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ABSTRACT 
We demonstrate the design of resonating structures using a 

density-based topology optimization approach, which requires 
the eigenfrequencies to match a set of target values. To develop 
a solution, several optimization modules are implemented, 
including material interpolation models, penalization schemes, 
filters, analytical sensitivities, and a solver. Moreover, common 
challenges in topology optimization for dynamic systems and 
their solutions are discussed. In this study, the objective function 
is to minimize the error between the target and actual 
eigenfrequency values. The finite element method is used to 
compute the eigenfrequencies at each iteration. To solve the 
optimization problem, we use the sequential linear programming 
algorithm with move limits, enhanced by a filtering technique. 
Finally, we present a resonator design as a case study and 
analyze the design process with different optimization 
parameters. 

 
Keywords: Topology Optimization, Eigenfrequency 

Matching, Resonator Design, Wave Propagation Control 
 
 
1. INTRODUCTION  

Structural optimization has become an indispensable tool in 
simulation-based designs through size, shape, material, and 
topology optimization techniques [1,2]. An important branch of 
this discipline focuses on the structural dynamic response to 
vibration, either to prevent failure or enhance dynamic structural 
properties. The applications are diverse, including control of 
wind-induce vibrations in tall buildings with optimized tuned 
mass dampers [3], control of eigenfrequency distribution in 
micro-mechanical resonator design  [4], optimal configuration of 
a Hard Disk Drive (HDD) arm to prevent bending by 
constraining the mass moment of inertia [5], and in general, 
vibration control of structures by passive, active, semi-active and 
hybrid schemes [6]. One of the most commonly used methods in 
these diverse applications is topology optimization [7], which 
provides a systematic structural design approach. 

 
The Topology Optimization Method (TOM) is a 

computational method to devise complex layouts in various 
applications such as micro-robots, structural aerodynamics, 

sound radiation, or nano-optical crystals [8]. Initially intended to 
solve structural design problems [9], the applications of TOM are 
now extended to diverse multi-physics problems in acoustics, 
fluids, optics, electromagnetics, materials, among others [10,11]. 
An example is the structural vibration control design, including 
either active or passive control mechanisms [12-14], where the 
dynamic response of the structure constitutes an essential part of 
the optimization problem formulation. This class of problems 
has motivated the introduction of the TOM in applications that 
involve optimization of eigenvalues and eigenvectors. Supported 
by various developments in the calculation of eigenvalues and 
eigenvectors derivatives [15], the seminal work of Díaz and 
Kikuchi [16] introduced the homogenization method to solve 
these kinds of problems. Since then, studies have been focusing 
on maximizing eigenfrequencies while preventing localized 
modes [17-19], tracking mode shapes and mode order switching 
[20], proposing optimized shapes for sound radiation [21], 
additive manufacturing [22], turbomachinery components [23], 
material design [24], and many others. 

 
The three principal design requirements of a topology 

optimization problem involving eigenfrequencies are [25]: (i) 
maximizing the first eigenfrequency of the structure [17], usually 
to reduce low-frequency vibrations [19,26,27], (ii) generating a 
gap in between eigenfrequencies or around a certain frequency 
[28], typically used to prevent vibrations around a resonance 
frequency [29], and (iii) matching the eigenfrequencies of the 
structure with a reference set of desired frequencies [25], which 
is the focus of this paper. Maximizing eigenfrequencies requires 
the user to decide whether or not to follow the position of a 
specified eigenvalue and its mode shape, due to the order 
changes a mode can experience during the optimization process 
[30]. To overcome this problem, a mean-eigenvalue formulation 
[25] can be used to consider multiple eigenfrequencies of the 
structure. To generate a gap, it is necessary to take the difference 
between two adjacent eigenfrequencies or to take the ratio 
between the squared eigenfrequencies [28]. To address the 
problem of modes switching positions, a double-bound 
formulation is used to ensure that all the eigenfrequencies are 
greater or less than the bounds defining the gap. Lastly, the 
eigenfrequency matching approach has been found in few works. 
The general formulation to match eigenfrequencies was 
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proposed by Ma et al. [25]. Maeda et al. [31] introduced this 
formulation to the Homogenization Design Method (HDM) for 
topology optimization. Then, Yamasaki et al. [32] explored the 
use of level-set methods for minimum compliance, 
maximization of eigenfrequencies and eigenfrequency matching. 
Nishizu et al. [33] used the same formulation to find topologies 
for damaged structures characterized with Non-Destructive 
Evaluation (NDT), and finally, Bernal et al. [34] used this 
approach to create topology optimized structures to propose a 
material characterization technique by impulse excitation. 
 

