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ABSTRACT This paper considers the problem of controlling a dynamical system when the state cannot be
directly measured and the control performance metrics are unknown or only partially known. In particular,
we focus on the design of data-driven controllers to regulate a dynamical system to the solution of a
constrained convex optimization problem where: i) the state must be estimated from nonlinear and possibly
high-dimensional data; and ii) the cost of the optimization problem — which models control objectives
associated with inputs and states of the system — is not available and must be learned from data. We propose
a data-driven feedback controller that is based on adaptations of a projected gradient-flow method; the
controller includes neural networks as integral components for the estimation of the unknown functions.
Leveraging stability theory for perturbed systems, we derive sufficient conditions to guarantee exponential
input-to-state stability (ISS) of the control loop. In particular, we show that the interconnected system is
ISS with respect to the approximation errors of the neural network and unknown disturbances affecting the
system. The transient bounds combine the universal approximation property of deep neural networks with
the ISS characterization. Illustrative numerical results are presented in the context of robotics and control of

epidemics.

INDEX TERMS Gradient methods, neural networks, optimization, perception-based control, regulation.

I. INTRODUCTION
Control frameworks for modern engineering and societal sys-
tems critically rely on the use of perceptual information from
sensing and estimation mechanisms. Extraction of critical
information for feedback control increasingly requires the
processing of high-dimensional sensory data obtained from
nonlinear sensory systems [1], [2], [3], [4], and the interpreta-
tion of information received from humans interacting with the
system regarding the end-user perception of safety, comfort,
or (dis)satisfaction [5], [6]. For example, control systems in
autonomous driving rely on positioning information extracted
from camera images [1] and must account for the perception
of the safety of the vehicle occupants [7]. In power grids,
state feedback is derived from nonlinear state estimators or
pseudo-measurements [8], and control goals must account for
comfort and satisfaction objectives of the end-users that are
difficult to model [9].

Within this broad context, this paper considers the prob-
lem of developing feedback controllers for dynamical systems

where the acquisition of information on the system state and
on the control performance metrics requires a systematic in-
tegration of supervised learning methods in the controller
design process. Further, our problem pertains to the design
of feedback controllers to steer a dynamical system towards
the solution of a constrained convex optimization problem,
where the cost models objectives that are associated with
the state and the controllable inputs. The design of feedback
controllers inspired by first-order optimization methods has
received significant attention during the last decade [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]; see also the re-
cent line of work on using online optimization methods for
discrete-time linear time-invariant (LTI) systems [20], [21],
[22], [23]. However, open research questions remain on how
it is possible to systematically integrate learning methods in
the control loop when information on the system and on the
optimization model is not directly available, and on how to
analyze the robustness and safety of optimization-based con-
trollers in the presence of learning and estimation errors.
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In this work, we investigate the design of feedback con-
trollers based on an adaptation of the projected gradient
flow method [18], [24] combined with learning components,
where: i) estimates of the state of the system are provided by
feedforward neural networks [25], [26] and residual neural
networks [27], [28], and ii) the gradient information is ac-
quired via finite-differences based on a deep neural network
approximation of the costs. When the neural network-based
controller is interconnected with the dynamical system, we es-
tablish conditions that guarantee input-to-state stability [29],
[30] by leveraging tools from the theory of perturbed sys-
tems [31], Ch. 9] and singular perturbation theory [31], Ch.
11]. In particular, the ISS bounds show how the transient
and asymptotic behaviors of the interconnected system are
related to the neural network approximation errors. When the
system is subject to unknown disturbances, the ISS bounds
also account for the time-variability of the disturbances.

Prior works: Perception-based control of discrete-time lin-
ear time-invariant systems is considered in, e.g., [1], [2],
where the authors study the effect of state estimation errors
on controllers designed via system-level synthesis. Further
insights on the tradeoffs between learning accuracy and per-
formance are offered in [4]. For continuous-time systems,
ISS results for dynamical systems with deep neural net-
work approximations of state observers and controllers are
provided in [3]. Differently from [3], we consider the esti-
mation of states and cost functions and the interconnection
of optimization-based controllers with dynamic plants. Op-
timization methods with learning of the cost function are
considered in, e.g., [6], [32], [33] (see also references therein);
however, these optimization algorithms are not implemented
in closed-loop with a dynamic plant. Regarding control
problems for dynamical systems, existing approaches lever-
aged gradient-flow controllers [17], [34], proximal-methods
in [14], prediction-correction methods [15], and hybrid ac-
celerated methods [17]. Plants with nonlinear dynamics were
considered in [11], [16], and switched LTI systems in [18].
A joint stabilization and regulation problem was considered
in [13], [35]. See also the recent survey by [19]. In all of these
works, the states and outputs are assumed to be observable
and cost functions are known.

We also acknowledge works where controllers are learned
using neural networks; see, for example, [3], [36], [37], and
the work on reinforcement learning in [38]. Similarly to this
literature, we leverage neural networks to supply state and
gradient estimates to a projected gradient-flow controller. By
analogy with dynamical systems, optimization has been ap-
plied to Markov decision processes in, e.g., [39].

Finally, we note that ISS applied to perturbed gradient
flows was investigated in [40]. In this work, we consider
interconnections between a perturbed, projected gradient-flow
and a dynamical system, and combine the theory of perturbed
systems [31], Ch. 9] with singular perturbation [31], Ch. 11].
Our ISS bounds are then customized for feedforward neural
networks [25], [26] and residual neural networks [27], [28].
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We also acknowledge [41], where basis expansions are uti-
lized to learn a function, which is subsequently minimized via
extremum seeking.

Finally, the preliminary work [42] used a gradient-flow
controller in cases where the optimization cost is learned via
least-squares methods. Here, we extend [42] by accounting for
systems with nonlinear dynamics, by using neural networks
instead of parametric estimation techniques, by considering
errors in the state estimates, and by combining ISS estimates
with neural network approximation results.

Contributions: The contribution of this work is threefold.
First, we characterize the transient performance of a projected
gradient-based controller applied to a nonlinear dynamical
system while operating with errors in the gradient. Our analy-
sis is based on tools from ISS analysis of nonlinear dynamical
systems. More precisely, we leverage Lyapunov-based singu-
lar perturbation reasonings to prove that the proposed control
method guarantees that the controlled system is ISS with re-
spect to the variation of exogenous disturbances affecting the
system and the error in the gradient. This fact is remarkable
because unknown exogenous disturbances introduce shifts in
the equilibrium point of the system to control. Second, we
propose a framework where optimization-based controllers
are used in combination with deep neural networks. We tailor
our results to two types of deep neural networks that can
be used for this purpose: deep residual networks and deep
feedforward networks. We then combine the universal ap-
proximation property of deep neural networks with the ISS
characterization and provide an explicit transient bound for
feedback-based optimizing controllers with neural-network
state estimators. Third, we propose a novel framework where
deep neural networks are used to estimate the gradients of
the cost functions characterizing the control goal based on
training data. Analogously to the case above, we tailor our
results to two cases: deep residual networks and feedforward
networks. In this case, we leverage our ISS analysis to show
how it is possible to design optimization-based controllers to
accomplish the target control task, and we provide an explicit
transient bound for these methods. Finally, we illustrate the
benefits of the methods in: (i) an application in robotic control
and (ii) the problem of controlling the outbreak of an epidemic
modeled by using a susceptible-infected-susceptible model.
Overall, our results show for the first time that the univer-
sal approximation properties of deep neural networks can be
harnessed, in combination with the robustness properties of
feedback-based optimization algorithms, to provide guaran-
tees in perception-based control.

In conclusion, we highlight that the assumptions and con-
trol frameworks outlined in this paper find applications in,
for example, power systems [13], [14], [16], [34], traffic
flow control in transportation networks [18], epidemic con-
trol [43], and in neuroscience [44]. When the dynamical
model for the plant does not include exogenous disturbances,
our optimization-based controllers can also be utilized in the
context of autonomous driving [1], [2] and robotics [45].
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Organization: The remainder of this paper is organized as
follows. Section II describes the problem formulation and
introduces some key preliminaries used in our analysis. Sec-
tion III presents a main technical result that characterizes an
error bound for gradient-type controllers with arbitrary gradi-
ent error. In Sections IV and V, we present our main control
algorithms corresponding to the case of state perception and
cost perception, respectively. Section VI and Section VII il-
lustrate our simulation results and Section VIII concludes the

paper.

