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A locally-resonant meta-surface for preferential excitation of a guided mode in a

hollow pipe can improve ultrasonic guided wave inspection of pipelines. The pro-

posed meta-surface comprises a periodic arrangement of bonded prismatic rod-like

resonators in the circumferential and axial directions of the pipe. We demonstrate

the presence of bandgaps for the low-frequency axisymmetric longitudinal modes

L(0,1) and L(0,2), and the torsional mode T(0,1). The generated bandgaps can be

exploited to filter higher harmonics associated with the system nonlinearity to im-

prove nonlinear ultrasonic measurements on pipes. These bandgaps exist even for the

non-axisymmetric flexural modes but with their hybridized dispersion curves exhibit-

ing mode-coupling for higher circumferential orders. Moreover, a ”partial” bandgap

is obtained where preferential transmission of L(0,2) mode over L(0,1) is possible.

We discuss the potential advantages of this partial bandgap to improve pipeline in-

spections using the L(0,2) mode. Time-domain finite element analyses are used to

validate the presence of these bandgaps under the radial, circumferential and axial

excitations that mimic the excitation using a ring of piezoelectric transducers. Fi-

nally, we discuss the influence of resonator spacing, filling fraction, and the number

of resonator rings on the bandgaps for an informed meta-surface design.
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I. INTRODUCTION

Ultrasonic guided wave inspection is a widely used technique for pipelines due to the

ability of guided waves to travel long distances and their sensitivity to defects even at

lower frequencies1,2. However, the tremendous potential of using guided modes in hollow

pipes is often limited due to their multi-mode dispersive nature. The guided modes in5

pipes are classified into axisymmetric longitudinal modes L(0,n), axisymmetric torsional

modes T(0,n), and non-axisymmetric flexural modes F(m,n), where m and n denote the

circumferential order and the group number, respectively3. The low-frequency axisymmetric

longitudinal modes, L(0,1) and L(0,2), and the torsional mode, T(0,1), are widely used for

pipeline inspection, as they can be excited using a ring of ultrasonic transducers4.10

Among these axisymmetric modes, T(0,1) and L(0,2) are preferred due to their non-

dispersive nature within a broad low-frequency range5–11. Moreover, neither mode has a

radial displacement component responsible for leakage into fluids, and therefore they can

travel long distances in fluid-filled pipes. In contrast, L(0,1) mode is dispersive and has

particle motion in both radial and axial directions, and will dissipate energy in the pres-15

ence of fluid. The L(0,2) mode is sometimes preferred over T(0,1) due to its higher group

velocity, higher sensitivity to circumferential cracks, and lower attenuation in the presence

of a viscoelastic coating12. Although the preferential excitation of T(0,1) mode is possible

using a single circumferential ring of thickness-shear13,14 or in-plane shear15 piezoelectric

transducers, the preferential excitation of L(0,2) mode requires multiple transducer (axially-20

polarized) rings to suppress the inherent L(0,1) mode excitation16. The particle motion

of L(0,1) mode in the axial direction is responsible for its unavoidable excitation17. The

presence of L(0,1) mode in inspections involving L(0,2) makes the signal processing com-

plicated due to the unwanted mode conversions that result from L(0,1) mode interaction

with defects11,calling for new ways for preferential transmission of the L(0,2) mode using a25

single ring of transducers. On the other hand, a circumferential ring of radially-polarized

transducers preferentially transmits L(0,1) mode, as L(0,2) mode has negligible radial par-

ticle motion17. The possible mode conversion of this preferentially excited L(0,1) mode to