The overarching goal of this study is to find topologically 
optimized resonators for a resonant meta-surface, i.e., to design 
resonating structures that can be coupled to the surface of a host 
structure (waveguide) and control the wave propagation in the 
waveguide. In search of resonating structures that fulfill a 
predefined set of requirements, including resonance at a 
particular frequency or set of frequencies, the TOM has the 
potential to be used as the design tool. The objective of this work 
is to propose a design methodology for resonating structures 
based on eigenfrequency matching using a density-based TOM. 
Our investigation focuses on developing the necessary 
combination of techniques to solve a general topology 
optimization problem, where a structure is to be designed to have 
a predefined set of eigenfrequencies. 

 
The remainder of this paper is organized in three sections: 

(i) the problem formulation is presented as a general problem that 
minimizes the error between a reference set of eigenfrequencies 
and the actual eigenfrequencies, (ii) the solution methods section 
presents in detail the programming technique, sensitivity 
derivation, interpolation models, and filters used in topology 
optimization. Finally, (iii) the results section demonstrates a case 
study serving as a reference solution, for which a parametric 
study is conducted. A final discussion is presented to summarize 
our findings. 
2. OPTIMIZATION PROBLEM 

To develop a design methodology, it is necessary to 
generalize the optimization problem. To do so, the optimization 
problem formulation describes a relation between the 
eigenfrequencies of a structure and a reference set of predefined 
eigenfrequencies. The idea is to systematically modify the 
structure’s eigenfrequencies until the desired match is achieved. 
However, simultaneously matching multiple eigenvalues is 
rather challenging; therefore, the idea is to get as close as 
possible to the reference set of values with minimum error. 

 
Here, the objective function is defined as the minimization 

of the error between a set of target eigenfrequencies 𝑔! and the 
actual eigenfrequencies of the structure 𝑓!. An L2-norm measures 
the cumulative relative error summed over all the modes. A set 
of scalar weights 𝑤! is used to control the influence of each 
mode. The optimization problem formulation is shown in 
Equation (1): 
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where 𝑓! and 𝜆! are the 𝑞#$ eigenfrequency and eigenvalue, 
respectively, 𝑔! is the 𝑞#$ reference eigenfrequency, 𝑚 is the 
total number of modes considered, 𝑤! is the 𝑞#$ weighting 
coefficient, and 𝑁% is the number of finite elements. Since 𝜌% and 
𝑉% are the pseudo-density and volume of element 𝑒, respectively, 
the factor 𝜌%𝑉% is the effective volume of such element. In 
addition, 𝑉&'(	 is maximum volume allowed, 𝜌&)* is the 
minimum allowed pseudo-density used to prevent numerical 
problems, and [𝐾] and [𝑀] are the global stiffness and mass 
matrices, respectively. Finally, Φ! is the 𝑞#$ eigenvector 
corresponding to the 𝑞#$ eigenvalue 𝜆!. 

 
 

3. SOLUTION METHODS 
To solve a topology optimization problem, different 

approaches have been used, e.g., optimality criteria, moving 
asymptotes, sequential programming, genetic algorithms, or 
level-set methods [35,36]. Among these methods, linear 
programming uses highly efficient and reliable algorithms to 
solve non-linear problems [37]. Specifically, Sequential Linear 
Programming (SLP) is a popular method in structural 
optimization to deal with the nonlinear nature of complex 
problems, in essence, because of its simplicity and the possibility 
to use linear solvers, e.g., Simplex [38]. However, a topology 
optimization problem is by definition a binary problem, where 
the design variables should be either zero or one, representing 
void or solid material. Therefore, a relaxation of the solution 
space is necessary to allow for intermediate values between 0 
and 1, mathematically allowing for intermediate material 
properties between solid and void [39]. To describe these 
intermediate material properties, it is necessary to introduce a 
material interpolation model. Two material models will be 
analyzed in this work, starting with the most popular model 
called Solid Isotropic Material with Penalization (SIMP) [40], 
and an alternative model, the Rational Approximation of 
Material Properties (RAMP) [41]. Moreover, it is necessary to 
deal with other known problems in density-based topology 
optimization such as checkerboard solutions, mesh dependency, 
numerical instabilities, and lack of solutions. To address these 
issues, filters or “Regularization Schemes” have been widely 
used [42,43]. In this work, the projection filter [44] is used. 

