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Abstract: Inlet and outlet boundary conditions (BCs) play an important role in newly emerged im‐

age‐based computational hemodynamics for blood flows in human arteries anatomically extracted 

from medical images. We developed physiological inlet and outlet BCs based on patients’ medical 

data and integrated them into the volumetric lattice Boltzmann method. The inlet BC is a pulsatile 

paraboloidal velocity profile, which fits the real arterial shape, constructed from the Doppler veloc‐

ity waveform. The BC of each outlet is a pulsatile pressure calculated from the three‐element Wind‐

kessel model, in which three physiological parameters are tuned by the corresponding Doppler ve‐

locity waveform. Both velocity and pressure BCs are introduced into the lattice Boltzmann equa‐

tions through Guo’s non‐equilibrium extrapolation scheme. Meanwhile, we performed uncertainty 

quantification for the impact of uncertainties on the computation results. An application study was 

conducted for six human aortorenal arterial systems. The computed pressure waveforms have good 

agreement with  the medical measurement data. A systematic uncertainty quantification analysis 

demonstrates the reliability of the computed pressure with associated uncertainties in the Windkes‐

sel model. With the developed physiological BCs, the image‐based computation hemodynamics is 

expected to provide a computation potential for the noninvasive evaluation of hemodynamic ab‐

normalities in diseased human vessels. 

Keywords:  volumetric  lattice  Boltzmann  method;  image‐based  computational  hemodynamics; 

three‐element Windkessel model; boundary conditions; uncertainty quantification 

 

1. Introduction 

With the recent advances in medical imaging, computational power, and mathemat‐

ical algorithms, image‐based computational hemodynamics (ICHD) has emerged [1–7] as 

a new capability giving rise to the potential for computation‐aided diagnostics and ther‐

apeutics in a patient‐specific environment for cardiovascular diseases. Based on radiolog‐
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ical imaging data, such as computed tomography angiography (CTA) images and Dop‐

pler ultrasound (DUS) velocity waveforms, ICHD enables noninvasive and patient‐spe‐

cific quantification of pulsatile hemodynamics in human vessels. Such data, including ve‐

locity vector, pressure, vorticity vector, and wall‐shear stress (WSS)  in the entire artery 

segment with fine spatial and temporal resolutions, are not readily available from the cur‐

rent standard clinical measurements. Through further postprocessing of the pulsatile he‐

modynamic data, either the assessment of the true hemodynamic abnormality or the pre‐

diction of potential therapeutic/surgical outcomes from an interventional treatment may 

aid in clinical decision‐making for various cardiovascular diseases.   

A typical ICHD from medical data to medical insights mainly consists of three steps. 

They are (1) image extractions of a three‐dimensional anatomical geometry of the diseased 

artery from CTA data and one‐dimensional velocity waveforms from DUS images at inlet 

and outlets, (2) computation of pulsatile hemodynamics employing physical parameters 

together with  the flow environment, and  (3) post‐processing of  the computed pulsatile 

hemodynamics with analysis, visualization, and parametrization to the key insights of the 

disease assessment and potential therapeutic outcomes. Since only a segment of the blood 

circulation system is being computed, boundary conditions (BCs) are required to be ap‐

plied at the inlet(s) and outlet(s) of the vessel segment to represent the remaining vascular 

network. In general, the introduction of the inlet BC is relatively straightforward, impos‐

ing parabolic‐like  flow profiles at  the cross‐section of  the  inlet. Usually, an  inlet cross‐

section of a human vessel  is not a perfect circle. Therefore, neither a steady Poiseuille‐

Hagen nor an oscillating Womersley velocity profile can be directly constructed based on 

a DUS‐measured velocity waveform. The choices of the outflow BC in ICHD vary among 

zero pressure or zero traction conditions, resistance or impedance conditions, reduced‐

order models which can be an open or closed loop, and reduced‐order one‐dimensional 

wave propagation equations  [8–10]. To capture the  interaction between the  local  three‐

dimensional artery segment and the one‐dimensional global circulation, the three‐dimen‐

sional flow solver must be coupled to a reduced‐order lumped parameter network model. 

Among  them,  the  three‐element Windkessel model  [11–15]  (WK3) has been commonly 

used to construct such a network, in which a Windkessel circuit is adopted to model the 

distal  vasculature with  one  capacitor, modeling  vessel  compliance,  and  two  resistors, 

modeling proximal and distal flow resistances, respectively. Evidence has shown that the 

WK3 can well reproduce physiological pressure waveforms [16,17] in large vessels.   

