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ABSTRACT

We demonstrate the design of resonating structures using a
density-based topology optimization approach, which requires
the eigenfrequencies to match a set of target values. To develop
a solution, several optimization modules are implemented,
including material interpolation models, penalization schemes,
filters, analytical sensitivities, and a solver. Moreover, common
challenges in topology optimization for dynamic systems and
their solutions are discussed. In this study, the objective function
is to minimize the error between the target and actual
eigenfrequency values. The finite element method is used to
compute the eigenfrequencies at each iteration. To solve the
optimization problem, we use the sequential linear programming
algorithm with move limits, enhanced by a filtering technique.
Finally, we present a resonator design as a case study and
analyze the design process with different optimization
parameters.

Keywords: Topology Optimization, Eigenfrequency
Matching, Resonator Design, Wave Propagation Control

1. INTRODUCTION

Structural optimization has become an indispensable tool in
simulation-based designs through size, shape, material, and
topology optimization techniques [1,2]. An important branch of
this discipline focuses on the structural dynamic response to
vibration, either to prevent failure or enhance dynamic structural
properties. The applications are diverse, including control of
wind-induce vibrations in tall buildings with optimized tuned
mass dampers [3], control of eigenfrequency distribution in
micro-mechanical resonator design [4], optimal configuration of
a Hard Disk Drive (HDD) arm to prevent bending by
constraining the mass moment of inertia [5], and in general,
vibration control of structures by passive, active, semi-active and
hybrid schemes [6]. One of the most commonly used methods in
these diverse applications is topology optimization [7], which
provides a systematic structural design approach.

The Topology Optimization Method (TOM) is a
computational method to devise complex layouts in various
applications such as micro-robots, structural aerodynamics,
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sound radiation, or nano-optical crystals [8]. Initially intended to
solve structural design problems [9], the applications of TOM are
now extended to diverse multi-physics problems in acoustics,
fluids, optics, electromagnetics, materials, among others [10,11].
An example is the structural vibration control design, including
either active or passive control mechanisms [12-14], where the
dynamic response of the structure constitutes an essential part of
the optimization problem formulation. This class of problems
has motivated the introduction of the TOM in applications that
involve optimization of eigenvalues and eigenvectors. Supported
by various developments in the calculation of eigenvalues and
eigenvectors derivatives [15], the seminal work of Diaz and
Kikuchi [16] introduced the homogenization method to solve
these kinds of problems. Since then, studies have been focusing
on maximizing eigenfrequencies while preventing localized
modes [17-19], tracking mode shapes and mode order switching
[20], proposing optimized shapes for sound radiation [21],
additive manufacturing [22], turbomachinery components [23],
material design [24], and many others.

The three principal design requirements of a topology
optimization problem involving eigenfrequencies are [25]: (i)
maximizing the first eigenfrequency of the structure [17], usually
to reduce low-frequency vibrations [19,26,27], (ii) generating a
gap in between eigenfrequencies or around a certain frequency
[28], typically used to prevent vibrations around a resonance
frequency [29], and (iii) matching the eigenfrequencies of the
structure with a reference set of desired frequencies [25], which
is the focus of this paper. Maximizing eigenfrequencies requires
the user to decide whether or not to follow the position of a
specified eigenvalue and its mode shape, due to the order
changes a mode can experience during the optimization process
[30]. To overcome this problem, a mean-eigenvalue formulation
[25] can be used to consider multiple eigenfrequencies of the
structure. To generate a gap, it is necessary to take the difference
between two adjacent eigenfrequencies or to take the ratio
between the squared eigenfrequencies [28]. To address the
problem of modes switching positions, a double-bound
formulation is used to ensure that all the eigenfrequencies are
greater or less than the bounds defining the gap. Lastly, the
eigenfrequency matching approach has been found in few works.
The general formulation to match eigenfrequencies was



proposed by Ma et al. [25]. Maeda et al. [31] introduced this
formulation to the Homogenization Design Method (HDM) for
topology optimization. Then, Yamasaki et al. [32] explored the
use of level-set methods for minimum compliance,
maximization of eigenfrequencies and eigenfrequency matching.
Nishizu et al. [33] used the same formulation to find topologies
for damaged structures characterized with Non-Destructive
Evaluation (NDT), and finally, Bernal et al. [34] used this
approach to create topology optimized structures to propose a
material characterization technique by impulse excitation.

