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A locally-resonant meta-surface for preferential excitation of a guided mode in a
hollow pipe can improve ultrasonic guided wave inspection of pipelines. The pro-
posed meta-surface comprises a periodic arrangement of bonded prismatic rod-like
resonators in the circumferential and axial directions of the pipe. We demonstrate
the presence of bandgaps for the low-frequency axisymmetric longitudinal modes
L(0,1) and L(0,2), and the torsional mode T(0,1). The generated bandgaps can be
exploited to filter higher harmonics associated with the system nonlinearity to im-
prove nonlinear ultrasonic measurements on pipes. These bandgaps exist even for the
non-axisymmetric flexural modes but with their hybridized dispersion curves exhibit-
ing mode-coupling for higher circumferential orders. Moreover, a "partial” bandgap
is obtained where preferential transmission of L(0,2) mode over L(0,1) is possible.
We discuss the potential advantages of this partial bandgap to improve pipeline in-
spections using the L(0,2) mode. Time-domain finite element analyses are used to
validate the presence of these bandgaps under the radial, circumferential and axial
excitations that mimic the excitation using a ring of piezoelectric transducers. Fi-
nally, we discuss the influence of resonator spacing, filling fraction, and the number

of resonator rings on the bandgaps for an informed meta-surface design.
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I. INTRODUCTION

Ultrasonic guided wave inspection is a widely used technique for pipelines due to the
ability of guided waves to travel long distances and their sensitivity to defects even at

lower frequencies'?.

However, the tremendous potential of using guided modes in hollow
pipes is often limited due to their multi-mode dispersive nature. The guided modes in
pipes are classified into axisymmetric longitudinal modes L(0,n), axisymmetric torsional
modes T(0,n), and non-axisymmetric flexural modes F(m,n), where m and n denote the
circumferential order and the group number, respectively®. The low-frequency axisymmetric
longitudinal modes, L(0,1) and 1(0,2), and the torsional mode, T(0,1), are widely used for

pipeline inspection, as they can be excited using a ring of ultrasonic transducers?.

Among these axisymmetric modes, T(0,1) and L(0,2) are preferred due to their non-

dispersive nature within a broad low-frequency range®!!.

Moreover, neither mode has a
radial displacement component responsible for leakage into fluids, and therefore they can
travel long distances in fluid-filled pipes. In contrast, L(0,1) mode is dispersive and has
particle motion in both radial and axial directions, and will dissipate energy in the pres-
ence of fluid. The L(0,2) mode is sometimes preferred over T(0,1) due to its higher group
velocity, higher sensitivity to circumferential cracks, and lower attenuation in the presence
of a viscoelastic coating!?. Although the preferential excitation of T(0,1) mode is possible

13,14

using a single circumferential ring of thickness-shear or in-plane shear!'® piezoelectric

transducers, the preferential excitation of 1.(0,2) mode requires multiple transducer (axially-
polarized) rings to suppress the inherent L(0,1) mode excitation'®. The particle motion
of 1(0,1) mode in the axial direction is responsible for its unavoidable excitation'”. The
presence of 1.(0,1) mode in inspections involving 1.(0,2) makes the signal processing com-
plicated due to the unwanted mode conversions that result from L(0,1) mode interaction
with defects!'! calling for new ways for preferential transmission of the L(0,2) mode using a
single ring of transducers. On the other hand, a circumferential ring of radially-polarized
transducers preferentially transmits L(0,1) mode, as L(0,2) mode has negligible radial par-
ticle motion'”. The possible mode conversion of this preferentially excited L(0,1) mode to

L(0,2) could enable L,(0,2) mode pipeline inspections under a radial excitation of transducers,

thereby reducing the complexity and cost of the transducer system.

