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Abstract:  Control of guided waves has applications across length
scales ranging from surface acoustic wave devices to seismic barri-
ers. Resonant elastodynamic metasurfaces present attractive means
of guided wave control by generating frequency stop-bandgaps using
local resonators. This work addresses the systematic design of these

resonators using a density-based topology optimization formulated as
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an eigenfrequency matching problem that tailors antiresonance eigen-
frequencies. The effectiveness of our systematic design methodology is
presented in a case study, where topologically optimized resonators are
shown to prevent the propagation of SO wave mode in an aluminum

plate.
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1. Introduction

The concept of metamaterials for electromagnetic wave propagation control was introduced
by Pendry et al. (Pendry et al., 2006) and Leonhardt (Leonhardt, 2006) for synthetic pho-
tonic crystals rarely used before the 2000s (Colquitt et al., 2017). Following this photonic
crystals concept, phononic crystals rely on Bragg scattering to create negative elastic mod-
ulus and effective mass density, resulting in bandgaps for electromagnetic or elastic waves
(Deymier, 2013). However, their reliance on Bragg scattering often results in large-scale
structures for low-frequency applications, which might not be practical to realize. To allevi-
ate this limitation, a family of metamaterials called locally resonant metamaterials has been
introduced with properties deriving from the local resonances of their sub-wavelength sized
constituent unit cells (Fang et al., 2006; Lemoult et al., 2013; Liu et al., 2000). Since their
inception, resonant elastodynamic metamaterials have been widely used to control elastic
guided waves in plates (Hakoda et al., 2019; Rupin et al., 2014; Xiao et al., 2012), pipes
(Danawe et al., 2020; Okudan et al., 2021) and half-space (Colombi et al., 2016b; Garova
et al., 1999; Khelif et al., 2010) for applications spanning different length scales. Locally
resonant metamaterials intended to control elastic guided waves with local resonators at-
tached to the waveguide surface are sometimes referred to as locally resonant elastodynamic

metasurfaces (Colquitt et al., 2017).

Extensive work has been done in designing electromagnetic or acoustic metamaterials
in recent years (Ahmed et al., 2021; Amirkulova et al., 2022; Jiang and Fan, 2020), such

as designing acoustic metamaterials using deep learning, reinforce learning, or generative
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adversarial networks (Gurbuz et al., 2021; Lai et al., 2021; Shah et al., 2021). However, the
state-of-the-art design of locally resonant elastodynamic metasurfaces still relies on arrays
of simple resonator geometries, e.g., rods (Rupin et al., 2014), holes (Brulé et al., 2014),
cuboids, beams, trusses (Zaccherini et al., 2020), four-arm resonators (Hakoda et al., 2019)
or mass-spring systems (Palermo and Marzani, 2018). These metasurface designs are accom-
plished through parametric tuning of dispersion curves empirically until the desired bandgap
is achieved; a rational design process is lacking. The objective of this research is to address
this gap by proposing a systematic design methodology for locally resonant metasurfaces,
i.e., to design resonating structures that can be coupled to a waveguide surface, ultimately
controlling the propagation of elastic waves. In search of methodologies that fulfill a set of
design requirements, including manipulation of resonances or antiresonances matching them
to desired frequencies, structural optimization methods arise as prime candidates (Campbell

et al., 2019).

Structural optimization has become an indispensable tool in simulation-based designs
through size, shape, material, and topology optimization (Andersen et al., 2019; Guo and
Cheng, 2010; Mei and Wang, 2021). The applications are diverse, including vibration con-
trol of structures by passive, active, semi-active, or hybrid schemes (El-Khoury and Adeli,
2013; Huang et al., 2011; Kim et al., 2012; Sun et al., 2009). Among the commonly used
design techniques, the Topology Optimization Method (TOM) (BensOe and Kikuchi, 1988;
Sigmund and Bendsge, 2004) provides a systematic design approach. Initially intended to

solve structural design problems, the TOM is nowadays used in solving diverse multi-physics
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problems in mechanics, acoustics, fluids, optics, electromagnetics, materials, among others

(Gao et al., 2020; Jihong et al., 2021; Sigmund and Maute, 2013).