The overarching goal of this study is to find topologically
optimized resonators for a resonant meta-surface, i.c., to design
resonating structures that can be coupled to the surface of a host
structure (waveguide) and control the wave propagation in the
waveguide. In search of resonating structures that fulfill a
predefined set of requirements, including resonance at a
particular frequency or set of frequencies, the TOM has the
potential to be used as the design tool. The objective of this work
is to propose a design methodology for resonating structures
based on eigenfrequency matching using a density-based TOM.
Our investigation focuses on developing the necessary
combination of techniques to solve a general topology
optimization problem, where a structure is to be designed to have
a predefined set of eigenfrequencies.

The remainder of this paper is organized in three sections:
(1) the problem formulation is presented as a general problem that
minimizes the error between a reference set of eigenfrequencies
and the actual eigenfrequencies, (ii) the solution methods section
presents in detail the programming technique, sensitivity
derivation, interpolation models, and filters used in topology
optimization. Finally, (iii) the results section demonstrates a case
study serving as a reference solution, for which a parametric
study is conducted. A final discussion is presented to summarize
our findings.
2. OPTIMIZATION PROBLEM

To develop a design methodology, it is necessary to
generalize the optimization problem. To do so, the optimization
problem formulation describes a relation between the
eigenfrequencies of a structure and a reference set of predefined
eigenfrequencies. The idea is to systematically modify the
structure’s eigenfrequencies until the desired match is achieved.
However, simultaneously matching multiple eigenvalues is
rather challenging; therefore, the idea is to get as close as
possible to the reference set of values with minimum error.

Here, the objective function is defined as the minimization
of the error between a set of target eigenfrequencies g, and the
actual eigenfrequencies of the structure f;. An Lo-norm measures
the cumulative relative error summed over all the modes. A set
of scalar weights w, is used to control the influence of each
mode. The optimization problem formulation is shown in
Equation (1):
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where f, and A, are the q'" eigenfrequency and eigenvalue,
respectively, g, is the q'" reference eigenfrequency, m is the
total number of modes considered, w, is the qt" weighting
coefficient, and N,, is the number of finite elements. Since p, and
V, are the pseudo-density and volume of element e, respectively,
the factor p,V, is the effective volume of such element. In
addition, V., 1s maximum volume allowed, p,;;, is the
minimum allowed pseudo-density used to prevent numerical
problems, and [K] and [M] are the global stiffness and mass
matrices, respectively. Finally, @, is the q" eigenvector
corresponding to the q* eigenvalue Aq-

3. SOLUTION METHODS

To solve a topology optimization problem, different
approaches have been used, e.g., optimality criteria, moving
asymptotes, sequential programming, genetic algorithms, or
level-set methods [35,36]. Among these methods, linear
programming uses highly efficient and reliable algorithms to
solve non-linear problems [37]. Specifically, Sequential Linear
Programming (SLP) is a popular method in structural
optimization to deal with the nonlinear nature of complex
problems, in essence, because of its simplicity and the possibility
to use linear solvers, e.g., Simplex [38]. However, a topology
optimization problem is by definition a binary problem, where
the design variables should be either zero or one, representing
void or solid material. Therefore, a relaxation of the solution
space is necessary to allow for intermediate values between 0
and 1, mathematically allowing for intermediate material
properties between solid and void [39]. To describe these
intermediate material properties, it is necessary to introduce a
material interpolation model. Two material models will be
analyzed in this work, starting with the most popular model
called Solid Isotropic Material with Penalization (SIMP) [40],
and an alternative model, the Rational Approximation of
Material Properties (RAMP) [41]. Moreover, it is necessary to
deal with other known problems in density-based topology
optimization such as checkerboard solutions, mesh dependency,
numerical instabilities, and lack of solutions. To address these
issues, filters or “Regularization Schemes” have been widely
used [42,43]. In this work, the projection filter [44] is used.