L(0,2) could enable L(0,2) mode pipeline inspections under a radial excitation of transducers,

thereby reducing the complexity and cost of the transducer system.30

Mode filtering also plays an important role in nonlinear ultrasonic guided wave measure-
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ments for evaluating incipient damages. Li et al. demonstrated the use of the axisymmetric

modes L(0,6) and L(0,10) as the fundamental and second harmonic wave modes, respec-

tively, to measure the nonlinearity that arises from the changes in the microstructure due

to thermal fatigue damage18. Choi et al. used third harmonics associated with T(0,1) mode35

to measure the fatigue damage in a Nickel alloy19. However, nonlinear measurements are

extremely sensitive to the system nonlinearity arising from the actuation system such as the

amplifiers, transducers and the ultrasonic couplant20. The presence of these inherent non-

linearities influence the amplitude of the higher harmonics which carry information about

microstructural imperfections. Therefore, new techniques to suppress higher harmonics as-40

sociated with the system nonlinearity is beneficial to nonlinear ultrasonic measurements.

Locally-resonant meta-surfaces have been proposed for structural inspection applications

for mode filtering21, mode conversion22, steering23, and focusing24–26 of elastic waves in

plates and pipes. Very recently, metamaterial-based filters for suppressing the higher har-

monics associated with the system nonlinearity have been introduced27–29. The suppression45

is achieved by matching the second harmonic frequency with the bandgap frequency ex-

hibited by the meta-material. The formation of bandgaps because of the hybridization of

Lamb waves with different meta-surfaces was proposed for improving nonlinear ultrasonic

measurements in plates27,29. However, bandgaps emerging from the hybridization between

the guided modes in a pipe with meta-surfaces is not yet fully explored. Very recently, local50

resonance-based gradient index lenses were demonstrated to achieve the focusing of axisym-

metric guided modes in pipes25,26. However, the application of meta-surfaces for preferential

guided mode transmission and suppression in pipelines remains unexplored. In this paper,

we demonstrate a meta-surface design with two important functional capabilities: (a) pref-

erentially transmitting L(0,2) mode under radial and axial excitations, and (b) exhibiting55

bandgaps for axisymmetric and non-axisymmetric guided modes that can be exploited for

improving nonlinear ultrasonic measurements.

The remainder of the paper is organized as follows. Section II discusses the hybridization

between the axisymmetric and non-axisymmetric guided modes and the local resonances of

prismatic rod-like resonators resulting in the generation of bandgaps. The time-domain finite60

element validation of the obtained bandgaps and the potential implications of the results are

presented in Section III. The influence of resonator spacing, filling fraction and the number

of resonator rings on the bandgaps is presented as a parametric study in Section IV. Finally,
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we present key conclusions derived from our numerical studies in Section V that could

potentially benefit the fields of nondestructive testing and structural health monitoring.65

II. FORMATION OF BANDGAPS FOR AXISYMMETRIC AND

NON-AXISYMMETRIC GUIDED MODES IN A HOLLOW PIPE

The proposed meta-surface comprises periodically stubbed prismatic rod-like resonators

on a 4-inch profile (114.3 mm outer diameter and 6 mm thick) steel pipe (Fig. 1(a)). The

unit cell considered is a 15 deg arc of the pipe (θs) including a steel resonator of dimensions70

23mm × 8mm × 8mm (L × W × W), as shown in Fig. 1(a). The resonator dimensions are

selected to attain a fixed-free longitudinal resonance frequency of the resonator around 50

kHz. The base of the resonator is slightly curved with a radius matching the outer radius

of the pipe. A lattice length of a = 10 mm is considered along the axial direction. The

defined sector angle (θs) and lattice length (a) imply an infinite array of resonator rings75

with 2 mm spacing in the axial direction with each ring comprising 24 (∼ 360/15) equally

spaced resonators along the circumference. Imposing cyclic boundary conditions (BCs) to

the pipe cross sections with normals oriented in the circumferential direction and Bloch

Floquet BCs to the pipe cross sections with normals oriented in the axial direction enable

selective generation of dispersion curves for any desired circumferential order m30. The80

hybridized dispersion curves for the guided modes propagating in the axial direction are

then obtained through the eigenfrequency analysis in COMSOL Multiphysics software31 by

sweeping the Bloch wavenumber within the irreducible Brillouin zone.

