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Abstract— A prominent challenge in the field of robotics
is manipulation of flexible objects. One major factor that
makes this task difficult is the complex dynamics emerging
from its high-dimensional structure. This argues against the
use of popular optimization-based approaches, which scale
poorly with system dimension (the “curse of dimensionality”).
Nevertheless, almost indifferent to this complexity, humans
handle it on a daily basis, without any apparent difficulty.

Inspired by human motor control, we propose that encoding
movements based on dynamic primitives can simplify the task
of manipulating flexible objects and provides a way around
the curse of dimensionality. Using an extreme example —
manipulating a whip — we tested in simulation whether targets
at various locations could be reached with a whip by using a
controller based on dynamic primitives. Regardless of the target
location, this approach successfully managed the complexity of a
54 degree-of-freedom system (yielding a 108-dimensional state-
space representation) and identified an upper-limb movement
that achieved the task. This approach did not require a detailed
model of the whip, which thereby significantly simplified the
computational complexity of the control task. We believe that
this approach may facilitate robotic manipulation of flexible
materials, and in general afford a simplified way to control
dynamically complex objects.

I. INTRODUCTION

Endowing robots with human-level dexterity is one of the
ultimate goals of robotics. While the gap between human and
robot performance is rapidly closing, humans’ astonishing
dexterity is still far superior to anything yet achieved in
robotic systems [1].

The disparity in performance becomes more evident when
the task involves manipulation of flexible objects with sig-
nificant dynamics. The complex dynamics emerging from
their high degrees of freedom (DOF) structure is one of
the many factors which makes this task challenging. Due to
the high-dimensional structure, popular optimization-based
approaches, which scale poorly with system dimension, often
fail to identify the optimal solution (the notorious “curse
of dimensionality”) [2]. Nevertheless, humans are strikingly
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adept at manipulating flexible objects, without any apparent
difficulty. With care, understanding the strategy which hu-
mans use to handle flexible objects may allow us to better
bridge the gap between humans and robots.

Mounting evidence suggests that humans compose actions
based on dynamic primitives to simplify control [3]–[7].
Dynamic primitives are conceived as “dynamic attractors”
which act as fundamental building blocks of motor behavior
[8]–[10]. At least three distinct classes of dynamic primitives
have been identified — submovements, oscillations and
mechanical impedances. We propose that encoding actions
based on dynamic primitives could facilitate robotic control
of flexible, deformable objects.

To test this proposition, we focused on a task of striking
a distant target with a whip — one of the most complex
and exotic tools which humans can handle [11]. Extending
the work reported in [12] in which the arm, whip and target
were confined to a 2D sagittal plane, the work reported here
generalized the case to 3D. We considered spatial motions of
human upper limb and whip, and several different target loca-
tions in 3D space. We formulated and parameterized a 4-DOF
model of the human arm interacting with a 50-DOF whip
model, for which the model parameters were derived from
an actual bullwhip [12], [13]. We used a feedforward motion
command composed of a single submovement planned in
joint-space coordinates and constant mechanical impedances
for the upper-limb controller.

We discovered that regardless of the target location, this
approach was able to manage the complexity of a 54-DOF
system (yielding a 108-dimensional state-space representa-
tion) and succeeded to identify an upper-limb movement that
achieved the task. Encoding movements with parameterized
dynamic primitives significantly simplified the task of plac-
ing the tip of the whip at arbitrary locations and offered
a way to work around the curse of dimensionality. This
result demonstrated the effectiveness of dynamic primitives
to control an extremely high-DOF object. We believe that
this approach will facilitate robotic manipulation of flexible
objects, which is currently a major challenge.

II. METHODS

The research presented in this paper used the simulation
software MuJoCo [14]. For all of the MuJoCo simulations,
the semi-implicit Euler method was chosen as the numerical
integrator, with a time step of 0.1ms (10,000Hz).