 



 3  

This section is divided in three subsections: Sequential 
Linear Programming (SLP), Material Interpolation Models and, 
Filters for Topology Optimization. The first subsection presents 
our strategy to solve this non-linear optimization problem 
including the details of the sensitivity analysis. Next, two 
material interpolation models are presented and compared. 
Lastly, different filters commonly used in topology optimization 
are introduced. 

 
3.1 Sequential Linear Programming (SLP) 

The SLP algorithm is used to solve non-linear optimization 
problems, linearizing them through a first-order Taylor 
series around the current design variables [45]. Thereby, a 
linear optimization problem can be solved using efficient 
algorithms for this type of problem (e.g., Simplex method). 
A linearized optimization problem is then expressed as: 
 

min
𝝆
∇𝒇(𝜌,)-𝝆 

where 𝜌, is the linearization point. Note that this 
formulation does not include the constant terms in the Taylor 
series, as they do not contribute to the optimal solution. The 
linearized optimization problem presented in Equation (1) 
involves taking the gradient of the objective function, a 
process known as sensitivity analysis. Thus: 
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Therefore, the linearized objective function simplifies to: 
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3.1.1 Move Limits 
The numerical efficiency of the SLP method often depends 
on an appropriate choice of the move limits [46]. As part of 
the SLP implementation in this work, a heuristic criterion 
for the move limits was developed. At each iteration, the 
slope of the objective function for the preceding three 
iterations is analyzed to determine the trend of the function. 
This trend is then used to decide on stretching or shrinking 
the limit values in order to allow taking larger or smaller 
steps. This move limits criterion was tailored to improve 
performance, stability, and convergence. 
 

Figure 1 presents six possible objective function trends 
considering three iteration points (two slope changes). 
Depending on whether the objective is increasing or 
decreasing, the move limits change to prevent the 
optimization from progressing in the undesired direction. In 
the case of the objective going in the desired direction 
(gradually decreasing), the limit values are “relaxed” to 
allow larger steps in the search direction. In the other case, 
i.e., the objective going in the undesired direction, the limits 
shrink to the smallest values to prevent further progression 
in that direction. A special case occurs when the objective 
function is oscillating as depicted in Figure 1 (right-hand 
side plots), which is a common observation near 
convergence. In this case, the move limits shrink to control 
the optimal search direction by taking smaller steps. 
Although the move limits values must be tuned according to 
the problem; in this work, the limits were set in a range from 
0.02 to 0.16 with a continuity scheme that gradually 
decreases the step size as the optimization goes on. 
 

 
FIGURE 1: OBJECTIVE FUNCTION BEHAVIOR FOR 
THREE ITERATIONS ILLUSTRATED AS TWO SLOPE 
CHANGES (DIRECTION OF ARROWS). 
 

3.2 Material Interpolation Models 
The topology optimization method defines the design 
variables as the pseudo-densities 𝜌% assigned to every finite 
element [39], representing the existence or absence of solid 
material. This is a discrete (binary) problem by definition, 
but it can be relaxed into a continuous problem by allowing 
the pseudo-densities to take intermediate values from 0 to 1 
[11] using material interpolation models such as the SIMP 
or the RAMP models. The SIMP model, originally 
introduced by Bendsøe and Rozvany et al. [40, 47], is the 
most popular model [7]. Stolpe and Svanberg [41] proposed 
an interpolation scheme; the RAMP model, which is shown 
to improve the probability of obtaining an approximately 
solid-void solution. The RAMP model can also overcome 
the so-called “localized modes” problem [27, 48]. Both 
models are used in this work to compare their solutions, 
stability, and convergence. 
 
The parameter that controls the behavior of both 
interpolation models is the penalization factor 𝑝. This factor 
modifies the concavity of the interpolation scheme as shown 
in Figure 2. These graphs show the relationship between the 
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input pseudo-density (before penalization) and the output 
pseudo-density (after penalization). Note that the 
interpolated pseudo-density represents the material property 
ratio 𝐸/𝐸,. 
 