Mode filtering also plays an important role in nonlinear ultrasonic guided wave measure-
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ments for evaluating incipient damages. Li et al. demonstrated the use of the axisymmetric
modes L(0,6) and L(0,10) as the fundamental and second harmonic wave modes, respec-
tively, to measure the nonlinearity that arises from the changes in the microstructure due
to thermal fatigue damage'®. Choi et al. used third harmonics associated with T(0,1) mode
to measure the fatigue damage in a Nickel alloy'®. However, nonlinear measurements are
extremely sensitive to the system nonlinearity arising from the actuation system such as the
amplifiers, transducers and the ultrasonic couplant?. The presence of these inherent non-
linearities influence the amplitude of the higher harmonics which carry information about
microstructural imperfections. Therefore, new techniques to suppress higher harmonics as-

sociated with the system nonlinearity is beneficial to nonlinear ultrasonic measurements.

Locally-resonant meta-surfaces have been proposed for structural inspection applications

2426 of elastic waves in

for mode filtering?!, mode conversion®?, steering®®, and focusing
plates and pipes. Very recently, metamaterial-based filters for suppressing the higher har-
monics associated with the system nonlinearity have been introduced?” ?°. The suppression
is achieved by matching the second harmonic frequency with the bandgap frequency ex-
hibited by the meta-material. The formation of bandgaps because of the hybridization of
Lamb waves with different meta-surfaces was proposed for improving nonlinear ultrasonic

2729 However, bandgaps emerging from the hybridization between

measurements in plates
the guided modes in a pipe with meta-surfaces is not yet fully explored. Very recently, local
resonance-based gradient index lenses were demonstrated to achieve the focusing of axisym-
metric guided modes in pipes?>?°. However, the application of meta-surfaces for preferential
guided mode transmission and suppression in pipelines remains unexplored. In this paper,
we demonstrate a meta-surface design with two important functional capabilities: (a) pref-
erentially transmitting L(0,2) mode under radial and axial excitations, and (b) exhibiting

bandgaps for axisymmetric and non-axisymmetric guided modes that can be exploited for

improving nonlinear ultrasonic measurements.

The remainder of the paper is organized as follows. Section II discusses the hybridization
between the axisymmetric and non-axisymmetric guided modes and the local resonances of
prismatic rod-like resonators resulting in the generation of bandgaps. The time-domain finite
element validation of the obtained bandgaps and the potential implications of the results are
presented in Section III. The influence of resonator spacing, filling fraction and the number

of resonator rings on the bandgaps is presented as a parametric study in Section IV. Finally,
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we present key conclusions derived from our numerical studies in Section V that could

potentially benefit the fields of nondestructive testing and structural health monitoring.

II. FORMATION OF BANDGAPS FOR AXISYMMETRIC AND
NON-AXISYMMETRIC GUIDED MODES IN A HOLLOW PIPE

The proposed meta-surface comprises periodically stubbed prismatic rod-like resonators
on a 4-inch profile (114.3 mm outer diameter and 6 mm thick) steel pipe (Fig. 1(a)). The
unit cell considered is a 15 deg arc of the pipe () including a steel resonator of dimensions
23mm x 8mm x 8mm (L x W x W), as shown in Fig. 1(a). The resonator dimensions are
selected to attain a fixed-free longitudinal resonance frequency of the resonator around 50
kHz. The base of the resonator is slightly curved with a radius matching the outer radius
of the pipe. A lattice length of a = 10 mm is considered along the axial direction. The
defined sector angle () and lattice length (a) imply an infinite array of resonator rings
with 2 mm spacing in the axial direction with each ring comprising 24 (~ 360/15) equally
spaced resonators along the circumference. Imposing cyclic boundary conditions (BCs) to
the pipe cross sections with normals oriented in the circumferential direction and Bloch
Floquet BCs to the pipe cross sections with normals oriented in the axial direction enable
selective generation of dispersion curves for any desired circumferential order m?3°. The
hybridized dispersion curves for the guided modes propagating in the axial direction are
then obtained through the eigenfrequency analysis in COMSOL Multiphysics software®! by
sweeping the Bloch wavenumber within the irreducible Brillouin zone.