The design of acoustic metamaterials using the TOM has been growing in recent
years (Dong et al., 2021; Lu et al., 2013; Noguchi et al., 2018). However, the TOM has
been only used in a few works to design of elastodynamic metamaterials to manipulate wave
propagation. Oh et al. (2015) improved an empirically-designed hyperbolic metamaterial
using the TOM. Dong et al. (2017) used an evolutionary algorithm-based TOM to design
metamaterials that exhibit cloaking effects for longitudinal or transverse waves. Yang and
Kim (2018) presented a metamaterial exhibiting perfect mode conversion from longitudinal
to transverse waves or vice versa using a homogenization TOM. Ahn et al. (2019) developed
a metamaterial to reflect longitudinal waves at any desired angle using a density-based TOM.
Similarly, Rong and Ye (2020) used a genetic algorithm-based TOM to create metamaterials
that steer bulk plane waves by tailoring phase delays. To the best of our knowledge, the
TOM has not been used to design locally resonant elastodynamic metasurfaces by topologi-

cally optimizing three-dimensional resonators through tailoring their antiresonances.

2. Topology optimization

A fundamental mechanism to manipulate the propagation of elastic waves is to purpose-
fully change the displacement boundary conditions on the waveguide surface. This can be
achieved by attaching resonant structures to the waveguide surface with antiresonances in

the frequency range of interest (i.e., the desired bandgap) (Lissenden et al., 2021). An
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antiresonance occurs when a system’s response to a harmonic force at a given point is zero.
Resonators’ having antiresonances at a particular frequency results in the reported waveg-
uide clamping effect at that frequency (Antonakakis et al., 2014; Galvagni and Cawley, 2011;
Hakoda et al., 2019). We exploit this phenomenon for resonator design by formulating a
topology optimization problem such that a resonator’s antiresonances are matched with a
set of target frequencies. The antiresonance frequencies are obtained by solving a modified-
eigenvalue problem (Jeong et al., 2003), i.e., computing eigenfrequencies while constraining
the degrees of freedom where the harmonic force would be applied. The resulting frequency

solutions are hereafter referred to as antiresonance eigenfrequencies.

In order to design resonators, we use a density-based topology optimization for-
mulated as a generalized problem that systematically modifies a resonator’s antiresonance
eigenfrequencies (f,) until the target (g,) is achieved. To that end, the objective function
quantifies the relative error between the resonator’s antiresonances eigenfrequencies and a
reference set of target frequencies, with an L2-norm summing the cumulative error over all
the eigenfrequencies, while a set of scalar weights controls each mode influence. The topology
optimization process starts with a limited amount of material distributed in a fixed design
domain discretized with a fixed number of finite elements N.. A pseudo-density value p. is

assigned to each finite element to describe solid, void, or soft/intermediate elements. Thus,
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the design variables are the element pseudo-densities. The optimization problem is therefore

formulated as shown in Eq. (1);

m 2 1/2
min f(p) = [Z wy (100 ]
p pt 9q
Ne
56 Vinin <> peVe < Vinaa
e=1 (1)

0<pmin§pe§1

([K] = Ag[M]) {®g} = 0

where m is the total number of eigenmodes considered, w, is the ¢'" weighting coefficient,
N, is the number of finite elements, p.V, is the effective volume of each element, V,,,, and
Vinin are respectively the maximum and minimum volume constraints, p,., is the minimum
allowed pseudo-density to prevent numerical problems, [K| and [M] are respectively the
global stiffness and mass matrices, and {®,} is the ¢ eigenvector (mode shape) that corre-

sponds to the ¢ eigenvalue \,.