In this work, we present the physiological inlet and outlet BCs in volumetric lattice 

Boltzmann method (VLBM) [18] for ICHD together with uncertainty quantification (UQ). 

The lattice Boltzmann method (LBM) [19,20] is a class of computational fluid dynamics 

(CFD) methods for solving complex flows. Instead of directly solving a set of nonlinear 

partial differential equations, i.e., Navier‐stokes (NS) equations, the LBM is a discretized 

kinetic model on a regular lattice to solve the dynamics of incompressible fluid flow.. Due 

to its particulate nature and local dynamics, the LBM has its advantages over the NS‐based 

CFD methods, especially in dealing with complex boundaries [18,21], incorporating mi‐

croscopic interactions [22,23] in multiphase flows, and implementing GPU (Graphics Pro‐

cessing Unit) parallel computing [21,24]. Nevertheless, the LBM has not been extensively 

used for ICHD so far and the majority of attempts have imposed non‐physiological BCs. 

An example is the zero pressure BC [25–28] at the outlets. The zero pressure BC, although 

easy to be implemented, is well known to lead to unrealistic hemodynamics, in part be‐

cause of its inability to capture physiologic levels of pressure [6]. Few other studies have 

used the fully developed BC [18,29] at the outlets, which is also inappropriate for a pulsa‐

tile flow in arbitrary flow domains. In this paper, we develop the physiological velocity 

BC at the inlet based on the DUS waveform and pressure BC at each outlet via WK3 model 

tuned by the corresponding DUS waveform and then integrated them into the VLBM. We 

study six aortorenal arterial systems, with given CTA image data and DUS velocity wave‐

forms of each, for noninvasive quantification of pulsatile hemodynamics. To demonstrate 
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the accuracy of the computation, we compare the computed pressure waves with the cor‐

responding  invasive  pressure  measurements  during  digital  subtraction  angiography 

(DSA) in the clinic. Meanwhile, we perform uncertainty quantification to demonstrate the 

reliability of the computation.   

2. Methods and Materials   

We have previously developed and validated a VLBM solver [30] for solving image‐

based pore‐scale porous media flows. The solver synergistically employs the traditional 

node‐based LBM for image segmentation and the cell‐based VLBM [18] for CFD, enabling 

a seamless connection between these two parts and unified GPU parallelization for fast 

computation [21,31,32]. 

The VLBM is formulated on a cell‐based mesh. Fluid particles are uniformly distrib‐

uted in lattice cells, as opposed to sitting at lattice nodes in conventional LBM. As sche‐

matized in Figure 1, an arbitrary boundary (black line) separates a fluid domain (without 

dots) from a solid boundary structure (with dots). Three distinct cells are characterized 

through a volumetric parameter,  i.e.,  the occupation of solid volume  ∆𝑉௦ሺ𝒙ሻ  in  the cell 
with  total volume  ∆𝑉ሺ𝒙ሻ, defined  as   𝒫ሺ𝒙ሻ ≡ ∆𝑉௦ሺ𝒙ሻ/∆𝑉ሺ𝒙ሻ. Thus  three different  cells, 
fluid cell (𝒫 ൌ 0), solid cell (𝒫 ൌ 1), and boundary cell (0 ൏ 𝒫 ൏ 1), can be distinguished.   

 

Figure 1. Three types of lattice cells in VLBM: fluid cell (𝒫 ൌ 0), solid cell (𝒫 ൌ 1), and boundary 
cell (0 ൏ 𝒫 ൏ 1). The solid line represents an arbitrary boundary of the flow domain. 

On a lattice space with b directions of discrete molecular velocity, VLBM deals with 

the time evolution of the particle population,  𝑛௜ሺ𝒙, 𝑡ሻ, corresponding to the ith velocity  𝒆௜   

𝑛௜ሺ𝒙 ൅ 𝒆௜𝛿𝑡, 𝑡 ൅ 𝛿𝑡ሻ ൌ 𝑛௜ሺ𝒙, 𝑡ሻ െ
ൣ𝑛௜ሺ𝒙, 𝑡ሻ െ 𝑛௜

௘௤ሺ𝒙, 𝑡ሻ൧
𝜏

; 𝑖 ൌ 0, … , 𝑏  (1)

where  𝑛௜
௘௤ሺ𝒙, 𝑡ሻ  and  𝜏   are the corresponding equilibrium particle population and relax‐

ation time, respectively. The resulting density  𝜌ሺ𝒙, 𝑡ሻ  and velocity  𝒖ሺ𝒙, 𝑡ሻ in the fluid do‐
main are   