 
FIGURE 2: MATERIAL INTERPOLATION SCHEMES 
COMPARISON BETWEEN (a) SIMP AND (b) RAMP 
MODELS FOR DIFFERENT PENALIZATION FACTORS 
 

3.3 Filters in Topology Optimization 
Filters in topology optimization are used to mathematically 
transform a group of parameters or variables, mainly, to 
prevent problems associated with the density-based 
approach for topology optimization [43]. Some of these 
problems are mesh dependency, checkerboard patterns, 
numerical instability, lack of solution, or simply poor 
structural connectivity. An extensive development of 
filtering techniques can be found in the literature; however, 
in this work, we use a density filter [49] in combination with 
a Heaviside function [50]; called the Projection filter. This 
filter promotes solid-void structures while preserving the 
volume after filtering and improving stability [44]. 
 
Figure 3 shows a typical diagram for topology optimization, 
specifying the sequence of different filtering operations 
commonly used, namely, Density filters [49], Heaviside 
filters [44, 50], Sensitivity filters [42], and Average-
Weighted Spatial filter (AWS) [51]. Although the designer 
is free to select the necessary filters and it is possible to use 
all the filters at once, the modification of the solution space 
could lead to numerical problems. Note that bypassing any 
of the filters does not affect the optimization loop. 
 

 
FIGURE 3: OPTIMIZATION ALGORITHM. 
 
 

4. RESULTS AND DISCUSSION 
Here, the optimization problem will be formulated for a case 

study. We start with an initial (reference) solution followed by a 
parametric study i.e., some of the parameters will be modified to 
analyze their influence on the solution. 

 
This section is divided into three subsections: Optimization 

Problem, Reference Solution Topology, and Variation of 
Parameters. In the first subsection, the topology optimization 
case study will be presented in detail, followed by an initial 
solution to the problem along with the specification of the setup 
parameters and its analysis. Lastly, a variation of some key 
parameters used in the reference solution will be performed to 
discuss their implications on the solution. 

 
4.1 Optimization Problem 

The optimization problem consists of designing a structure 
such that its natural frequencies (eigenfrequencies) are as 
close as possible to a reference set of eigenfrequencies 
defined beforehand. To specify this problem, the reference 
set of frequencies will be introduced along with its 
corresponding original structure. Then, a design domain is 
defined as the available space to design the optimized 
structure along with the material properties used. 
 
4.1.1 Target Eigenfrequencies 
Inspired by the four-arm resonator design presented by 
Hakoda et al. [52], a set of eigenfrequencies is obtained from 
a simplified cross-shape structure (see Figure 4), composed 
of a central cube of 4×4×4 mm3 with four arms, each of 
4×4×18 mm3. This constitutes a four-arm structure confined 
with a volume of 40×40×4 mm3 total. The only boundary 
conditions are defined at the bottom surface of the central 
cube, where all degrees of freedom are constrained. 
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FIGURE 4: STRUCTURE ILLUSTRATION TO GENERATE 
THE REFERENCE EIGENFREQUENCIES. 
 
The first 20 eigenfrequencies of the structure in Figure 4 are 
presented in Table 1. These eigenfrequencies were 
computed in the commercial software ANSYS, using the 
material properties presented in Table 2. As expected, there 
are some repeated eigenfrequencies. This is due to the 
symmetry of the structure’s geometry, which leads to some 
resonance modes having the same eigenfrequencies 
(eigenvalues) but different mode shapes (eigenvectors). 
 

