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The factorized form of the unitary coupled cluster ansatz is a popular state preparation ansatz for electronic structure
calculations of molecules on quantum computers. It often is viewed as an approximation (based on the Trotter product
formula) for the conventional unitary coupled cluster operator. In this work, we show that the factorized form is quite
flexible, allowing one to range from conventional configuration interaction, to conventional unitary coupled cluster, to
efficient approximations that lie in between these two. The variational minimization of the energy often allows simpler
factorized unitary coupled cluster approximations to achieve high accuracy, even if they do not accurately approximate
the Trotter product formula. This is similar to how quantum approximate optimization algorithms can achieve high
accuracy with a small number of levels.

I. INTRODUCTION:

The electronic structure of molecules is viewed as one of
the most promising applications of quantum computing to the
field of chemistry1. Within electronic structure, there are two
promising pathways. The first is via quantum phase estima-
tion, which performs time evolution on an initial state2 and
extracts the energy by measuring a complex phase. It does
so using controlled time-evolution to allow for Fourier sig-
nal processing of the accumulated phases—at the end of the
algorithm, it collapses to an eigenstate and the accumulated
phase tells us the eigenvalue. If the initial state is a superpo-
sition of states with a high amplitude for the ground state, the
method will eventually determine the ground-state eigenvalue
and will also prepare the ground state; this technique can also
determine excited states by varying the state preparation to
have a large overlap with an excited state. A recent analysis in
the context of X-ray excitation describes how this can be em-
ployed3. This method results in extremely deep circuits (due
to the controlled time evolution), and so it is not practical on
computers available in the near term. The second is via the
variational quantum eigensolver (VQE)4. This approach uses
an ansatz to approximately prepare a ground-state wavefunc-
tion, measures the energy (using a break-up of the Hamilto-
nian into a sum over unitary operators that can each be directly
measured), and then uses a classical computer to optimize the
parameters in the wavefunction, repeatedly looping through
this algorithm to complete the variational calculation. VQE
has many different varieties, based on different strategies for
preparing the target state and determining how to update it.
Some examples include the ADAPT method5, which chooses
the next operator to use in the state-preparation ansatz from an
operator pool, hardware-efficient approaches6, which simply
entangle the wavefunction (rather than applying fermionic ex-
citations to a reference state) and then optimize the entangle-
ment for the best energy, and methods that enlarge the wave-

function scope by including additional variational terms in a
virtual fashion7. A recent article summarizes the prospects of
these two methods for quantum computing on near-term and
fault-tolerant quantum computers8.

In all of the variational methods, we need to apply op-
erators to some reference state, to prepare the state for the
measurement phase. In this work, we focus on methods that
use fermionic excitations. Coupled cluster is the gold stan-
dard for electronic structure calculations of weakly correlated
molecules. In a conventional coupled-cluster calculation, we
create a state by applying excitations to a reference state, in
the form |ψ〉= eT̂ |ψ0〉, where |ψ0〉 is the initial reference state
(which we will take to be the Hartree-Fock state) and the exci-
tation operator is a sum of excitation operators of different or-
ders T̂ = T̂1+ T̂2+ T̂3+ · · · . Each operator of a given order in-
cludes all possible excitations from real orbitals present in the
reference state to virtual orbitals used in the basis set included
in the calculation (with amplitudes chosen to optimize the en-
ergy). In many cases, a number of amplitudes for particular
excitation operators are zero, implying they are not included
in the ansatz. Note that, amplitudes can be zero, or so small
that we set them equal to zero, for two reasons—symmetry re-
strictions can require some excitations to be identically zero,
or the optimization procedure can produce an amplitude so
small that it is not important to include it in the results for
the desired accuracy of the calculation. In this work, we set
the amplitude to zero, if the optimization procedure produces
an amplitude whose magnitude is smaller than 10−12. This
is done to prune the tree-structure representation of the wave-
function of less important terms, when performing the calcu-
lation on a conventional computer.