𝜌ሺ𝒙, 𝑡ሻ ൌ෍𝑛௜ሺ𝒙, 𝑡ሻ /ሾ1 െ 𝒫ሺ𝒙, 𝑡ሻሿ  (2)

and 

𝒖ሺ𝒙, 𝑡ሻ ൌ෍𝒆௜𝑛௜ሺ𝒙, 𝑡ሻ /෍𝑛௜ሺ𝒙, 𝑡ሻ  (3)

The pressure field  𝑝ሺ𝒙, 𝑡ሻ is then calculated from: 

𝑝ሺ𝒙, 𝑡ሻ െ 𝑝଴ ൌ 𝑐௦ଶሾ𝜌ሺ𝒙, 𝑡ሻ െ 𝜌଴ሿ  (4)

where  𝑝଴   and  𝜌଴   are  reference  pressure  and  density,  respectively.  In  this work, we 

adapted the VLBM solver to ICHD, named InVascular, based on medical imaging data.   

The implementation flow chart of InVascular is shown in Figure 2. It starts with the 

image segmentation from CTA image data to extract the anatomical geometry using the 
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conventional LBM with D3Q7 lattice model [33]. A distance field [34] governed by a level 

set equation [35] is solved in which the zero‐level distance represents the morphological 

boundary of the vessel segment. From the distance field, 𝒫ሺ𝒙ሻ  of each cell is calculated 
and  then,  together with  the  inlet and outlet BCs,  fed  to VLBM  [18] with D3Q19  lattice 

model. Both image segmentation and computational hemodynamics (dashed part in Fig‐

ure 2) are carried out on a unified mesh and connected seamlessly. Thus the state‐of‐the‐

art GPU parallelism can be efficiently utilized. The detailed formulation of LBM for image 

segmentation and VLBM  computational hemodynamics, as well as  the  connection be‐

tween them, and the GPU parallelization are referred to in our published papers [21,30]. 

In this paper, we focus on the integration of the physiological inlet and outlet BCs with 

the VLBM, as highlighted in Figure 2. 

 

Figure 2. Flow chart of InVascular: (1) 3‐D anatomical extraction of vessel segment from CTA image 

data; (2) ICHD with the inputs of  𝒫ሺ𝒙ሻ  and inlet and outlet BCs based on DUS image data as well 

as  three‐element WK model; and  (3) post‐processing  for  intepretation and medical  insights. The 

unified LBM (dashed part) is accelerated by GPU parallelism 

2.1. Physiological Inlet and Outlet Boundary Conditions   

In this part, we present the algorithms to construct the physiological inlet and outlet 

BCs based on the DUS velocity waveforms. The inlet BC is a velocity profile, and the out‐

put BC is a pressure calculated from WK3. Both velocity and pressure BCs are introduced 

into VLBM. 

2.1.1. Implementation of Velocity and Pressure BCs in VLBM   

In the VLBM, we employed the non‐equilibrium extrapolation boundary condition 

developed by Guo et al. [36] as follows. 

𝑛௜ሺ𝒙௕, 𝑡ሻ െ 𝑛௜
௘௤ሺ𝒙௕, 𝑡ሻ ൌ 𝑛௜൫𝒙௙, 𝑡൯ െ 𝑛௜

௘௤൫𝒙௙ , 𝑡൯  (5)

for i‐th direction where  𝒙௕  and  𝒙௙  are the boundary cell and its next fluid cell along that 
direction, respectively. If the velocity,  𝒖ሺ𝒙𝒃, 𝑡ሻ, is known at the boundary cell, the velocity 

BC is: 

𝑛௜ሺ𝒙𝒃, 𝑡ሻ ൌ 𝑛௜
௘௤ ቀ𝜌ሺ𝒙𝒇, 𝑡ሻ,𝒖ሺ𝒙𝒃, 𝑡ሻቁ ൅ 𝑛௜൫𝒙𝒇, 𝑡൯ െ 𝑛௜

௘௤൫𝒙𝒇, 𝑡൯  (6)

Whereas if the pressure  𝑝ሺ𝒙𝒃, 𝑡ሻ  is given at the boundary cell, the pressure BC reads: 

𝑛௜ሺ𝒙𝒃, 𝑡ሻ ൌ 𝑛௜
௘௤൫𝜌ሺ𝒙𝒃, 𝑡ሻ,𝒖ሺ𝒙𝒇, 𝑡ሻ൯ ൅ 𝑛௜൫𝒙𝒇, 𝑡൯ െ 𝑛௜

௘௤൫𝒙𝒇, 𝑡൯  (7)

where  𝜌ሺ𝒙𝒃, 𝑡ሻ  is calculated from Equation (4). We use the velocity BC and pressure BC 

at the inlet and each outlet, respectively.   