The hybridized axisymmetric (m=0) dispersion curves in the presence of the meta-surface

are shown in Fig. 1(b) for the desired low-frequency range. The hybridized modes are85

identified with respect to the unhybridized (without meta-surface) guided modes (L(0,n)

and T(0,n)) by examining the modal vibrations exhibited by the pipe within the unit cell.

For reference, the modal vibrations corresponding to the hybridized modes L(0,1)h, T(0,1)h,

and L(0,2)h are shown in Figs 1(c), 1(d) and 1(e) at frequencies marked in Fig. 1(b). The

hybridization between the axisymmetric guided modes (L(0,1), L(0,2) and T(0,1)) with the90

local resonances of the resonator is evident. The L(0,1) mode, having a predominant particle

displacement in the radial direction, is observed to hybridize with the longitudinal resonance

of the resonator (Fig. 1 (c)). This hybridization is akin to that observed for A0 Lamb wave
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FIG. 1. (a) Schematic of the pipe with surface-mounted prismatic resonators and its correspond-

ing unit cell. (b) Hybridized axisymmetric dispersion curves illustrating the complete and partial

bandgaps. Mode shapes for the hybridized (c) L(0,1), (d) T(0,1), and (e) L(0,2) modes, at fre-

quencies marked in (b).

mode in a plate under the presence of rod-like resonators32,33. In contrast, the T(0,1) and

L(0,2) modes, having predominant particle displacement in the circumferential and axial95

directions, respectively, hybridize with the flexural resonances of the resonator (Figs. 1(d)

and 1(e)). A bandgap from 47 kHz to 57 kHz is visible for all the possible axisymmetric

modes (Fig. 1(b)), which we refer to as the ”complete” bandgap. Moreover, we observe a

range of frequencies above the complete bandgap where a bandgap for L(0,1) mode and a

passband for L(0,2) mode coexist, and is hereafter referred to as the ”partial” bandgap.100

Next, we analyze the possible hybridizations between flexural modes (non-axisymmetric)

and the meta-surface. The hybridized dispersion curves for the circumferential order (m)

of 1, 2, 3 and 4 depict the presence of complete bandgap even for flexural modes (Figs.

2(a) - 2(d)). Moreover, mode coupling between the higher order circumferential modes at

the crisscrossing of the dispersion curves is evident (Figs. 2(b) - 2(d)) similar to that ob-105

served for hybridized Lamb wave modes in plates with periodic stubs34,35. The dispersion

curves at these crisscrossings repel to form a new set of individual dispersion curves, with
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FIG. 2. Non-axisymmetric hybridized dispersion curves for the circumferential order of (a) m

= 1, (b) m = 2, (c) m = 3, and (d) m = 4. Mode shapes corresponding to the hybridized (with

meta-surface) and unhybridized (without meta-surface) flexural modes: (e) F(4,3), (f) F(4,1), and

(g) F(4,2) modes, at frequencies marked in (d).

each curve possessing distinct guided modes. The observed mode coupling could be due

to complex mode vibrations associated with the flexural modes having higher circumferen-

tial order. With an increase in the circumferential order, the flexural modes deviate from110

their axisymmetric counterparts resulting in non-intuitive hybridizations (see Figs. 2(e)-

2(g)) with the local resonances of the resonators. To demonstrate this behaviour, the mode

shapes at three distinct wavenumber-frequency pairs along a mode-coupled dispersion line

(marked in Fig 2(d)) are depicted in Figs. 2(e)- 2(g) together with their unhybridized flex-

ural mode counterparts. The local resonance-induced vibrations of the pipe at these three115
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wavenumber-frequency pairs match well with the corresponding unhybridized flexural modes

(F(4,1), F(4,2), and F(4,3)) that propagate within the pipe, confirming the presence of mode-

coupling. The presence of mode-coupling and complex local-resonance hybridizations makes

it complicated to exploit the proposed meta-surface for preferential transmission/suppression

of the flexural modes of higher circumferential order. We therefore restrict our analysis to ax-120

isymmetric modes and demonstrate the possible mode-filtering applications of the proposed

meta-surface. In the subsequent sections, we numerically validate the presence of complete

and partial bandgaps for axisymmetric modes and determine the possible mode-conversions

that result from an incident axisymmetric guided mode at these bandgap frequencies.

