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Abstract— A prominent challenge in the field of robotics
is manipulation of flexible objects. One major factor that
makes this task difficult is the complex dynamics emerging
from its high-dimensional structure. This argues against the
use of popular optimization-based approaches, which scale
poorly with system dimension (the “curse of dimensionality”).
Nevertheless, almost indifferent to this complexity, humans
handle it on a daily basis, without any apparent difficulty.

Inspired by human meotor control, we propose that encoding
movements based on dynamic primitives can simplify the task
of manipulating flexible objects and provides a way around
the curse of dimensionality. Using an extreme example —
manipulating a whip — we tested in simulation whether targets
at various locations could be reached with a whip by using a
controller based on dynamic primitives. Regardless of the target
location, this approach successfully managed the complexity of a
54 degree-of-freedom system (yielding a 108-dimensional state-
space representation) and identified an upper-limb movement
that achieved the task. This approach did not require a detailed
model of the whip, which thereby significantly simplified the
computational complexity of the control task. We believe that
this approach may facilitate robotic manipulation of flexible
materials, and in general afford a simplified way to control
dynamically complex objects.

I. INTRODUCTION

Endowing robots with human-level dexterity is one of the
ultimate goals of robotics. While the gap between human and
robot performance is rapidly closing, humans’ astonishing
dexterity is still far superior to anything yet achieved in
robotic systems [1].

The disparity in performance becomes more evident when
the task involves manipulation of flexible objects with sig-
nificant dynamics. The complex dynamics emerging from
their high degrees of freedom (DOF) structure is one of
the many factors which makes this task challenging. Due to
the high-dimensional structure, popular optimization-based
approaches, which scale poorly with system dimension, often
fail to identify the optimal solution (the notorious “curse
of dimensionality”) [2]. Nevertheless, humans are strikingly
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adept at manipulating flexible objects, without any apparent
difficulty. With care, understanding the strategy which hu-
mans use to handle flexible objects may allow us to better
bridge the gap between humans and robots.

Mounting evidence suggests that humans compose actions
based on dynamic primitives to simplify control [3]-[7].
Dynamic primitives are conceived as “dynamic attractors”
which act as fundamental building blocks of motor behavior
[8]-[10]. At least three distinct classes of dynamic primitives
have been identified — submovements, oscillations and
mechanical impedances. We propose that encoding actions
based on dynamic primitives could facilitate robotic control
of flexible, deformable objects.

To test this proposition, we focused on a task of striking
a distant target with a whip — one of the most complex
and exotic tools which humans can handle [11]. Extending
the work reported in [12] in which the arm, whip and target
were confined to a 2D sagittal plane, the work reported here
generalized the case to 3D. We considered spatial motions of
human upper limb and whip, and several different target loca-
tions in 3D space. We formulated and parameterized a 4-DOF
model of the human arm interacting with a 50-DOF whip
model, for which the model parameters were derived from
an actual bullwhip [12], [13]. We used a feedforward motion
command composed of a single submovement planned in
joint-space coordinates and constant mechanical impedances
for the upper-limb controller.

We discovered that regardless of the target location, this
approach was able to manage the complexity of a 54-DOF
system (yielding a 108-dimensional state-space representa-
tion) and succeeded to identify an upper-limb movement that
achieved the task. Encoding movements with parameterized
dynamic primitives significantly simplified the task of plac-
ing the tip of the whip at arbitrary locations and offered
a way to work around the curse of dimensionality. This
result demonstrated the effectiveness of dynamic primitives
to control an extremely high-DOF object. We believe that
this approach will facilitate robotic manipulation of flexible
objects, which is currently a major challenge.

II. METHODS

The research presented in this paper used the simulation
software MuJoCo [14]. For all of the MuJoCo simulations,
the semi-implicit Euler method was chosen as the numerical
integrator, with a time step of 0.1ms (10,000Hz).

A. Modelling

The model used in the MuJoCo simulation consisted of
two main parts: a model of a human upper limb (the manip-
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Fig. 1: The upper-limb (A-C) and whip model (D-E) rendered with the MuJoCo simulator. (A) Mass, principal axes of inertia and the reference frame of
each limb segment (Table I). (B) Length of each limb segment and length from proximal joint to center of mass (COM) (Table I). (C) Rotational joints
of shoulder (11 J3) and edbow (14) and their axes of rotation. (D) The 50-DOF whi]i. model. (E) Length [ and mass m of the sub-model of the whip,

rotational joints which serially connect the sub-models, and their axes of rotation. Eac

rotational damper b Axes of rotation are visualized as bullet shapes.

ulator) and a model of a whip (the object being manipulated).