Il. PRELIMINARIES AND PROBLEM FORMULATION
We first outline the notation used throughout the paper and
provide relevant definitions.

Notation: We denote by N, N. g, R, R. ¢, and R>¢ the set
of natural numbers, the set of positive natural numbers, the
set of real numbers, the set of positive real numbers, and
the set of non-negative real numbers. For vectors x € R” and
u € R™, |lx|| denotes the Euclidean norm of x, ||x||s denotes
the supremum norm, and (x, #) € R"™ denotes their vector
concatenation; x| denotes transposition, and x; denotes the
i-th element of x. For a matrix A € R™™_||A|| is the induced
2-norm and [|A|| the supremum norm.

The set B,(r) :={z € R":|z|| < r} is the open ball in
R" with radius r > 0; By[r] :={z € R" : |z|]| <r} is the
closed ball. Given two sets X C R” and Y Cc R™, X x Y
denotes their Cartesian product; moreover, X + B,(r) is the
open set defined as X + B,(r) ={x+y:x e X,y € B,(r)}.
Given a closed and convex set C C R”, TI¢{-} denotes the
Euclidean projection onto the closed and convex set; i.e.,
¢ {y} := argmin,cc ||x — y||>. For a continuously differen-
tiable function ¢ : R" — R, V¢ (x) € R” denotes its gradient.
If the function is not differentiable at a point x, d¢(x) denotes
its subdifferential.

Partial ordering: The first orthant partial order on R” is
denoted as < and it is defined as follows: for any x, z € R", we
say that x < zif x; < z; fori=1,...,n. We say that a func-
tion ¢ : R” — R” is monotone if for any x, z € R” such that
x < z, we have that ¢(x) < ¢(z). Finally, the interval [x, z], for
some x, z € R”,is defined as [x,z] = {w e R" : x < w <X z}.

Set covering: Let Q, Q; C R", with Q compact. We say
that Q; is an p-cover of Q, for some ¢ > 0, if for any x € Q
there exists a z € Q; such that ||x — z|lcc < 0. We say that O
is an p-cover of Q “with respect to the partial order <,” for
some o > 0, if for any x € Q there exists w, z € 9y such that
x € [w,z]and ||lw — z|leo < 0 [28].

A. MODEL OF THE PLANT
We consider systems that can be modeled using continuous-
time nonlinear dynamics:

X = fx,u,w), x(ty) = xo, (D

where f : X xU x W — R", with X CR", i/ CR™, W C
R"™ open and connected sets. In (1), x: Rs9p — X de-
notes the state, xo € & is the initial condition, u : R>o — U
is the control input, and w;, : R>g — W is a time-varying
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exogenous disturbance (the notation w; emphasizes the de-
pendence on time). In the remainder, we restrict our attention
to cases where u € U, at all times, where U, C U is compact!.
Additionally, we assume that the vector field f(x,u, w)
is continuously-differentiable and Lipschitz-continuous, with
constants Ly, L, Ly, respectively, in its variables. We make
the following assumptions on (1).

Assumption 1 (Steady-state map): There exists a (unique)
continuously differentiable function A :U x W — X such
that, for any fixed e d,w € W, f(h(a, w),ia, w)=0.
Moreover, h(u, w) admits the decomposition h(u, w) =
hy(u) + hy(w), where h, and h,, are Lipschitz continuous
with constants £, and ¢;,, , respectively. (]

Assumption 1 guarantees that, with constant inputs i, W,
system (1) admits a unique equilibrium point ¥ := h(i, ).
Notice that existence of h(u, w) is always guaranteed in cases
where, in addition, Vi f(x, i, w) is invertible for any i, w.
Indeed, in these cases, the implicit function theorem [16]
guarantees that h(u, w) exists and is differentiable, since
f(x, u, w) is continuously differentiable.

In this work, we interpret w; as an unknown exogenous
input modeling disturbances affecting the system. We make
the following assumption on wy.

Assumption 2 (Properties of exogenous inputs): For all t €
R>o, w; € We, where W, C W is compact. Moreover, ¢ —
wy is locally absolutely continuous on W. O

Assumption 2 imposes basic continuity and compactness
requirements on the exogenous disturbances affecting (1).
Following Assumption 2, in the remainder of this paper we de-
note by Xeq := h(U:. x W) the set of admissible equilibrium
points of the system (1). We note that in Assumption 1 we con-
sider a decomposition h(u, w) = h, (1) + hy(w) so that the
Jacobian of h(u, w) with respect to u does not depend on the
unknown disturbance w; this property will be leveraged in the
implementation of our gradient-based controller. Notably, this
assumption is satisfied in, e.g., power systems [13], [14], [16],
[34], transportation networks [18], and in neuroscience [44].
Our model clearly subsumes the case where no disturbance w
is present, as in the models for, e.g., autonomous driving [1],
[2] and robotics [45]. We also emphasize that the dynamics (1)
can model both the dynamics of the physical system and of
the stabilizing controllers; see, for example, [13], our previous
work on LTT systems in [47], and the recent survey [19].

Remark 1 (Compactness of the equilibrium set): Notice
that the equilibrium set A is compact. This follows by noting
that U, x W, is compact, h(u, w) is continuously differen-
tiable, and by application of [48], Theorem 4.14]. Moreover,
notice that ||V, h(u, w)|| < £, for all u € U, which follows
from compactness of U, see [48], Ch. 4]. U

Before proceeding, we let r denote the largest positive con-
stant such that X, := Xeq + B, (r) satisfies X, C & (see Fig. 1

The sets U, and W, are assumed compact to reflect hardware and op-
erational constraints in applications such as autonomous driving [1], power
systems [14], [16], neuroscience [44], control of epidemics [46].
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FIGURE. 1. lllustration of notation used for sets and Assumption 3.
Continuous lines denote compact sets, dashed lines denote open sets.
Assumption 3 guarantees that trajectories that start from the set of initial
conditions X, do not leave X,.

for an illustration). For instance, if ¥ = {x e R" : ||x| < o}
and X% = {0}, then r = o.

Assumption 3 (Exponential stability): There exist a, k > 0
such that for any fixed &t € U, w € W, the bound

Ix(t) — h(@, @) < kllxo — h(@, w)[le "~ (2)

holds for all # > £y and for every initial condition xy € Xj :=
Xeq + Bou(ro), ro < r/k, where x(¢) is the solution of (1) with
u(t) =iand w(t) = w. U

Assumption 3 guarantees that X = h(iz, w) is exponentially
stable, uniformly in time. This, in turn, implies the existence
of a Lyapunov function as formalized in the following result,
which is a direct application of [31, Thm. 4.14].

Lemma 1 (Existence of a Lyapunov function for (1)): Let
Assumptions 1-3 hold and let X be the set of initial con-
ditions as in Assumption 3. Then, there exists a function
W Xy x U x W — R that satisfies the inequalities:

di|lx — h(u, w12 < W(x, u, w) < dallx — h(u, w)|?,

aw
S = G w),uw) < —dsllx = h(u, w)l?,

ow oW
— | S dallx — h(u, w)ll, || < dsllx — h(u, w|,
0x ou
ow
H ™ < dgllx — h(u, w)l|, 3)
w
for some positive constants dy < d», d3, da, ds, dg. O

Proof: We begin by noting that, under our assumptions,
the vector field f(x, u, w) is Lipschitz in X, x U, x W, and
thus its Jacobian g—{c is bounded on &, uniformly with respect
to u and w. The proof thus follows by iterating the steps
in [31], Thm. 4.14] for fixed u € U, and w € W, by noting
that Assumption 3 implies that solutions that start in Aj do
not leave &, and thus (2) holds. Then, sensitivity with respect
to u, w follows from [31], Lemma 9.8] and [49]. |

In the following, we state the main optimization problem

associated with (1) and formalize the problem statements.
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B. TARGET CONTROL PROBLEM
In this work, we focus on the problem of controlling, at every
time ¢, the system (1) to a solution of the following time-
dependent optimization problem:

(uf ) € argmin ¢ (@) + ¥/ () (4a)

st. X =h(i,w), ueC, (4b)

where ¢ : U/ — R and ¥ : X — R describe costs associated
with the system’s inputs and states, respectively, and C C U,
is a closed and convex set representing constraints on the input
at optimality.