III. NUMERICAL VALIDATION OF BANDGAPS125

A. Complete bandgap

The presence of the complete bandgap is validated through the 3D time-domain finite

element simulations in ABAQUS FEA software36 on the pipe with the meta-surface com-

prising 10 resonator rings (Fig. 3(a)). The excitation is applied to 24 equally spaced points

on the outer circumference of the pipe to preferentially excite axisymmetric modes, as shown130

in the schematic in Fig. 3(a). A 10-cycle Hanning windowed sinusoidal pulse at 51.5 kHz is

used to study the interaction of axisymmetric modes (L(0,1), L(0,2) and T(0,1)) with the

meta-surface within the complete bandgap frequency range. Absorbing layers with gradu-

ally increased damping (ALID) are used to prevent end-wall reflections of the axisymmetric

modes13,37. The absorbing regions consist of 30 0.5-mm thick layers with mass damping co-135

efficient in each layer following the cubic power law reaching a maximum of 7.5 × 105. The

defined ALID layer sequence is able to significantly absorb the incident L(0,1), L(0,2) and

T(0,1) modes for the desired frequency range (30-80 kHz). The time-domain simulations

with excitations in radial, circumferential, and axial directions are performed to investigate

the presence of the complete bandgap. The axial and circumferential displacement data are140

extracted and averaged over 24 equally spaced points on the pipe circumference at a 1 m

distance from the meta-surface region in the incident (IR) and transmission (TR) regions

(Fig. 3(a)).

Figs. 3(b) and 3(f) depict the averaged axial displacement extracted in the incident
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Radial Excitation

Circumferential Excitation

Axial Excitation

FIG. 3. (a) The finite element model of the pipe with the meta-surface comprising 10 resonator

rings (24 resonators in each ring). The axial displacement data are averaged over 24 reception points

in the incident (IR) and transmission regions (TR) for the (b) radial and (f) axial excitations at

a frequency (51.5 kHz) falling within the complete bandgap. The circumferential displacement

data averaged over 24 reception points in the incident (IR) and transmission regions (TR) for

the (d) circumferential excitation at a complete bandgap frequency. The frequency spectra of

the displacement data received in the transmission region (TR) are shown for the (c) radial, (e)

circumferential and (g) axial excitations. The incident and reflected wave modes are identified and

colored in brown and green, respectively, in plots (b), (d) and (f). Highlighted in grey in (c), (e)

and (g) are the complete bandgaps obtained from the eigenfrequency analysis and the frequency-

bounds of the incident tone-burst are marked in pink.
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and transmission regions for the radial and axial excitations, respectively, whereas Fig 3(d)145

depicts the circumferential displacement extracted in the incident and transmission regions

for the circumferential excitation. The wave packets received in the incident region (IR)

before 500 µs in all the displacement plots (Figs. 3(b), 3(d), and 3(f)) correspond to the

incident guided modes propagating towards the meta-surface. As expected, the radial and

circumferential excitations of a pipe results in the preferential transmission of L(0,1) mode150

and T(0,1) mode, respectively (Figs. 3(b) and 3(d)). In contrast, the axial excitation results

in the excitation of both L(0,2) and L(0,1) modes.