The hybridized axisymmetric (m=0) dispersion curves in the presence of the meta-surface
are shown in Fig. 1(b) for the desired low-frequency range. The hybridized modes are
identified with respect to the unhybridized (without meta-surface) guided modes (L(0,n)
and T(0,n)) by examining the modal vibrations exhibited by the pipe within the unit cell.
For reference, the modal vibrations corresponding to the hybridized modes L(0,1)5, T(0,1);,
and L(0,2);, are shown in Figs 1(c), 1(d) and 1(e) at frequencies marked in Fig. 1(b). The
hybridization between the axisymmetric guided modes (L(0,1), L(0,2) and T(0,1)) with the
local resonances of the resonator is evident. The L(0,1) mode, having a predominant particle
displacement in the radial direction, is observed to hybridize with the longitudinal resonance

of the resonator (Fig. 1 (c)). This hybridization is akin to that observed for A0 Lamb wave
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FIG. 1. (a) Schematic of the pipe with surface-mounted prismatic resonators and its correspond-
ing unit cell. (b) Hybridized axisymmetric dispersion curves illustrating the complete and partial
bandgaps. Mode shapes for the hybridized (c) L(0,1), (d) T(0,1), and (e) L(0,2) modes, at fre-

quencies marked in (b).

mode in a plate under the presence of rod-like resonators®*33. In contrast, the T(0,1) and
L(0,2) modes, having predominant particle displacement in the circumferential and axial
directions, respectively, hybridize with the flexural resonances of the resonator (Figs. 1(d)
and 1(e)). A bandgap from 47 kHz to 57 kHz is visible for all the possible axisymmetric
modes (Fig. 1(b)), which we refer to as the ”complete” bandgap. Moreover, we observe a
range of frequencies above the complete bandgap where a bandgap for 1.(0,1) mode and a

passband for 1.(0,2) mode coexist, and is hereafter referred to as the ”partial” bandgap.

Next, we analyze the possible hybridizations between flexural modes (non-axisymmetric)
and the meta-surface. The hybridized dispersion curves for the circumferential order (m)
of 1, 2, 3 and 4 depict the presence of complete bandgap even for flexural modes (Figs.
2(a) - 2(d)). Moreover, mode coupling between the higher order circumferential modes at
the crisscrossing of the dispersion curves is evident (Figs. 2(b) - 2(d)) similar to that ob-
served for hybridized Lamb wave modes in plates with periodic stubs®**3°. The dispersion

curves at these crisscrossings repel to form a new set of individual dispersion curves, with
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FIG. 2. Non-axisymmetric hybridized dispersion curves for the circumferential order of (a) m
=1, (b) m =2, (¢c) m = 3, and (d) m = 4. Mode shapes corresponding to the hybridized (with
meta-surface) and unhybridized (without meta-surface) flexural modes: (e) F(4,3), (f) F(4,1), and

(g) F(4,2) modes, at frequencies marked in (d).

each curve possessing distinct guided modes. The observed mode coupling could be due
to complex mode vibrations associated with the flexural modes having higher circumferen-
tial order. With an increase in the circumferential order, the flexural modes deviate from
their axisymmetric counterparts resulting in non-intuitive hybridizations (see Figs. 2(e)-
2(g)) with the local resonances of the resonators. To demonstrate this behaviour, the mode
shapes at three distinct wavenumber-frequency pairs along a mode-coupled dispersion line
(marked in Fig 2(d)) are depicted in Figs. 2(e)- 2(g) together with their unhybridized flex-

ural mode counterparts. The local resonance-induced vibrations of the pipe at these three
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wavenumber-frequency pairs match well with the corresponding unhybridized flexural modes
(F(4,1), F(4,2), and F(4,3)) that propagate within the pipe, confirming the presence of mode-
coupling. The presence of mode-coupling and complex local-resonance hybridizations makes
it complicated to exploit the proposed meta-surface for preferential transmission /suppression
of the flexural modes of higher circumferential order. We therefore restrict our analysis to ax-
isymmetric modes and demonstrate the possible mode-filtering applications of the proposed
meta-surface. In the subsequent sections, we numerically validate the presence of complete
and partial bandgaps for axisymmetric modes and determine the possible mode-conversions

that result from an incident axisymmetric guided mode at these bandgap frequencies.

