled resonance frequencies (longitudinal and flexural)240

can be determined by estimating the relative volume-averaged displacements (U1 and U3)

of the resonators for a sweep of Rayleigh wave excitation frequencies:

U i =

∑∑∑
abs (Ui)dV∑∑∑

(abs(U1) + abs (U3))dV
, i = 1, 3. (1)

We observe the longitudinal resonance (maximum of U3) around 455 kHz and two flex-

ural resonances (maximum of U1) at 325 kHz and 775 kHz (Fig. 2(d)). These resonance

frequencies have a good correspondence with the frequencies where we observe transmission245

drops (Fig. 2(c)). On the other contrary, neither the U3 (imposing Mindlin BCs) nor U1

(imposing Auld BCs) displacement anti-resonances of the resonator exhibits Rayleigh wave

suppression at the anti-resonance frequencies (335 kHz, 510 kHz, and 815 kHz). The lat-

ter is expected because U1 displacement anti-resonances (Auld BCs) do not play a role in
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suppressing the Rayleigh wave, whereas the U3 displacement anti-resonances (Mindlin BCs)250

require a sufficient width of the resonator base (∼10λR) to provide significant suppression16.

It is worth noting that unlike a coupled resonator in the path of Rayleigh wave propagation,

a resonator decoupled from the half-space under vertical or horizontal traction loading at

the base will have resonance frequencies coincident with its eigenfrequencies (corresponding

to their respective eigenmode) under a free-free configuration, as shown in Fig. 3(a). The255

above analysis of a single resonator’s transmission characteristics showcases a significant

limitation of the proposed anti-resonance matching methodology to design resonators, as

the anti-resonance (imposing Mindlin BCs) does not readily suppress the Rayleigh wave

in comparison to resonance, which is a result of local-resonance hybridization of the res-

onator with the incident wave17. However, a significant Rayleigh wave suppression at the260

U3 displacement anti-resonance frequency can be obtained using an array of resonators, as

an array of Mindlin BC patches can effectively suppress Rayleigh waves with each patch

mode-converting a part of the Rayleigh waves into transverse waves16.

B. An array of closely spaced surface-mounted resonators

To corroborate the presence of anti-resonances for an array of resonators and their effi-265

ciency in suppressing Rayleigh waves, an investigation of the clamping conditions imposed

by a resonator array including anti-resonance and transmission analyses is provided in this

section.

1. Unit cell dispersion analysis

Before proceeding with the anti-resonance analysis of a resonator array, we present the270

details of the unit cell dispersion analysis to obtain the surface wave dispersion curves for

an infinite 1D array of resonators (in the wave propagation direction) and the corresponding

bandgaps following22. The unit cell length is considered to be the same as the half-space

width (λR/4) used in the earlier investigation resulting in a 2D square lattice configura-

tion for resonators (Fig. 4(a)). The Bloch Floquet periodic BCs are imposed on the four275

lateral sides of the half-space part of the unit cell, leaving the lateral resonator surfaces

traction-free22. Fixed BCs are applied to the bottom surface of the half-space to remove
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FIG. 4. (a) Unit cell used to compute the (b) surface wave dispersion curves exhibiting three

surface-wave bandgaps formed due to a longitudinal resonance and two flexural resonances of the

resonator. The mode shape of the resonator-half space unit cell at the lower bound of the surface-

wave bandgap corresponding to the (c) first longitudinal resonance, (d) first flexural resonance,

and (e) second flexural resonance. The mode shape of the resonator-half space unit cell at the

upper bound of the surface-wave bandgap corresponding to the (f) first longitudinal resonance, (g)

first flexural resonance, and (h) second flexural resonance. The horizontal lines in (b) indicate the

resonance (fR) and anti-resonance (fA) frequencies of the resonator.

the possible surface wave solutions that propagate on the bottom of the half-space. Fi-

nally, eigenfrequency analysis is performed by sweeping the Bloch wavenumber within the

irreducible Brillouin zone to obtain the dispersion curves22. The commonly employed solid280

cone method is used to eliminate non-surface wave solutions by limiting the possible wave

speeds in the dispersion curves to be less than the transverse wave speed22. Three surface-

wave bandgaps are observed from the dispersion curves in Fig. 4 (b), one corresponding to

the longitudinal resonance (449-532 kHz) and the other two due to the flexural resonances

(323-329 kHz and 767-803 kHz) of resonators. It is clear from the dispersion curves that the285

longitudinal resonance creates a wide bandgap that can be exploited for different applica-

tions. On the other hand, band gaps due to flexural resonances are narrow, in agreement

with the findings from previous studies15.