Remark 2 (Interpretation of the control objective): The
optimization problem (4) formalizes an optimal equilibrium
selection problem, where the objective is to select an optimal
input-state pair (u;, x;) that, at equilibrium, minimizes the
cost specified by ¢(-) and ¥ (-). It is worth noting that -
differently from stabilization problems, where the objective
is to guarantee that the trajectories of (1) converge to some
equilibrium point - the control objective here is to select,
among all equilibrium points of (1), an equilibrium point that
is optimal as described by the function ¢(u) + ¥ (x). In this
sense, (4) can be interpreted as a high-level control objective
that can be nested with a stabilizing controller (where the
latter is used to guarantee the satisfaction of Assumption 3).[]

Two important observations are in order. First, the con-
straint (4b) is parametrized by the disturbance w;, and thus the
solutions of (4) are parametrized by w; (or, equivalently, by
time). In this sense, the pairs (1], x;°) are time-dependent and
characterize optimal trajectories [50]. Secondly, by recalling
that w; is assumed to be unknown and unmeasurable, solu-
tions of (4) cannot be computed explicitly.

By recalling that i(u, w) is unique for any fixed u, w, prob-
lem (4) can be rewritten as an unconstrained problem:

uj € argmin ¢ (i) + ¥ (h(i, w)). (5)

We make the following assumptions on the costs of (5).

Assumption 4 (Smoothness and strong convexity): The fol-
lowing conditions hold:

a) The function u — ¢(u) is continuously-differentiable
and £,-smooth, ¢, > 0. The function x > ¥ (x) is
continuously-differentiable and £,-smooth, ¢, > 0.

b) For any w € W, fixed, the composite cost u — ¢ (u) +
Y (h(u, w)) is py-strongly convex, u, > 0. U

It follows from Assumption 4(a) that the composite cost
u > o)+ ¥(h(u, wy)) is £-smooth with £ := €, + Eiuﬁx;
it follows from Assumption 4(b) that the optimizer (i, x;")
of (5) is unique for any w; € W.

Assumption 5 (Regularity of optimal trajectory map):
There exists a continuous function J:W. — U, such
that u} = J(w;). Moreover, there exists £; < oo such that
10J (wy)|| < £y for all w, € W. (]

Assumption 5 imposes regularity assumptions on the func-
tion that maps w; (which parametrizes the problem (5))
into the optimal solution u; [51], Ch. 2]; conditions can be
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obtained from standard arguments in parametric convex pro-
gramming.

C. OPTIMAL REGULATION WITH PERCEPTION
IN-THE-LOOP

Feedback-based optimizing controllers for (1)—(4) were stud-
ied in [18] when (1) has linear dynamics and in [16] when (4)
is unconstrained and w; is constant. The authors consider
low-gain gradient-type controllers of the form:

i=Te{u—1n (Vo) + Hw) ' Vy@)} —u, (6

where H (1) denotes the Jacobian of Ah,(u) and n > 0 is a
tunable controller parameter. The controller (6) is of the form
of a projected gradient-flow algorithm, often adopted to solve
problems of the form (4), yet modified by replacing the true
gradient Vi (h(u, wy)) with the gradient Vi (x) evaluated at
the instantaneous system state, thus making the iteration (6)
independent of the unknown disturbance w;.

Implementations of the controller (6) critically rely on the
exact knowledge of the system state x as well as of the
gradients V¢ (1) and Vi (x). In this work, we consider two
scenarios. In the first, the controller is used with an estimate
X of x provided by a deep neural network. More precisely, we
focus on cases where x is not directly measurable; instead, we
have access only to nonlinear and possibly high-dimensional
observations of the state £ = ¢(x), where g : X — R’% is an
unknown map. In the second case, the controller is used with
estimates of the gradients V¢ (u), Vi/(x), obtained by using
a deep neural network. Similarly to before, we consider cases
where the analytic expressions of the gradients are unknown,
and instead, we have only access to functional evaluations
{ui, d(ui)}, {xi, v (x;)} of the cost functions. We formalize
these two cases next.

Problem 1 (Optimization with state perception): Design
a feedback controller to regulate inputs and states of (1)
to the time-varying solution of (4) when x is unmeasurable
and, instead, we have access only to state estimates £ = p(&)
produced by a deep neural network p(-) trained as a state
observer. O

Problem 2 (Optimization with cost perception): Design a
feedback controller to regulate inputs and states of (1) to
the time-varying solution of (4) when V¢ (), Vi (x) are un-
known and, instead, we have access only to estimates q@(u),
1/7(x) of ¢(u), ¥ (x) produced by a deep neural network trained
as a function estimator. U

We conclude by discussing in the following remarks the
relevance of Problems 1-2 in the applications.

Remark 3 (Motivating applications for Problem 1): In ap-
plications in autonomous driving, vehicles states are often
reconstructed from perception-based maps & = g(x) where g
describes images generated by cameras. In a power systems
context, £ = g(x) describes the nonlinear power flow equa-
tions describing the relationships between net powers and
voltages at the buses (described by &) and generators’ phase
angles and frequencies (described by x). Finally, we note that
a related observer design problem was considered in [3]. [J
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Remark 4 (Motivating applications for Problem 2): When
systems interact with humans, ¢(u) is often used to
model end-users’ perception regarding safety, comfort, or
(dis)satisfaction of the adopted control policy [6], [32], [33],
[42], [52]. Due to the complexity of modeling humans, ¢ (u)
is often unknown and learned from available historical data.
In robotic trajectory tracking problems, ¥ (x) = |lx — x|
where x” € R” models an unknown target to be tracked. In
these cases, we have access only to measurements of the
relative distance ||x — x”||> between the robot the target. Addi-
tional examples include cases where 1/ (x) represents a barrier
function associated with unknown sets [53], [54]. 1

IIl. GENERAL ANALYSIS OF GRADIENT-FLOW
CONTROLLERS WITH GRADIENT ERROR

In this section, we take a holistic approach to address Prob-
lems 1-2 and we provide a general result characterizing
gradient-type controllers of the form (6) that operate with
general errors. More precisely, in this section we study the
following plant-controller interconnection:

(7a)
(7b)

x:f(xv u, wt)a
u=Te¢{u—nFx,u)+elx,u))} —u,

with x(f9) = xo and u(ty) = ug, where F(x,u) := Vo (u) +
H(u)" Vi (x) is the nominal gradient as in (6), and e : X x
U — R™ models any state- or input-dependent error.

It is worth noting three important features of the con-
troller (7b). First, (7b) can be implemented without knowl-
edge of w; (similarly to (6), the true gradient Vi (h(u, wy))
is replaced by evaluations of the gradient at the instanta-
neous state Vi (x)). Second, since the vector field in (7b)
is Lipschitz-continuous, for any (xg, up) the initial value
problem (7) admits a unique solution that is continuously
differentiable [18], Lemma 3.2], [24]. Third, the set C is at-
tractive and forward-invariant for the dynamics (7b); namely,
if u(ty) € U, then u(r) approaches C exponentially, and if
u(ty) € C, then u(t) € U for all t > #y [18], Lemma 3.3].

To state our results, we let z := (x —x/, u — u) be the
tracking error between the state of (7) and the optimizer of (4).
Moreover, for fixed s € (0, 1), define:

. d3 1 . (1 - 9)
co:=minqsun, s— ¢, ¢1:=—min ,0dy ¢,
da n 2
1 1-6
153 :=—max{( ),Gdg}, €3 1= «/Ecl_l,
n 2
_1 V2 dsly
c4:=\/ﬂmax{1,d 2}, csi=— + —
! N Vv
(®)
and 60 =(1+ds+ [jT?)’l, where we recall that

(dy, dy, ds, dy, ds) are asuin Lemma 1.

Theorem 1 (Transient bound for gradient flows with error):
Consider the closed-loop system (7) and let Assumptions 1—
5 be satisfied. Suppose that, for any x € Xy and u € U, the
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gradient error satisfies the condition

lleCx, Wl < vzl + 9, )
for some 8§ > 0 and y € [0, co/c3). If n € (0, n*), with
. . FM (1 —s)d3p }
n"i=min{—, NE
2 U, (datn, + ds)((1 — )ty +267)

(10)
then, the tracking error satisfies

% .
2@ < k1™ 272G + Kaess sup, <, ;||| + K36,

(11)
for all # > 1y, where @« = ¢y — y¢3 and

Cc Cs c4

/{1 = —, [(2 = = ,
€0+/C1

Cl C()\/a ’
for any x(f9) € Do := Xeq + B, (") where 1" is such that
0 < ' < ro/(V2k1) — V2k38 — V/2iczess sup - [l- || —
ﬁxldiam(U), and for any u(ty) € U. O

The proof of this claim is postponed to the Appendix.