This section is divided in three subsections: Sequential
Linear Programming (SLP), Material Interpolation Models and,
Filters for Topology Optimization. The first subsection presents
our strategy to solve this non-linear optimization problem
including the details of the sensitivity analysis. Next, two
material interpolation models are presented and compared.
Lastly, different filters commonly used in topology optimization
are introduced.

3.1 Sequential Linear Programming (SLP)
The SLP algorithm is used to solve non-linear optimization
problems, linearizing them through a first-order Taylor
series around the current design variables [45]. Thereby, a
linear optimization problem can be solved using efficient
algorithms for this type of problem (e.g., Simplex method).
A linearized optimization problem is then expressed as:
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where p, is the linearization point. Note that this
formulation does not include the constant terms in the Taylor
series, as they do not contribute to the optimal solution. The
linearized optimization problem presented in Equation (1)
involves taking the gradient of the objective function, a
process known as sensitivity analysis. Thus:
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Therefore, the linearized objective function simplifies to:
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3.1.1  Move Limits

The numerical efficiency of the SLP method often depends
on an appropriate choice of the move limits [46]. As part of
the SLP implementation in this work, a heuristic criterion
for the move limits was developed. At each iteration, the
slope of the objective function for the preceding three
iterations is analyzed to determine the trend of the function.
This trend is then used to decide on stretching or shrinking
the limit values in order to allow taking larger or smaller
steps. This move limits criterion was tailored to improve
performance, stability, and convergence.

Figure 1 presents six possible objective function trends
considering three iteration points (two slope changes).
Depending on whether the objective is increasing or
decreasing, the move limits change to prevent the
optimization from progressing in the undesired direction. In
the case of the objective going in the desired direction
(gradually decreasing), the limit values are “relaxed” to
allow larger steps in the search direction. In the other case,
i.e., the objective going in the undesired direction, the limits
shrink to the smallest values to prevent further progression
in that direction. A special case occurs when the objective
function is oscillating as depicted in Figure 1 (right-hand
side plots), which is a common observation near
convergence. In this case, the move limits shrink to control
the optimal search direction by taking smaller steps.
Although the move limits values must be tuned according to
the problem; in this work, the limits were set in a range from
0.02 to 0.16 with a continuity scheme that gradually
decreases the step size as the optimization goes on.

4 Decreasing continuously ) (Decreasing after increasing )
- AN /
4 Increasing continuously N Increasing after decreasing )
- AN /

FIGURE 1: OBIJECTIVE FUNCTION BEHAVIOR FOR
THREE ITERATIONS ILLUSTRATED AS TWO SLOPE
CHANGES (DIRECTION OF ARROWS).

3.2 Material Interpolation Models

The topology optimization method defines the design
variables as the pseudo-densities p, assigned to every finite
element [39], representing the existence or absence of solid
material. This is a discrete (binary) problem by definition,
but it can be relaxed into a continuous problem by allowing
the pseudo-densities to take intermediate values from 0 to 1
[11] using material interpolation models such as the SIMP
or the RAMP models. The SIMP model, originally
introduced by Bendsee and Rozvany et al. [40, 47], is the
most popular model [7]. Stolpe and Svanberg [41] proposed
an interpolation scheme; the RAMP model, which is shown
to improve the probability of obtaining an approximately
solid-void solution. The RAMP model can also overcome
the so-called “localized modes” problem [27, 48]. Both
models are used in this work to compare their solutions,
stability, and convergence.