As an example for how we proceed, the singles and doubles
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excitations can be written schematically as

T̂ = T̂1 + T̂2 + · · · , (1)

=
occ

∑
i

vir

∑
a

θ
a
i â†
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Here, we use letters from the beginning of the alphabet a, b, c,
· · · to represent the virtual (unoccupied) spin orbitals available
in the basis set, and letters from the middle of the alphabet i, j,
k, · · · to represent the occupied (real) spin orbitals that appear
in the reference state. The operators âr (â†

r ) destroy (create)
an electron in the spin-orbital labelled by r and satisfy the
canonical anticommutation relations. The singles amplitudes
are denoted by θ a

i , the doubles amplitudes by θ ab
i j , and so on—

these amplitudes represent real numbers, which can be equal
to 0.

In conventional coupled cluster, we do not actually form
the variational wavefunction. Instead, we perform a similar-
ity transformation on the Hamiltonian, Ĥ → e−T̂ Ĥ eT̂ , and
then force the overlaps of all elemental excitations with the
transformed Hamiltonian acting on the reference state to van-
ish; this effectively zeroes out the off-diagonal elements of the
Hartree-Fock column of the transformed Hamiltonian. This
then produces the so-called amplitude equations. The simi-
larity transformation can be carried out exactly, because the
Hadamard lemma eÂB̂e−Â = B̂+[Â, B̂]+ 1

2 [Â, [Â, B̂]]+ · · · in-
volving a sum of terms with increasingly nested commuta-
tors, truncates after the fourth-order term because the Hamil-
tonian only has single and two-body operators in it (the name
Hadamard lemma, is commonly used for this identity, as is
Baker-Hausdorff lemma, Hausdorff lemma, and others—it
should not be conflated with the Hadamard lemma from cal-
culus). Note that this standard form of coupled cluster is no
longer a variational calculation.

Unitary coupled cluster (UCC) is usually carried out in a
variational fashion, which makes it much less efficient than
conventional coupled cluster. In UCC, we form the variational
wavefunction via

|ψUCC〉= eT̂−T̂ † |ψ0〉. (3)

In this case, the Hadamard lemma does not generically trun-
cate, so one is forced to work with the wavefunction directly.
This comes at a huge computational cost, making UCC inef-
ficient on classical computers. But, on quantum computers,
it is feasible, if one can prepare the UCC operator in an ef-
ficient way and apply it to the reference state; especially so,
since conventional coupled cluster cannot be carried out on a
quantum computer. In general, this is difficult for the general
form of the ansatz. This is because we do not know how to
write general quantum circuits for sums of operators in an ex-
ponential (however, this may be changing9). Instead, we use
a Trotter product formula to break the conventional UCC ap-
proximation up into a product of factors for which quantum
circuits are known. This has us rewrite the UCC ansatz in a

Trotter product form as
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We will show below, that for typical molecules one usually
needs an N value that is on the order of 10− 20 for an accu-
rate representation of the operator. But, the case with N = 1
often can produce nearly as accurate results, because the vari-
ational principle has additional freedom in it that allows it to
correct some of the Trotter errors, by modifying the precise
value of the amplitudes. Note that the order of the factors
in the products in the parenthesis does not matter if we take
the limit N → ∞, but it is common to pick a particular or-
dering scheme, especially when working with finite values of
N (where the ordering does matter). Note that this factor-
ized form of the wavefunction is also employed in the anti-
Hermitian Schrödinger equation approach10, which typically
uses products of exponential terms in constructing the wave-
function.

There is an exact operator identity for each of the individual
UCC factors that appear in the Trotter product formula11–13. It
arises because the operators in the exponent of a single UCC
factor obey a hidden SU(2) algebra. It is
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a1
· · ·a†

an âi1
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)]

= 1+ sinθ
a1···an
i1···in (â†
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âan · · · âa1
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+(1− n̂a1) . . .(1− n̂an)n̂i1 . . . n̂in ] (5)

for the general order-n UCC factor.
The variational ansatz with N = 1 is called the factorized

form of the UCC (sometimes the factorized form of the UCC
also allows individual factors to repeat, but we do not do that
in this work). It is a different ansatz than the original UCC
ansatz. Indeed, it now has a dependence on the ordering of
the factors (because some factors do not commute with other
factors). But, if the factors are chosen with a reasonable order-
ing scheme, then the variational principle helps make different
orderings produce similar accuracies for the final energies that
are calculated. But note that a specific ordering does produce
constraints on the amplitudes. They no longer can be freely
modified, because the de-excitations that arise as more and
more factors are applied, produce constraints on the relative
values of different amplitudes. For example, a particular or-
dering may not allow two amplitudes to be exactly the same—
one amplitude may be constrained to be equal to the other plus
sin2