In InVascular, the inlet and outlet BCs are based on the patient’s DUS data, as shown 

by the shaded part in Figure 2. We present the introduction of the inlet and outlet BCs in 

the following subsections. 
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2.1.2. Lumen‐Fitted Velocity BC Profile at an Inlet   

The DUS measured velocity waveform,  𝑢௜௡ሺ𝑡ሻ, has been commonly used as the in‐

flow BC  [6]  in  ICHD. For a pipe with  its radius of R,  the  typical way  to  introduce  the 

pulsatile velocity  to drive  the  flow  into  the pipe  is  to  construct  a parabolic profile  of 

Poiseuille flow,  𝑢ሺ𝑟, 𝑡ሻ ൌ 𝑢௜௡ሺ𝑟, 𝑡ሻሺ1 െ 𝑟ଶ/𝑅ଶሻ, in which r is the distance to the pipe center. 

However, real arterial lumens are often not perfectly circular. To use this parabolic veloc‐

ity profile, one needs to extend the inlet from noncircular to circular, which may introduce 

an unrealistic inflow. 

We present an algorithm, as illustrated in Figure 3, for an irregular paraboloid‐like 

velocity profile  that  fits  the  real  inlet cross‐section. The velocity waveform of  𝑢௜௡ሺ𝑡ሻ  is 
digitized from the patient’s DUS shown in Figure 3a. It should be noted that, for a blood 

flow, the inflow velocity is pulsatile thus the irregular velocity profile needs to be con‐

structed at every time point and the time resolution should be fine enough, determined 

through a temporal convergence check. To refine the temporal resolution, we use linear 

interpolation.   

 

 

Figure 3. Illustration of inlet boundary condition from DUS image data for an irregular artery plane. 

(a) A generic DUS image recording velocity magnitude waveform  𝑢௜௡ሺ𝑡ሻ. (b) An example of index‐

ing to construct an irregular paraboloidal velocity profile on the inlet plane. (c) Normalized velocity 

distribution on inlet plane varying from  𝑢௜௡  at the center to zero at the edge. 

Assume the inlet plane is perpendicular to the z‐direction, i.e., the direction of the 

bloodstream, and it is located at  𝑧 ൌ 𝑧଴. On the plane, each cell has known 𝒫ሺ𝑖, 𝑗, 𝑧଴ሻ with 

𝑖 ൌ 1, … ,𝑁௫  and  𝑗 ൌ 1, … ,𝑁௬. The algorithm to generate an irregular paraboloidal velocity 
profile at time t includes the following steps, schematized in Figure 3b. 

(1) Declare a matrix  𝑁௫ ൈ 𝑁௬, i.e.,  𝐿௜௝  (𝑖 ൌ 1, … ,𝑁௫, 𝑗 ൌ 1, … ,𝑁௬) and initialize it as  𝐿௜௝ ൌ
0. 

(2) Loop i from 1 to  𝑁௫  and j from 1 to  𝑁௬, if   
a. a cell’s  𝒫  is neither 0 nor 1 (i.e., a boundary cell), assign  𝐿௜௝ ൌ 0  for this cell and 

define its velocity magnitude 0, 

b. a cell’s  𝒫  is 0 (i.e., a fluid cell) and the  𝐿௜௝  value of any neighboring cell is 0, as‐
sign  𝐿௜௝ ൌ 1  for this cell, 

c. a cell’s  𝒫  is 0 and the  𝐿௜௝  value of any neighboring cell is 1, assign  𝐿௜௝ ൌ 2   for 
this cell, 

d. continue until all the fluid cells are assigned. The last index of the cell labeling is 

𝐿௜௝ ൌ 𝑀. 

(3) Loop i from 1 to  𝑁௫ and j from 1 to  𝑁௬  and define velocity magnitude as  𝑢௜௝ሺ𝑡ሻ ൌ
𝐿௜௝ ൈ 𝑢௜௡ሺ𝑡ሻ/𝑀. 