When excited at the frequencies within the bounds of the complete bandgap, the L(0,1)

and L(0,2) modes incident on the meta-surface result in the reflection and mode-conversion to

L(0,1) and L(0,2) modes, indicating the presence of a bandgap for both these modes (Figs.155

3(b) and 3(f)). On the other hand, the incident T(0,1) mode is predominantly reflected

without any mode conversion (Fig. 3(d)), possibly because of the absence of higher-order

axisymmetric torsional modes at the incident frequency. The low-amplitude wave packets

observed beyond the meta-surface in the transmission region (TR) for all the excitation types

correspond to the wave packets with frequencies outside the complete bandgap. Analyzing160

the frequency spectrum of these low-amplitude transmitted wave packets corroborates the

presence of a complete bandgap, as evidenced from the dispersion analysis earlier (Figs. 3(c),

3(e), and 3(g)). In terms of potential implications of these results, the existence of a complete

bandgap enables suppression of higher harmonics associated with system nonlinearity, i.e.,

matching the second harmonic frequency of the excited L(0,1) or L(0,2) or T(0,1) modes165

with the complete bandgap frequency can improve nonlinear ultrasonic measurements in

pipes, as recently demonstrated for plates27,28.

B. Partial bandgap

The efficiency of the meta-surface for the preferential transmission of L(0,2) mode is

validated using the same finite element model shown in Fig. 3(a), but this time for axial170

and radial excitations at the partial bandgap frequency of 65 kHz. In the case of axial

excitation, we observe a significant transmission and reflection of the incident L(0,2) and

L(0,1) modes, respectively, as expected because of the partial bandgap (Figs. 4(a) and (b)).

However, there exists unavoidable mode-conversions (L(0,1) to L(0,2) and L(0,2) to L(0,1))

9



FIG. 4. The axial displacement data averaged over 24 reception points in the (a) incident (IR) and

(b) transmission regions (TR) for the axial excitation at a partial bandgap frequency. The axial

displacement data averaged over 24 reception points in the (c) incident (IR) and (d) transmission

regions (TR) for the radial excitation at a partial bandgap frequency. The wave modes that are

incident, reflected, and transmitted are identified and color coded in brown, green, and purple,

respectively.

from the incident modes which transmit beyond the meta-surface (Fig. 4(b)). Nonetheless,175

the amplitudes of these mode-converted wave packets are significantly smaller (by a factor of

6) compared to the preferentially transmitted L(0,2) wave packet. These simulation results

demonstrate the potential of the proposed meta-surface for L(0,2) mode pipe inspections

using just a single ring of piezoelectric transducers, in contrast to the general requirement

of multiple rings to suppress the excited L(0,1) mode16.180

In the case of radial excitation, which preferentially excites a pure L(0,1) mode, we observe

a significant reflection of L(0,1) and mode-converted L(0,2) modes, as expected because of the

partial bandgap (Fig. 4(c)). We also see a transmission of a low-amplitude mode-converted

L(0,2) mode beyond the meta-surface (Fig. 4(d)). The amplitude of this transmitted L(0,2)

wave packet can be increased by increasing the amplitude of the incident L(0,1) wave. The185
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other mode-converted transmitted modes are significantly smaller (5.5 times) compared to

the preferentially transmitted L(0,2) mode (Fig. 4(d)). These simulation results demonstrate

the efficiency of the proposed meta-surface for L(0,2) mode pipe inspections using a single

ring of compressional piezoelectric transducers, significantly reducing the weight and cost

of the transducer system17. The presence of the transmitted low-amplitude mode converted190

L(0,2) mode under radial excitation makes it impractical to exploit the partial bandgap

frequency range to completely suppress the system-generated higher harmonics associated

with the incident L(0,1) mode. Therefore, the possible use of the proposed meta-surface

for nonlinear ultrasonic inspections is restricted within the complete bandgap frequency

range, where neither of the axisymmetric modes can propagate, whereas the partial bandgap195

frequency range can be exploited for preferential transmission of L(0,2) mode under radial

and axial excitations. Further optimization of the meta-surface design is required to obtain

wider bandgaps with a minimum number of resonators. In the subsequent section we discuss

the influence of resonator spacing, filing fraction, and the number of resonator rings on the

bandgaps for an informed meta-surface design.200

IV. PARAMETRIC STUDY

A parametric study is performed to analyze the partial and complete bandgaps by varying

the sector angle (θs = 12◦, 15◦, 18◦, 20◦, 24◦, a = 10 mm, W = 8 mm), lattice length in the

axial direction (a = 10, 11, 12, 13, 14, 15, 16, θs = 15◦, W = 8 mm), and the resonator width