TABLE 1: TARGET EIGENFREQUENCIES 
Mode Frequency (kHz) Mode Frequency (kHz) 
1 7.522 11 18.560 
2 7.626 12 18.560 
3 7.626 13 33.741 
4 8.775 14 33.741 
5 8.775 15 35.811 
6 8.823 16 36.280 
7 8.825 17 40.949 
8 9.291 18 40.949 
9 18.560 19 41.126 
10 18.560 20 47.181 

 
TABLE 2: MATERIAL PROPERTIES 
Property Value 

Young’s Modulus 69 [GPa] 
Density 2700 [kg/m3] 

Poisson’s Ratio 0.33 
 
4.1.2 Design Domain 
We choose a design domain with a similar cuboid-shape 
volume as the structure of Figure 4. The shape is 
purposefully intended to be similar to the reference in order 
to test the design methodology. Since the global solution is 
known and contained within the design domain, the 
optimization solution should propose a similar topology, 
verifying the design methodology of resonating structures 
based on matching eigenfrequencies. Moreover, using a 
similar domain volume results in the eigenfrequencies 
within the same range as the target set. Figure 5 shows the 
design domain with a mesh discretization of 31×31×3 
elements, for a total of 4096 nodes, and 12288 degrees of 
freedom. Note that all results presented were obtained using 
the same material properties (Table 2). 
 

 
FIGURE 5: DESIGN DOMAIN DEFINITION. 
 
 

4.2 Reference Solution Topology 
To illustrate the analysis of different configurations, we first 
solve an initial case as a baseline, after which the variation 
of parameters will be performed in the next section. This 
baseline solution represents only one possible solution 
obtained using a select set of parameters, which does not 
guarantee the global optimization solution has been 
achieved. The parameters used to obtain the baseline  
solution are given in Table 3. 
 

TABLE 3: OPTIMIZATION PARAMETERS FOR 
REFERENCE SOLUTION 

  Value 
Material Interpolation Model SIMP with p = 3 
Maximum Volume 40% 
Minimum Volume 20% 
Starting guess point 𝜌% = 0.4 for all 𝑒 
Reference Eigenfrequencies From Table 1 
Material properties From Table 2 
Weighting coefficients (𝑤!) 𝑤!=1, for all 𝑞 
Filter used Projection Filter 
Density filter radius 6 [mm] 
Heaviside filter Beta value  Continuously increasing 
 
The baseline solution presented in Figure 6 shows the 
optimized topology at iteration 610, where the objective 
function reached its minimum value, i.e., 0.299. Note that 
the resultant topology is different from the reference 
structure (Figure 4), which suggest that the optimization has 
found a different distribution of material to match the 
eigenfrequencies. This topology, as well as the cross in 
Figure 4, is composed of arms, which confirms the 
importance of this design feature to generate the target set 
of eigenfrequencies. Moreover, the symmetric shape with 
respect to the mid-planes suggests that the optimization 
could be defined with symmetry constraints; a condition that 
may not be true for all cases, as will be shown in subsequent 
results. 

 
Figure 6 shows a topology with a grayscale colormap, where 
black elements are solid, white elements are void and the 
others have intermediate density definition. Figure 7 shows 
the corresponding postprocessed topology, where all the 
elements have been completely defined using thresholding. 
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To obtain this image, the software developed by Zegard and 
Paulino [53] was used. Specifically, all pseudo-densities 
over 40% are turned into solid material, while the others 
become void to create a well-defined structure. 
 

 
FIGURE 6: REFERENCE OPTIMIZED TOPOLOGY. 
 

 
FIGURE 7:  POST-PROCESSED REFERENCE TOPOLOGY. 
 
Although the topology is not same as the target cross (Figure 
4), its eigenfrequencies are close enough to fulfil the design 
objective, validating the optimized solution. To confirm the 
effectiveness of this solution, Figure 8 shows the 
comparison between the original set of eigenfrequencies 
reported in Table 1, with the actual eigenfrequencies of the 
optimized topology (Figure 6). The good agreement 
between the two sets of eigenfrequencies is evident, with a 
relative error of 4.48%. Analyzing the optimized topology 
and its vibrational response, it is interesting to note that the 
design methodology can generate non-intuitive structures 
given a design requirement, in this case, a reference set of 
eigenfrequencies.  
 
Finally, Figure 9 presents the objective function evolution 
throughout the optimization process showing that the 
objective function is oscillating. The objective function 
decreases and oscillates until iteration 400, after which it 
keeps oscillating around a value of ~0.4. The minimum 
value was reached at iteration 610 long before reaching the 
maximum iteration limit of 1000. After iteration 610, a few 
sets of oscillations appear but the objective function does 
not show further improvement nor apparent convergence; 

however, as shown in figures 6 and 7, the resulting structure 
is well defined and, as confirmed by Figure 8, the 
optimization has adequately matched the eigenfrequencies. 
 