Theorem 1 asserts that if the worst-case estimation error
e(x, u) is bounded by a term y||z| that vanishes at the op-
timizer and by a nonvanishing but constant term &, then a
sufficiently-small choice of the gain 1 guarantees exponential
convergence of the tracking error to a neighborhood of zero.
More precisely, the tracking error z is ultimately bounded
by two terms: the first kress SUPy <7< |lw:]|| accounts for the
effects of the time-variability of w;, on the optimizer (i}, x;°),
and the second k36 accounts for the effects of a nonvanishing
error in the utilized gradient function. It follows that the bound
(11) guarantees input-to state stability (ISS) of (7) (in the
sense of [30], [40], [55]) with respect to w; and §.

IV. OPTIMIZATION WITH NEURAL NETWORK

STATE PERCEPTION

In this section, we propose an algorithm to address Problem 1
and tailor the conclusions drawn in Theorem 1 to characterize
the performance of the proposed algorithm.

A. ALGORITHM DESCRIPTION

To produce estimates of the system state £ = p(£), we assume
that a set of training points {(§”, x())}¥ | is utilized to train
a neural network via empirical risk minimization. More pre-
cisely, in the remainder, we will study two types of neural
networks that can be used for this purpose: (i) feedforward
neural networks and (ii) residual neural networksZ. We thus
propose to train a neural network to produce a map £ = p(§)
that yields estimates of the system state given nonlinear and

2We refer the reader to the representative papers [25], [28] for an overview
of feedforward and residual networks. Briefly, a neural network consists of
inputs, various hidden layers, activation functions, and output layers, and can
be trained for, e.g., functional estimation and classification. When the layers
are sequential and the architecture is described by a directed acyclic graph,
the underlying network is called feedforward; when some of these layers are
bypassed, then the underlying network is called residual.
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FIGURE. 2. Schematics of the control framework proposed in Algorithm 1.
In this setting, the state x of the system is not measurable directly, instead,
only high-dimensional estimations (e.g., camera images) £ = q(x) are
available. A deep neural network is then used to compute state estimates
X = p(&), which are used to feed a gradient-based feedback controller).

Algorithm 1: Optimization with NN State Perception.

# Training
Given: training set {(x?, D)} |
Obtain: p <— NN-learning({(x?, £} )
# Gradient-based Feedback Control
Given: set U, funct.s V¢, Vi, H(u), neural net p,

gain 7

Initial conditions: x(fy) € Xp, u(ty) € U

Fort > 1:
X = f(x,u, w) (12a)
§=4qx) (12b)

i = Tefu —n (Vo) + Hw) 'V (pE))} —u(120)

high-dimensional observations &. Accordingly, we modify the
controller (6) to operate with estimates of the system state X
produced by the neural network. The proposed framework is
described in Algorithm 1 and illustrated in Fig. 2.

In the training phase of Algorithm 1, the map
NN-learning(-) denotes a generic training procedure for
the neural network via empirical risk minimization. The
output of the training phase is the neural network mapping
p(-). In the feedback control phase, the map p(-) is then used
to produce estimates of the state of the dynamical system
X = p(&) in order to evaluate the gradient functions. Notice
that, relative to the nominal controller (6), (12¢) leverages a
gradient that is evaluated at an approximate point X, and thus
fits the more general model (7b).

B. ANALYSIS OF ALGORITHM 1
In what follows, we analyze the tracking properties of Algo-
rithm 1. To this end, we introduce the following.

Assumption 6 (Generative and Perception Maps): The gen-
erative map x — ¢g(x) = £ is such that, for any compact set
X' C X,, the image g(X’) is compact. Moreover, there ex-
ists a continuous p : R™ — R” such that p(§) = x for any
x € X, where & = g(x). [l
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Remark 5 (Relationship with System Observability): We
note that a standard approach in the literature for the state
observer design problem is to leverage the concept of £-
observability, where the state is estimated based on £ + 1
samples of & and £ samples of the inputs u, w [3]. However, in
our setup, we do not have access to measurements of the ex-
ogenous input w;. Therefore, we rely on an approach similar
to [1], [2], where x is estimated from the observation &. O

To guarantee that network training is well-posed, we as-
sume that the N training points {xV}Y  for the state are
drawn from a compact set Xipin := Xeq + Bylriainl, Where
Ttrain 1S such that rg < ryain < r. Moreover, we let Qqain 1=
q(Xirain) denote the perception set associated with the train-
ing set Xjpin, and we denote by Qypin s = (ED = g(x®), i =
1,...,N} C Qyin the set of available perception samples.
Notice that the set Qyin is compact by Assumption 6. Com-
pactess of Qy,in Will allow us to build on the results of [25]
and [3], [27] to bound the perception error ||p(§) — p(§)||
on the compact set Q. With this background, we let
SUPE€Qins lp(&) — p(&)|loc denote the supremum norm of
the approximation error over Qyqin .

Remark 6 (Properties of the Training Set) Notice that the
set of training data X, 1S assumed to contain the set of
initial conditions Ap. This allows us to guarantee that the
neural network can be trained over the domain of definition
of the Lyapunov function W in Lemma 1 (see Fig. 1 for an
illustration). By contrast, if the set X, were contained in
AXp, then set of initial conditions of (12) must be modified so
that the trajectories do not leave the set Xip,ip. [l

We begin by characterizing the performance of (12) when
residual networks are utilized to reconstruct the system state.
For simplicity of exposition, we outline the main result for the
case where n = ng, and then discuss how to consider the case
n < ng in Remark 7.

Proposition 1 (Transient Performance of Algorithm 1 with
Residual Neural Network): Consider the closed-loop sys-
tem (12), let Assumptions 1-6 be satisfied, and assume n =
ng. Assume that the training set Qinins is a @-cover of
Ourain With respect to the partial order =<, for some o > 0.
Let presnet : R™ — R describe a residual network, and as-
sume that it can be decomposed as presnet = M + A, where
m: R"™ — R™ is monotone and A : R’ — R is a linear
function. If Algorithm 1 is implemented with p = presNet and
n € (0, n*), then the error z(t) = (x — x;', u — u}") of (12) sat-
isfies (11) with k1, k2, k3 as in Theorem 1, y = 0, and

sup

€ Qtrain, s

= ghug,r\/@<3 ||P(§) - presNet(g)”oo

+2wp(Q)+2”A”ooQ>v (13)
where @), is a modulus of continuity of p on Qin. O

Proof: Start by noticing that (12c) can be writ-
ten in the generic form (7b) with the error e(x,u)
given by e(u,x) =Hw) 'V (x) — Huw) Vi (%) =
Hw) VY (p€) — Hw) VY (p(€)), by simply adding
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and subtracting the true gradient H (u)TVI/f(x) in (12¢). A
uniform bound on the norm of e(u, x) over the compact set
Qtrain 18 given by:

lleCu, DI < Ly, IVY (p(E)) = VI (PEDI
< €y, Lxllp(§) — Presnet ()]
< tp,lx sup [[p(§) — presNet(&)l .

£€Qrain

(14)

where we have used Assumption 1 and the fact that the norm
of the Jacobian of 4 is bounded over the compact set /. Next,
notice first that ||p(§) — p&)Il = (/nellp(§) — PresNet(§)lloo-
Since Qirains 1S @ 0-cover of Qy with respect to the partial
order <, for some o > 0, and presnet = m + A, the infi-
mum norm of the estimation error can be upper bounded
as Supgeg . IIP(E) — PresNet(§) oo = 3 SUP£ € Qurin s Ip(€) —
PresNet(§)lloo + 2 @p(0) + 2[|Aplloo as shown in [28], Theo-
rem 7]. The result then follows from Theorem 1 by setting
y = 0and § as in (13). [ |

Proposition 1 shows that the control method in Algorithm 1
guarantees convergence to the optimizer of (4) up to an er-
ror that depends only on the uniform approximation error of
the adopted neural network. Notice that SUPE € Oyin s Ilp€) —
PresNet(§)]loo 18 @ constant that denotes the worse-case ap-
proximation error of the training data over the compact set
Orain,s- More precisely, the result characterizes the role of the
approximation errors due to the use of a neural network in the
transient and asymptotic performance of the interconnected
system (12).