1) 4-DOF Upper-limb Model: The human arm was mod-
eled as a two-bar open-chain linkage. Everything distal to the
wrist (i.e., hand, fingers etc.) were omitted from this model.
The two limb sepments — the upper arm (which extends
from the shoulder to the elbow), and the forearm (which
extends from the elbow to the wrist) — were treated as non-
uniform cylinders, i.e., the center of mass (COM) did not
coincide with the geometric center of the limb segment. The
geometrical and inertial parameters of each limb segment
were obtained from a computational model by Hatze [15],
and the detailed values are presented in Table I (Fig. 1, 2).

The upper-limb model had 4-DOF — 3-DOF at the shoul-
der and 1-DOF at the elbow. The ball-socket mechanism of
the shoulder’s glenohumeral joint was modeled as a 3-DOF
spherical joint. Translation movements of the shoulder were
omitted from the model, ie., the shoulder joint was fixed in
space. The 3-DOF spherical joint was constructed as a se-
quence of three rotational joints whose axes of rotation were
initially orthogonal — denoted as J1-J3 (Fig. 1C). The three
rotational joints in order, corresponded to flexion/extension
(I1), adduction/abduction (J2) and lateral/medial rotation
{J3). The movement of the elbow was modeled as single-joint
elbow flexion/extension (J4) (Fig. 1C). Supination/pronation
of the elbow was omitied from the model. At all four joints,
independently controlled torque actuators were mounted.

2) 50-DOF Whip Model: The continuous structure of
a whip was approximated and discretized as a multi-link
pendulum composed of (ideal) lumped elements. Each sub-
model (ie., pendulum) of the whip consisted of three
lumped-parameter elements: an (ideal) point-mass, a linear
rotational spring and a linear rotational damper (Fig. 1D, 1E).
The point-mass m was suspended from a massless cylinder
with length [. The other end of the massless cylinder was
equipped with a 2-DOF universal joint, which consisted of

rotational joint was equipped with a linear rotational spring & and

two rotational joints whose axes of rotation were orthogonal.
Each rotational joint was equipped with a linear rotational
spring and a linear rotational damper, with coefficients k and
b, respectively (Fig. 1E). The values of the model parameters
of the whip were obtained from an “experimentally-fitted™
whip model, in which the values were derived from exper-
imental observations of an actual bullwhip [12], [13]. 25
of the identical 2-DOF sub-models were serially connected,
which resulted in a 50-DOF whip model.

3) Connection berween the Two Models: To not introduce
any additional torque between the upper-limb and the whip
model, the rotational stiffness k& and damping coefficient
b of the whip sub-model, which directly attached to the
end-effector of the upper-limb model, were set as zero.
Summarizing, the whole system resulted in a 54-DOF open-
chain linkage.

B. Controller

1) Impedance Controller: A first-order impedance con-
troller with gravity compensation was used for the upper-
limb controller [16]:

T=K(p—-8)+B(p—0)+715 (1)

where K, B € R*** are constant joint stiffness and damping
matrices, which account for the neuromuscular mechanical
impedance of the upper-limb model; T € R? denotes the
net-torque input of each joint actuator; # £ R denotes
the actual joint displacements of the upper-limb model;
¢ € R* denotes the “zero-torque” trajectory, i.e., neglecting
gravitational effects, no torque will be exerted by the actuator
when ¢ exactly matches the actual joint displacemenis 8
[12]; 7 € R* denotes the torque required to compensate the
gravitational forces applied to the whole system (Sec. II-B.2).
The zero-torque trajectory ¢b(¢) was the feedforward motion
command of the controller which generated the upper-limb
movement (Sec. II-B.3).
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TABLE I: The Model Parameters

Description Notation Values Units

Mass of each limb segment . 1.595, (.860 [kgl

Length of each limb segment . 0,294, 0.291 [m]

Limb Inertia Length from proximal joint to COM . 0129, 0112 [m]
Parameters Principal moment of inertia, -axis . 0.0119, 0.0048 [kg m ]
Principal moment of inertia, -axis . 0.0119, 0.0049 [kg m ]