The optimization problem is solved with a Sequential Linear Programming (SLP)
method. This gradient-based method requires a linealized objective function. The linealiza-
tion process, referred to as sensitivity analysis, is carried out with a first-order Taylor series
expansion disregarding the constant terms, such that the objective function (f(p)) can be

rewritten as:

min ¥ f(po)"p (2)
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where pq is the linearization point. The objective function is then simplified to:

RS Ja— 94 1 Wy (fq — 9g) ONq
mpln [;wq (g—q)] Z 47ng\/)\—q Er Pk (3)

q=1
where:
I[K] o[M]
o, (B Bl e, ”
opr OT[M]D,

The stiffness [K] and mass [M] matrices depend on the material interpolation model
and filters chosen. The interpolation model and the filters are needed to promote the gener-
ation of solid and void elements, creating well defined topologies. In this work, we use the
Rational Approximation of Material Properties (RAMP) model (Stolpe and Svanberg, 2001)
as the interpolation model, and a combination of a density filter with a double Heaviside

filter (Xu et al., 2010). Thus, the matrices can be written as:

K =S P g =3 (5)

L+ pi(1 = pe) L+ pa(1 = pe)
where p; and p, are the penalization factors for stiffness and mass matrices, respectively.

Therefore, the matrix derivatives with respect to the pseudo-densities in Eq. 4 simplify to:

K]~ 1+4p oM e
o emi-pP " Oh  Wepd-pl 0

3. Results
As our case study, we use the topology optimization problem formulated in Eq. (1) to design
resonators (based on antiresonance eigenfrequency matching) to prevent the propagation of

the 50 kHz symmetric Sy mode of Lamb waves in a thin plate; thus setting m =1, g = 50

8
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kHz as the target frequency, and f; as the antiresonance eigenfrequency to be optimized. By
generating an antiresonance at the contact interface between the resonator’s base (surface
in the xy plane at z = 0) and the waveguide surface, a displacement boundary condition
(uy = 0 and u, = 0) is applied to the waveguide surface when an S, wave impinges upon the
resonator, therefore clamping the surface displacement and preventing the transmission of Sy
waves. Provided that a continuity condition at the contact interface between the resonator’s
base and the waveguide surface is satisfied, it is possible to design a single resonator without
including the waveguide or neighboring resonators. To do so, the waveguide is replaced
with a harmonic load at the resonator’s base equivalent to the load the wave mode would
exert. Thus, the design problem is reduced to optimizing a single resonator. Attaching multi-

ple optimized resonators to the waveguide surface constitutes a locally resonant metasurface.

Depending on the initial parameters chosen, the optimization problem may yield
different solutions. Here, we present two selected solutions to demonstrate the design of
resonators using the TOM. A list of common initial parameters used to obtain both solutions
are shown in Table 1. The main difference between the two solutions is the minimum volume
allowed in each case. For the first solution, the minimum volume is V,,;, = 3% while Vi,
is increased to 10% to obtain the second solution. Although this may seem like a subtle
difference, it allows the optimization to distribute the material differently, therefore resulting
in different topologies. Hereinafter, we call the first solution the Elephant-like topology, and
the second solution the Boat-like topology, as shown in Fig. 1. We note that a symmetry

condition along the wave propagation direction is imposed to reduce computational cost.
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Table 1. Optimization initial parameters

Material properties Young’s modulus E = 70 x 109 Pa, Mass density m = 2700 kg/m3
Design domain Dimensions: 25 x 12.5 x 25 mm, Discretization: 16 x 8 x 16 elements
Material Model and filters RAMP model with p = 3. Density filter plus Heaviside filter

Volume constraints Maximum volume V4, = 20%, Minimum volume variable.