III. NUMERICAL VALIDATION OF BANDGAPS
A. Complete bandgap

The presence of the complete bandgap is validated through the 3D time-domain finite
element simulations in ABAQUS FEA software®® on the pipe with the meta-surface com-
prising 10 resonator rings (Fig. 3(a)). The excitation is applied to 24 equally spaced points
on the outer circumference of the pipe to preferentially excite axisymmetric modes, as shown
in the schematic in Fig. 3(a). A 10-cycle Hanning windowed sinusoidal pulse at 51.5 kHz is
used to study the interaction of axisymmetric modes (L(0,1), L(0,2) and T(0,1)) with the
meta-surface within the complete bandgap frequency range. Absorbing layers with gradu-
ally increased damping (ALID) are used to prevent end-wall reflections of the axisymmetric
modes!337. The absorbing regions consist of 30 0.5-mm thick layers with mass damping co-
efficient in each layer following the cubic power law reaching a maximum of 7.5 x 10°. The
defined ALID layer sequence is able to significantly absorb the incident L(0,1), L(0,2) and
T(0,1) modes for the desired frequency range (30-80 kHz). The time-domain simulations
with excitations in radial, circumferential, and axial directions are performed to investigate
the presence of the complete bandgap. The axial and circumferential displacement data are
extracted and averaged over 24 equally spaced points on the pipe circumference at a 1 m
distance from the meta-surface region in the incident (IR) and transmission (TR) regions
(Fig. 3(a)).

Figs. 3(b) and 3(f) depict the averaged axial displacement extracted in the incident

7
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FIG. 3. (a) The finite element model of the pipe with the meta-surface comprising 10 resonator
rings (24 resonators in each ring). The axial displacement data are averaged over 24 reception points
in the incident (IR) and transmission regions (TR) for the (b) radial and (f) axial excitations at
a frequency (51.5 kHz) falling within the complete bandgap. The circumferential displacement
data averaged over 24 reception points in the incident (IR) and transmission regions (TR) for
the (d) circumferential excitation at a complete bandgap frequency. The frequency spectra of
the displacement data received in the transmission region (TR) are shown for the (c) radial, (e)
circumferential and (g) axial excitations. The incident and reflected wave modes are identified and
colored in brown and green, respectively, in plots (b), (d) and (f). Highlighted in grey in (c), (e)
and (g) are the complete bandgaps obtained from the eigenfrequency analysis and the frequency-

bounds of the incident tone-burst are marked in pink.
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and transmission regions for the radial and axial excitations, respectively, whereas Fig 3(d)
depicts the circumferential displacement extracted in the incident and transmission regions
for the circumferential excitation. The wave packets received in the incident region (IR)
before 500 us in all the displacement plots (Figs. 3(b), 3(d), and 3(f)) correspond to the
incident guided modes propagating towards the meta-surface. As expected, the radial and
circumferential excitations of a pipe results in the preferential transmission of L(0,1) mode
and T(0,1) mode, respectively (Figs. 3(b) and 3(d)). In contrast, the axial excitation results
in the excitation of both L(0,2) and L(0,1) modes.