The parameter that controls the behavior of both
interpolation models is the penalization factor p. This factor
modifies the concavity of the interpolation scheme as shown
in Figure 2. These graphs show the relationship between the



input pseudo-density (before penalization) and the output
pseudo-density (after penalization). Note that the
interpolated pseudo-density represents the material property
ratio E /E,,.
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FIGURE 2: MATERIAL INTERPOLATION SCHEMES
COMPARISON BETWEEN (a) SIMP AND (b) RAMP
MODELS FOR DIFFERENT PENALIZATION FACTORS

3.3 Filters in Topology Optimization

Filters in topology optimization are used to mathematically
transform a group of parameters or variables, mainly, to
prevent problems associated with the density-based
approach for topology optimization [43]. Some of these
problems are mesh dependency, checkerboard patterns,
numerical instability, lack of solution, or simply poor
structural connectivity. An extensive development of
filtering techniques can be found in the literature; however,
in this work, we use a density filter [49] in combination with
a Heaviside function [50]; called the Projection filter. This
filter promotes solid-void structures while preserving the
volume after filtering and improving stability [44].

Figure 3 shows a typical diagram for topology optimization,
specifying the sequence of different filtering operations
commonly used, namely, Density filters [49], Heaviside
filters [44, 50], Sensitivity filters [42], and Average-
Weighted Spatial filter (AWS) [51]. Although the designer
is free to select the necessary filters and it is possible to use
all the filters at once, the modification of the solution space
could lead to numerical problems. Note that bypassing any
of the filters does not affect the optimization loop.
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FIGURE 3: OPTIMIZATION ALGORITHM.

4. RESULTS AND DISCUSSION

Here, the optimization problem will be formulated for a case
study. We start with an initial (reference) solution followed by a
parametric study i.e., some of the parameters will be modified to
analyze their influence on the solution.

This section is divided into three subsections: Optimization
Problem, Reference Solution Topology, and Variation of
Parameters. In the first subsection, the topology optimization
case study will be presented in detail, followed by an initial
solution to the problem along with the specification of the setup
parameters and its analysis. Lastly, a variation of some key
parameters used in the reference solution will be performed to
discuss their implications on the solution.

4.1 Optimization Problem

The optimization problem consists of designing a structure
such that its natural frequencies (eigenfrequencies) are as
close as possible to a reference set of eigenfrequencies
defined beforehand. To specify this problem, the reference
set of frequencies will be introduced along with its
corresponding original structure. Then, a design domain is
defined as the available space to design the optimized
structure along with the material properties used.

411 Target Eigenfrequencies

Inspired by the four-arm resonator design presented by
Hakoda et al. [52], a set of eigenfrequencies is obtained from
a simplified cross-shape structure (see Figure 4), composed
of a central cube of 4x4x4 mm?® with four arms, each of
4x4x18 mm?®. This constitutes a four-arm structure confined
with a volume of 40x40x4 mm? total. The only boundary
conditions are defined at the bottom surface of the central
cube, where all degrees of freedom are constrained.
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FIGURE 4: STRUCTURE ILLUSTRATION TO GENERATE
THE REFERENCE EIGENFREQUENCIES.

The first 20 eigenfrequencies of the structure in Figure 4 are
presented in Table 1. These -eigenfrequencies were
computed in the commercial software ANSYS, using the
material properties presented in Table 2. As expected, there
are some repeated eigenfrequencies. This is due to the
symmetry of the structure’s geometry, which leads to some
resonance modes having the same eigenfrequencies
(eigenvalues) but different mode shapes (eigenvectors).