The left hand side of images in Fig. 1 are a half-symmetric representation of the
pseudo-densities (p.) distributed in the design domain, i.e., a fixed volume with a fixed finite
element mesh discretization. Each finite element has an associated pseudo-density value that
ranges from 0 to 1, with 0 representing a void element, and 1 a fully solid element. The void
elements are depicted as white voxels, and the solid elements as black voxels. Those with
intermediate pseudo-density values are illustrated with varying shades of gray. The right
hand side of images in Fig. 1 show the final post-processed topologies after recovering the
symmetry condition. Note that during the post processing, the pseudo-density values are
converted into a well-defined shape using the TOPslicer program developed by Zegard and
Paulino (Zegard and Paulino, 2016), then the topology is re-meshed and analyzed with a

commercial finite elements software.

As a consequence of post-processing, the dynamic response of the optimized topolo-
gies differs from the original optimized solution. Fig. 2(a) presents the normalized Frequency

Response Functions (FRFs) for the post-processed topologies in Fig. 1 at the center point

10
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of each topology’s base. These plots are obtained by applying a harmonic load at the
base of each resonator in the x-direction (in-plane) since the S, Lamb wavestructure is
predominantly in-plane displacement (see Fig. 2(b),(c)). The FRFs in Fig. 2(a) show an
antiresonance at 51.6 kHz for the Elephant-like topology, marked as a vertical solid red line.
This frequency is slightly deviated from the target of 50 kHz due to the post-processing
smoothing process. For the Boat-like topology, although an antiresonance appears at 50.1
kHz (vertical solid line), the corresponding dip is not as "deep” as the one observed for the
Elephant-like topology. Since a displacement boundary condition is expected to be better
imposed if the antiresonance is more pronounced (i.e., the dip in the FRF is deeper and has
a smaller amplitude), we expect to observe a better performance in preventing wave prop-
agation for the Elephant-like topology. Also note the distance between the antiresonance
and its closest resonance peaks, marked a vertical dashed red lines. For the Elephant-like
topology, the two closest resonances peaks, at 44.4 kHz and 66.7 kHz, are more separated
than they are for the Boat-like topology with the closest peaks at 39.1 kHz and 50.9 kHz.
This observation suggests the Elephant-like resonators could generate a wider transmission

bandgap (Colombi et al., 2016a,b).

To evaluate both topologies’ responses, frequency-domain simulations are performed
using the model shown in Fig. 3(a) consisting of a plate with an arrangement of either topo-
logically optimized resonator. Both the plate and the resonators are modeled as aluminum
with material properties from Table 1. The topology-optimized resonators’ effectiveness in

suppressing an incident Sy, Lamb wave mode is validated at their identified antiresonance

11
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(b) Boat-like topology.
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Fig. 1. Two exemplary topology-optimized resonators. Raw topologies (left images), and post-

processed topologies (right images).

Normalized amplitude

(b) Harmonic

30 35 40 45 50 55 60 65 70 force on on Boat-like.

Frequency (kHz) Elephant—like .

(¢) Harmonic force

(a) FRF's of topology-optimized resonators

Fig. 2. Harmonic response for optimized resonators. (a) Blue dashed line is FRF of Elephant-like
resonator, black solid line is FRF of Boat-like resonator, vertical red solid lines are antiresonances,
vertical red dashed lines are resonances. (b) and (c¢) Harmonic forces applied on optimized topolo-

gies’ base represented as red arrows.

frequencies (see Fig. 2) by performing frequency-domain finite element analyses using the
structural mechanics module in COMSOL Multiphysics. The plate has been divided into
three analysis regions: incident, metasurface, and transmission region. The buffer regions

prevent numerical errors by allowing the propagating wave to transition to the absorbing

12
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layers which prevent wave reflections from the model boundaries. The plate supports a stag-
gered arrangement of three rows of resonators with five or four units per row. An Sy Lamb
wave generated in the body-load excitation region propagates towards the metasurface region
through the incident region. By the time the spherical wave impinges on the arrangement
of resonators, the wavefront is close to planar.