θ—if θ 6= 0, they cannot be identical.
In this work, we focus on the factorized form of the UCC

and how it can be used in creating different variational wave-
function ansätze for electronic structure calculations. We have
already seen that the Trotter product formula allows us to ex-
press the original UCC operator in terms of products of UCC
factors, with factors being repeated. In this work, we ex-
plore two additional themes—the first is showing how one can
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perform configuration-interaction calculations on a quantum
computer instead of UCC calculations. Since it is widely be-
lieved that UCC calculations will be more accurate than a CI
calculation, this is really an academic exercise. But, there may
be some situations where the manipulations we discuss do be-
come important in variational state preparation and it does il-
lustrate the flexibility one has within the factorized form of the
UCC. The second is examining the accuracy of the factorized
form of the UCC versus the Trotter product formula when we
perform a variational minimization of the energy. This result
tells us what is the most efficient ansatz to use when perform-
ing a VQE calculation on a quantum computer.

The remainder of the paper is as follows: In Sec. II, we
describe how one can perform a configuration interaction cal-
culation on a quantum computer. In Sec. III, we compare the
N = 1 form of the UCC ansatz to the exact formula for N→∞.
We conclude in Sec. IV.

II. THE CONFIGURATION-INTERACTION
APPROXIMATION ON A QUANTUM COMPUTER

The configuration interaction (CI) approximation works
with a truncated Hamiltonian that is projected onto a spe-
cific set of determinants. Within this restricted subspace, the
Hamiltonian is then diagonalized, producing a variational ap-
proximation to the true ground-state energy, and a good ap-
proximation to the ground-state, projected onto the determi-
nants that are used in the CI basis set. The CI approximation
is not generally used, except in tailored basis sets, such as the
selective-CI approximation. This is because one can usually
achieve higher accuracy with a CC calculation that employs
the same number of amplitudes as the number of determinants
in the CI. In addition, the CC approximation is size-consistent,
while the CI usually is not.

Since most operators applied on a quantum computer are
unitary, it seems like one cannot easily create a CI wavefunc-
tion to use in a variational calculation, but it is indeed possible
to do this using the factorized form of the UCC. Each applica-
tion of a UCC factor adds a determinant to the wavefunction
when it acts on the reference state. It can add additional deter-
minants when it acts on other states in the current expansion
of the wavefunction. To create the CI state, we need to prune
the wavefunction and remove the added determinants that are
unwanted. This can be achieved via a variant of the elimina-
tion algorithm, by removing the extra terms, one-by-one.

It is best to start with a simple example, before moving to
the general case. The simplest case that has this behavior is
a a Hubbard model with nearest-neighbor hopping (−t) on a
four-site ring. There are eight spin-orbitals, composed from
the four single-particle eigenstates in momentum space. State
0 has k = 0 and its energy is−2t, state 2 has k = π and energy
2t, states 1 and 3 have k = π/2 and 3π/2, both with energy
0. At half filling, we choose the reference state to occupy
the 0 state (both up and down) and the 1 state (both up and
down), so that the reference state is |101̄0̄〉, where the overbars
indicate the down spins.