A. Modelling

The model used in the MuJoCo simulation consisted of
two main parts: a model of a human upper limb (the manip-
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Fi g. 1: T h e u p p er-li m b ( A -C ) a n d w hi p m o d el (D -E ) r e n d er e d wit h t h e M uJ o C o si m ul at or. (A ) M ass, pri n ci p al a x es of i n erti a a n d t h e r ef er e n c e fr a m e of
e a c h li m b s e g m e nt ( Ta bl e I). ( B ) L e n gt h of e a c h li m b s e g m e nt a n d l e n gt h fr o m pr o xi m al j oi nt t o c e nt er of m ass ( C O M) ( Ta bl e I). ( C ) R ot ati o n al j oi nts
of s h o ul d er (J 1 J 3) a n d el b o w (J 4) a n d t h eir a x es of r ot ati o n. ( D ) T h e 5 0- D O F w hi p m o d el. (E ) L e n gt h l a n d m ass m of t h e s u b- m o d el of t h e w hi p,
r ot ati o n al j oi nts w hi c h s eri all y c o n n e ct t h e s u b- m o d els, a n d t h eir a x es of r ot ati o n. E a c h r ot ati o n al j oi nt w as e q ui p p e d wit h a li n e ar r ot ati o n al s pri n g k a n d
r ot ati o n al d a m p er b . A x es of r ot ati o n ar e vis u ali z e d as b ull et s h a p es.

ul at or) a n d a m o d el of a w hi p (t h e o bj e ct b ei n g m a ni p ul at e d).

1) 4- D O F U p p er-li m b M o d el: T h e h u m a n ar m w as m o d-
el e d as a t w o- b ar o p e n- c h ai n li n k a g e. E v er yt hi n g dist al t o t h e
wrist (i. e., h a n d, fi n g ers et c.) w er e o mitt e d fr o m t his m o d el.
T h e t w o li m b s e g m e nts — t h e u p p er ar m ( w hi c h e xt e n ds
fr o m t h e s h o ul d er t o t h e el b o w), a n d t h e f or e ar m ( w hi c h
e xt e n ds fr o m t h e el b o w t o t h e wrist) — w er e tr e at e d as n o n-
u nif or m c yli n d ers, i. e., t h e c e nt er of m ass ( C O M) di d n ot
c oi n ci d e wit h t h e g e o m etri c c e nt er of t h e li m b s e g m e nt. T h e
g e o m etri c al a n d i n erti al p ar a m et ers of e a c h li m b s e g m e nt
w er e o bt ai n e d fr o m a c o m p ut ati o n al m o d el b y H at z e [ 1 5],
a n d t h e d et ail e d v al u es ar e pr es e nt e d i n Ta bl e I ( Fi g. 1, 2).

T h e u p p er-li m b m o d el h a d 4- D O F — 3- D O F at t h e s h o ul-
d er a n d 1- D O F at t h e el b o w. T h e b all-s o c k et m e c h a nis m of
t h e s h o ul d er’s gl e n o h u m er al j oi nt w as m o d el e d as a 3- D O F
s p h eri c al j oi nt. Tr a nsl ati o n m o v e m e nts of t h e s h o ul d er w er e
o mitt e d fr o m t h e m o d el, i. e., t h e s h o ul d er j oi nt w as fi x e d i n
s p a c e. T h e 3- D O F s p h eri c al j oi nt w as c o nstr u ct e d as a s e-
q u e n c e of t hr e e r ot ati o n al j oi nts w h os e a x es of r ot ati o n w er e
i niti all y ort h o g o n al — d e n ot e d as J 1-J 3 ( Fi g. 1 C). T h e t hr e e
r ot ati o n al j oi nts i n or d er, c orr es p o n d e d t o fl e xi o n/ e xt e nsi o n
(J 1), a d d u cti o n/ a b d u cti o n (J 2) a n d l at er al/ m e di al r ot ati o n
(J 3). T h e m o v e m e nt of t h e el b o w w as m o d el e d as si n gl e-j oi nt
el b o w fl e xi o n/ e xt e nsi o n (J 4) ( Fi g. 1 C). S u pi n ati o n/ pr o n ati o n
of t h e el b o w w as o mitt e d fr o m t h e m o d el. At all f o ur j oi nts,
i n d e p e n d e ntl y c o ntr oll e d t or q u e a ct u at ors w er e m o u nt e d.

2) 5 0- D O F W hi p M o d el: T h e c o nti n u o us str u ct ur e of
a w hi p w as a p pr o xi m at e d a n d dis cr eti z e d as a m ulti-li n k
p e n d ul u m c o m p os e d of (i d e al) l u m p e d el e m e nts. E a c h s u b-
m o d el (i. e., p e n d ul u m) of t h e w hi p c o nsist e d of t hr e e
l u m p e d- p ar a m et er el e m e nts: a n (i d e al) p oi nt- m ass, a li n e ar
r ot ati o n al s pri n g a n d a li n e ar r ot ati o n al d a m p er ( Fi g. 1 D, 1 E).
T h e p oi nt- m ass m w as s us p e n d e d fr o m a m assl ess c yli n d er
wit h l e n gt h l. T h e ot h er e n d of t h e m assl ess c yli n d er w as
e q ui p p e d wit h a 2- D O F u ni v ers al j oi nt, w hi c h c o nsist e d of