Fig. 3 shows the harmonic response of the Elephant-like and Boat-like topologies at
51.6 kHz and at 50 kHz, corresponding to their respective antiresonance frequencies. Note
that the absorbing layer and the buffer regions shown in Fig. 3(a) are not shown in the other
sub-figures. Fig. 3(b) presents the baseline simulation, i.e., Sy Lamb wave propagation in the
plate without resonators. Fig. 3(c),(d) show that in presence of resonator arrays, a portion
of the energy is reflected and the remaining propagates through the transmission region. To
quantify the reflected and transmitted proportions, normalized wavenumber spectra for the
incident and transmission regions are computed by a spatial Fourier transformation of the
complex total displacements extracted at the center of incident and transmission regions,
respectively. The incident, reflected, and transmitted wave modes are identified from the
wavenumber spectra as shown in Fig. 4. The peaks with positive wavenumbers indicate
wave modes propagating backward, whereas the peaks with negative wavenumbers denote

waves propagating forward.

The body-load excites a pure Sy Lamb wave mode propagating in the positive x-
direction, resulting in the largest peak in the wavenumber spectra of Fig. 4. We observe

reflection and mode-conversion of the incident wave energy as an Sy mode and as a mode-

13
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(a) Schematic representation of a plate composed of three regions: incident,
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Fig. 3. Numerical analysis of optimized metasurfaces. (a) Schematic model for simulation, (b)
baseline simulation, (c¢) and (d) Harmonic in-plane displacement field for locally resonant metasur-

faces composed of topology-optimized resonators.

converted Ay mode for both the resonator configurations. For the case of the Elephant-like
topology, most of the incident wave energy is reflected as low-amplitude Sy and Ag modes
observed as backward propagating waves in the incident region. Quantitatively, 25.2% of
the Sy mode is transmitted, and the remaining is converted into an Ay, mode with 4.8%
normalized amplitude, as shown in the transmission region of Fig. 4(a). On the other hand,

the Boat-like topology allows 47.2% of Sy mode transmission, as well as a 31% transmission

14
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Fig. 4. Wavenumber spectra for metasurfaces of Figure 3.

as a mode-converted Ay mode, making it the less effective topology in preventing wave
propagation. Similarly, some of the wave energy is reflected as Sy and Ay modes, observed
as backward propagating waves in Fig. 4(b).

These results demonstrate that both optimized resonators are suppressing the Sy
Lamb wave mode by imposing the desired antiresonance on the plate. The higher sup-
pression of the incident Sy mode for the Elephant-like topology compared to the Boat-like
topology is an evidence for its higher efficiency. However, since the mode-conversions between
the Sy and Ay modes are non-intuitive, the resonators’ bases cover different surface areas in
the metasurface region (Fig. 3(c)(d)), and the antiresonances occur at different frequencies,
therefore a direct comparison of their performances is not straightforward. Based on these
observations, both optimized resonators suppress the propagation of Sy Lamb wave mode
albeit with different efficiency, providing fundamental understanding about the mechanisms

involved in the control of elastic wave propagation while showing the feasibility of local
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resonator design using structural optimization techniques.

4. Conclusions

In this paper, we present a design methodology formulated as a topology optimization prob-
lem to design resonators using a density-based and gradient-based topology optimization
method. This methodology can be used to systematically design locally resonant elastody-
namic metasurfaces comprising the topology-optimized resonators mounted on a waveguide.
Our approach requires a resonator’s antiresonance eigenfrequency to match a predefined
target frequency, generating a bandgap around that frequency. We demonstrate the poten-
tial of this methodology for designing resonant metasurfaces that suppress Sy Lamb waves.
Nonetheless, this method can be extended to the design of resonant metasurfaces to control
other types of elastic waves such as surface waves regardless of the frequency range, making
this approach suitable for designing resonant structures at multiple length scales. Moreover,
this design methodology can be generalized to tailor not only antiresonances but resonances
or even both simultaneously, presenting a potential approach to widen metasurface’s fre-

quency bandgaps and to design acoustic metamaterials.

Acknowledgments

The authors gratefully acknowledge the support of the National Science Foundation
under Grant No. 1934527. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views

of the National Science Foundation.