 
FIGURE 8: OPTIMIZED EIGENFREQUENCIES FOR THE 
REFERENCE SOLUTION (RED CIRCLES) VERSUS THE 
TARGET SET OF EIGENFREQUENCIES (BLUE CROSSES) 
FROM TABLE 1. 
 

 
FIGURE 9: OBJECTIVE FUNCTION EVOLUTION FOR THE 
REFERENCE SOLUTION. 
 
 

4.3 Parametric Study 
Many parameters are involved in the definition of an 
optimization process. Some of these parameters are shown 
in Table 3 for the baseline solution. In this section, some of 
these parameters are varied to study their effect on the 
optimization solution and discuss associated issues. 
Specifically, we analyze the influence of the choice for the 
material interpolation model (SIMP vs. RAMP) as well as 
the penalization factor 𝑝 (Figure 2). 
 
4.3.1 Material Interpolation Model 
Here, instead of SIMP, the problem is solved using the 
RAMP model while maintaining all the other parameters 
shown in Table 3 the same. Note that the penalization factor 
𝑝 remains the same, even when the interpolation curve 
differs due to the choice of a different model (see Figure 2). 
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Figure 10 shows the optimized topology obtained using the 
RAMP model. The new topology is similar to the previous 
result (Figure 6) and exhibits a similar geometrical 
symmetry except that the structure in Figure 10 has 
“disconnected” members on both extremities of the arms. In 
other words, the optimization has resulted in a low-density 
material in those locations that still connects the members 
through what can be interpreted as “very soft” bridges. 
However, when the post-processing threshold is applied, 
that material is removed. This is a known problem in 
topology optimization, which is often addressed with filters, 
although it is not always possible to prevent such 
undesirable solutions.  
 

 
FIGURE 10: OPTIMIZED TOPOLOGY OBTAINED WITH 
THE RAMP INTERPOLATION MODEL. 
 
For comparison purposes, Figure 11 shows the objective 
function evolution when optimizing using the RAMP 
model. Note the differences between Figure 9 and Figure 11. 
Although still oscillating, the objective function is more 
stable and converges to a lower value. In this case, a 
minimum value of 0.214 was reached at iteration 823. The 
oscillatory behavior near the end suggests that the 
optimization is jumping back and forth around a local 
minimum; therefore, converging asymptotically around the 
optimal value. 
 
While the solution using the RAMP model shows a more 
stable decreasing objective function with a lower optimized 
value, the topology has disconnected members. If these 
members are discarded, a lower volume structure could be 
obtained but its dynamic response may deviate from the 
optimized solution. One the other hand, if the gap between 
the disconnected members and the main structure is filled 
with solid material, the final topology will be similar to the 
structure shown in Figure 6, suggesting that both models can 
achieve similar solutions. 
 
4.3.2 Penalization Factors 
When using either the SIMP or RAMP model, a user-defined 
factor 𝑝 is set to control the interpolation curvature. As 
shown in Table 3, the penalization factor used to obtain the 
topologies shown in Figure 6 and Figure 10 is p = 3, a 
commonly used value in structural topology optimization. 

Here, we study the influence of this parameter on the 
solution while keeping all the other parameters the same. 
 

 
FIGURE 11: OBJECTIVE FUNCTION EVOLUTION 
OBTAINED WITH THE RAMP INTERPOLATION MODEL. 
 
Figure 12 shows the topology obtained using SIMP and 
setting 𝑝 = 2. The resulting topology is substantially 
different from the previous once; the symmetry is no longer 
present, and it does not share the characteristics of an arm-
composed structure. In other words, this solution is highly 
dependent on the penalization factor p due to the resulting 
modification in the pseudo-densities. 
 

 
FIGURE 12: OPTIMIZED TOPOLOGY OBTAINED WITH 
SIMP AND PENALIZATION FACTORS 𝑝 = 2. 
 