Principal moment of inertia, -axis . 0.001 3, 0.0005 [kg m ]

Mumber of sub-models 25 [-1

WValue of the point-mass 0.012 [kgl
Hﬁ,ﬁ““ﬁiﬁ“ Length of massless cylinder 0.072 [m]
P Coefficient of the rotational spring 0.242 [N m/rad]
Coefficient of the rotational damper 0.092 [N m s/rad]

{Top) The geometrical and inertial parameters of the upper-limb model. Subscripts denote the shoulder and elbow joints, nombered proximal to distal.
Prmcrl moments of inertia of limb segments were calculated with respect to the center of mass (COM) (Fig. 1A, 1B, 1C). (Bottom) The parameters of
the whip model, which wem measured and experimentally derived from an actual bullwhip. Graphical depictions of the upper-limb and whip models are

shown in (Fig. 1, 2)

2) Gravity Compensarion: Gravitational effects were
compensated with |, so that the actual upper-limb posture

could exactly match the zero-torque posture  when the
whole model was at rest:

(2)

where is a Jacobian matrix of frame melative
to frame ; denotes the gravitational force applied
to frame ; frame 0, 1, 2 and 3 are attached to the shoulder,
COM of the upper arm, COM of the forearm, and the end-
effector of the upper-limb model (Fig. 2).

The detailed force vectors are as follows:

(3)
where and denote the mass of upper arm and
forearm, respectively (Table I); denotes the total mass

i ™y
. wi={_Center of Mass ]
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Fig. 2: Frames and the imposed gravitational forces of the simulation model.

3) Motion Planning — Zero-Torgue Trajectory: The zero-
torque trajectory {Eqg. 1) of the upper-limb model
consisted of a single movement — a discrete minimum-jerk

profile planned in joint coordinates [17] (Sec. IV-B).
— - - ®

where subscripts and denote the initial and final (zero-
torque) postures, respectively;  denotes the duration of the
movement. For times greater than duration  (ie., 1,
the zero-torque trajectory of the upper-limb model remained
at final posture . The zero-torque trajectory was
determined by 9 movement parameters: 4 for initial posture

, 4 for final posture |, and | for movement duration

4) Stiffness and Damping Marrices: The neuromuscular
mechanical impedance and  matrices (Eqg. 1) were cho-
sen to be symmeiric positive-definite matrices. The damping
matrix  was chosen to be proportional to joint stiffness
such that for a positive constant 5. The
detailed values used for the stiffness matrix =~ and damping
matrix  were as follows (Sec. IV-C):

(3)

C. Task Definition and Optimization

A whip task was defined to evaluate the performance of the
upper-limb controller. The goal of the task was to hit a distant
target with the tip of the whip. Quantitatively, the objective
was to minimize the value [m], the distance between the
tip of the whip and target with a single discrete upper-limb
movement, i.e., a single set of 9 movement parameters of
the zero-torque trajectory ( )} (Eg. 4). The minimum
value of the distance reached with a single discrete upper-
limb movement, [m] was a quantitative measure to assess
movement performance.

Three different target locations were defined for the whip
task. All three targets were distanced just 0.01m outside of
a sphere, centered at the shoulder joint, of radius [m]
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equal to the sum of the lengths of the upper-limb and whip
model (R = Ly + La + N -1+ 001 = 2.395m) (Table
I). This offset avoided the whip model colliding with a
target, which prevented unnecessary contact dynamics being
included in the simulation, while retaining the qualitative
and quantitative goal of the whip task. In a spherical co-
ordinate system (radius-azimuth-elevation), target 1, 2 and
3 wemre located at coordinate (R,0°,0°), (R 45°,0°) and
(R,45°,45%), respectively (Fig. 3).

For each target location, the optimal 9 movement param-
eters (¢by, ¢y, I)) which minimized the minimum distance
between the tip of the whip and target, were identified with
a global derivative-free optimization algorithm DIRECT-L
{DIviding RECTangles Locally biased) under the nlopt (non-
linear optimization) Python tool box [18]. Within the bounds
of the constraint (Table II), the DIRECT-L optimization
algorithm conducted 600 iterations.

il T
Target 1
® Target2
® Target3
g
[—
z i R
y |
x 1
L -

Fig. 3: Graphical depiction of the three target positions of the targeting task,
and the coordinate frame of the simulation.