Remark 7 (Perception in High-Dimensional Spaces):
When ng > n, one can consider training a neural net-
work to approximate a lifted map p: R™ — R™ defined
as p=top, where ¢ : R" — R’ is the injection: ((x) =
(X1, ...,x,,0,...,0) for any x € R”. From Assumption 6, it
follows that p(-) is such that (§) = (x, 0,—,) for any x € A,
with £ an observation generated by the map g(-).

In this case, we use the training set {(x?, 04_,), § P} | to
train the neural network implementing a map presNet : R'%* —
R [3]. Subsequently, the perception map p that will be used
in (12¢) is given by p = 7 o presnet, Where 7 : R — R” is
a projection map that returns the first n entries of its argu-
ment, namely, 7(y) = (y1, ..., ¥n), for any y € R?. In short,
the training step NN-learning(-) in Algorithm 1 for this case
involves the training of the map presnet, followed by the
projection X = p(&) = 1 (presNet(§)). Finally, we notice that,
for this case, the claim in Proposition 14 holds unchanged
by replacing p(§) with p(£). This follows by noting that
IP(§) — PGl = /nellp(§) — PresNet(§)lloo- 0

Remark 8 (Density of Training Set): Proposition 1 requires
the training set Qyins 1S a 0-cover of Qyqin, With respect
to the partial order <. As pointed out in [3], verifying this
condition often involves computing the relative position of the
training points and the points in the set Qy,i,. When this is not
possible, [3], Lemma 2] shows that there exists a relationship
between p-covering of the set Qy,in With respect to < and the
density of the training points. In particular, the authors show
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that if the set of training points is a ¢’-cover of Qy4in, then it is
also a p-covering for a set the set Q{rain’ Qtrain C Qémin, with
respect to <, for some o > ¢’; see [3, Lemma 2]. O

In the remainder of this section, we focus on characteriz-
ing the performance of (12) when a feedforward network is
utilized to reconstruct the system state. More precisely, we
consider cases where the training set {£), x(")}?’: | is utilized
to train n multilayer feedforward networks, each of them im-
plementing a map preednet,; : R — R that estimates the i-th
component of the system state X; = preedNet,i(§). In this case,
we assume that Algorithm 1 is implemented with p = pfeedNets
where preeNet(§) = (PfeedNet,1(§)s - - - » PfecdNet,n(§)) in (12).
Next, we recall that feedforward neural networks are capable
of approximating any measurable function on compact sets
with any desired degree of accuracy (see, for instance, [25],
[26] and the bounds in [56], [57]).

Proposition 2 (Transient Performance of Algorithm 1 with
Feedforward Neural Network): Consider the closed-loop sys-
tem (12) and let Assumptions 1-6 be satisfied. Suppose
that p(§) = (PreedNet,1(§); - - - » PreedNet.n(§)), With PfecdNet.i
approximating the map p;(&). Then, if n € (0, n*), the error
z2(t) = (x — x, u — u) of (12) satisfies (11) with y =0,

= Ehuex\/ﬁ sup [Ip(§) — Preeanet(&) oo » (15)
gterain
and «1, k3, k3 as in Theorem 1. O

The proof follows similar steps as in Proposition 1, and it is
omitted. Proposition 2 shows that the control method in Algo-
rithm 1 guarantees convergence to the optimizer of (4), up to
an error that depends only on the uniform approximation error
SUPge0, gy 1P(§) — Precaner(§) oo (computed over the entire
training set Qy,in)- Notice that, with respect to Proposition 1,
the adoption of a feedforward network allows us to provide
tighter guarantees in terms of the entire set Qy,i, (as opposed
to the set of available samples Qjrain, s). We conclude by noting
that the bound (15) can be further customized for specific
error bounds, given the architecture of the feedforward net-
work [56], [57].

Remark 9 (Noisy generative and perception maps): As-
sumption 6 is borrowed from [2] and it holds when, for
example, ¢ is injective. Although the model in Assump-
tion 6 is used for simplicity, the subsequent analysis of our
perception-based controllers can be readily extended to the
case where: (i) the perception map imperfectly estimates the
state; that is, one has that p(§) = x 4+ v, with £ = ¢g(x), and
where v € R” is a bounded error [1]. (i) When unknown
externalities enter the generative map. One way to collectively
account for both externalities entering g and for approximate
perception map is to use the noisy model p(g(x)) = x + v/,
with v/ € R" a given error (bounded in norm). The results
presented in this section can be readily modified to account
for this additional error by adding a term proportional to the
norm of v’ in the parameter §. O
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FIGURE. 3. Schematics of the control framework proposed in Algorithm 2.
A gradient-based controller is utilized to control the system to the
optimizer of an unknown cost function. The underlying cost function is
estimated from data samples through a neural network.

Algorithm 2: Optimization with NN Cost Perception.

# Training
Given: {u?, pu )L, {x, (L,
Obtain:

¢ < NN-learning({(u"”, p(u))}Y )
¥ < NN-learning({(x"”, ¥ (x™))}¥ )

# Gradient-based Feedback Control
Given: x(ty) € Dy, u(ty) € C, NN maps ..

Fort > 1p:
X = f(x,u, w) (16a)
21, .
Guw) = > (plu+eb) — du—eb) bi,  (16b)
i=1
"1, .
g0 =) (Fr+ed) — Y (x —edp) i, (16¢)
i=1
i = efu — 1 (&) + Hw) " g:(x))} —u (16d)

V. OPTIMIZATION WITH COST-FUNCTION PERCEPTION

In this section, we propose an algorithm to address Problem 2,
and we tailor the conclusions drawn in Theorem 1 to charac-
terize the performance of the proposed algorithm.

A. ALGORITHM DESCRIPTION
To determine estimates of the gradient functions
Vo(u), Vir(x), we assume the availability of functional
evaluations {(u(?, ¢(I/t(i)))}?/:1 and {(x®, w(x(")))}?il, with
u e C and x¥ € Xyun. We then consider the training
of two neural networks that approximate the functions
ur> ¢(u) and x — ¥(x), respectively, to determine <}3(u),
¥ (x). Accordingly, we modify the controller (6) to operate
with estimates of the system state £ produced by the neural
network. The proposed framework is described in Algorithm 2
and illustrated in Fig. 3.

In Algorithm 2, the gradients of the costs are obtained via
centered difference, applied to the estimated maps ¢ and 1/,
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where ¢ > 0, b; denotes the i-th canonical vector of R, and
d; is the the i-th canonical vector of R"”. The computation of
the approximate gradient g, (respectively, g,) thus requires
2n,, functional evaluations (respectively, 2n) of the neural
network map ¢ (respectively, ). The gradient estimates g,
and g, are then utilized in the gradient-based feedback con-
troller (16d).

B. ANALYSIS OF ALGORITHM 2
We begin by characterizing the performance of (16) when
feedforward networks are utilized to estimate the costs.
Proposition 3 (Transient Performance of Algorithm 2 with
Feedforward Neural Network): Suppose that feedforward
network maps Gtecdne and tﬁfeedNet approximate the costs ¢
and v over the compact sets Xjin and Cyain := C + Ble],
respectively. Consider the interconnected system (16), with
(;3 = qsfeedNet and 1,3 = IﬁfeedNet, and let Assumptions 1-5 be
satisfied. If n € (0, n*), thenerror z(t) = (x — x;", u — u;") sat-
isfies (11) with k1, k2, k3 as in Theorem 1, y = 0, and

sup |p(u) — Preeaner(t)]

UECirain

S = ey fd + nye~

+ Cpextd +ne Ly, sup [Y(x) — Yreeanet )], (17)

u€Xirain

where e, tq and e, g are bounds on the centered difference
approximation error for the functions ¢ and ¥, respectively,

namely, €ufd = SUPyec, . IVOu) — it as L(p(u+
ebi) —¢p(u—eb))bi| and ey a =Sup,cy, . IVY ) —
Sy (W + edi) — Y(x — ed)dill. O

Proof: We start rewriting (16d) as (7b) by set-
ting e0x 1) = V(u) = gu(u) + HT (Vi (x) — 8:(x)).
Let g.(u):= 27”1 22 (@(u + eb;) — p(u — eb;))b;  and
&) =Y LY (x+ed) — y(x—ed))d;  be  the

finite difference approximations of the true gradients
for brevity. Adding and subtracting g,(u) and g.(x)
using the triangle inequality, and Assumption 1, we
get le(x, )l < Vo) — gu()ll + llgu(u) — gu(w)ll +
I VY () — gx (Ol + €4, llge(x) — gx@)l.  The  terms
IVo(u) — g,(w)|| and ||[Vir(x) — g(x)| are errors due to
a finite difference approximation of the true gradients, and are
bounded by e, tq and ey 4, respectively. On the other hand,
llgu(u) — gu(u)|| can be bounded as:

Ny

2

1
— &) = g (Plutebi) — ¢lu—ebi) bi
i=1

llgu (1)

- Ebi)) b;

— GfeedNet (U

1 .
7 (¢feedNet(” + ¢eb;)
&

ny

i=1

o
< Z

ny

+Z

S leu+ebi) - Precaner( + b)) |1l

|¢>feedNet(u ebi) — ¢(u — eby)||b; ||
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ny

<= sup [¢() — Preeanet (), (18)

2e ueC+nBle]
where we used the fact that ||b;|| = 1. Similar steps can be
used to bound the error term ||g,(x) — g¢(x)|| to get the final
expression for § in (19). |

Proposition 3 shows that the control method in Algorithm 2
guarantees convergence to the optimizer of (4), up to an error
that depends on the uniform approximation error of the neural
networks and on the accuracy of the centered approximation
method. More precisely, the result characterizes the role of the
approximation errors due to the use of a feedforward neural
network in the transient and asymptotic performance of the
interconnected system (16).

In the remainder of this section, we focus on characterizing
the performance of (16) when a residual network is utilized to
reconstruct the system state. To provide guarantees for resid-
ual networks, it is necessary to replace ¢(-) by its the lifted
counterpart ¢ : R"™ — R defined as ¢ = ¢4 o ¢, where ¢ :
R — R™ is the injection t4(z) = (2,0, ..., 0) for any z € R.
Following [28], we consider a residual network map ¢r65Net
R"™ — R™ approximating the lifted _map $; the function ¢
used in (16) is then given by H (1) = Presner() ' by, where we
recall that by is the first canonical vector of R™. Similarly,
consider the lifted map v : R” — R” defined as ¥ = Ly oy,
where 1y : R — R" is such that ¢ (z) = (2,0, ..., 0) for any
z € R, and consider a residual network map gﬁresNet R" —
R” approximating the lifted map /. Accordingly, it follows
that ¥ (x) = Yresnet(x) " dy. With this setup, we have the fol-
lowing.

Proposition 4 (Transient Performance of Algorithm 2 with
Residual Neural Network): Suppose that the residual network
maps PresNet and YresNer approximate the functions ¢ and ¢
over the compact sets Xipain and Cpin, re (pectively Suppose
that the set of training points Cirains 1= {u } is a g,-cover of
Cirain With respect to the partial order <, for some g, > 0,
and Xipains = {xl@} is a gy-cover of Xy,i, with respect to
the partial order <, for some o, > 0. Moreover, suppose that
the residual network maps can be decomposed as ([SresNet =
my + Ay and Yresnet = My + Ay, where my, : R — R and
my : R" — R" are monotone, and A,, A, are a linear func-
tions. Consider the interconnected system (16), with d(u) =
&resNet(”)Tbl and ’ﬁ(x) = 1aﬁresNet()C)le , and let Assumptions
1-5 be satisfied. If € (0, n*), the error z(t) = (x — x/, u —
u;’) satisfies (11) with k1, k2, k3 as in Theorem 1, y = 0, and

8 = euta +m/%e " (3ew wain + 2 0p(0u) + 2 Aulloc)

+Cpex ta+n" e e, (3ex main+2 @y (04)+2[Axll )
(19)

where e, fg and e, fg are defined as in Proposition 3, w,, wy
are the moduli of continuity of ¢ and 1, respectively, and

€y train = SUP ld () — Precanet (1)l oo,
uectrain,s

€x,train -—  SUp 1V (x) — YfeedNet ()l oo-
XGXtrain,s
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The proof of Proposition 4 follows similar steps as the
proof of Proposition 3 and is omitted for space limitations.
Proposition 4 shows that the control method in Algorithm 2
guarantees convergence to the optimizer of (4) up to an error
that depends on the uniform approximation error of the neural
networks and on the accuracy of the centered approxima-
tion method. Notice that, with respect to the characterization
in Proposition 3, the use of a residual neural network allows
us to characterize the error with respect to accuracy of the
available set of samples Cyrain s and Xiains-

VI. APPLICATION TO ROBOTIC CONTROL

In this section, we illustrate how to apply the proposed
framework to control a unicycle robot to track an opti-
mal equilibrium point and whose position is accessible only
through camera images. We consider a robot described by uni-
cycle dynamics with state x = (a, b, 6), where r := (a, b e
R? denotes the position of the robot in a 2-dimensional plane,
and 6 € (—m, ] denotes its orientation with respect to the
a—axis [45]. The unicycle dynamics are:

a = vcos(d), b = vsin(9), 0=uw, (20)

where v, w € R are the controllable inputs. Given the dynam-
ics (20), we assume that its state x = (a, b, 0) is not directly
measurable for control purposes, instead, at every time x can
be observed only through a noisy camera image, denoted by
& = q(x); see, e.g. [1], [2]. To tackle the desired problem, we
consider an instance of (4) with:

) = |lull?, () = |Ir— |7,

where r/ € R? denotes the desired final position of the robot.

To address this problem, we consider a two-level control
architecture, in which an onboard (low-level) stabilizing con-
troller is first used to stabilize the unicycle dynamics (20) (to
guarantee satisfaction of Assumption 3) and, subsequently, the
control framework outlined in Algorithm 1 is utilized to select
an optimal high-level control references. To design a stabiliz-
ing controller, let u = (ug, up) € R? denote the instantaneous
high-level control input, and consider the standard change of
variables from rectangular to polar coordinates (£, ¢), given
by:

I/tb—b

Uq

E:=|lu—x|, ¢ = atan2( > —0. 21

In the new variables, the dynamics read as:

& = —vcos(¢), 22)

¢ = ~ sin(¢) — .
§
The following lemma provides a stabilizing control law
for (22).
Lemma 2: (Stability of unicycle dynamics) The unicycle
dynamics (22) with the following control law:

v=kEcos(¢p), w=k(cos(¢p)+ 1)sin(¢p)+ ke, (23)
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k > 0, admit a unique equilibrium point (£, ¢) = (0, 0) that
is globally exponentially stable.

Proof: Noticing that the dynamics of £ and ¢ are decou-
pled, consider the Lyapunov function V (¢) = %d)z. We have:

V(p) = —k¢sin(@) — kp? < —k¢p* = —2kV (¢),

with V(¢) = 0 if and only if ¢ = 0. The proof of exponential
stability of & follows immediately from [45], Lem. 2.1]. W

According to Lemma 2, the dynamics (22) with the on-
board control law (23) satisfy Assumption 3. We next apply
the perception-based control framework outlined in Algo-
rithm 2 to design the reference input u to be utilized in (21).

For our perception-based controller, we use a residual neu-
ral network to estimate the state perception map; in particular,
the neural network returns estimated state coordinates from
aerial images following the procedure of Algorithm 1. To
prepare for the execution of Algorithm 1, we generate 122,880
square, blurry, RGB images of size 64 x 64 pixels to represent
the location and orientation of the robot on a two-dimensional
plane. These images were built using the MATLAB Image
Processing Toolbox. First, we build a base image of a maroon
pentagon representing the robot over a grassy background
(using ranges of RGB values for different green colors), and
then add blurriness to the image using the MATLAB function
imgaussfilt; see, for example, the sample images in Fig. 4(b).
This function filters the base image with a 2-D Gaussian
smoothing kernel with a standard deviation of 0.5. For our
residual network, we used the resnet50 network structure
given in the MATLAB Deep Learning Toolbox and tailored
the input output sizes for our particular setting. Specifically,
we set the input layer to read in images of size 64 x 64
pixels and set the number of possible output labels as 64> =
4996 to account for all possible locations or coordinates of
the pixelized image. The number of training images for the
network was chosen so that all possible locations or coordi-
nates of the pixelized image are generated for 30 different
orientations, totaling 122,880 training images. After training,
the residual network returns estimated locations in the 2D
plane by identifying the center pixel of the robot. Of course,
during the time-evolution of the closed loop dynamics with
the residual network, the returned labels are converted into
(a, b) coordinates. We note that, while the MATLAB Image
Processing Toolbox allows for classification of images into
output labels, future efforts will look at implementations of
residual networks for regression.