t w o r ot ati o n al j oi nts w h os e a x es of r ot ati o n w er e ort h o g o n al.
E a c h r ot ati o n al j oi nt w as e q ui p p e d wit h a li n e ar r ot ati o n al
s pri n g a n d a li n e ar r ot ati o n al d a m p er, wit h c o ef fi ci e nts k a n d
b , r es p e cti v el y ( Fi g. 1 E). T h e v al u es of t h e m o d el p ar a m et ers
of t h e w hi p w er e o bt ai n e d fr o m a n “ e x p eri m e nt all y- fitt e d ”
w hi p m o d el, i n w hi c h t h e v al u es w er e d eri v e d fr o m e x p er-
i m e nt al o bs er v ati o ns of a n a ct u al b ull w hi p [ 1 2], [ 1 3]. 2 5
of t h e i d e nti c al 2- D O F s u b- m o d els w er e s eri all y c o n n e ct e d,
w hi c h r es ult e d i n a 5 0- D O F w hi p m o d el.

3) C o n n e cti o n b et w e e n t h e T w o M o d els: T o n ot i ntr o d u c e
a n y a d diti o n al t or q u e b et w e e n t h e u p p er-li m b a n d t h e w hi p
m o d el, t h e r ot ati o n al stiff n ess k a n d d a m pi n g c o ef fi ci e nt
b of t h e w hi p s u b- m o d el, w hi c h dir e ctl y att a c h e d t o t h e
e n d- eff e ct or of t h e u p p er-li m b m o d el, w er e s et as z er o.
S u m m ari zi n g, t h e w h ol e s yst e m r es ult e d i n a 5 4- D O F o p e n-
c h ai n li n k a g e.

B. C o ntr oll er

1) I m p e d a n c e C o ntr oll er: A first- or d er i m p e d a n c e c o n-
tr oll er wit h gr a vit y c o m p e ns ati o n w as us e d f or t h e u p p er-
li m b c o ntr oll er [ 1 6]:

τ = K (φ − θ ) + B ( ˙φ − θ̇ ) + τ G ( 1)

w h er e K , B ∈ R 4 × 4 ar e c o nst a nt j oi nt stiff n ess a n d d a m pi n g
m atri c es, w hi c h a c c o u nt f or t h e n e ur o m us c ul ar m e c h a ni c al
i m p e d a n c e of t h e u p p er-li m b m o d el; τ ∈ R 4 d e n ot es t h e
n et-t or q u e i n p ut of e a c h j oi nt a ct u at or; θ ∈ R 4 d e n ot es
t h e a ct u al j oi nt dis pl a c e m e nts of t h e u p p er-li m b m o d el;
φ ∈ R 4 d e n ot es t h e “ z er o-t or q u e ” tr aj e ct or y, i. e., n e gl e cti n g
gr a vit ati o n al eff e cts, n o t or q u e will b e e x ert e d b y t h e a ct u at or
w h e n φ e x a ctl y m at c h es t h e a ct u al j oi nt dis pl a c e m e nts θ
[ 1 2]; τ G ∈ R 4 d e n ot es t h e t or q u e r e q uir e d t o c o m p e ns at e t h e
gr a vit ati o n al f or c es a p pli e d t o t h e w h ol e s yst e m ( S e c. II- B. 2).
T h e z er o-t or q u e tr aj e ct or y φ (t) w as t h e f e e df or w ar d m oti o n
c o m m a n d of t h e c o ntr oll er w hi c h g e n er at e d t h e u p p er-li m b
m o v e m e nt ( S e c. II- B. 3).
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T A B L E I:  T h e  M o d el P ar a m et ers

D es c ri pti o n N ot ati o n  V al u es U nits

Li m b I n erti a
P ar a m et ers

M ass of e a c h li m b s e g m e nt , 1. 5 9 5 , 0. 8 6 9 [ k g]

L e n gt h of e a c h li m b s e g m e nt , 0. 2 9 4 , 0. 2 9 1 [ m]

L e n gt h fr o m pr o xi m al j oi nt t o  C O M , 0. 1 2 9 , 0. 1 1 2 [ m]

Pri n ci p al  m o m e nt of i n erti a, - a xis , 0. 0 1 1 9, 0. 0 0 4 8 [ k g  m ]

Pri n ci p al  m o m e nt of i n erti a, - a xis , 0. 0 1 1 9, 0. 0 0 4 9 [ k g  m ]