ITII. OPTIMIZATION RESULTS

For each target location, the DIRECT-L algorithm con-
verged to an optimal set of 9 movement parameters which
resulied in a minimum value of distance L*. Detailed values
of the optimal parameters of the movement and its corre-
sponding L* value are presented in Table II. Three time-
frames of the simulation results generated by the optimal
movement parameters, visualized using MATLAB (Math-
works Inc., Natick, MA), are shown in Fig. 4.

IV. DISCUSSION

A. Simplification of the Whip Task

This study examined in simulation whether a target at
various locations in 3D space could be reached with a whip
using a (small) number of primitive actions, whose param-
eters could be learned through optimization. Considering
the dimensionality of the whole system, this task is by no
means trivial — the task was to coordinate a system with
108 state-space dimensions in 3D space to reach targets at
several locations. Despite this daunting complexity, encoding
upper-limb action using the parameters of a single movement
dramatically simplified the targeting task and successfully

managed the complexity of an extremely high-dimensional
system. This approach provided a way to work around
the curse of dimensionality and the algorithm was able to
converge to an optimal upper-limb movement.

It is worth emphasizing that this method completely
avoided the need to acquire a detailed and accurate model of
the whip. Regardless of the dimensionality or complexity of
the object dynamics, the manipulation task was substituted
by the optimization of a small set of movement parameters.
This approach seems to be a key simplification required to
learn complex motor skills, since only a small set of param-
eters are acquired and retained regardless of the complexity
of the object. Moreover, assuming the existence of a well-
defined objective function, we believe that this method can
be generalized and may afford a simplified way to control
dynamically complex objects.

B. Simplified Motion Planning via Dynamic Primitives

While tremendous progress has been achieved in the
manipulation of rigid objects, flexible object manipulation
remains to be a long-standing problem. One of the sig-
nificant challenges is motion planning for flexible object
manipulation, since the complex dynamics of the object
leads to unpredictable behavior [19], [20]. To tackle this
problem, studies depended on human demonstrators, required
an extremely large set of data to learn the task, or often
involved vision algorithms to detect key features, along with
an analytical model of the object [21], [22]. However, these
methods still suffer from the complexity emerging from the
high-dimensional structure of the object.

The approach presented in this paper does not rely on any
specific analytical model nor visual observation of the whip.
By composing movements based on dynamic primitives, the
method reported here succeeded to manipulate a flexible
object with significant dynamics, without the need to acquire
or extract any data from human demonstrations, and with a
modest number of iterations of the optimization. Planning
a feedforward open-loop motion command ¢(t) (Eqg. 4),
with constant impedance terms K and B, was sufficient to
manipulate a 50-DOF whip model for the targeting task.

Previous study suggests that for tasks involving complex
interaction dynamics, the minimum-jerk principle has lim-
ited value [23]. This fact was demonstrated in a task of
transporting a nonlinear cup-and-ball system, which was not
competently achieved with a single minimum-jerk profile.
The result presented in this paper provides an intriguing
counter-example — the tarpeting task involved an interaction
with a 50-DOF model and a minimum-jerk (nominal) motion
was still able to manage this complexity. The dimension-
ality of the object (50-DOF vs. 2-DOF) may account for
this difference, although further clarification remains to be
established.

Although the method presented in this paper provided an
effective way to reduce the dimensionality of the optimiza-
tion problem, we want to emphasize that this result does
not preclude altemative approaches. For example, an input
time-history (e.g., of joint torques) might be defined by a
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Movement Parameters

¢1i[rad] | ¢ [rad] | s, [rad] | ¢y, [rad] | ¢yf[rad] | Py [rad] | @sf [rad] | ¢y [rad] Ds] L* [m]

Bounding Box Lower Bound —0.51 —0.51 —0.51 0.0 0.1m —0.51 —0.51 0.0 0.4

Constraints Upper Bound | —0.1m 0.5 0.5 0.97 1.0m 0.5 0.5 0.9 1.5
. Target 1 —1.501 0.000 —-0.237 1414 1.728 0.000 0.000 0.332 0.950 0.051

Optimal
Movement Target 2 —1.103 0.737 —-0.233 2.310 1.728 —1.034 —1.396 0.192 0.579 0.092
Parameters

Target 3 —0.943 0.815 -1.396 1.728 2.670 —0.698 —1.396 0.052 0.950 0.127

sparse number of knot points connected by some suitable
spline function, and that may also facilitate convergence of
the optimization. In essence, the discrete motion profile used
here is an extreme example of that approach, using only two
knot points in the space for the entire trajectory. One
should note, however, that the choice of motion profile was
not arbitrary, but based on biological observation of human
movements in multiple situations [17], [24].