Simulation results are presented in Fig. 4, when
using the initial  conditions  (ao, bo, 0o, Uaqy, Up,) =
(—1.5,—1.5,—m /2,1, 1); moreover, the optimal solution
of the problem is r* = (—0.5,—0.5). As evidenced in
Figure 4(a), differences persist between the trajectories
produced by the nominal controller, which utilizes perfect
state information, and by the perception-based controller.
Importantly, imperfect estimates of (a,b) are also due to
the fact that the labels returned from our trained network
correspond to the pixels of the image, which can limit
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FIGURE. 4. Numerical validation of Algorithm 1. The technique is used to
control a robot whose state (a, b, 6) cannot be directly measured and is
instead estimated using a residual neural network from aerial images.

(a) Trajectory of the robot (in the coordinates (a, b)) with the
perception-based controller and with a nominal controller using perfect
state information. (b) Images that the perception-based controller uses at
t = 4.32 seconds (left image) and t = 70.36 seconds (right image).

how well the (a, b) values are represented. Fig. 4(b) shows
sample images at times ¢ = 4.32 and r = 70.36; these images
are used as inputs to the neural network. As expected, the
ideal controller converges to the reference state arbitrarily
well, while the perception-based controller converges to
the reference state to within a neighborhood dependent on
the error associated with the perceived state. Overall, these
simulations demonstrate the claims made in Proposition 1.

VII. APPLICATION TO EPIDEMIC CONTROL

In this section, we apply the proposed framework to regu-
late the spread of an epidemic by controlling contact-relevant
transmissions. The latter is achieved by e.g. selecting the
intensity of restrictions such as mask-wearing, social re-
strictions, school closures, and stay-at-home orders, etc. To
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describe the epidemic evolution, we adopt a susceptible-
infected-susceptible (SIS) model [58], described by:
(24)

S=pu—us—ufsx+yx, x=ufsx —(y+ n)x,

where s € R, x € R describe the fraction of susceptible and
infected population, respectively, with s +x = 1 at all times,
u € (0,1] is an input modeling the reduction in contact-
relevant transmissions, 8 > 0 is the transmission rate, p >
0 is the death/birth rate, and y > 0 is the recovery rate.
Model parameters of (24) are chosen as follows: 8 =4,
y=1/9, u= 104, cost function parameters: wet = 0.36,
xef = (.85, wy = wy = 1. As characterized in [58], Thm.
2.1 and Lem. 2.1], (24) admits a unique (unstable) equilibrium
point described by x = 0 (called disease-free equilibrium)
and a unique equilibrium point with x # 0 (called endemic
equilibrium) that is exponentially stable [58], Thm. 2.4], thus
satisfying Assumption 3. We utilize the control problem (4)
to determine an optimal balance between a desired fraction
of infections x™' and a desired level of restrictions #™f. More
formally, we consider an instance of (4) with ¢(u) = wg(u —
u®M? and ¥ (x) = wy (x — xN?2, where u™f, xf € [0, 1] are
desired reference inputs and states and wgy, wy € R>o are
weighting factors. For our simulations, we perform the change
of variables (%, @) = (x, %); in the new variables, h(i) =1 —
BEY 7 satisfies Assumptions 1 and 4. In order to illustrate the
et’%ects of perception on the control loops, in what follows we
assume w; = 0 so all the tracking error can be associated to
perception errors.

A. OPTIMIZATION WITH STATE PERCEPTION

We begin by illustrating the case of state perception (Sec-
tion IV). One of the main challenges in predicting and
controlling the outbreak of an epidemic is related to the
difficulty in estimating the true number of infections from
incomplete information describing documented infected in-
dividuals with symptoms severe enough to be confirmed.
During the outbreak of COVID-19, researchers have proposed
several methods to overcome these challenges and by using
several sources of data including [59] detected cases, recov-
ered cases, deaths, test positivity [60], and mobility data [46],
[61]. In our simulations, we adopted the approach in Algo-
rithm 1 to achieve this task. For the purpose of illustration,
we utilized a map ¢(-) composed of a set of 4 Gaussian basis
functions with mean uy, = (1,5,9, 13) and variance o =1
to determine the perception signal &. The training phase of
Algorithm 1 has then been performed using a feedforward
neural network to determine the map X = p(€) to reconstruct
the state of (24). Simulation results are illustrated in Fig. 5.
As illustrated by the state trajectories in Fig. 5(a)-(b), the
use of a neural network originates discrepancies between the
true state and the estimated state, especially during transient
phases. Fig. 5(c) provides a comparison of the tracking error
between the use of the ideal controller (6) (which uses the
exact state) and the controller in Algorithm 1. The numer-
ics illustrate that while the exact controller (6) is capable of
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FIGURE. 5. Numerical validation of Algorithm 1. The technique is used to
control an epidemic SIS model whose state cannot be directly measured
and is instead reconstructed using a neural network. Panels (a)-(b)
compare the time-evolution of the true states and of the estimated states.
Panel (c) compares the performance of the ideal controller (6) with that of
the perception-based counterpart described in Algorithm 1. Steady-state
errors in Algorithm 1 are associated to errors originated by the use of a
neural network (see Proposition 2).

converging to the desired optimizer with arbitrary accuracy,
the controller in Algorithm 1 yields an error of the order
1072, due to uncertainties in the reconstructed system state.
Overall, the simulations validate the convergence claim made
in Proposition 2.

B. OPTIMIZATION WITH COST-FUNCTION PERCEPTION

Next, we illustrate the case of cost perception (Section V).
For illustrative purposes, we focus on cases where the analytic
expression of ¢(u) in (4) is known, while ¥ (x) is unknown.
As described in Algorithm 2, we utilized a set of samples
{(xi, w(xi))}ﬁ‘i | to train a feedforward neural network to ap-
proximate the function ¥ (x). Simulation results are illustrated
in Fig. 6. Fig. 6(a) illustrates the set of samples used for
training and provides a comparison between the true gradient
V1 (x) and the approximate gradient g,(x), obtained through
the neural network. Fig. 6(b) provides a comparison between
the state trajectories obtained by using the ideal controller (6)
and those obtained through the perception-based controller in
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FIGURE. 6. Numerical validation of Algorithm 2. The technique is used to
control an epidemic SIS model, where the economic impact of infections is
unknown and must be estimated from samples using a neural network.
Panel (a) illustrates the approximation accuracy of the neural network
(used to approximate the gradient of the function). Panel (b) compares the
time-evolution of the true states obtained by using Algorithm 2 and those
obtained by using the ideal controller (6). Panel (c) compares the tracking
error of the ideal and perception-based control methods. Steady-state
errors in Algorithm 2 are associated to errors originated by the use of a
neural network to compute the gradients (see Proposition 3).

Algorithm 2. Fig. 5(c) provides a comparison of the track-
ing error between the use of the ideal controller (6) (which
uses the exact gradients of the cost) and the controller in
Algorithm 2. The simulations illustrate that while the exact
controller (6) is capable of converging to the desired optimizer
with arbitrary accuracy, the controller in Algorithm 2 yields a
nontrivial steady-state error due to uncertainties in the gradi-
ent function. Overall, the simulations validate the convergence
claim made in Proposition 3.

VIIl. CONCLUSION

We proposed algorithms to control and optimize dynamical
systems when the system state cannot be measured and the
cost functions in the optimization are unknown, but instead,
can only be sensed via neural network-based perception. Our
results show for the first time how feedback-based optimizing
controllers can be adapted to operate with perception in the
control loop. Our findings crucially hinge on recent results
on the uniform approximation properties of deep neural net-
works. We believe that the results can be further refined to
account for cases where the training of the neural networks
is performed online and we are currently investigating such
possibility. While this paper provided conditions to obtain
exponential ISS results for the interconnection of a plant with
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a projected gradient-flow controller, future efforts will analyze
the interconnection of plants and controllers that are (locally)
asymptotically stable when considered individually.

APPENDIX A
PROOF OF THEOREM 1
The proof of this claim uses Lyapunov-based singular pertur-
bation reasonings, and is organized into seven main steps.

(1 — Change of variables) We consider the change of vari-
ables ¥ = x — h(u, w), which shift the equilibrium of (1) to
the origin. In the new variables, (7) reads as:

5& = f('XN + h(uv lU), u, w) - %h(u, lU), (253)

u=Tec{u— n(F()'E, u)+e(x+ h(u, wy), u)} —u, (25b)

where we denoted, in compact form, F(# u):=F X+
h(u, w), u), é(x, u) := e(x + h(u, w;), u). Before proceeding,
we note that:

IF (%, u) = FO, u))|| < IF (%, u) — F(0, )
+1F (0, ) — F (O, up)l

< G LI %N + Ll —ufll, (26)

where we recall that (¢4, , £y, £) are as in Assump. 1 and 4(a).