TABLE 1: TARGET EIGENFREQUENCIES
Mode Frequency (kHz) Mode  Frequency (kHz)

1 7.522 11 18.560
2 7.626 12 18.560
3 7.626 13 33.741
4 8.775 14 33.741
5 8.775 15 35.811
6 8.823 16 36.280
7 8.825 17 40.949
8 9.291 18 40.949
9 18.560 19 41.126
10 18.560 20 47.181

TABLE 2: MATERIAL PROPERTIES

Property Value
Young’s Modulus 69 [GPa]
Density 2700 [kg/m?]
Poisson’s Ratio 0.33

41.2 Design Domain

We choose a design domain with a similar cuboid-shape
volume as the structure of Figure 4. The shape is
purposefully intended to be similar to the reference in order
to test the design methodology. Since the global solution is
known and contained within the design domain, the
optimization solution should propose a similar topology,
verifying the design methodology of resonating structures
based on matching eigenfrequencies. Moreover, using a
similar domain volume results in the eigenfrequencies
within the same range as the target set. Figure 5 shows the
design domain with a mesh discretization of 31x31x3
elements, for a total of 4096 nodes, and 12288 degrees of
freedom. Note that all results presented were obtained using
the same material properties (Table 2).
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FIGURE 5: DESIGN DOMAIN DEFINITION.

4.2 Reference Solution Topology

To illustrate the analysis of different configurations, we first
solve an initial case as a baseline, after which the variation
of parameters will be performed in the next section. This
baseline solution represents only one possible solution
obtained using a select set of parameters, which does not
guarantee the global optimization solution has been
achieved. The parameters used to obtain the baseline
solution are given in Table 3.

TABLE 3: OPTIMIZATION PARAMETERS FOR
REFERENCE SOLUTION

Value
Material Interpolation Model ~ SIMP with p =3
Maximum Volume 40%
Minimum Volume 20%

Starting guess point p. =04 foralle
Reference Eigenfrequencies From Table 1

Material properties From Table 2

Weighting coefficients (w;) w,=1, forall g

Filter used Projection Filter
Density filter radius 6 [mm]

Heaviside filter Beta value Continuously increasing

The baseline solution presented in Figure 6 shows the
optimized topology at iteration 610, where the objective
function reached its minimum value, i.e., 0.299. Note that
the resultant topology is different from the reference
structure (Figure 4), which suggest that the optimization has
found a different distribution of material to match the
eigenfrequencies. This topology, as well as the cross in
Figure 4, is composed of arms, which confirms the
importance of this design feature to generate the target set
of eigenfrequencies. Moreover, the symmetric shape with
respect to the mid-planes suggests that the optimization
could be defined with symmetry constraints; a condition that
may not be true for all cases, as will be shown in subsequent
results.

Figure 6 shows a topology with a grayscale colormap, where
black elements are solid, white elements are void and the
others have intermediate density definition. Figure 7 shows
the corresponding postprocessed topology, where all the
elements have been completely defined using thresholding.



To obtain this image, the software developed by Zegard and
Paulino [53] was used. Specifically, all pseudo-densities
over 40% are turned into solid material, while the others
become void to create a well-defined structure.

FIGURE 6: REFERENCE OPTIMIZED TOPOLOGY.

(=N I -]

FIGURE 7: POST-PROCESSED REFERENCE TOPOLOGY.

Although the topology is not same as the target cross (Figure
4), its eigenfrequencies are close enough to fulfil the design
objective, validating the optimized solution. To confirm the
effectiveness of this solution, Figure 8 shows the
comparison between the original set of eigenfrequencies
reported in Table 1, with the actual eigenfrequencies of the
optimized topology (Figure 6). The good agreement
between the two sets of eigenfrequencies is evident, with a
relative error of 4.48%. Analyzing the optimized topology
and its vibrational response, it is interesting to note that the
design methodology can generate non-intuitive structures
given a design requirement, in this case, a reference set of
eigenfrequencies.