Pri n ci p al  m o m e nt of i n erti a, - a xis , 0. 0 0 1 3, 0. 0 0 0 5 [ k g  m ]

P ar a m et ers of t h e
W hi p  M o d el

N u m b er of s u b- m o d els 2 5 [-]

Val u e of t h e p oi nt- m ass 0. 0 1 2 [ k g]

L e n gt h of  m assl ess c yli n d er 0. 0 7 2 [ m]

C o ef fi ci e nt of t h e r ot ati o n al s pri n g 0. 2 4 2 [ N  m/r a d]

C o ef fi ci e nt of t h e r ot ati o n al d a m p er 0. 0 9 2 [ N  m s/r a d]

( T o p)  T h e g e o m etri c al a n d i n erti al p ar a m et ers of t h e u p p er-li m b  m o d el. S u bs cri pts d e n ot e t h e s h o ul d er a n d el b o w j oi nts, n u m b er e d pr o xi m al t o dist al.
Pri n ci p al  m o m e nts of i n erti a of li m b s e g m e nts  w er e c al c ul at e d  wit h r es p e ct t o t h e c e nt er of  m ass ( C O M) ( Fi g. 1 A, 1 B, 1 C). ( B ott o m)  T h e p ar a m et ers of
t h e  w hi p  m o d el,  w hi c h  w er e  m e as ur e d a n d e x p eri m e nt all y d eri v e d fr o m a n a ct u al b ull w hi p.  Gr a p hi c al d e pi cti o ns of t h e u p p er-li m b a n d  w hi p  m o d els ar e
s h o w n i n ( Fi g. 1, 2)

2)  Gr a vit y  C o m p e ns ati o n: Gr a vit ati o n al eff e cts  w er e
c o m p e ns at e d  wit h , s o t h at t h e a ct u al u p p er-li m b p ost ur e

c o ul d e x a ctl y  m at c h t h e z er o-t or q u e p ost ur e  w h e n t h e
w h ol e  m o d el  w as at r est:

( 2)

w h er e is a J a c o bi a n  m atri x of fr a m e r el ati v e
t o fr a m e ; d e n ot es t h e gr a vit ati o n al f or c e a p pli e d
t o fr a m e ; fr a m e 0, 1, 2 a n d 3 ar e att a c h e d t o t h e s h o ul d er,
C O M of t h e u p p er ar m,  C O M of t h e f or e ar m, a n d t h e e n d-
eff e ct or of t h e u p p er-li m b  m o d el ( Fi g. 2).

T h e d et ail e d f or c e v e ct ors ar e as f oll o ws:

( 3)

w h er e a n d d e n ot e t h e  m ass of u p p er ar m a n d
f or e ar m, r es p e cti v el y ( Ta bl e I); d e n ot es t h e t ot al  m ass
of t h e  w hi p  m o d el,  w hi c h is t h e n u m b er of s u b- m o d els of
t h e  w hi p  m ulti pli e d b y t h e p oi nt- m ass (
0. 3 k g); d e n ot es t h e gr a vit y v e ct or ( Fi g. 2).

Fr a m e # 3

Fr a m e # 2

Fr a m e # 1

Fr a m e # 0

C e nt er of M a s s

Fi g. 2: Fr a m es a n d t h e i m p os e d gr a vit ati o n al f or c es of t h e si m ul ati o n  m o d el.

3)  M oti o n  Pl a n ni n g – Z er o- T or q u e Tr aj e ct or y: T h e z er o-
t or q u e tr aj e ct or y ( E q. 1) of t h e u p p er-li m b  m o d el
c o nsist e d of a si n gl e  m o v e m e nt  — a dis cr et e  mi ni m u m-j er k

pr o fil e pl a n n e d i n j oi nt c o or di n at es [ 1 7] ( S e c. I V- B).

( 4)

w h er e s u bs cri pts a n d d e n ot e t h e i niti al a n d fi n al ( z er o-
t or q u e) p ost ur es, r es p e cti v el y; d e n ot es t h e d ur ati o n of t h e
m o v e m e nt. F or ti m es gr e at er t h a n d ur ati o n (i. e., ),
t h e z er o-t or q u e tr aj e ct or y of t h e u p p er-li m b  m o d el r e m ai n e d
at fi n al p ost ur e .  T h e z er o-t or q u e tr aj e ct or y w as
d et er mi n e d b y 9  m o v e m e nt p ar a m et ers: 4 f or i niti al p ost ur e