The largest velocity  𝑢௜௡ሺ𝑡ሻ  is recognized at the cell labeled as  𝐿௜௝ ൌ 𝑀. The velocity 

reduces radially from  𝑢௜௡ሺ𝑡ሻ  at label M (center) to zero at label  𝐿௜௝ ൌ 0  (wall). Figure 3c 

shows two views of paraboloid‐like velocity distribution on an irregular inlet plane at a 

time point. The inlet velocity profile is introduced in VLBM through Equation (6). 



Fluids 2022, 7, 30  6  of  15 
 

2.1.3. WK3‐Based Pressure BC at an Outlet   

For the outlet BC, we use the popular WK3 model in an open vessel loop to calculate 

the pressure,  𝑝ሺ𝑡ሻ, on the outlet plane. It has been well‐known that WK3 is the best outlet 

BC model among other physiologically relevant zero‐dimenensional outflow models to 

simulate the peripheral vasculature [37] and has been popularly used when significant 

compliance is located in the modeled distal vasculature [12]. As shown in Figure 4, WK3 

is an analogy to an electrical circuit, which models the distal vasculature with one capac‐

itor, modeling vessel  compliance  and  two  resistors, modeling proximal  and distal  re‐

sistance. The flow rate (Q) and the mean pressure (𝑝) over the outlet plane are related by 
the following ordinary differential equation [12] 

𝑑𝑝
𝑑𝑡

൅  
1
𝑅𝐶

𝑝 ൌ 𝑟
𝑑𝑄
𝑑𝑡

൅
1
𝑅𝐶

ሺ𝑟 ൅ 𝑅ሻ𝑄  (8)

where r and R represent the proximal and distal resistances, and C is the compliance of 

the distal vasculature. Specifically, r  is used  to absorb  the  incoming waves and reduce 

artificial wave reflections. Equation (8) has an analytical solution. 

𝑝ሺ𝑡ሻ ൌ 𝑒ି௧ ሺோ஼⁄ ሻ න 𝑒௦/ሺோ஼ሻ ቈ𝑟 𝑑𝑄ሺ𝑠ሻ 𝑑𝑠 ൅ ቆ𝑟 ൅
𝑅𝑄ሺ𝑠ሻ
𝑅𝐶

ቇൗ ቉𝑑𝑠 ൅ 𝑝௧ୀ଴
௧

଴
  (9)

where  𝑝௧ୀ଴  is the initial pressure at the outlet.   
In Equation (9), the three elements, r, C, and R, specified at each outlet, must be tuned 

to obtain the physiological values for the total outflow rate 𝑄௧  and target systolic (𝑝௦௬௦) 
and  diastolic  (𝑝ௗ௜௔ )  pressure, with  the mean  arterial  pressure,  𝑝௠ ൌ ሺ𝑝௦௬௦ ൅ 2𝑝ௗ௜௔ሻ/3 , 
based on patient’s clinical data. For an aortorenal system, see Figure 5 below, we use bra‐

chial pressure for a pressure target and DUS velocity waveform for the target flow rate 

(Q) with the understanding that the capacitor and resistors have independent functional‐

ities in the WK3 circuit: a capacitor reflects the pulsatility of blood flow whereas a resistor 

determines the flow rate [15] 

 

Figure 4. WK3 model consists of one capacitor (C), modeling vessel compliance, and two resistors 

(r and R), modeling proximal and distal resistance, respectively. 

The integration of the WK3 model [15] and VLBM is described as follows 

(1) Determine the total resistance in the arterial segment   

a. Assume the total system compliance  𝐶௧ ൌ 0.1  𝑐𝑚5/𝑑𝑦𝑛𝑒𝑠.   
b. Calculate the total resistance  𝑅௧ሺൌ 𝑟 ൅ 𝑅ሻ ൌ 𝑝௠ 𝑄௧⁄ .   

(2) Determine  r and R at each outlet based on  the published works:  the proximal  re‐

sistance r weights 28% [38,39] and 5.6% [40] out of the total resistance in the renal 

artery and abdominal aorta, respectively. 

(3) Tune r and R based on DUS flow rate at each outlet.   

a. Integrate the pressure BC from the WK3, Equation (9), into VLBM, Equation (7), 

and run InVascular. In one pulsation, r, R, and C remain the same but Q (t) at each 

outlet is obtained from the simulation. 

b. Once a simulation is done, check if the flow rate at each outlet matches that calcu‐

lated from DUS imaging data. If yes, r and R are determined; If not, adjust Rt and 

repeat (1) b, (2), and (3).   