Finally, Figure 9 presents the objective function evolution
throughout the optimization process showing that the
objective function is oscillating. The objective function
decreases and oscillates until iteration 400, after which it
keeps oscillating around a value of ~0.4. The minimum
value was reached at iteration 610 long before reaching the
maximum iteration limit of 1000. After iteration 610, a few
sets of oscillations appear but the objective function does
not show further improvement nor apparent convergence;

however, as shown in figures 6 and 7, the resulting structure
is well defined and, as confirmed by Figure 8, the
optimization has adequately matched the eigenfrequencies.
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FIGURE 8: OPTIMIZED EIGENFREQUENCIES FOR THE
REFERENCE SOLUTION (RED CIRCLES) VERSUS THE
TARGET SET OF EIGENFREQUENCIES (BLUE CROSSES)
FROM TABLE 1.
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FIGURE 9: OBJECTIVE FUNCTION EVOLUTION FOR THE
REFERENCE SOLUTION.

4.3 Parametric Study

Many parameters are involved in the definition of an
optimization process. Some of these parameters are shown
in Table 3 for the baseline solution. In this section, some of
these parameters are varied to study their effect on the
optimization solution and discuss associated issues.
Specifically, we analyze the influence of the choice for the
material interpolation model (SIMP vs. RAMP) as well as
the penalization factor p (Figure 2).

4.3.1 Material Interpolation Model

Here, instead of SIMP, the problem is solved using the
RAMP model while maintaining all the other parameters
shown in Table 3 the same. Note that the penalization factor
p remains the same, even when the interpolation curve
differs due to the choice of a different model (see Figure 2).



Figure 10 shows the optimized topology obtained using the
RAMP model. The new topology is similar to the previous
result (Figure 6) and exhibits a similar geometrical
symmetry except that the structure in Figure 10 has
“disconnected” members on both extremities of the arms. In
other words, the optimization has resulted in a low-density
material in those locations that still connects the members
through what can be interpreted as “very soft” bridges.
However, when the post-processing threshold is applied,
that material is removed. This is a known problem in
topology optimization, which is often addressed with filters,
although it is not always possible to prevent such
undesirable solutions.

FIGURE 10: OPTIMIZED TOPOLOGY OBTAINED WITH
THE RAMP INTERPOLATION MODEL.

For comparison purposes, Figure 11 shows the objective
function evolution when optimizing using the RAMP
model. Note the differences between Figure 9 and Figure 11.
Although still oscillating, the objective function is more
stable and converges to a lower value. In this case, a
minimum value of 0.214 was reached at iteration 823. The
oscillatory behavior near the end suggests that the
optimization is jumping back and forth around a local
minimum; therefore, converging asymptotically around the
optimal value.

While the solution using the RAMP model shows a more
stable decreasing objective function with a lower optimized
value, the topology has disconnected members. If these
members are discarded, a lower volume structure could be
obtained but its dynamic response may deviate from the
optimized solution. One the other hand, if the gap between
the disconnected members and the main structure is filled
with solid material, the final topology will be similar to the
structure shown in Figure 6, suggesting that both models can
achieve similar solutions.

4.3.2 Penalization Factors

When using either the SIMP or RAMP model, a user-defined
factor p is set to control the interpolation curvature. As
shown in Table 3, the penalization factor used to obtain the
topologies shown in Figure 6 and Figure 10 is p =3, a
commonly used value in structural topology optimization.

Here, we study the influence of this parameter on the
solution while keeping all the other parameters the same.
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FIGURE 11: OBIJECTIVE FUNCTION EVOLUTION
OBTAINED WITH THE RAMP INTERPOLATION MODEL.

Figure 12 shows the topology obtained using SIMP and
setting p = 2. The resulting topology is substantially
different from the previous once; the symmetry is no longer
present, and it does not share the characteristics of an arm-
composed structure. In other words, this solution is highly
dependent on the penalization factor p due to the resulting
modification in the pseudo-densities.

FIGURE 12: OPTIMIZED TOPOLOGY OBTAINED WITH
SIMP AND PENALIZATION FACTORS p = 2.