Mode shapes corresponding to the lower bounds of the bandgaps depict the longitudinal
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(Fig. 4 (c)) and flexural (Figs. 4 (d) and 4 (e)) vibrations of the resonator. As expected,290

the frequencies defining these lower bounds closely match the coupled resonance frequencies

(marked in Fig. 4(b)) estimated earlier from the analysis of a single resonator (Fig. 3(d)).

However, a slight discrepancy between the coupled resonance frequencies determined for a

single resonator and an array of resonators is expected, as the coupled resonance frequency

is influenced by the number of resonators17. All the three mode shapes at the lower bounds295

exhibit significant displacement in the resonator with near-zero displacement of the half-

space, suggesting no possible surface waves propagating at these frequencies. The mode

shapes at the upper bounds (Figs. 4(f), 4(g), and 4(h)) are similar to those observed at

lower bounds, but show slight deformations of the half-space. Since the mode shapes at the

upper bounds are extracted along the transverse wave sound line, the observed deformations300

of the half-space correspond to the propagating transverse waves. The U1 and U3 displace-

ment anti-resonance frequencies of the resonator estimated earlier from the single resonator

analysis are marked in Fig. 4(b). The U3 displacement anti-resonance frequency lies within

the longitudinal-resonance bandgap obtained from the dispersion analysis, suggesting the

efficiency of an array of Mindlin BC patches (imposed by resonators) in suppressing Rayleigh305

waves16. In contrast, the U1 displacement anti-resonance frequencies fall outside the flexural-

resonance bandgaps, as expected considering the inefficiency of Auld BC patches (imposed

by resonators) in suppressing Rayleigh waves16. Next, we study how the presence of an

array of resonators influences the clamping conditions at the resonance and anti-resonance

frequencies.310

2. Anti-resonance analysis

Here, we perform a frequency-domain finite element analysis similar to that shown in

Fig. 2(a), but with an array of 30 resonators (along the wave propagation) mounted on the

“resonator” region (Fig. 5(a)). The spacing between the resonators is consistent with the

size of the unit cell used for generating dispersion curves (Fig. 4 (a)). A frequency sweep315

from 250 kHz to 850 kHz with increments of 5 kHz is employed to perform a parametric

frequency-domain study. As an example, the anti-resonance displacement (abs(U1) and

abs(U3)) profiles at the base of the 20th resonator are shown in Fig. 5 (b). The surface-

wave bandgaps obtained from the dispersion analysis are highlighted in grey for comparison.
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Similar to the case of a single resonator, the U3 (510 kHz) and U1 (335 kHz and 815 kHz)320

displacement anti-resonance frequencies (marked in Fig. 5(b)) can be observed for an array

of resonators, suggesting that the anti-resonance frequencies are not changed by the presence

of multiple resonators. Analyzing the U3 and U1 displacements at the base of the 1st, 10th,

20th, and 30th resonators, confirms the presence of U3 and U1 displacement anti-resonances

across the resonator array (Fig. 5(c)). The observed gradually decreasing displacement325

amplitude for the later resonators (the 10th, 20th and 30th) is expected considering the

successive mode conversion of Rayleigh wave to transverse waves by the resonators, which

transmits energy away from the surface16.

To further corroborate the imposing of Mindlin and Auld BCs at the corresponding

anti-resonance frequencies, we compare the frequency-domain displacement (real(U3)) fields330

for an array of BC patches and an array of resonators at the resonator’s anti-resonance

frequencies. To that end, we consider a similar COMSOL model as in Fig. 5(a) but with 30

frequency-independent BC patches, each having the size of one resonator base, positioned in

the place of resonators. The boundary conditions over these patches are varied as Mindlin,

Auld, and Dirichet BCs. The displacement (real(U3)) fields corresponding to the anti-335

resonance frequencies (335 kHz, 510 kHz, 815 kHz) observed in Fig. 5 (b) are shown in Figs.

5(e), 5(g), and 5(i). The simulation results for an array of Mindlin BC patches at frequencies

510 kHz ((Fig. 5 (m)), and an array of Auld BCs at frequencies 335 kHz and 815 kHz (Figs.