Our example is illustrated schematically in Fig. 1. We start

0

1 3

2

|ψ0〉 = ↑↓

↑↓

0

1 3

2

|ψ1〉 = ↑↓

↑↓c1 - s1
0

1 3

2
↑

↑

↓

|ψ2〉 = c1c2
0

1 3

2

↑↓

↑↓ - s1c2
0

1 3

2
↑

↑

↓

- c1s2

↓

↓

0

1 3

2
↑ ↑

↓

↓
+ s1s2

0

1 3

2↑↓

↑↓

FIG. 1. Schematic of the determinants created in the example dis-
cussed in the text. The lines represent the different energy levels;
level 1 and level 3 are degenerate. The arrows represent the inclu-
sion of a single-particle state in a given determinant, denoting the
up-spin or down-spin state, respectively. |ψ0〉 is the reference state
and |ψ1〉 is the state after one doubles UCC factor is applied (we use
a shorthand c1 = cosθ 23̄

10̄ and s1 = sinθ 23̄
10̄ ). |ψ2〉 is the state after

applying two doubles operations, with c2 and s2 the corresponding
trigonometric functions with argument θ 01̄

32̄ . The state |ψ3〉 has a sim-
ilar form as |ψ2〉, but with different coefficients (not shown).

with the reference state |101̄0̄〉. We want to add the determi-
nant |203̄1̄〉 to the CI calculation. We do so by applying the
corresponding doubles operator, to find

|ψ1〉= eθ 23̄
10̄

(
â†

2↑â
†
3↓â0↓â1↑−â†

1↑â
†
0↓â3↓â2↑

)
|101̄0̄〉

= cosθ
23̄
10̄ |101̄0̄〉− sinθ

23̄
10̄ |203̄1̄〉 (6)

after using the exact operator identity. By adjusting θ 23̄
10̄ , we

can have arbitrary weight for the two terms in the superpo-
sition. Note that the overall sign of the second term is de-
termined by the ordering convention of the fermionic raising
operators acting on the vacuum, that are used in determining
the determinant.

Now we want to add the determinant |312̄0̄〉. To do this,
we apply a second doubles operator to |ψ1〉. The new state
becomes

|ψ2〉= eθ 32̄
01̄

(
â†

3↑â
†
2↓â1↓â0↑−â†

0↑â
†
1↓â2↓â3↑

)
|ψ1〉

= cosθ
23̄
10̄ cosθ

32̄
01̄ |101̄0̄〉− cosθ

23̄
10̄ sinθ

32̄
01̄ |312̄0̄〉

− sinθ
23̄
10̄ cosθ

32̄
01̄ |203̄1̄〉+ sinθ

23̄
10̄ sinθ

32̄
01̄ |323̄2̄〉. (7)

The first state is the reference, and the next two states are the
two determinants we are adding into the CI calculation. But
we have the fourth term, which is an extra determinant, that
we did not want. So we need to remove it. One might ask
why? The issue is that this extra determinant does not have a
free amplitude that we can adjust. Instead, it has an amplitude
determined by the amplitudes of the other two determinants
that we added. This is not the way a CI calculation works,
where each added determinant has its own adjustable ampli-
tude in the superposition. It can be removed by applying a
quad operator, which acts only on the first and last terms in
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|ψ2〉. We find that

|ψ3〉= eθ 232̄3̄
010̄1̄
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(8)

We can remove the unwanted term by choosing

tanθ
232̄3̄
010̄1̄ =− tanθ

23̄
10̄ tanθ

32̄
01̄ . (9)

One can verify that the state |ψ3〉 is normalized, and by choos-
ing θ 23̄

10̄ and θ 32̄
01̄ , we have all possible linear superpositions

possible of the three determinants in the wavefunction. This
is exactly what is needed for a CI calculation.