It is important to note that so far, the penalization factors
used are the same for mass and stiffness. In the literature a
suggested combination of penalization factors to prevent
localized modes is p = 3 for stiffness and p = 1 for mass
[17]. However, in this work, using such combination of
factors leads to numerical problems without yielding a
solution. Similar issues are found when using larger
penalization factors, e.g., p = 6, and using unitary factors,
i.e., p = 1. The reason for numerical problems with p = 6
is the lack of relaxation of the optimization problem, while
the reason for problems when p = 1 is unknown. When
using the RAMP model with p = 2, the solution is stable
and similar to previous results, as expected. Therefore, the
RAMP model was used to explore different combinations of
penalization factors.



Figure 13 shows a topology obtained using the RAMP
model with penalization factors p = 3 for stiffness and p =
1 for mass. It is clear that the RAMP model can generate
topologies even when the penalization factor induces
instability in convergence during the optimization process.
Although the topology is not symmetric, it has a distribution
that resembles the original structure (Figure 4) the most,
compared to all the other topologies previously presented.
Moreover, it does not include disconnected members.
However, the corresponding objective function (Figure 14),
reaches a minimum of 0.415 at iteration 974, which is
considerably higher compared to the objective function
values obtained when both penalization factors were set to
p = 3; as shown in Figures 9 and 11.

FIGURE 13: OPTIMIZED TOPOLOGY. PENALIZATION
FACTORS p = 3 FOR STIFFNESS, p = 1 FOR MASS.
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FIGURE 14: OBJECTIVE FUNCTION EVOLUTION
CORRESPONDING TO FIGURE 13 TOPOLOGY .

5. SUMMARY AND CONCLUSION

The design of resonating structures can be defined as a
structural optimization problem considering their dynamic
behavior, requiring that their eigenfrequencies match a target set
of values. This paper presents a design methodology for
structures under such conditions illustrated with a case study. It

is shown how to use topology optimization to design a resonating
structure having a given set of eigenfrequencies. We demonstrate
how to tailor the optimized topology using some optimization
capabilities, such as volume constraints or minimum feature size
of structural members.

It is demonstrated how the choice of initial parameters leads
to different optimized topologies, which grants the designer
control over structural features. This approach to structural
design is fundamentally different from other optimization
techniques that use eigenfrequencies to create gaps in their
frequency response or to maximize their eigenfrequencies.
Moreover, this approach allows the designer to tailor the
frequency response of a structure and its maximum or minimum
volume, while fulfilling physical and mechanical constraints.
Having a strategy to use eigenfrequencies as the optimization
target is especially useful to design resonating structures such as
musical instruments, acoustic meta-materials, vibration control
devices, sensors and actuators, energy harvesting devices, and
many other applications where the frequency response of the
structure plays an important role in its performance.

On the design of structures with topology optimization is
important to recognize the effects of using different interpolation
models, i.e., the SIMP model or the RAMP model. As discussed
in subsection 4.3, the RAMP demonstrates a more stable
optimization process, lower values regarding the objective
function, numerical stability for different initial parameters, and
a clear definition of topologies. However, the SIMP model can
achieve good results anyway, which opens the possibility to use
either model accordingly to the problem characteristics. In
addition to this, it was evidenced an influence on the solution and
its convergence by modifying the move limits. As discussed in
subsection 3.1, sequential linear programming is a powerful
solver, but it needs the move limits criteria to be set according to
the problem's non-linearity. The new heuristic approach
proposed in this work was proven to analyze and control the
optimization behavior appropriately to prevent instabilities due
to the highly non-linearity of the eigenfrequency matching
optimization problem.

On the one side, the design of structures for specified
eigenfrequencies presents a powerful tool to control the modal
response of the structure. On the other side, the lack of control
over the eigenvectors, i.e., modal shapes, reveals a weakness of
this particular design methodology. Having control over the
mode shapes (eigenvectors) would allow tracking the modal
order switching that occurs during the optimization and it would
provide an additional design tool to define particular dynamic
responses. However, this is an extension of this work that would
be implemented in the future using modal shape cross-
correlation assurance criteria. Additional future developments
include the exploration of harmonic response optimization,
improvements in computational efficiency, better move limits
criteria, and techniques to prevent localized modes.
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