C. Justification of the Stiffness and Damping Matrices

Three key modelling assumptions were used to determine
the and  matrices (Eq. 5):

The neuromuscular stiffness corresponding to shoulder
joints J2, J3 (excluding the shoulder flexion/extension joint,
J1) and elbow joint J4 were perfectly decoupled.

— Intrinsic neuromechanical impedance arises from the
properties of muscles and their activation. Several multi-
articular muscles exist which couple motion across the
shoulder and elbow joints [25]. Hence, multi-articular
muscles result in off-diagonal stiffness terms between the
shoulder and elbow joint. For simplicity, we assumed
that the coupling between joint J1 and J4 was largely
predominant, such that the cross-coupling stiffness terms
between shoulder joint J2, J3 and elbow joint J4 could be
neglected.

The stiffness matrix ~ was chosen to be symmetric.

— Studies have shown that the force field emerging
from the elastic properties of the upper limb musculature
is nearly curl-free, meaning that the stiffness matrix of
the neuromuscular impedance of the upper extremity is
predominantly symmetric [26]. In principle, symmetry
of the stiffness matrix is consistent with passivity (i.e.,
the system may store energy and release it, but cannot
continuously supply power), which plays a key role in
preventing instability due to physical contact and dynamic
interaction with passive objects [27].

The damping matrix ~ was chosen to be proportional to
joint stiffness , ie., for some constant

— To model the dynamics of the first-order impedance
controller with a single time-constant, values for the joint
damping matrix ~ were assumed to be proportional to the
joint stiffness matrix . For this upper-limb controller, the
time-constant ~ was set as 0.05s [28] (Eq. 5).

Along with these key assumptions, experimental measure-
ments [29], [30] were used to construct the stiffness matrix

and damping matrix of the upper-limb controller,
which resulted in a motion resembling the actual motor
behavior of the upper limb.

D. Relation to Prior Work

Composing a controller based on dynamic primitives of-
fered a simplified solution for complex object manipulation.
A single movement planned in joint-space coordinates, which
corresponds to a motion primitive, and constant impedance
terms described by and which account for physical
interactions, were able to manage the complex dynamics of
the whip [8]-[10].

Note that the idea of simplifying motor control via prim-
itive elements is not at all new. Approaches using dynamic
movement primitives have been proposed as a powerful,
robust and adaptive method for various tasks [4], [31]-
[33]. Nevertheless, to the best of our knowledge, this prior
work mainly focused on unconstrained movements or on the
manipulation of rigid objects with comparatively low system
dimensions. Tasks which involve objects as dynamically
complex as a whip have not been fully explored. The
study presented in this paper has expanded the feasibility
of primitives-based approaches by managing a very complex
object using just one motion primitive.

As used in the work reported here, dynamic primitives in-
clude mechanical impedances to account for physical interac-
tion with the object [8]-[10]. Adding mechanical impedance
as a class of dynamic primitives may facilitate the control
of physical interactions [34]. However, by choosing constant
impedance terms, this study did not explore the effect of
different and potentially varying mechanical impedance for
complex object manipulation. Studying the role of mechan-
ical impedance is a topic of future research.

V. CONCLUSION

The simulations presented in this paper demonstrated
that encoding control based on dynamic primitives enabled
optimization to successfully identify an optimal movement
that handled an extremely complex object — a whip. We
anticipate that incorporating dynamic primitives to robot
control systems will facilitate robotic manipulation of flexi-
ble, deformable objects, which continues to be a significant
challenge.
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Fig. 4: The time-sequence of upper-limb (orange) and whip model (black). (A) Target 1 (B) Target 2 (C) Target 3. The simulation was generated by the
optimal upper-limb movement parameters (Table I) and re-visualized in MATLAB. Opacity of the color increases from start to end of the movement.
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