, 4 f or fi n al p ost ur e , a n d 1 f or  m o v e m e nt d ur ati o n .
4) Stiff n ess a n d  D a m pi n g  M atri c es: T h e n e ur o m us c ul ar

m e c h a ni c al i m p e d a n c e a n d m atri c es ( E q. 1)  w er e c h o-
s e n t o b e s y m m etri c p ositi v e- d e fi nit e  m atri c es.  T h e d a m pi n g
m atri x  w as c h os e n t o b e pr o p orti o n al t o j oi nt stiff n ess
s u c h t h at f or a p ositi v e c o nst a nt s.  T h e
d et ail e d v al u es us e d f or t h e stiff n ess  m atri x a n d d a m pi n g
m atri x  w er e as f oll o ws ( S e c. I V- C):

( 5)

C. T as k  D e fi niti o n a n d  O pti miz ati o n

A  w hi p t as k  w as d e fi n e d t o e v al u at e t h e p erf or m a n c e of t h e
u p p er-li m b c o ntr oll er.  T h e g o al of t h e t as k  w as t o hit a dist a nt
t ar g et  wit h t h e ti p of t h e  w hi p.  Q u a ntit ati v el y, t h e o bj e cti v e
w as t o  mi ni mi z e t h e v al u e [ m], t h e dist a n c e b et w e e n t h e
ti p of t h e  w hi p a n d t ar g et  wit h a si n gl e dis cr et e u p p er-li m b
m o v e m e nt, i. e., a si n gl e s et of 9  m o v e m e nt p ar a m et ers of
t h e z er o-t or q u e tr aj e ct or y ( ) ( E q. 4).  T h e  mi ni m u m
v al u e of t h e dist a n c e r e a c h e d  wit h a si n gl e dis cr et e u p p er-
li m b  m o v e m e nt, [ m]  w as a q u a ntit ati v e  m e as ur e t o ass ess
m o v e m e nt p erf or m a n c e.

T hr e e diff er e nt t ar g et l o c ati o ns  w er e d e fi n e d f or t h e  w hi p
t as k.  All t hr e e t ar g ets  w er e dist a n c e d j ust 0. 0 1 m o utsi d e of
a s p h er e, c e nt er e d at t h e s h o ul d er j oi nt, of r a di us [ m]

2 8 0 5

A ut h ori z e d li c e n s e d u s e li mit e d t o: MI T Li br ari e s. D o w nl o a d e d o n N o v e m b er 2 5, 2 0 2 2 at 2 2: 4 0: 2 8 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y.



e q u al t o t h e s u m of t h e l e n gt hs of t h e u p p er-li m b a n d w hi p
m o d el ( R = L 1 + L 2 + N · l + 0 .0 1 = 2 .3 9 5 m) ( Ta bl e
I). T his offs et a v oi d e d t h e w hi p m o d el c olli di n g wit h a
t ar g et, w hi c h pr e v e nt e d u n n e c ess ar y c o nt a ct d y n a mi cs b ei n g
i n cl u d e d i n t h e si m ul ati o n, w hil e r et ai ni n g t h e q u alit ati v e
a n d q u a ntit ati v e g o al of t h e w hi p t as k. I n a s p h eri c al c o-
or di n at e s yst e m (r a di us- a zi m ut h- el e v ati o n), t ar g et 1, 2 a n d
3 w er e l o c at e d at c o or di n at e ( R, 0 ◦ , 0 ◦ ), (R, 4 5 ◦ , 0 ◦ ) a n d
(R, 4 5 ◦ , 4 5 ◦ ), r es p e cti v el y ( Fi g. 3).

F or e a c h t ar g et l o c ati o n, t h e o pti m al 9 m o v e m e nt p ar a m-
et ers ( φ i , φ f , D) w hi c h mi ni mi z e d t h e mi ni m u m dist a n c e
b et w e e n t h e ti p of t h e w hi p a n d t ar g et, w er e i d e nti fi e d wit h
a gl o b al d eri v ati v e-fr e e o pti mi z ati o n al g orit h m DI R E C T- L
( DI vi di n g R E C Ta n gl es L o c all y bi as e d) u n d er t h e nl o pt ( n o n-
li n e ar o pti mi z ati o n) P yt h o n t o ol b o x [ 1 8]. Wit hi n t h e b o u n ds
of t h e c o nstr ai nt ( Ta bl e II), t h e DI R E C T- L o pti mi z ati o n
al g orit h m c o n d u ct e d 6 0 0 it er ati o ns.