(W = 3, 4, 5, 6, 7, 8, θs = 15◦, a = 10 mm). It is important to note that the combination205

of sector angle, lattice length, and resonator width determine the number of resonators in

the circumferential direction (360/θs ∼ 30 to 12), resonator spacing in the axial direction

(a-W ∼ 2 mm to 8 mm), and filling fraction of the unit cell (W 2/(rθsa) ∼ 0.06 to 0.42),

respectively.

The hybridized dispersion curves are analyzed for each of the above cases, with the posi-210

tioning and width of complete and partial bandgaps illustrated in Fig. 5. With an increase in

the sector angle, both the partial and complete bandgaps are observed to shrink (Fig. 5(a)),

whereas increasing the lattice length has limited influence over the bandgap widths (Fig.

5(b)). Varying the resonator width influences the positioning of flexural frequencies and

therefore affects the bandgap positioning and width (Fig. 5(c)). However, we still observe215
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(d) (e)

(d) (e)

FIG. 5. Influence of (a) sector angle, (b) lattice length, and (c) resonator width on the positioning

and width of complete and partial bandgaps. The influence of the number of resonator rings in

the meta-surface on the frequency spectra of the (d) axial and (e) circumferential displacement

data received in the transmission region (TR) under the axial and circumferential excitations,

respectively. Highlighted in grey in (d) and (e) are the complete bandgaps obtained from the

eigenfrequency analysis.

the presence of a partial bandgap over all the resonator widths, with complete bandgaps

observed only for a higher filling fraction. To further inform the meta-surface design, the

minimum number of resonator rings required to achieve the bandgap should be investigated.

Figs. 5(d) and (e) depict the frequency spectrum of the transmitted wave packets beyond

the meta-surface (θs = 15, a = 10, W = 8) while varying the number of resonator rings for220

axial (excites both L(0,1) and L(0,2)) and circumferential (excites T(0,1)) excitations within

the complete bandgap frequency (51.5 kHz), similar to that previously shown in Figs. 2(c),

2(e) and 2(g). Fig. 5(d) suggests that at least 8 resonator rings are required to match the

bandgap (for L(0,1) and L(0,2)) from the time-domain simulation to that obtained for an

infinite array of resonators using eigenfrequency analysis. In contrast, matching the T(0,1)225

bandgap requires a minimum of 6 resonator rings (Fig. 5(e)).
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V. CONCLUSION

We address the feasibility of a meta-surface comprising prismatic resonators for con-

trolling guided-mode propagation in a pipe. We demonstrated the existence of complete

bandgaps for L(0,1), T(0,1), and L(0,2) modes using the eigenfrequency analysis and time230

domain finite-element analysis that can be leveraged for higher harmonic filtering to improve

nonlinear ultrasonic measurements. The presence of complete bandgaps and mode-coupling

for flexural modes of higher circumferential order is illustrated. The axisymmetric hybridized

dispersion curves exhibit a frequency range which is a passband for L(0,2) mode while for-

bidding L(0,1) mode. Leveraging this partial bandgap, we can improve L(0,2) mode pipe235

inspections by reducing the cost and complexity of the transducer system. The sensitivity of

the bandgaps to various design parameters is analyzed to inform an optimized meta-surface

design for experimental validation. This work provides insight into the hybridizations be-

tween the guided modes in a hollow pipe and local resonances of a prismatic resonator, which

could be leveraged to address some of the challenges of linear and nonlinear ultrasonic guided240

wave pipeline inspections.
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