It is important to note that so far, the penalization factors 
used are the same for mass and stiffness. In the literature a 
suggested combination of penalization factors to prevent 
localized modes is 𝑝 = 3 for stiffness and 𝑝 = 1 for mass 
[17]. However, in this work, using such combination of 
factors leads to numerical problems without yielding a 
solution. Similar issues are found when using larger 
penalization factors, e.g., 𝑝 = 6, and using unitary factors, 
i.e., 𝑝 = 1. The reason for numerical problems with 𝑝 = 6 
is the lack of relaxation of the optimization problem, while 
the reason for problems when 𝑝 = 1 is unknown. When 
using the RAMP model with 𝑝 = 2, the solution is stable 
and similar to previous results, as expected. Therefore, the 
RAMP model was used to explore different combinations of 
penalization factors. 
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Figure 13 shows a topology obtained using the RAMP 
model with penalization factors 𝑝 = 3 for stiffness and 𝑝 =
1 for mass. It is clear that the RAMP model can generate 
topologies even when the penalization factor induces 
instability in convergence during the optimization process. 
Although the topology is not symmetric, it has a distribution 
that resembles the original structure (Figure 4) the most, 
compared to all the other topologies previously presented. 
Moreover, it does not include disconnected members. 
However, the corresponding objective function (Figure 14), 
reaches a minimum of 0.415 at iteration 974, which is 
considerably higher compared to the objective function 
values obtained when both penalization factors were set to 
𝑝 = 3; as shown in Figures 9 and 11. 
 

 
FIGURE 13: OPTIMIZED TOPOLOGY. PENALIZATION 
FACTORS 𝑝 = 3 FOR STIFFNESS, 𝑝 = 1 FOR MASS. 
 

 
FIGURE 14: OBJECTIVE FUNCTION EVOLUTION 
CORRESPONDING TO FIGURE 13 TOPOLOGY . 

 
 
 
 
 
5. SUMMARY AND CONCLUSION 

The design of resonating structures can be defined as a 
structural optimization problem considering their dynamic 
behavior, requiring that their eigenfrequencies match a target set 
of values. This paper presents a design methodology for 
structures under such conditions illustrated with a case study. It 

is shown how to use topology optimization to design a resonating 
structure having a given set of eigenfrequencies. We demonstrate 
how to tailor the optimized topology using some optimization 
capabilities, such as volume constraints or minimum feature size 
of structural members.  

 
It is demonstrated how the choice of initial parameters leads 

to different optimized topologies, which grants the designer 
control over structural features. This approach to structural 
design is fundamentally different from other optimization 
techniques that use eigenfrequencies to create gaps in their 
frequency response or to maximize their eigenfrequencies. 
Moreover, this approach allows the designer to tailor the 
frequency response of a structure and its maximum or minimum 
volume, while fulfilling physical and mechanical constraints. 
Having a strategy to use eigenfrequencies as the optimization 
target is especially useful to design resonating structures such as 
musical instruments, acoustic meta-materials, vibration control 
devices, sensors and actuators, energy harvesting devices, and 
many other applications where the frequency response of the 
structure plays an important role in its performance.  

 
On the design of structures with topology optimization is 

important to recognize the effects of using different interpolation 
models, i.e., the SIMP model or the RAMP model. As discussed 
in subsection 4.3, the RAMP demonstrates a more stable 
optimization process, lower values regarding the objective 
function, numerical stability for different initial parameters, and 
a clear definition of topologies. However, the SIMP model can 
achieve good results anyway, which opens the possibility to use 
either model accordingly to the problem characteristics. In 
addition to this, it was evidenced an influence on the solution and 
its convergence by modifying the move limits. As discussed in 
subsection 3.1, sequential linear programming is a powerful 
solver, but it needs the move limits criteria to be set according to 
the problem's non-linearity. The new heuristic approach 
proposed in this work was proven to analyze and control the 
optimization behavior appropriately to prevent instabilities due 
to the highly non-linearity of the eigenfrequency matching 
optimization problem. 

 
On the one side, the design of structures for specified 

eigenfrequencies presents a powerful tool to control the modal 
response of the structure. On the other side, the lack of control 
over the eigenvectors, i.e., modal shapes, reveals a weakness of 
this particular design methodology. Having control over the 
mode shapes (eigenvectors) would allow tracking the modal 
order switching that occurs during the optimization and it would 
provide an additional design tool to define particular dynamic 
responses. However, this is an extension of this work that would 
be implemented in the future using modal shape cross-
correlation assurance criteria. Additional future developments 
include the exploration of harmonic response optimization, 
improvements in computational efficiency, better move limits 
criteria, and techniques to prevent localized modes.  
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