16



268

269

270

271

272

273

274

275

276

278

279

280

281

282

283

284

285

286

287

289

Computations for this research were performed on the Pennsylvania State University’s

Institute for Computational and Data Sciences’ Roar supercomputer.

References and links

Ahmed, W. W., Farhat, M., Zhang, X., and Wu, Y. (2021). “Deterministic and probabilistic deep learning
models for inverse design of broadband acoustic cloak,” Physical Review Research 3(1), 013142.

Ahn, B., Lee, H., Lee, J. S., and Kim, Y. Y. (2019). “Topology optimization of metasurfaces for anomalous
reflection of longitudinal elastic waves,” Computer Methods in Applied Mechanics and Engineering 357,
112582.

Amirkulova, F. A., Gerges, S., and Norris, A. N. (2022). “Broadband acoustic lens design by reciprocity
and optimization,” JASA Express Letters 2(2), 024005.

Andersen, P. R., Henriquez, V. C., Sanchis, L., and Sdnchez-Dehesa, J. (2019). Design of multi-directional
acoustic cloaks using two-dimensional shape optimization and the boundary element method (Univer-
sitdtsbibliothek der RWTH Aachen).

Antonakakis, T., Craster, R., and Guenneau, S. (2014). “Moulding and shielding flexural waves in elastic
plates,” EPL (Europhysics Letters) 105(5), 54004.

Bens0Oe, M., and Kikuchi, N. (1988). “Generating optimal topologies in structural design using a homoge-
nization method, comp,” Meths. Appl. Mechs. Engng 71, 197-224.

Bralé, S., Javelaud, E., Enoch, S., and Guenneau, S. (2014). “Experiments on seismic metamaterials:
molding surface waves,” Physical review letters 112(13), 133901.

Campbell, S. D., Sell, D., Jenkins, R. P., Whiting, E. B., Fan, J. A., and Werner, D. H. (2019). “Review of

numerical optimization techniques for meta-device design,” Optical Materials Express 9(4), 1842-1863.

17



290

291

292

293

294

295

296

297

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Colombi, A., Colquitt, D., Roux, P., Guenneau, S., and Craster, R. V. (2016a). “A seismic metamaterial:
The resonant metawedge,” Scientific reports 6(1), 1-6.

Colombi, A., Roux, P., Guenneau, S., Gueguen, P., and Craster, R. V. (2016b). “Forests as a natural seismic
metamaterial: Rayleigh wave bandgaps induced by local resonances,” Scientific reports 6(1), 1-7.

Colquitt, D., Colombi, A., Craster, R., Roux, P., and Guenneau, S. (2017). “Seismic metasurfaces: Sub-
wavelength resonators and rayleigh wave interaction,” Journal of the Mechanics and Physics of Solids 99,
379-393.

Danawe, H., Okudan, G., Ozevin, D., and Tol, S. (2020). “Conformal gradient-index phononic crystal lens
for ultrasonic wave focusing in pipe-like structures,” Applied Physics Letters 117(2), 021906.

Deymier, P. A. (2013). Acoustic metamaterials and phononic crystals, 173 (Springer Science & Business
Media).

Dong, H.-W., Zhao, S.-D., Miao, X.-B., Shen, C., Zhang, X., Zhao, Z., Zhang, C., Wang, Y.-S., and Cheng,
L. (2021). “Customized broadband pentamode metamaterials by topology optimization,” Journal of the
Mechanics and Physics of Solids 152, 104407.

Dong, H.-W., Zhao, S.-D., Wang, Y.-S., and Zhang, C. (2017). “Topology optimization of anisotropic
broadband double-negative elastic metamaterials,” Journal of the Mechanics and Physics of Solids 105,
54-80.

El-Khoury, O., and Adeli, H. (2013). “Recent advances on vibration control of structures under dynamic
loading,” Archives of Computational Methods in Engineering 20(4), 353-360.

Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., and Zhang, X. (2006). “Ultrasonic
metamaterials with negative modulus,” Nature materials 5(6), 452-456.

Galvagni, A., and Cawley, P. (2011). “The reflection of guided waves from simple supports in pipes,” The

Journal of the Acoustical Society of America 129(4), 1869-1880.

18



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

Gao, J., Xiao, M., Zhang, Y., and Gao, L. (2020). “A comprehensive review of isogeometric topology
optimization: methods, applications and prospects,” Chinese Journal of Mechanical Engineering 33(1),
1-14.

Garova, E., Maradudin, A., and Mayer, A. (1999). “Interaction of rayleigh waves with randomly distributed
oscillators on the surface,” Physical Review B 59(20), 13291.

Guo, X., and Cheng, G.-D. (2010). “Recent development in structural design and optimization,” Acta
Mechanica Sinica 26(6), 807-823.

Gurbuz, C., Kronowetter, F., Dietz, C., Eser, M., Schmid, J., and Marburg, S. (2021). “Generative adver-
sarial networks for the design of acoustic metamaterials,” The Journal of the Acoustical Society of America
149(2), 1162-1174.

Hakoda, C., Lissenden, C. J., and Shokouhi, P. (2019). “Clamping resonators for low-frequency s0 lamb
wave reflection,” Applied Sciences 9(2), 257.

Huang, M., Tse, K., Chan, C. M., and Lou, W. (2011). “Integrated structural optimization and vibra-
tion control for improving wind-induced dynamic performance of tall buildings,” International Journal of
Structural Stability and Dynamics 11(06), 1139-1161.

Jeong, W. B., Yoo, W. S.; and Kim, J. Y. (2003). “Sensitivity analysis of anti-resonance frequency for
vibration test control of a fixture,” KSME international journal 17(11), 1732-1738.

Jiang, J., and Fan, J. A. (2020). “Simulator-based training of generative neural networks for the inverse
design of metasurfaces,” Nanophotonics 9(5), 1059-1069.

Jihong, Z., Han, Z., Chuang, W., Lu, Z., Shangqin, Y., and Zhang, W. (2021). “A review of topology
optimization for additive manufacturing: Status and challenges,” Chinese Journal of Aeronautics 34(1),

91-110.

19



335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

Khelif, A., Achaoui, Y., Benchabane, S., Laude, V., and Aoubiza, B. (2010). “Locally resonant surface
acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface,” Physical Review
B 81(21), 214303.

Kim, W., Song, Y. H., and Kim, J. E. (2012). “Topology optimization of actuator arms in hard disk drives
for reducing bending resonance-induced off-tracks,” Structural and Multidisciplinary Optimization 46(6),
907-912.

Lai, P., Amirkulova, F., and Gerstoft, P. (2021). “Conditional wasserstein generative adversarial networks
applied to acoustic metamaterial design,” The Journal of the Acoustical Society of America 150(6), 4362—
4374.

Lemoult, F., Kaina, N., Fink, M., and Lerosey, G. (2013). “Wave propagation control at the deep subwave-
length scale in metamaterials,” Nature Physics 9(1), 55-60.

Leonhardt, U. (2006). “Optical conformal mapping,” Science 312(5781), 1777-1780.

Lissenden, C. J., Hakoda, C. N., and Shokouhi, P. (2021). “Control of low-frequency lamb wave propagation
in plates by boundary condition manipulation,” Journal of Applied Physics 129(9), 094903.

Liu, Z., Zhang, X., Mao, Y., Zhu, Y., Yang, Z., Chan, C. T., and Sheng, P. (2000). “Locally resonant sonic
materials,” science 289(5485), 1734-1736.

Lu, L., Yamamoto, T., Otomori, M., Yamada, T., Izui, K., and Nishiwaki, S. (2013). “Topology optimization
of an acoustic metamaterial with negative bulk modulus using local resonance,” Finite Elements in Analysis
and Design 72, 1-12.