When excited at the frequencies within the bounds of the complete bandgap, the L(0,1)
and L(0,2) modes incident on the meta-surface result in the reflection and mode-conversion to
L(0,1) and L(0,2) modes, indicating the presence of a bandgap for both these modes (Figs.
3(b) and 3(f)). On the other hand, the incident T(0,1) mode is predominantly reflected
without any mode conversion (Fig. 3(d)), possibly because of the absence of higher-order
axisymmetric torsional modes at the incident frequency. The low-amplitude wave packets
observed beyond the meta-surface in the transmission region (TR) for all the excitation types
correspond to the wave packets with frequencies outside the complete bandgap. Analyzing
the frequency spectrum of these low-amplitude transmitted wave packets corroborates the
presence of a complete bandgap, as evidenced from the dispersion analysis earlier (Figs. 3(c),
3(e), and 3(g)). In terms of potential implications of these results, the existence of a complete
bandgap enables suppression of higher harmonics associated with system nonlinearity, i.e.,
matching the second harmonic frequency of the excited L(0,1) or L(0,2) or T(0,1) modes
with the complete bandgap frequency can improve nonlinear ultrasonic measurements in

pipes, as recently demonstrated for plates?”?8.

B. Partial bandgap

The efficiency of the meta-surface for the preferential transmission of L(0,2) mode is
validated using the same finite element model shown in Fig. 3(a), but this time for axial
and radial excitations at the partial bandgap frequency of 65 kHz. In the case of axial
excitation, we observe a significant transmission and reflection of the incident L(0,2) and
L(0,1) modes, respectively, as expected because of the partial bandgap (Figs. 4(a) and (b)).
However, there exists unavoidable mode-conversions (L(0,1) to L(0,2) and L(0,2) to L(0,1))

9
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FIG. 4. The axial displacement data averaged over 24 reception points in the (a) incident (IR) and
(b) transmission regions (TR) for the axial excitation at a partial bandgap frequency. The axial
displacement data averaged over 24 reception points in the (c) incident (IR) and (d) transmission
regions (TR) for the radial excitation at a partial bandgap frequency. The wave modes that are
incident, reflected, and transmitted are identified and color coded in brown, green, and purple,

respectively.

from the incident modes which transmit beyond the meta-surface (Fig. 4(b)). Nonetheless,
the amplitudes of these mode-converted wave packets are significantly smaller (by a factor of
6) compared to the preferentially transmitted L(0,2) wave packet. These simulation results
demonstrate the potential of the proposed meta-surface for L(0,2) mode pipe inspections
using just a single ring of piezoelectric transducers, in contrast to the general requirement

of multiple rings to suppress the excited L(0,1) mode.

In the case of radial excitation, which preferentially excites a pure L(0,1) mode, we observe
a significant reflection of L(0,1) and mode-converted L(0,2) modes, as expected because of the
partial bandgap (Fig. 4(c)). We also see a transmission of a low-amplitude mode-converted
L(0,2) mode beyond the meta-surface (Fig. 4(d)). The amplitude of this transmitted 1(0,2)

wave packet can be increased by increasing the amplitude of the incident 1.(0,1) wave. The

10
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other mode-converted transmitted modes are significantly smaller (5.5 times) compared to
the preferentially transmitted L(0,2) mode (Fig. 4(d)). These simulation results demonstrate
the efficiency of the proposed meta-surface for L(0,2) mode pipe inspections using a single
ring of compressional piezoelectric transducers, significantly reducing the weight and cost
of the transducer system'”. The presence of the transmitted low-amplitude mode converted
L(0,2) mode under radial excitation makes it impractical to exploit the partial bandgap
frequency range to completely suppress the system-generated higher harmonics associated
with the incident 1.(0,1) mode. Therefore, the possible use of the proposed meta-surface
for nonlinear ultrasonic inspections is restricted within the complete bandgap frequency
range, where neither of the axisymmetric modes can propagate, whereas the partial bandgap
frequency range can be exploited for preferential transmission of L(0,2) mode under radial
and axial excitations. Further optimization of the meta-surface design is required to obtain
wider bandgaps with a minimum number of resonators. In the subsequent section we discuss
the influence of resonator spacing, filing fraction, and the number of resonator rings on the

bandgaps for an informed meta-surface design.