5 (k) and 5 (o)) are shown in Fig. 5. A close similarity between the displacement fields at

510 kHz for the simulations involving resonators and Mindlin BC patches can be observed340

(Figs. 5 (g) and 5 (m)). Although the Auld BC patch simulation results match closely

the results corresponding to the case with the resonator array at 815 kHz anti-resonance

frequency (Figs. 5 (i) and 5 (o)), they do not seem to match at the 335 kHz (Figs. 5 (e)

and 5 (k)) anti-resonance frequency. A possible reason is that the resonators do not impose

perfect Auld BCs. Some deviations between the two sets of displacement fields are expected345

as the resonators constrain both the displacement components, whereas over the Mindlin

and Auld BC patches, one of the displacement components remains unconstrained.

An interesting observation is that the additional anti-resonances corresponding to the

displacements abs(U1) and abs(U3) at frequencies (325 kHz, 460 kHz, and 785 kHz - marked

in Fig 5(b)) are close to the coupled resonance frequencies (325 kHz, 455kHz, and 775350

kHz) obtained earlier for the case of a single resonator (Figs. 2(d)). These additional
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FIG. 5. (a) Schematic of a traction-free elastic half-space with an array of 30 resonators surface-

mounted on the ”resonator” region. (b) The anti-resonance profiles (abs(U1) and abs(U3)) cor-

responding to the base of the 20th resonator in the path of Rayleigh wave propagation. (c) The

anti-resonance profiles (abs(U1) and abs(U3)) corresponding to the base of the 1st, 10th, 20th, and

30th resonator in the path of the Rayleigh wave propagation. The frequency-domain simulation

results depicting the real(U3) displacement fields at the resonance ((d) 325 kHz, (f) 460 kHz, and

(h) 785 kHz) and anti-resonance ((e) 335 kHz, (g) 510 kHz, and (i) 815 kHz) frequencies. The

frequency-domain simulation results depicting the real(U3) displacement field for an array of 30

BC patches that impose Dirichlet BCs ((j) 325 kHz, (l) 460 kHz, and (n) 785 kHz)), Mindlin BCs

((m) 510 kHz), and Auld BCs ((k) 335 kHz and (o) 815 kHz) in the direction of Rayleigh wave

propagation.
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anti-resonance frequencies match closely the frequencies at which maximum transmission

dips are observed (325 kHz, 455 kHz, and 780 kHz) in the transmission spectrum (as will

be demonstrated later) within the longitudinal and flexural bandgaps. Therefore, these

frequencies potentially represent the coupled resonance frequencies considering the influence355

of a resonator array17. Both displacement components, abs(U1) and abs(U3), are very small

around 460 kHz and 785 kHz, which may be interpreted as imposing Dirichlet BCs (U1

= 0, U3 = 0) in the path of Rayleigh wave propagation. In line with these observations,

we observe that the displacement fields (real(U3)) for an array of resonators (Figs. 5(f)

and 5(h)) at these resonance frequencies (460 kHz and 785 kHz) correlate well with that360

of an array of Dirichlet BC patches (Figs. 5(l) and 5(n)). Similarly, there is also a slight

drop in the U3 displacement before the U1 displacement anti-resonance at 335 kHz (Figs.

5(b)). However, the decrease is not significant compared to that observed at 460 kHz or

785 kHz, and U1 displacement anti-resonance does not seem to exist at 325 kHz, unlike

what is observed at 785 kHz. This inconsistency can also be witnessed by comparing the365

frequency-domain displacement fields (real(U3)) for an array of resonators (Fig. 5(d)) with

that of Dirichlet BC patches (Fig. 5(j)). Although the displacement fields for the resonators

at 325 kHz and Dirichlet BC patches are similar in terms of the mode-converted transverse

waves, we see the presence of slow-moving Rayleigh waves in the case of the resonator array

(Fig. 5(d)). This indicates that imposing Dirichlet BCs at frequencies within the surface-370

wave bandgap - generated by the first flexural resonance of the resonator with the U1 and

U3 displacement anti-resonance in Fig. 5(b) - is obscured because of the narrow flexural

resonance bandgap. Preforming a frequency sweep with a finer resolution would possibly

provide a better visualization of imposing Dirichlet BCs at 325 kHz.

