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In the paper [L. Fei et al., J. High Energy Phys. 09 (2015) 076] a cubic field theory of a scalar field ¢ and
two anticommuting scalar fields, 6 and 6, was formulated. In 6 — e dimensions it has a weakly coupled
fixed point with imaginary cubic couplings where the symmetry is enhanced to the supergroup OSp(1/2).
This theory may be viewed as a “UV completion” in 2 < d < 6 of the nonlinear sigma model with
hyperbolic target space H?? described by a pair of intrinsic anticommuting coordinates. It also describes the
g — 0 limit of the critical g-state Potts model, which is equivalent to the statistical mechanics of spanning
forests on a graph. In this Letter we generalize these results to a class of OSp(1|2M) symmetric field
theories whose upper critical dimensions are d.(M) =2[(2M +1)/(2M —1)]. They contain 2M
anticommuting scalar fields, @, @, and one commuting one, with interaction g(o> + 2676")@M+1/2,
In d.(M) — e dimensions, we find a weakly coupled IR fixed point at an imaginary value of g. We propose
that these critical theories are the UV completions of the sigma models with fermionic hyperbolic target
spaces H?M Of particular interest is the quintic field theory with OSp(1]4) symmetry, whose upper critical
dimension is 10/3. Using this theory, we make a prediction for the critical behavior of the OSp(1|4) lattice

system in three dimensions.
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Introduction.—This Letter builds on the paper [1] where
the field theory was studied with the Euclidean action

1 -1
S = /d"x (8M6’8”9 +3 (0,0)* + 91000 + 6g203) (1)

for two anticommuting scalar fields, § and 0, and one
commuting one, o. The global Sp(2) symmetry of this
model becomes enhanced to the supergroup OSp(1|2)
because at the IR fixed point in 6 — ¢ dimensions the
two coupling constants are imaginary and related by
g5 = 2g;. At this weakly coupled fixed point, which is
of the Wilson-Fisher type [2], the interaction becomes
proportional to the manifestly OSp(1]2) invariant form
(6% +260)3/%. Using three-loop calculations, the scaling
dimensions of ¢ and 0 in 6 — ¢ dimensions were indeed
found to be equal [1]. Since the coupling is imaginary, the
Euclidean path integral associated with (1) does not suffer
from the instability encountered for the real ¢° interaction.
Indeed, the cubic theory of a single scalar field with an
imaginary coupling constant is known [3] to describe the
Lee-Yang edge singularity.
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Earlier examples of models with OSp(1]2) symmetry are
the lattice models and sigma models describing the span-
ning forests, or equivalently the ¢ — 0 limit of the g-state
Potts model [4-6]. In [1] we showed that the 6 —¢
expansions of the scaling dimensions in our OSp(1]2)
symmetric theory are the same as in the ¢ — 0 limit of the
g-state Potts model [7]. Thus, (1) provides an explicit
formulation of the field theory that governs this formal limit
and is super-renormalizable in d < 6.

Besides the 6 — ¢ expansion, it is interesting to develop
the 2 + ¢ expansion for the critical theory of spanning
forests. In [4,8] it was argued that it is provided by the
OSp(1/2) sigma model [9,10] with the action

S = 2—;2 d"x((aﬂa)2 + 25,4‘9(9”9)’ (2)

where the constraint 6 + 200 = 1 is imposed. The con-
straint has two solutions, 6 = 4(1 — @), and choosing one
of these solutions breaks the Z, symmetry but preserves the
OSp(1]2); then the global symmetries in the sigma model
are the same as in the cubic theory (1). In the recent work
[11,12] the interpretation of the target space was changed
from (half of) the sphere S°? to the space H?, which is a
fermionic version of the hyperboloid.