IV. PARAMETRIC STUDY

A parametric study is performed to analyze the partial and complete bandgaps by varying
the sector angle (0, = 12°, 15°, 18°, 20°, 24°, a = 10 mm, W = 8 mm), lattice length in the
axial direction (a = 10, 11, 12, 13, 14, 15, 16, 65 = 15°, W = 8 mm), and the resonator width
(W=23,4,5,6,7,8, 0, =15° a =10 mm). It is important to note that the combination
of sector angle, lattice length, and resonator width determine the number of resonators in
the circumferential direction (360/60s ~ 30 to 12), resonator spacing in the axial direction
(a-W ~ 2 mm to 8 mm), and filling fraction of the unit cell (W?/(rf,a) ~ 0.06 to 0.42),
respectively.

The hybridized dispersion curves are analyzed for each of the above cases, with the posi-
tioning and width of complete and partial bandgaps illustrated in Fig. 5. With an increase in
the sector angle, both the partial and complete bandgaps are observed to shrink (Fig. 5(a)),
whereas increasing the lattice length has limited influence over the bandgap widths (Fig.
5(b)). Varying the resonator width influences the positioning of flexural frequencies and

therefore affects the bandgap positioning and width (Fig. 5(c)). However, we still observe

11
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FIG. 5. Influence of (a) sector angle, (b) lattice length, and (c¢) resonator width on the positioning
and width of complete and partial bandgaps. The influence of the number of resonator rings in
the meta-surface on the frequency spectra of the (d) axial and (e) circumferential displacement
data received in the transmission region (TR) under the axial and circumferential excitations,

respectively. Highlighted in grey in (d) and (e) are the complete bandgaps obtained from the

eigenfrequency analysis.

the presence of a partial bandgap over all the resonator widths, with complete bandgaps
observed only for a higher filling fraction. To further inform the meta-surface design, the
minimum number of resonator rings required to achieve the bandgap should be investigated.
Figs. 5(d) and (e) depict the frequency spectrum of the transmitted wave packets beyond
the meta-surface (6, = 15, a = 10, W = 8) while varying the number of resonator rings for
axial (excites both L(0,1) and L(0,2)) and circumferential (excites T(0,1)) excitations within
the complete bandgap frequency (51.5 kHz), similar to that previously shown in Figs. 2(c),
2(e) and 2(g). Fig. 5(d) suggests that at least 8 resonator rings are required to match the
bandgap (for L(0,1) and L(0,2)) from the time-domain simulation to that obtained for an
infinite array of resonators using eigenfrequency analysis. In contrast, matching the T(0,1)

bandgap requires a minimum of 6 resonator rings (Fig. 5(e)).

12



230

235

240

245

V. CONCLUSION

We address the feasibility of a meta-surface comprising prismatic resonators for con-
trolling guided-mode propagation in a pipe. We demonstrated the existence of complete
bandgaps for L(0,1), T(0,1), and L(0,2) modes using the eigenfrequency analysis and time
domain finite-element analysis that can be leveraged for higher harmonic filtering to improve
nonlinear ultrasonic measurements. The presence of complete bandgaps and mode-coupling
for flexural modes of higher circumferential order is illustrated. The axisymmetric hybridized
dispersion curves exhibit a frequency range which is a passband for L(0,2) mode while for-
bidding L(0,1) mode. Leveraging this partial bandgap, we can improve L(0,2) mode pipe
inspections by reducing the cost and complexity of the transducer system. The sensitivity of
the bandgaps to various design parameters is analyzed to inform an optimized meta-surface
design for experimental validation. This work provides insight into the hybridizations be-
tween the guided modes in a hollow pipe and local resonances of a prismatic resonator, which
could be leveraged to address some of the challenges of linear and nonlinear ultrasonic guided

wave pipeline inspections.
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