Now, suppose we have n doubles determinants already in
the CI approximation. To add a new doubles determinant, we
use the corresponding doubles UCC factor. When this oper-
ator acts on the reference state, it creates the desired doubles
determinant that is being added. The de-excitation term in the
UCC factor cannot de-excite any term, because it is a dou-
bles de-excitation and all of the other n doubles terms in the
superposition are different doubles determinants. But the ex-
citation part will excite every term in the superposition for
which an excitation is allowed. This creates some number of
quad excitations. We need to remove all of them to have a CI
approximation. Each quad that was added, can be removed,
one-by-one, by applying a similar quad UCC factor, with the
amplitude chosen to ensure the coefficient of the given quad is
zero. Each quad that is applied in this removal procedure can
create a sextuplet excitation, when applied on every double
excitation that can still be further excited. As we continue to
apply additional quads UCC factors to remove the unwanted
quad determinants, we will create additional sextuplet exci-
tations, but we can also de-excite some of the previously ex-
cited sextuplets down to doubles. These doubles are always
ones that already appeared in the superposition—but their co-
efficient is modified when this happens. Eventually, we have
removed all of the offending quads. We now have a number of
offending sextuplets and all of the desired doubles. We con-
tinue in the same hierarchical fashion to remove all sextuplets.
This requires using a sextuplet UCC factor. Again, all possi-
ble doubles that can be excited to octuplets will be so excited.
Removing additional sextuplets can modify the coefficients of
the doubles again. And the procedure continues. Will it ever
stop? Yes, it must. This follows either from the elimination
algorithm12, or from the simple fact, that because we use a
finite basis set of allowed orbitals, there is a maximal excited
determinant that we can have (we cannot excite to an order
higher than the number of electrons in the original reference
state).

So, this approach will eventually remove all higher order
determinants, leaving behind only the desired doubles deter-
minants. The only remaining question, for this to be an unbi-
ased CI approximation, is whether the coefficients of the dif-
ferent doubles determinants have independent amplitudes that

can be freely varied. While this should be true, it is a subtle
point, that does not have any simple answer without calculat-
ing the different coefficients concretely and seeing if there are
any extraneous constraints on them (similar to what we did
with the example above). This appears to be unlikely, but we
cannot rule it out at this stage. However, if this does appear
to cause a problem, one should be able to adjust the doubles
coefficient by applying a correction UCC doubles factor for
the problematic coefficient. This will require additional quads
and higher-order corrections to finally reduce to having just
doubles again.

Suppose we have added all desired doubles and now we
wish to add in other determinants, such as singles. The first
single added, will also add in a number of triples because it
can excite many of the doubles. These triples can be removed
following a similar strategy as described above. If we add two
singles, then we will have extra doubles excitations in addition
to the extra triples. Again, following a hierarchical elimina-
tion procedure, we can remove all extraneous terms. Next, if
we add triples terms, they can created quads and quintuplets.
These can also be removed as before.

After all of this is completed, is there any way we can see
whether the coefficients can be freely adjusted, or do some of
them have constraints? As discussed above, the only way this
can occur is if the elimination steps create constraints in differ-
ent coefficents, and adding in additional UCC factors to com-
pensate for these constraints produce additional constraints,
so they cannot all be removed. The spirit of the elimination
algorithm indicates this should not occur, but, it would be use-
ful, if implementing this, to see whether it occurs in the final
expressions. It would be nice to try to do this exercise on a
small system, but this algorithm is so complex, that even a
small system is likely to require more resources than are fea-
sible on a conventional computer. So, we are not able to test
the freedom of the amplitudes. But it appears quite unlikely
to us that such constraints will occur for the reasons described
above.

One can see that the procedure becomes quite complicated
as more and more determinants are added into the CI calcula-
tion. In addition, it is possible that some of the determinants
kept in the CI calculation may not have completely indepen-
dent coefficients. So, modulo some possible (but unlikely)
constraints on the coefficients of the desired terms in the CI
approximation, one can perform CI-based calculations on a
quantum computer. We do note that the complexity of carry-
ing this out, and the fact that a coupled-cluster calculation is
likely to be more accurate than a corresponding CI calcula-
tion, means it is unlikely that this would widely used. How-
ever, there may be some specialized situations where it proves
to be valuable. We find it interesting that the factorized form
of the UCC allows us to work with such an approximation.
Nevertheless, we do want to emphasize that if one is creating
a CI wavefunction with N determinants, it is likely to require
a far deeper circuit than a factorized form of the UCC that
has N amplitudes in it. This is because we need to add many
additional UCC factors for the CI wavefunction to remove the
higher-order excitations and de-excitations associated with the
UCC factor being applied onto the CI wavefunction as we in-
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troduce new determinants into the superposition one-by-one.