T ar g et 1

4 5
∘

4 5 ∘

T ar g et 2

T ar g et 3

𝐿

𝐿

𝐿

𝐿

𝑥

Fi g. 3: Gr a p hi c al d e pi cti o n of t h e t hr e e t ar g et p ositi o ns of t h e t ar g eti n g t as k,
a n d t h e c o or di n at e fr a m e of t h e si m ul ati o n.

III. O P T I M I Z A T I O N R E S U L T S

F or e a c h t ar g et l o c ati o n, t h e DI R E C T- L al g orit h m c o n-
v er g e d t o a n o pti m al s et of 9 m o v e m e nt p ar a m et ers w hi c h
r es ult e d i n a mi ni m u m v al u e of dist a n c e L ∗ . D et ail e d v al u es
of t h e o pti m al p ar a m et ers of t h e m o v e m e nt a n d its c orr e-
s p o n di n g L ∗ v al u e ar e pr es e nt e d i n Ta bl e II. T hr e e ti m e-
fr a m es of t h e si m ul ati o n r es ults g e n er at e d b y t h e o pti m al
m o v e m e nt p ar a m et ers, vis u ali z e d usi n g M A T L A B ( M at h-
w or ks I n c., N ati c k, M A), ar e s h o w n i n Fi g. 4.

I V. D I S C U S S I O N

A. Si m pli fi c ati o n of t h e W hi p T as k

T his st u d y e x a mi n e d i n si m ul ati o n w h et h er a t ar g et at
v ari o us l o c ati o ns i n 3 D s p a c e c o ul d b e r e a c h e d wit h a w hi p
usi n g a (s m all) n u m b er of pri miti v e a cti o ns, w h os e p ar a m-
et ers c o ul d b e l e ar n e d t hr o u g h o pti mi z ati o n. C o nsi d eri n g
t h e di m e nsi o n alit y of t h e w h ol e s yst e m, t his t as k is b y n o
m e a ns tri vi al — t h e t as k w as t o c o or di n at e a s yst e m wit h
1 0 8 st at e-s p a c e di m e nsi o ns i n 3 D s p a c e t o r e a c h t ar g ets at
s e v er al l o c ati o ns. D es pit e t his d a u nti n g c o m pl e xit y, e n c o di n g
u p p er-li m b a cti o n usi n g t h e p ar a m et ers of a si n gl e m o v e m e nt
dr a m ati c all y si m pli fi e d t h e t ar g eti n g t as k a n d s u c c essf ull y

m a n a g e d t h e c o m pl e xit y of a n e xtr e m el y hi g h- di m e nsi o n al
s yst e m. T his a p pr o a c h pr o vi d e d a w a y t o w or k ar o u n d
t h e c urs e of di m e nsi o n alit y a n d t h e al g orit h m w as a bl e t o
c o n v er g e t o a n o pti m al u p p er-li m b m o v e m e nt.

It is w ort h e m p h asi zi n g t h at t his m et h o d c o m pl et el y
a v oi d e d t h e n e e d t o a c q uir e a d et ail e d a n d a c c ur at e m o d el of
t h e w hi p. R e g ar dl ess of t h e di m e nsi o n alit y or c o m pl e xit y of
t h e o bj e ct d y n a mi cs, t h e m a ni p ul ati o n t as k w as s u bstit ut e d
b y t h e o pti mi z ati o n of a s m all s et of m o v e m e nt p ar a m et ers.
T his a p pr o a c h s e e ms t o b e a k e y si m pli fi c ati o n r e q uir e d t o
l e ar n c o m pl e x m ot or s kills, si n c e o nl y a s m all s et of p ar a m-
et ers ar e a c q uir e d a n d r et ai n e d r e g ar dl ess of t h e c o m pl e xit y
of t h e o bj e ct. M or e o v er, ass u mi n g t h e e xist e n c e of a w ell-
d e fi n e d o bj e cti v e f u n cti o n, w e b eli e v e t h at t his m et h o d c a n
b e g e n er ali z e d a n d m a y aff or d a si m pli fi e d w a y t o c o ntr ol
d y n a mi c all y c o m pl e x o bj e cts.