Substituting ¢ = 1 — 68 into (2), we find the sigma
model with the hyperbolic target space H?. It has the
following classical action in terms of the two anticommut-
ing scalar fields:
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1 o
S=2 / d'x(9,00'0 — 000,000), (3)

and it is important to take g> < 0 so that the model is
asymptotically free in d = 2 [4,11-13]. Indeed, the beta
function of this theory is the same as for the O(N).
nonlinear sigma model continued to N = —1, and the
theory is asymptotically free for negative ¢*. Thus, in
d = 2 + e this theory has a weakly coupled UV fixed point.
The fact that near the upper critical dimension 6 the model
has another weakly coupled description, involving an extra
canonical field o, is analogous to a similar phenomenon in
the Gross-Neveu model [15] near 4 dimensions [16,17] (for
a more recent discussion, see [18]).

We may interpret the cubic theory (1) as a “UV
completion” of the H? sigma model in 2 < d < 6: the
IR fixed point of the cubic theory presumably describes the
same physics as the UV fixed point of the sigma model.
The sense of this is similar to how the super-renormalizable
Gross-Neveu-Yukawa model [16,17] provides a UV com-
pletion in 2 <d <4 of the nonrenormalizable Gross-
Neveu model. Similarly, the O(N) symmetric field theory
of N > 2 scalar fields with the quartic interaction A(¢¢")?
provides a UV completion in 2 < d < 4 of the nonrenor-
malizable O(N) nonlinear sigma model.

The OSp(1]2) lattice system [4-6,11,12], which
underlies the continuum descriptions reviewed above,
involves introducing on each lattice site x the vector
u, = (0,,0,,06,). The constraint that it belong to HO?
implies 6, =1 —60,6,. Then for each pair of nearest
neighbor lattice sites, x and y, the factor

ePlurtyt /2, Uy Uy = —0x0y — gxé}' - eyéxv (4)
is included in the integrand of the partition function. Since all
the integrations are over the Grassmann variables 6., 6., they
can be performed exactly on a finite lattice. This lattice system
has a particular simplicity and is found to be equivalent to the
statistical mechanics of spanning forests, or alternatively the
q — 0 Potts model [4-6]. The Monte Carlo simulations for it
were carried out in [19], indicating the second-order phase
transitions in d = 3, 4, 5. We will show that the estimates of
critical exponents based on the two-sided Padé extrapola-
tions, using the 6 — e and 2 4 e expansions, are in good
agreement with the Monte Carlo results.

The OSp(1|2M) lattice systems may be constructed
analogously: in this case there are M pairs of Grassmann
variables on each lattice site, 6%, 0%,i =1, ..., M, and

M\ 12
ox:<1—229;9;) ,
i=1

M

= (0:0; + 0:05). (5)

i=1

Uy Uy = —0,0,

It is of obvious interest to study possible critical behavior in
such lattice systems for M > 1. In this Letter, we propose an
extension of the field theoretic approach (1) to these systems.
We are led to consider theories with interactions of order
2M + 1,i.e.,6*™*! plus terms involving the anticommuting
fields [20]. Such theories have the upper critical dimensions

2M + 1
_22M—1' (6)

dc(M)

We use the results [22] for the O(N)-invariant field
theories with interactions of order 2M + 1, which are
renormalizable at the upper critical dimensions (10/3),
(14/5), etc., and substitute N = —2M to account for the
anticommuting nature of the N scalar fields. Then we find
OSp(1]2M) invariant IR fixed points where the interaction
term is proportional to (62 4 26'6")?M+1)/2 with an imagi-
nary coefficient. These critical theories appear to be non-
perturbatively well defined, and it would be very interesting
to compare the continuum results with those in the
OSp(1]2M) lattice systems.

Scaling dimensions for the OSp (1|2) model.—The one-
loop beta functions and anomalous dimensions for the
theory (22) are [1]

gi€ 1
ge 1
==+ Tany B9~ 20192 = 362).
2 2 _ ?
g1 92— 91
— S P pr— . 7
"6y 7T 12(4n)] g

There is an OSp(1/2) invariant IR fixed point where [23]

(4r)3e €
X =2 R =Y = —==.
5 92 g1 Yo =7 30

g1 =i (8)

These results can be extended to the four-loop order using
the formulae from [24] for the O(N) invariant cubic model
[25,26], and then setting N = —2 [27]. Then we find

8 7 269 — 702¢(3
Bo=2-15€=355¢ - 33750()3
207313 — 42127 + 936£(3) + 9072004(5)
- 24300000 €
+ O(€). 9)