III. THE TROTTER APPROXIMATION TO THE
CONVENTIONAL UNITARY COUPLED CLUSTER
APPROXIMATION

The conventional UCC approximation, where we apply
eT̂−T̂ †

to our reference state, is a uniquely formed wavefunc-
tion ansatz—it does not depend on the ordering of the terms
in the operator T̂ . But, if we convert it to an approximate
form expressed in terms of individual UCC factors, then the
ordering plays a role, as we discussed above. In this section,
we discuss accuracy issues associated with approximating the
conventional UCC approximation with a Trotter product for-
mula that has a finite value of N. Note if we wish to approxi-
mate the conventional UCC approximation with a specific ap-
proximation that has a rigorously bounded error, then we think
of the Trotter product formula as being an approximation that
becomes more and more accurate as N is increased. In this
case, we need to know how large does N need to be to achieve
our desired chemical accuracy?

We can look at this problem in a different way. We can
think of it as we think of the quantum approximate optimiza-
tion algorithm (QAOA)14, which seeks the most accurate ap-
proximation given the number of levels (that is, the number of
UCC factors) in the wavefunction ansatz. In this case, we may
find a wavefunction that gives a more accurate energy than we
would have if we identified the amplitudes in the factorized
form with the same amplitudes that we would use in the con-
ventional UCC ansatz. This is because, by varying the values
of the amplitudes, we can sometimes correct issues associated
with Trotter product formula errors. The best way to investi-
gate this is by looking at a concrete example. Of course, this is
a case study and not a rigorous proof for the general situation.

The problem we choose to test these ideas on is one that can
be solved by a full CI calculation. We choose a particularly
small system in order to be able to perform all calculations
exactly and efficiently. We look at the open H6 chain. We
use the STO-6G basis set. The system is a modest size, with
12 spin orbitals and a Hilbert-space dimension of 400. Our
exact ansatz includes all possible excitations allowed by the
number of electrons and the total number of orbitals in the op-
erator T̂ . We choose the interatomic spacing to be 4Å to be in
the strong-correlation regime. We determine it is the strong-
correlation regime by comparing the correlation energy of the
FCI solution with that of the MP2 solution. As the bond
length ranges from 1Å to 3Å, we find the MP2 correlation en-
ergy is on the order of 50–80% of the FCI correlation energy.
But, at 4Å, the MP2 correlation energy is three times that of
the FCI, indicating one is well within the strong-correlation
regime. This then provides an excellent test of the Trotter
product formula against the factorized form of the UCC ansatz
for strongly correlated cases.

We evaluate the Trotter product formula in two different
ways. The first way, chooses the ordering within each Trot-
ter factor to be ordered in terms of the most important ampli-

FIG. 2. Comparison of the Trotter product formula to the exact en-
ergy of an H6 chain with an interatomic spacing of 4Å. The two
curves represent the cases where the UCC factors are chosen in an
ordering according to the MP2 perturbation theory (purple) or ran-
domly (blue). Chemical accuracy is indicated by the dashed line.
The full CI result (and the full UCC ansatz, which becomes exact) is
given by the red line. The orange line is the optimized result for an
N = 1 UCCSD approximation in a factorized form.

tudes, as determined by an MP2 calculation (for the singles
and doubles) and as determined by the energy of the excita-
tion for all triples, then all quads, and so on. This ordering is
then repeated N times to obtain the Trotter product formula.
The other way we do it is to pick the UCC factors at random
for one Trotter step and then repeat the same ordering for the
remaining N Trotter steps. This is motivated by work on the
Trotter product formula in time evolution, which showed that
picking Trotter factors at random (and using importance sam-
pling) improved the accuracy of the Trotter product formula
for a fixed number of Trotter factors15. We will see that does
not occur here. Finally, we perform a full optimization us-
ing the N = 1 Trotter product formula, including only singles
and doubles excitations and de-excitations; the doubles am-
plitudes are chosen in the MP2 order, followed by the singles
amplitudes.