B. Si m pli fi e d M oti o n Pl a n ni n g vi a D y n a mi c Pri miti v es

W hil e tr e m e n d o us pr o gr ess h as b e e n a c hi e v e d i n t h e
m a ni p ul ati o n of ri gi d o bj e cts, fl e xi bl e o bj e ct m a ni p ul ati o n
r e m ai ns t o b e a l o n g-st a n di n g pr o bl e m. O n e of t h e si g-
ni fi c a nt c h all e n g es is m oti o n pl a n ni n g f or fl e xi bl e o bj e ct
m a ni p ul ati o n, si n c e t h e c o m pl e x d y n a mi cs of t h e o bj e ct
l e a ds t o u n pr e di ct a bl e b e h a vi or [ 1 9], [ 2 0]. T o t a c kl e t his
pr o bl e m, st u di es d e p e n d e d o n h u m a n d e m o nstr at ors, r e q uir e d
a n e xtr e m el y l ar g e s et of d at a t o l e ar n t h e t as k, or oft e n
i n v ol v e d visi o n al g orit h ms t o d et e ct k e y f e at ur es, al o n g wit h
a n a n al yti c al m o d el of t h e o bj e ct [ 2 1], [ 2 2]. H o w e v er, t h es e
m et h o ds still s uff er fr o m t h e c o m pl e xit y e m er gi n g fr o m t h e
hi g h- di m e nsi o n al str u ct ur e of t h e o bj e ct.

T h e a p pr o a c h pr es e nt e d i n t his p a p er d o es n ot r el y o n a n y
s p e ci fi c a n al yti c al m o d el n or vis u al o bs er v ati o n of t h e w hi p.
B y c o m p osi n g m o v e m e nts b as e d o n d y n a mi c pri miti v es, t h e
m et h o d r e p ort e d h er e s u c c e e d e d t o m a ni p ul at e a fl e xi bl e
o bj e ct wit h si g ni fi c a nt d y n a mi cs, wit h o ut t h e n e e d t o a c q uir e
or e xtr a ct a n y d at a fr o m h u m a n d e m o nstr ati o ns, a n d wit h a
m o d est n u m b er of it er ati o ns of t h e o pti mi z ati o n. Pl a n ni n g
a f e e df or w ar d o p e n-l o o p m oti o n c o m m a n d φ (t) ( E q. 4),
wit h c o nst a nt i m p e d a n c e t er ms K a n d B , w as s uf fi ci e nt t o
m a ni p ul at e a 5 0- D O F w hi p m o d el f or t h e t ar g eti n g t as k.

Pr e vi o us st u d y s u g g ests t h at f or t as ks i n v ol vi n g c o m pl e x
i nt er a cti o n d y n a mi cs, t h e mi ni m u m-j er k pri n ci pl e h as li m-
it e d v al u e [ 2 3]. T his f a ct w as d e m o nstr at e d i n a t as k of
tr a ns p orti n g a n o nli n e ar c u p- a n d- b all s yst e m, w hi c h w as n ot
c o m p et e ntl y a c hi e v e d wit h a si n gl e mi ni m u m-j er k pr o fil e.
T h e r es ult pr es e nt e d i n t his p a p er pr o vi d es a n i ntri g ui n g
c o u nt er- e x a m pl e — t h e t ar g eti n g t as k i n v ol v e d a n i nt er a cti o n
wit h a 5 0- D O F m o d el a n d a mi ni m u m-j er k ( n o mi n al) m oti o n
w as still a bl e t o m a n a g e t his c o m pl e xit y. T h e di m e nsi o n-
alit y of t h e o bj e ct ( 5 0- D O F vs. 2- D O F) m a y a c c o u nt f or
t his diff er e n c e, alt h o u g h f urt h er cl ari fi c ati o n r e m ai ns t o b e
est a blis h e d.

Alt h o u g h t h e m et h o d pr es e nt e d i n t his p a p er pr o vi d e d a n
eff e cti v e w a y t o r e d u c e t h e di m e nsi o n alit y of t h e o pti mi z a-
ti o n pr o bl e m, w e w a nt t o e m p h asi z e t h at t his r es ult d o es
n ot pr e cl u d e alt er n ati v e a p pr o a c h es. F or e x a m pl e, a n i n p ut
ti m e- hist or y ( e. g., of j oi nt t or q u es) mi g ht b e d e fi n e d b y a

2 8 0 6
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TABLE II: The Upper, Lower Bound of the Search Space, Optimal Movement Parameters

Movement Parameters
𝜙!,# [rad] 𝜙$,# [rad] 𝜙%,# [rad] 𝜙&,# [rad] 𝜙!,' [rad] 𝜙$,' [rad] 𝜙%,' [rad] 𝜙&,' [rad] D [s] 𝐿∗ [m]