This expansion coincides with the corresponding one in the
formal g — O limit of the g-state Potts model.
The 2 + € expansion for the O(N) sigma model is [30]

1 1 N-1
A9:—€+

5 2(N—2)€_2(N—2)2€2+O(€3)’ (10)
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which for N = —1 becomes
1 1, 3
A9:§e+§€ + O(e). (11)

Using the “two-sided” (4,3) and (6,1) Padé approximations,
which utilize both the 6 —¢ and 2 + ¢ expansions, we
obtain the estimates Ay = 1.46 in d =15; Ay=~0.92 in
d=4 and Ay~ 0.415 in d = 3. They are in very good
agreement with the Monte Carlo simulations of the ¢ = 0
Potts model. Using the values for y/v given in Table I of
[19], we find that

p=5-L (12)

are very close to our Padé estimates in d = 3, 4, 5.
The next important operator in the sigma model has
dimension [30]

A, =d-v'i=2- e? + O(e?). (13)

N-=-2

For N = —1 this becomes
1
A, :2+§€2+0(€3). (14)

The expansion of A, in d = 6 — € may be found using the

theory (1), where it corresponds to the OSp(1/2) invariant
. 2 A .

primary operator ¢~ + 266. Using the four-loop results

[24], we find

2 1 173 — 864¢(3

39730 27000
n 51683 — 12967* + 140400¢(3) 4 272160¢(5) o
4860000
+O(e5). (15)

Performing the two-sided Padé approximations, we find
A, ~336ind=5A, =28 ind=4and A, 2.2 in
d = 3. They are in good agreement with the Monte Carlo
results for v given in Table I of [19] for g = 0.

Field theory for M > 1.—The 2D sigma model with
target space H> may be defined by picking one of the
two solutions of the constraint

M
o +2) 600 =1. (16)
i=1

The sigma model classical action is

S = ﬁ/ d2x<(a,,a)2 +2 EA:; a,,eiaﬂéi), (17)

with the substitution of

M\ 12
6= (1—229&9!‘) . (18)
i=1
For example, for M = 2
6= 1019 — 020 — 019103, (19)

In general, the expansion of the square root in (18)
terminates with the term of order 2M proportional to

M 0'0". Related to this fact, we will propose a critical
field theory with interactions of order 2M + 1.

The H* sigma model may be thought of as the O(N)
sigma model with N = 1-2M. For ¢* < 0 it is asymptoti-
cally free in d = 2 and therefore has a UV fixed point in
d = 2 + e. An interesting question is how to continue this
theory to the dimension slightly below the upper critical
one. For M =1 its upper critical dimension is 6, and in
d < 6 we can view it as Euclidean field theory (1) with
interaction (6” + 20'0")%/2. However, such a description
cannot be applicable to M > 1. Indeed, already for M = 2
the potential would contain the term ~8'0'6?6> /¢ which is
not admissible in renormalizable field theory. We propose
that the proper generalization of our M = 1 construction to
higher M involves higher powers in the OSp(1|2M)
invariant potential, so that its expansion in the anticommut-
ing variables does not contain any terms with negative
powers of o; namely,

M
(62 +209) 12 = M1 4 (2M 4 1)1y 00
i=1
M -
+...+(2M—|—1)!!0H9i9i- (20)

i=1

Ind.(M) — e there is a weakly coupled IR fixed point of the
interacting field theory

|
S= / dx <aﬂelaﬂel+5(aﬂo)2+ g(62+29191)(2M+1)/2>,
(21)

where at the fixed point ¢ is imaginary and ~+/e.

The M = 2 model is particularly interesting, since its
critical dimension (10/3) is above 3. In the (10/3) —¢
expansion, we expect good results since ¢ = 1/3 is small.
This was indeed the case for the model which is described
by the ic” theory. The (10/3) — e expansion for this model
was obtained in [31], where it was called the Blume-Capel
or the tricritical Lee-Yang universality class [32].