Moreover, Fig. 5(c) illustrates that the U3 and U1 anti-resonance displacement profiles of375

the first resonator in the array match closely those of a single resonator (Fig. 2(b)) due to

the absence of Rayleigh wave dispersion and indicate no dips at the resonance frequencies

(325 kHz, 460 kHz, and 785 kHz). However, the dips are evident for the rest of the resonators

shown in Fig. 5(c). Fig. 6 shows the displacement (abs(U1) and abs(U3)) fields close to the

resonator array at the resonance frequencies (460 kHz and 785 kHz). At 460 kHz, we observe380

the clamping conditions at the base of resonators in the array, excluding the first couple, to

resemble Dirichlet BCs ((abs(U1) ∼ 0, abs(U3) ∼ 0)), with resonators exhibiting longitudinal

mode shapes (Figs. 6 (a) and 6(b)). On the other hand, at the 785 kHz excitation frequency,
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(a)

Dirichle
t BCs

First longitudinal mode

Dirichle
t BCs

Dirichle
t BCs

Dirichle
t BCs

Second flexural mode

(abs(U3), 460 kHz)(abs(U1), 460 kHz)

(abs(U3), 785 kHz)(abs(U1), 785 kHz)

(b)

(c) (d)

-0.5 0 0.25 0.5-0.25
Displacement (a.u.)

FIG. 6. The frequency-domain simulation results depicting the displacement fields closer to the

surface-mounted resonators at frequencies 460kHz ((a) abs(U1) and (b) abs(U3)) and 785 kHz ((c)

abs(U1) and (d) abs(U3)).

Dirichlet BCs seem to be imposed at the base of the resonators after the 10th resonator, with

resonators exhibiting flexural mode shapes (Figs. 6(c) and 6(d)).385

Next, we study the transmission characteristics demonstrated by the resonator array

in relation to the above analysis of the clamping conditions imposed by the resonators at

the resonance and anti-resonance frequencies. Such a study is necessary to comment on

the efficiency of the meta-surface to suppress Rayleigh waves at the U3 displacement anti-

resonance frequency.390

3. Transmission characteristics

For each excitation frequency, the transmission spectrum (Fig. 7(a)) is obtained by

performing SFT over the complex displacement data (U1 + U3) extracted along the top

surfaces of the “incident” and ”transmitted” regions. The surface-wave bandgaps obtained

earlier through the dispersion analysis, and the resonance and anti-resonance frequencies395

obtained from the analysis of a single resonator are highlighted in the transmission spectrum
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FIG. 7. (a) The transmission spectrum obtained for an array of 30 resonators surface-mounted

on the ”resonator” region. (b) The wave speed-frequency dispersion curves, obtained by applying

the spatial Fourier transform on the complex displacement data extracted on the top surface of

the ”resonator” region in comparison to that obtained from the unit cell dispersion analysis. The

highlighted grey regions in (a) and (b) indicate the surface-wave bandgaps found through the unit

cell dispersion analysis. The vertical lines in (a) indicate the resonance (fR) and anti-resonance (fA)

frequencies of the resonator. The horizontal lines in (b), colored in magenta and green, indicate

the transverse and Rayleigh wave speeds, respectively.

(Fig. 7(a)) for comparison. It is evident that the drops in the transmission spectrum

coincide with the expected longitudinal and flexural resonance bandgaps, suggesting that the

dispersion induced by local resonances is included in the numerical model with 30 resonators.

Coherent with our understanding of how the Rayleigh wave interacts with Mindlin BCs16,400

it appears that both resonance and anti-resonance of the resonators are responsible for the

longitudinal-resonance bandgap (Fig. 7(a)). However, only the resonance is responsible

for the flexural-resonance bandgap because the U1 displacement ant-resonance (Auld BCs)

cannot suppress Rayleigh wave propagation16.

By performing a similar SFT analysis over the complex displacement data (U1 + U3)405

extracted along the top surface of the “resonator” region, it is also possible to generate the

Rayleigh wave dispersion curves for the metasurface. The wave speed-frequency dependency

obtained from the SFT analysis for different excitation frequencies is plotted against the dis-

persion curves extracted from the unit cell, as shown in Fig. 7(b). As expected from a local-
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resonance phenomenon, the phase speed approaches a minimum (theoretically, it should410

approach zero) at the coupled resonance frequencies (at the lower bounds of the bandgaps)