(2 — Lyapunov functions) Inspired by singular perturbation
reasonings [31], Ch. 11], we adopt the following composite
Lyapunov function for (25):

1 1
VE ) = 0-W(E u, w) + (1 —0)=V(u,uf), (27)
n n

where 6 is as defined in (8), W (%, u, w) describes a Lyapunov
function for (25a) and is given in Lemma 1, and V (u, u})
describes a Lyapunov function for (25b) and is given by:
Vi(u, uf) = 3 llu—ufl>.

Before proceeding, we notice that v(%, u, t) satisfies

- 2 ~ = 2
il & u—u)|” < vE u,t) <ol u—uf)|,

where ¢y, ¢y are as in (8).

(3 — Bound for the Time-Derivative of W) We begin by
bounding the time-derivative j—tW. To this end, notice that
Lemma 1 guarantees the following estimates:

ow

S5 b w),uw) < —ds|1%]1%,

aw d aw

— —h(u, w) = — (V,h(u, w)i + Vy,h(u, w)w)
ax dt 0x

< da|IX|1CLn, Nlall + L, 101D

By using the above estimates and Lemma 1, we have:

d__ - e

EW(X’ w,w) < — ds||%I° + (daly, + ds)|illI%]
+ (dalp,, + de)llw 1 %]
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Next, refine the bound on the second term. Notice that
lall = 1Te {u — nF (%, u) + né(%, u)} — ull
< NIF &, u) — FQO, uf)|| + nlléE, w|

= 1y, LI %Il + nlllu — uf' | + nlléx, w.

To obtain the first inequality, add u* — T¢{u* — nF (0, u*)} =
0 and apply the triangle inequality. Then, apply the bounds
obtained in (26). It follows that

d

ZWEuw) < —d3|IX'|I* + 1€, £y (daly, + ds)IIF|I*

+ nl(dalp, + ds)llu — u*||||%]

+ 1(daly, + ds)lleE, W IF] + (daln, + do)lliv,|l]|x]|.
(28)

(4 — Bound for the Time-Derivative of V) Next, we bound
the time-derivative j—tV. In what follows, we use the compact
notation i := u — u;’. By expanding:

V) =ati— @iy <ali+ ol

where we used Assumption 5. The first term above satisfies:

(29)

i< a (Me{u—nF O, w)} — u)
+ 0l LIZN AN + nllalleE, wll.  (30)

To obtain (30), we added and subtracted IT¢{u — nF (0, u)},
we applied the triangle inequality, and we used Assumptions 1
and 4(a). Next, we use the fact that the first term on the right
hand side of (30) satisfies:

i (Py—u) < —n (1 —n€*/4) ).

(This fact will be proven in Step 5, shortly below.) By com-
bining (29)—-(30)—(31) we conclude that:

€29

4y < e @) + nep, 1% |1l
- - —n—)Illu x| fju
a2 = nyuw—n 4 N,

+ nllalllleE, )l + e lwl |l (32)

(5 — Proof of (31)) For brevity, in what follows we use the
compact notation P, := I¢{u — nF (0, u)}. To prove (31), we
recall the following property of the projection operator:

(W = M) (Me() —v) =0, Vi €,

which holds for any v € R™. By applying this property with
W :=u* and v = u — nF (0, u), we have:

(uf = P) " Py — u+nF (0, 1)) > 0.

By expanding and by adding u" (u — P, + nF (0, u)) to both
sides of the inequality, the left hand side reads as:

wu—u'P, — u;"Tu + ut*TPu +nu! F(0,u) — nF©,u)"P,,
while the right hand side reads as:

ulu— PJM - uTP,;r + PMTPM +nu FQO,u) — nu;“TF(u, 0),
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and, after regrouping,
i’ (u—P) > llu— P>+ 0Py — ) F(u,0).
By adding and subtracting (P, — u; YTF (0, ul):
' (Py—u) < —|u—Py|* = n(P — u) " F(uf, 0)
— 0Py — u) (F(0,u) — F (0, u})).

From this, expand —(P, —u})=u—P,— i and apply
(P, — u;k)TF (0, u) > 0. Use strong convexity and Lipschitz-
continuity to obtain,

i (P —u) < —llu—Pl* — null@)?® + nellu— Pl |1l
—n (1 — ne*/4) |al,

where the second inequality follows by recalling that, for real
numbers a, b, it holds 2ab < a® + b?, and by letting a = ||lu —
P,||and b = %n€||ﬁ||. Hence, (31) is proved.

(6 — Conditions for Exponential Convergence) By combin-
ing (28) and (32):

IA

w—ne?
4

iv <1 -6){- Il + e, wlllall
dt — ’

by oo I
+ ;”wz”“u” + L LN XN e}

ds . =
FO TP + 0,y (st + )P

+ €(daly, + ds)llall|1x]

. (daly, +de) .
+ (daly, + ds)|eGE, )| + %nwtn 11}

(33)

By using (10), we have n < 4_2’ and thus the first term satis-

fies ('7@ — wllil* < =4 all*. Next, let s € (0, 1) be a fixed
constant. Then, (33) can be rewritten as:

1=y

d
v = (1= 0)——— B \al? + 12 wilall

by o I
+ ;”wt””u” + &5, LN X112}

+0{—

(1—9)ds )
TMZ + €y, Ly (daly, + ds)I|F]?

+ €(daly, + ds) il |1 %]

daly, +do

+ (daly, +ds)llex, w)l|X]| + llwe 11X}

) d3
— min{sun, Sd—} v, (34)
b
—— ——
=0

where we used —(1 — 9)s“ ]| = —(1 — )suV (u, u) and

9s%3||x’||2 6“’13||x||2 —%%W.Thebound(w)can

VOLUME 1, 2022

be rewritten as:

d LR
e —cov—& T AE+(1-0){]|e(%, u)| ||ﬁ|I+—J||wt||I|u||}

4Eh+6

+0{(dalp, +ds))llex, wlIx]+ llwe 1%},

(35)
where & = (||, [IX]|) and

A (1 —9)011 —5[(1 = 0)B1 +08]
— 31— 0)B1 + 0] 9[ — B1B2] ’

with o) == (1 — S)j, oy = (1 —s)d3, By := Mhu, B =

Z(d4£hu +ds), and y := Zyﬂhu(ddhu + ds). Finally, we will

show that £ T A& < 0. Equivalently, A is positive definite if
and only if its principal minors are positive, namely,

[(1 —6)a][0 (7 - ,31,32>] > —[(1 —0)B1 + 08217

or, equivalently,
a10)
—0)B1 + 0B +aipify

The right hand side is a concave function of 6 and, by max-
imizing it with respect to 6, we have that the maximum is
obtained at 8* = ﬁ, which gives

n<-—
wa-al(

oo
< —’
a1y + BB

which holds under (10).
(7 — Derivation of Convergence Bound) We begin by show-
ing that (35) can be further refined as follows:

d .
77V S v T esyv o+ (cad + csllwe ) v/v.  (36)

To this end, we first notice that the following inequali-
ties are true: [l < V2VV < V2S5 < Y <
\/ch\/g and that /0, v/T— 6 € (0, 1) since 6 € (0, 1). Us-
ing these facts, the two positive terms in (35) satisfy:

a1-oy . .
. el Na@l < n'2N2€; iy lI/v

da|VohGe, w)| . Il |
0" I IZ] < dalp, ——
Vv

from which (36) follows with c3, ¢4, cs5 as in (8).
To conclude, define V' := ,/v. Then,

1 .
5 (c46 + csllw]) -

v

./ l /
V< —5(60—03)/)1) +

Define ®(t, o) := exp (—3(co — c3)(t —1p)) for t > 19. By
the comparison lemma [31]:

t

v < @1, 10)V (19) +/

T

C4 cs5 .
(1, r)(35+ E||wr||)dr
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which implies, by recalling ¢ ||z||> < v < ¢3||z||?, that

lz@ < \/gd)(t, 10)llz(to) Il +

c4

NG
t

f (1, 7) b |,
fo

t
/ Oz, 7)ddt
fo

C5

tiE

from which (11) follows.
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