The quintic model with four anticommuting scalars and
Sp(4) symmetry has the Euclidean action
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A |
S—/ddx(aﬂe’8”9’+§(6ﬂa)z —0(919’)2
92 00 3 5
6 00" + 1206) (22)

Since the one-loop f and y functions were calculated in [22]
for the quintic model with N additional scalar fields and
O(N) symmetry, we may set N =—4 to obtain the
corresponding results for the theory (22). After performing
a suitable multiplicative redefinition of the couplings,
gj — Ag;, which simplifies the formulae, we find the
one-loop beta functions for the theory (22):

3916 1

bi=="""i% (122497 + 4320¢2g, + 173049, g
+ 1944093 + 14409, 9,95 + 16206395 — 391 63),

by = 39226 + ﬁ (48047 + 5768429, + 194409, 63
— 703293 + 2404795 + 10809, 9,93
— 12960g3g5 — 2691g,43),

= 39236 + 916 (19202, — 43209, 63 + 3456043

+ 8¢2g3 + 215284295 — 233743). (23)

The anomalous dimensions are

1
0= ¢ (291 —343).
Yo =515~ 8g7 + 7293 — 343). (24)

We find an IR stable fixed point where

(010299 = i\ 10 32,8 (29)

The two anomalous dimensions are equal at this fixed
point, yy =y, = —(3/8255)e, suggesting that the Sp(4)
symmetry is enhanced to OSp(1|4). This is indeed the case,
since the interaction in (22) combines at the fixed point
into ~i(c? 4 20'0" + 26%6)3/.

The IR scaling dimension is

d=2 2 8261
Ay =A —— = —
0= Be =5 TN =37 16510

———e+ 0(e?).  (26)
Substituting e =1/3 gives the answer Agyipop =
(8253/16510) =~ 0.499 88. This is extremely close to the
free dimension 1/2 due to the smallness of the coefficient
of € in the anomalous dimension. We can try to improve on
this estimate using the two-sided Padé including the 2 + ¢
expansion for the N = —3 sigma model:

A(2+€):§€+%€ + O(e?). (27)

A Padé approximant for the scaling dimension as a function
of d,

16(d — 2)(32900 — 8219d)
1875420 + d(—756 484 + 74007d)’

Ap(d) = (28)

is consistent with the expansions near 10/3 and 2 dimen-
sions. It gives Ap(3) ~ 0.485 which is somewhat lower
than A ;e 100p- It would be interesting to calculate the O(e?)
correction to A using the two-loop diagrams in the quintic
theory (22). We expect this to reduce the uncertainty in
estimating the scaling dimension in d = 3. It would be also
useful to study the critical exponents using the functional
renormalization group approach [34] to theory (22).

Let us also discuss the theory with Sp(6) symmetry and
seventh-order interactions:

2
S = / ddx<28”9i8"9i+%(8”0) 90 6(0'6')3
i=1

00 + ﬂ(ﬂ). (29)

92 3 ini 2
0'0
+367 00+ 120 5040

367

Using Gracey’s results [22] for the O(N) symmetric theory
with seventh-order interactions, and continuing them to
N = —6, we find an IR fixed point in (14/5) — ¢ dimen-
sions. In the normalization of couplings such that

1
Yo = ———=(—24¢7 + 20043

T
15120 45g3).  (30)

v, = 487 — 18003 + 135002 — 15¢2).  (31)

30240 (

it is located at
(91,92, 93, 94) = i-0.0124124\/E(15,6,8,48). (32)

At this fixed point yy = y, = 0.000011¢, and we observe
the enhancement of the Sp(6) symmetry to OSp(16).

Our calculations provide evidence for the consistency of
our proposal for M > 1, but a lot remains to be done.
In particular, it would be interesting to formulate a
Monte Carlo approach to the OSp(1|4) lattice model,
where all the integrations in the partition function are over
the Grassmann variables 6., 81, 62, 2. The results could be
then compared with our prediction that the scaling expo-
nents have exactly mean field values in four dimensions,
but exhibit small deviations from them in three dimensions.
Also, perhaps a conformal bootstrap approach to the critical
exponents can be attempted along the lines of the method
[35], which is applicable to nonunitary theories.
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