Mei, L., and Wang, Q. (2021). “Structural optimization in civil engineering: A literature review,” Buildings
11(2), 66.

Noguchi, Y., Yamada, T., Izui, K., and Nishiwaki, S. (2018). “Optimum design of an acoustic metama-

terial with negative bulk modulus in an acoustic-elastic coupled system using a level set—based topology

20



358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

optimization method,” International Journal for Numerical Methods in Engineering 113(8), 1300-1339.

Oh, J. H., Ahn, Y. K., and Kim, Y. Y. (2015). “Maximization of operating frequency ranges of hyperbolic
elastic metamaterials by topology optimization,” Structural and Multidisciplinary Optimization 52(6),
1023-1040.
Okudan, G., Danawe, H., Ozevin, D., and Tol, S. (2021). “Torsional wave focusing in cylindrical structures
with the conformal gradient-index phononic crystal lens,” Journal of Applied Physics 129(17), 174902.
Palermo, A., and Marzani, A. (2018). “Control of love waves by resonant metasurfaces,” Scientific Reports
8(1), 1-8.

Pendry, J. B., Schurig, D., and Smith, D. R. (2006). “Controlling electromagnetic fields,” Science 312(5781),
1780-1782.

Rong, J., and Ye, W. (2020). “Multifunctional elastic metasurface design with topology optimization,” Acta
Materialia 185, 382-399.

Rupin, M., Lemoult, F., Lerosey, G., and Roux, P. (2014). “Experimental demonstration of ordered and
disordered multiresonant metamaterials for lamb waves,” Physical Review Letters 112(23), 234301.

Shah, T., Zhuo, L., Lai, P., De La Rosa-Moreno, A., Amirkulova, F., and Gerstoft, P. (2021). “Reinforcement
learning applied to metamaterial design,” The Journal of the Acoustical Society of America 150(1), 321—
338.

Sigmund, O., and Bendsge, M. P. (2004). “Topology optimization—from airplanes to nanooptics,” in BRIDG-
ING from technology to society: DTU 1829-2004-175 dar (Technical University of Denmark), pp. 40-51.
Sigmund, O., and Maute, K. (2013). “Topology optimization approaches,” Structural and Multidisciplinary

Optimization 48(6), 1031-1055.
Stolpe, M., and Svanberg, K. (2001). “An alternative interpolation scheme for minimum compliance topology

optimization,” Structural and Multidisciplinary Optimization 22(2), 116-124.

21



381

382

383

384

385

386

387

388

389

390

391

392

393

394

Sun, H., Yang, Z., Li, K., Li, B., Xie, J., Wu, D., and Zhang, L. (2009). “Vibration suppression of a hard
disk driver actuator arm using piezoelectric shunt damping with a topology-optimized pzt transducer,”
Smart Materials and Structures 18(6), 065010.

Xiao, Y., Wen, J., and Wen, X. (2012). “Flexural wave band gaps in locally resonant thin plates with
periodically attached spring—mass resonators,” Journal of Physics D: Applied Physics 45(19), 195401.

Xu, S., Cai, Y., and Cheng, G. (2010). “Volume preserving nonlinear density filter based on heaviside
functions,” Structural and Multidisciplinary Optimization 41(4), 495-505.

Yang, X., and Kim, Y. Y. (2018). “Topology optimization for the design of perfect mode-converting
anisotropic elastic metamaterials,” Composite Structures 201, 161-177.

Zaccherini, R., Colombi, A., Palermo, A., Dertimanis, V. K., Marzani, A., Thomsen, H. R., Stojadinovic,
B., and Chatzi, E. N. (2020). “Locally resonant metasurfaces for shear waves in granular media,” Physical
Review Applied 13(3), 034055.

Zegard, T., and Paulino, G. H. (2016). “Bridging topology optimization and additive manufacturing,”

Structural and Multidisciplinary Optimization 53(1), 175-192.

22