The way that we choose the exact amplitudes for the con-
ventional UCC ansatz, is to start from the exact ground state,
as determined by an FCI approximation. Then, because we
can calculate the conventional UCC ansatz exactly, we fit the
amplitudes to give us the exact ground state for eT̂−T̂ † |ψ0〉.
This is done by first computing the matrix of T̂ − T̂ † in the
given product-state basis. The exponential of the matrix was
then calculated with the SciPy16 package. Note that since we
have fixed the amplitudes, there is no optimization performed
during these calculations. Just an evaluation of the operators
acting on the reference state and then calculating the energy
expectation value.

In Fig. 2, we show the results for the accuracy of the corre-
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FIG. 3. Relative fraction of the correlation energy for the different
approximations for a single-step Trotter formula (N = 1); these re-
sults are not optimized, since the amplitudes are known exactly from
the exact ground state. The UCC(S)D results are the optimized re-
sults for the N = 1 ansatz with just doubles or with just singles and
doubles.

lation energy as a function of the number of Trotter steps N.
One can see that for this simple problem, we require N to be
on the order of 10 to achieve chemical accuracy. Interestingly,
a variationally optimized UCC calculation in the factorized
form with N = 1 and including only singles and doubles (in
MP2 order), produces a correlation energy of−1003.082 mH,
where we optimize the amplitudes to produce the best energy
(orange line). This is to be compared with the FCI correlation
energy of −1010.085 mH. This shows that the N = 1 approx-
imation is quite accurate (but not quite chemical accuracy),
even though it does not represent a good approximation of
the conventional UCCSD ansatz! Note that the exact result
(including higher-order excitations) becomes better than the
N = 1 singles and doubles approximation only for N values
that are larger than N = 1. For this bond stretch, the con-
ventional CC ansatz is not accurate. We discuss the boost in
accuracy due to the variational principle next.

In Fig. 3, we show the percentage of the correlation en-
ergy that is found for the different N = 1 approximations. The
worst result comes from the N = 1 approximation to the con-
ventional UCC ansatz when we choose the UCC factors in
random order. Choosing them in the MP2 order does signifi-
cantly better, indicating that the ordering of the UCC factors
can play a significant role. If we do not use the exact ampli-
tudes in the conventional UCC ansatz, but instead optimize
the amplitudes, we get the next two bars, corresponding to a
doubles-only ansatz and a singles and doubles ansatz. One
can clearly see that the variational principle allows for signif-
icant improvements on the accuracy of the total energy, when
we use the factorized form of the UCC as the wavefunction
ansatz.

The results shown here are suggestive that one requires
moderate to large N values to correctly approximate the con-
ventional UCC ansatz via the Trotter product formula. But,
we can still achieve high accuracy with N = 1, if we use the
UCC ansatz in its factorized form and perform an optimiza-
tion to minimize the energy. Just like in the QAOA approach,
we find the optimization step greatly improves the accuracy of
the final answer. It does this by partially compensating for the

Trotter error of the N = 1 form of the ansatz.
Hence, we find that the approach we employ still works for

this strongly correlated problem, even though the MP2 corre-
lation energy is three times too large for this case. This im-
plies that the MP2 ordering plus the variational freedom of
the N = 1 ansatz, may be sufficient to describe a wide range
of different chemical systems.

IV. CONCLUSIONS

In this work, we showed that the factorized form of the
UCC has great flexibility as a wavefunction ansatz for deploy-
ment on quantum computers. It can produce a conventional,
or selective CI wavefunction. It can produce the conventional
UCC wavefunction. Or, it can produce something new, that
balances ease of implementation with high accuracy, which
is attained through the optimization step for the total energy.
This implies that if one wants to use a wavefunction ansatz
in a fermionic form, then the N = 1 Trotter product formula,
with the doubles amplitudes chosen in the MP2 order, is likely
to produce high accuracy with low circuit depth. If the accu-
racy is not sufficient, then triples and higher-order excitations
can be added in using the same factorized ansatz. Our work
suggests that this is a general principle for carrying out vari-
ational quantum eigensolver calculations on a quantum com-
puter. Of course, the VQE itself may turn out to be inadequate
for quantum chemistry on quantum computers. In this case
other methods with lower depth than QPE may be needed.
Some possible approaches are based on powers of the Hamil-
tonian17,18. Other approaches based on the anti-symmetric
Schrödinger equation are also being tried19.
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