(Fig. 7(b)). Inside the bandgap, we see a sudden increase in wave speed with values reaching

above the transverse wave speed due to the mode-converted transverse waves propagating at

an oblique angle. It is important to note that the SFT applied over the horizontally spaced

data points (along the x1 direction), gives information on the wavenumber components in415

the x1 direction. Therefore, the apparent wave speed values will appear larger than the real

speed of transverse waves traveling into the half-space at an angle. On a related note, the

variation of wave speed within the bandgap, estimated using the x1 wavenumber component,

is linked to the variation in the propagation angles of the mode-converted transverse waves

(Fig. 7(b)).420

For example, we can observe the change in wave propagation angles of the mode-converted

waves within the longitudinal-resonance bandgap with change in clamping conditions from

Dirichlet BCs imposed at the resonance frequencies to Mindlin BCs imposed at the anti-

resonance frequencies (see Figs. 5 (f) and 5 (g)). As expected from the BC patch study (See

supplementary material), imposing the Dirichlet BCs will result in transferring more energy425

from incident Rayleigh wave at broader angles deeper into the half-space. In comparison,

the Mindlin BCs result in mode-converted transverse waves that propagate closer to the

surface16. The larger the mode-converted wave propagation angles, the greater will be the

transmission loss. In other words, this analysis suggests that the hybridization between

the incident Rayleigh wave and the coupled longitudinal resonance of the resonator offers430

significant Rayleigh wave suppression compared to that obtained at the anti-resonance fre-

quency of the resonator where Mindlin BCs are imposed, providing a new perspective on

the asymmetry observed in the transmission drop profile. In contrast, since only the reso-

nance frequencies play a role in generating the flexural resonance bandgap, the transmission

bandgap appears more symmetric.435

In comparison to the 8% Rayleigh wave suppression achieved for a single resonator (Fig.

2(c)) in the direction of wave propagation, an array of 30 resonators demonstrated 63%

suppression at the U3 displacement anti-resonance frequency (Fig. 7(a)). This indicates

that though an array of Mindlin BC patches are effective in comparison to a single Mindlin

BC patch, the Rayleigh wave suppression could still be less because many factors such440

as resonator width, resonator spacing, and a number of resonators are expected to play a
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role on the transmission characteristics for an array of Mindlin BC patches. The reported

frequency-independent BC patch investigations and frequency-dependent resonator studies

provide an in-depth understanding of the role of resonances and anti-resonances in shaping

the longitudinal and flexural resonance bandgaps. In the next session, we discuss the possible445

widening of the longitudinal resonance bandgap by manipulating the resonances and anti-

resonances to motivate anti-resonance-matched resonator design strategies using topology

optimization.

III. DISCUSSION

The coupled resonance frequencies depends on many factors, such as the resonator mass,450

equivalent stiffness of the resonator and substrate, and the number of resonators17. Given

the complexity of the analytical framework to determine the coupled resonance frequencies

for rod-like resonators17 and solution to the boundary value problem of the rod resonators

mounted on the half-space15, we resort to employing numerical finite element software to

evaluate these frequencies. As previously demonstrated, evaluating the onset of the bandgap455

using the eigenfrequency analysis of a unit cell or the frequency corresponding to the res-

onator’s maximum relative displacement response can help determine the resonance frequen-

cies. On the other hand, estimating the anti-resonance frequency of the rod-like resonator

in the path of Rayleigh wave propagation is straightforward as it is equivalent to the eigen-

frequency of the resonator subject to fixed-free or Mindlin-free BCs.460

It is important to note that resonance and anti-resonance corresponding to longitudinal

vibrations govern the extent of the longitudinal resonance bandgap, and it is possible to

broaden the bandgap by pushing the resonance frequency away from the anti-resonance

frequency. Earlier studies demonstrated the possible widening of the bandgap by varying the

filling fraction, resonator spacing, number of resonators etc.17,22 However, an understanding465

of the influence of these parameters on the resonance and anti-resonance frequencies and

their integrated effect on the widening/narrowing of the bandgap is lacking. Here, we present

a parametric case study of an array of 30 resonators by varying the filling fraction and

resonator spacing to understand the influence of resonance and anti-resonance frequencies

in shaping the bandgaps (Fig. 8). In the first case, we keep the resonator spacing/lattice470

length (A = 1 mm, 1.5 mm, and 2 mm) constant varying the filling fraction (W 2/A2) from
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0 to 0.5, whereas in the second case, we keep the resonator width constant (W = 0.5 mm,

0.75 mm, and 1 mm) and vary the lattice length (A) from 0.8 mm to 2 mm. In both cases,

a 2.5 mm resonator length is chosen to obtain the anti-resonance frequency around 500 kHz

(∼ 510 kHz). We consider all the possible cases with a resonator width and a unit cell475

filling fraction less than 1 mm and 0.5, respectively. An upper limit on the resonator width

is imposed to maintain an aspect ratio (L/W) of at least 2.5 for the resonator, whereas an

upper limit on the filling fraction is considered because the flexural resonances at higher

filling fractions are observed to interfere with the longitudinal-resonance bandgaps.