Bounding Box 
Constraints

Lower Bound −0.5𝜋 −0.5𝜋 −0.5𝜋 0.0𝜋 0.1𝜋 −0.5𝜋 −0.5𝜋 0.0𝜋 0.4

Upper Bound −0.1𝜋 −0.5𝜋 −0.5𝜋 0.9𝜋 1.0𝜋 −0.5𝜋 −0.5𝜋 0.9𝜋 1.5

Optimal 
Movement 
Parameters

Target 1 −1.501 0.000 −0.237 1.414 1.728 −0.000 −0.000 0.332 0.950 0.051

Target 2 −1.103 0.737 −0.233 2.310 1.728 −1.034 −1.396 0.192 0.579 0.092

Target 3 −0.943 0.815 −1.396 1.728 2.670 −0.698 −1.396 0.052 0.950 0.127

sparse number of knot points connected by some suitable
spline function, and that may also facilitate convergence of
the optimization. In essence, the discrete motion profile used
here is an extreme example of that approach, using only two
knot points in the space for the entire trajectory. One
should note, however, that the choice of motion profile was
not arbitrary, but based on biological observation of human
movements in multiple situations [17], [24].

C. Justification of the Stiffness and Damping Matrices

Three key modelling assumptions were used to determine
the and matrices (Eq. 5):

The neuromuscular stiffness corresponding to shoulder
joints J2, J3 (excluding the shoulder flexion/extension joint,
J1) and elbow joint J4 were perfectly decoupled.
— Intrinsic neuromechanical impedance arises from the
properties of muscles and their activation. Several multi-
articular muscles exist which couple motion across the
shoulder and elbow joints [25]. Hence, multi-articular
muscles result in off-diagonal stiffness terms between the
shoulder and elbow joint. For simplicity, we assumed
that the coupling between joint J1 and J4 was largely
predominant, such that the cross-coupling stiffness terms
between shoulder joint J2, J3 and elbow joint J4 could be
neglected.
The stiffness matrix was chosen to be symmetric.
— Studies have shown that the force field emerging
from the elastic properties of the upper limb musculature
is nearly curl-free, meaning that the stiffness matrix of
the neuromuscular impedance of the upper extremity is
predominantly symmetric [26]. In principle, symmetry
of the stiffness matrix is consistent with passivity (i.e.,
the system may store energy and release it, but cannot
continuously supply power), which plays a key role in
preventing instability due to physical contact and dynamic
interaction with passive objects [27].
The damping matrix was chosen to be proportional to
joint stiffness , i.e., for some constant .
— To model the dynamics of the first-order impedance
controller with a single time-constant, values for the joint
damping matrix were assumed to be proportional to the
joint stiffness matrix . For this upper-limb controller, the
time-constant was set as 0.05s [28] (Eq. 5).

Along with these key assumptions, experimental measure-
ments [29], [30] were used to construct the stiffness matrix

and damping matrix of the upper-limb controller,
which resulted in a motion resembling the actual motor
behavior of the upper limb.

D. Relation to Prior Work

Composing a controller based on dynamic primitives of-
fered a simplified solution for complex object manipulation.
A single movement planned in joint-space coordinates, which
corresponds to a motion primitive, and constant impedance
terms described by and which account for physical
interactions, were able to manage the complex dynamics of
the whip [8]–[10].

Note that the idea of simplifying motor control via prim-
itive elements is not at all new. Approaches using dynamic
movement primitives have been proposed as a powerful,
robust and adaptive method for various tasks [4], [31]–
[33]. Nevertheless, to the best of our knowledge, this prior
work mainly focused on unconstrained movements or on the
manipulation of rigid objects with comparatively low system
dimensions. Tasks which involve objects as dynamically
complex as a whip have not been fully explored. The
study presented in this paper has expanded the feasibility
of primitives-based approaches by managing a very complex
object using just one motion primitive.

As used in the work reported here, dynamic primitives in-
clude mechanical impedances to account for physical interac-
tion with the object [8]–[10]. Adding mechanical impedance
as a class of dynamic primitives may facilitate the control
of physical interactions [34]. However, by choosing constant
impedance terms, this study did not explore the effect of
different and potentially varying mechanical impedance for
complex object manipulation. Studying the role of mechan-
ical impedance is a topic of future research.

V. CONCLUSION

The simulations presented in this paper demonstrated
that encoding control based on dynamic primitives enabled
optimization to successfully identify an optimal movement
that handled an extremely complex object — a whip. We
anticipate that incorporating dynamic primitives to robot
control systems will facilitate robotic manipulation of flexi-
ble, deformable objects, which continues to be a significant
challenge.
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Fig. 4: The time-sequence of upper-limb (orange) and whip model (black). (A) Target 1 (B) Target 2 (C) Target 3. The simulation was generated by the
optimal upper-limb movement parameters (Table I) and re-visualized in MATLAB. Opacity of the color increases from start to end of the movement.
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