A. Filling fraction480

Increasing the filling fraction for a constant lattice length is observed to decrease the

resonance frequency (Fig. 8(b)), as expected due to the increase in resonator mass17. More-

over, resonance frequency decreases with an increase in the lattice length for a constant

filling fraction (Fig. 8(b)). Although the anti-resonance frequency does not change with

the filling fraction or lattice length, the transmission characteristics at the anti-resonance485

frequencies vary. Fig. 8(c) demonstrates a decrease in Rayleigh wave transmission for an

array of resonators at the anti-resonance frequency (510 kHz) with an increase in filling

fraction. For comparison, we also demonstrate the Rayleigh wave transmission for a similar

array of frequency-independent Mindlin BC patches, with each patch of the same size as

the resonator base. Fig. 8(d) shows a similar trend in comparison to Fig. 8(c) but with a490

small difference in the Rayleigh wave transmission. This is expected because of slightly im-

perfect imposing of Mindlin BCs by resonators at the resonator’s anti-resonance frequency

compared to perfect Mindlin BC patches. For a given filling fraction, the Rayleigh wave

transmission increases with the lattice length for a smaller filling fraction but decreases for

a higher filling fraction (Figs. 8(c) and 8(d)). This is because of two competing mechanisms495

exhibited by an array of Mindlin BC patches that influence the transmission characteristics

at the anti-resonance frequency: (1) increasing the Mindlin BC patch width for a constant

patch spacing decreases the Rayleigh wave transmission and (2) increasing the Mindlin BC

patch spacing for a constant patch length increases the Rayleigh wave transmission. There-

fore, for a smaller filling fraction, the influence of patch spacing dominates the transmission500

spectrum, whereas the patch width dominates the transmission spectrum for a higher filling
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FIG. 8. Parametric analysis on an array of 30 resonators to study the influence of filling fraction

and lattice length on the resonance frequencies and the transmission characteristics at the anti-

resonance frequencies. (a) The transmission spectra obtained for a constant lattice length of 1.5

mm and a range of resonator widths (W = 0.2 mm to 1 mm). Variation of (b) resonance frequencies

and the Rayleigh wave transmission for an (c) array of resonators and an (d) array of Mindlin BC

patches with the filling fraction keeping the lattice length constant (A = 1 mm, 1.5 mm and 2

mm). (e) The transmission spectra obtained for a constant resonator width of 0.5 mm and a range

of lattice lengths (A = 1 mm to 2 mm). Variation of (f) resonance frequencies and the Rayleigh

wave transmission for an (g) array of resonators and an (h) array of Mindlin BC patches with the

lattice length keeping the resonator width constant (A = 0.5 mm, 0.75 mm and 1 mm).

fraction. To summarize, increasing the filling fraction for a constant lattice length/resonator

spacing decreases the coupled resonance frequency and the Rayleigh wave transmission at

the anti-resonance frequency and widens the longitudinal resonance surface-wave bandgap

by expanding both the lower and upper bounds. As an example, the transmission spectrum505

for different resonator widths (0.2 mm to 1 mm) at a constant lattice length (1.5 mm) is

shown in Fig. 8(a), demonstrating the widening of bandgap in both the directions.
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B. Lattice length

In contrast to the effect of filling fraction, increasing the lattice length for a given res-

onator width seems to have a minimal influence on the coupled resonance frequency, as510

shown in Fig 8(f). As expected from earlier observations, the Rayleigh wave transmission

increases with the lattice length, both for the cases of resonators at the anti-resonance fre-

quency (Fig. 8(g)) and perfect Mindlin BC patches (Fig. 8(h)). However, the increase

in transmission is significantly smaller at higher lattice lengths for larger resonator widths

(Figs. 8(g) and 8(h)). To summarize, increasing the lattice length for a given resonator515

diameter has a minimal influence on the resonance frequency but increases the Rayleigh

wave transmission at the anti-resonance frequency. This results in narrowing the longitudi-

nal bandgap at the upper bound with minimal frequency shift observed at the lower bound,

as demonstrated in the transmission spectra (Fig 8(e)) for different lattice lengths (1 mm

to 2 mm) while maintaining the resonator width constant (0.5 mm). On the other hand, an520

increase in the number of resonators is expected to decrease the Rayleigh wave transmission

at the anti-resonance frequency as each of the Mindlin BC patches converts a portion of

the Rayleigh wave to a transverse wave. Therefore an increase in the number of resonators

is expected to broaden the longitudinal resonance bandgap towards the upper bound until

zero transmission at the anti-resonance frequency is achieved.525

These observations indicate possible enhanced suppression of Rayleigh waves at the anti-

resonance frequencies, motivating a systematic design of optimized resonators based on

matching the anti-resonance frequency corresponding to the U3 displacement with the in-

cident Rayleigh wave frequency through topology optimization. Moreover, exploiting the

design parameters that maximize the separation between the resonance and anti-resonance530

frequencies, for example by increasing the mass of the resonator, wide bandgaps can be re-

alized. One of the main benefits of such an approach is that it enables designing resonators

without the need to couple the resonator to the half-space. Therefore, a rational design

procedure for resonators is possible beyond the state-of-the-art approach, which requires an

extensive parametric eigenfrequency analysis over a unit cell comprising a resonator and535

half-space18–21.
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IV. CONCLUSION

Drawing insights from the interaction of Rayleigh waves with different frequency-

independent BCs (Mindlin, Auld and Dirichlet BCs)16, we study how the resonances and

anti-resonances of prismatic surface-mounted resonators in the path of a Rayleigh wave540

shape the longitudinal and flexural-resonance surface-wave bandgaps. Two cases are pre-

sented: a single resonator and an array of closely spaced resonators. A single resonator

demonstrates poor Rayleigh wave suppression at both its vertical (U3) and horizontal (U1)

displacement anti-resonance frequencies; the former is because of the inefficiency of Auld

BCs to suppress Rayleigh waves, and the latter is due to the small resonator width, hence545

the small-sized imposed Mindlin BC patch . Despite its poor transmission characteristics,

through an analysis of a single resonator, we demonstrate that a vertical harmonic traction

loading to the resonator base emulates a similar U3 displacement anti-resonance behavior to

that of a resonator mounted in the path of Rayleigh wave propagation. These findings sug-

gest a possible rational design methodology using topology optimization based on matching550

the U3 displacement anti-resonance frequencies under vertical forced excitation, the details

of which will be reported in a future publication.

For a resonator array, in addition to the longitudinal resonances of the resonators, the

U3 displacement anti-resonances also play a role in the longitudinal resonance surface-wave

bandgap formation because an array of Mindlin BCs patches can significantly suppress sur-555

face wave motion. However, only the flexural resonances of the resonator appear to be

responsible for flexural bandgap formation since flexural anti-resonances resulting in an ar-

ray of Auld BCs patches do not help suppress Rayleigh waves. Moreover, we demonstrate

clamping of both the horizontal and vertical displacement components (Dirichlet BCs) at

the longitudinal and flexural resonances of the resonators arranged in a closely-spaced ar-560

ray after the first few resonators, possibly a result of local-resonance induced hybridization.

With reference to the clamping conditions realized at the resonances and anti-resonance,

we demonstrate poor Rayleigh wave suppression capability at the resonator’s anti-resonance

frequencies in comparison to that at resonance frequencies. Finally, we demonstrate how

the surface-wave bandgaps are shaped in relation to the resonator’s resonances and anti-565

resonances as a result of varying a few key geometric parameters of the unit cell, focusing

more on the transmission characteristics of an array of resonators at their anti-resonance
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frequencies. Our results demonstrate that the U3 displacement anti-resonances of closely-

spaced resonators having larger base dimensions, can significantly suppress Rayleigh waves.

These findings motivate the resonator designs based on matching anti-resonances for appli-570

cations ranging from seismic isolation of structures to acoustic wave devices.

SUPPLEMENTARY MATERIAL

See supplementary material for the time-domain finite element analysis of the Rayleigh

wave interaction with different BCs.
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