(4) Determine the compliance C at each outlet. 

a. Distribute  𝐶௧  to each outlet proportional to the corresponding mean flow rate.   
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b. Check if the mean arterial pressure  𝑝̅௜௡
஼ு஽ matches  𝑝̅௜௡  at the inlet. If not, adjust 

𝐶௧  in (1) a. and repeat (1) and (2). 
The outlet BC at each outlet is introduced  in VLBM through Equations (4) and (7) 

after the pressure is obtained from Equation (9) at each time step. 

2.2. Uncertainty Quantification 

There is no doubt that uncertainty always exists in any modeling and simulation pro‐

cess  [41].  In  the process shown  in  the  flowchart of InVascular  in Figure 2, uncertainties 

come from noises introduced during image scanning and the extraction of the arterial seg‐

mentation, the use of empirical blood properties, parameters involved in the boundary 

conditions, and so on. The uncertainties in the input variables will affect the output (he‐

modynamics) of InVascular. Following the common practice in uncertainty quantification 

(UQ), we treat the parameters with uncertainty as random variables and quantify their 

effects on the output variables. In this study, we use the common UQ method: the First 

Order Second Moment (FOSM) [42] method.   

Denote  output  variables  by  𝒀 ൌ ሺ𝑌ଵ,𝑌ଶ, … ,𝑌௠ሻ୘   and  input  variables  by  𝐗 ൌ
ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡ሻ୘, where m and  𝑛  are the numbers of output and input variables, respec‐

tively.  If  the  elements  of  𝐗   are  non‐normally  distributed  and  dependent,  Rosenblatt 

transformation [43] can be used to transform  𝐗  into independent and normal variables. 

Suppose the black‐box models of InVascular are given by: 

𝑌௝ ൌ 𝑔௝ሺ𝐗ሻ,   𝑗 ൌ 1,2, … ,𝑚)  (10)

Linearizing a model at the mean values,  𝛍 ൌ ሺ𝜇ଵ,𝜇ଶ, … ,𝜇௡ሻ, of  𝐗, yields 

𝑌௝ ൎ 𝑔௝ሺ𝛍ሻ ൅ 𝛁𝐓ሺ𝐗 െ 𝛍ሻ, 𝑗 ൌ 1,2, … ,𝑚  (11)

where 𝛁 ൌ ቀ
డ௚

డ௑భ
,
డ௚

డ௑మ
, … ,

డ௚

డ௑೙
ቁ
்
  is the gradient of  𝑔௝ሺ𝐗ሻ  at  𝛍.  Since  𝑌௝  is approximated as 

a linear combination of  𝐗, it is also normally distributed, denoted by 𝑁ሺ𝜇௒ೕ ,𝜎௒ೕ
ଶ ሻ with  𝜇௒ೕ 

and  𝜎௒ೕ ,  the mean and standard deviation of  𝑌௝,  respectively. The  two parameters are 

given as follows. 

𝜇௒ೕ ൌ 𝑔௝ሺ𝐗ሻ, 𝑗 ൌ 1,2, … ,𝑚  (12)

𝜎௒ೕ
ଶ ൌ෍ቆ

𝜕𝑔௝
𝜕𝑋௜

ቇ
ଶ

𝜎௜
ଶ,

௡

௜ୀଵ

𝑗 ൌ 1,2, … ,𝑚  (13)

where  𝜎௜   is  the  standard deviation of  𝑋௜ . The  covariance between output variables  𝑌௝ 
and  𝑌௞  is calculated by 

𝐶௝௞ ൌ෍ቆ
𝜕𝑔௝
𝜕𝑋௜

ቇ ൬
𝜕𝑔௞
𝜕𝑋௜

൰ 𝜎௜
ଶ

௡

௜ୀଵ

  (14)

Then the joint probability density function (PDF) of output  𝐘 ൌ ሺ𝑌ଵ,𝑌ଶ, … ,𝑌௠ሻ்  is de‐

termined  by  the  mean  vector  𝛍𝐘 ൌ ൫𝜇௒భ ,𝜇௒మ , … , 𝜇௒೘൯
்
  and  covariance  matrix  Σ௒ ൌ

൫𝐶௝௞൯௝,௞ୀଵ,ଶ,…,௠
. Since  𝑔௝ሺ𝐗ሻ  is a black box, its gradient is evaluated numerically by the fi‐

nite difference method. The total computational cost, measured by the number of function 

(model) calls, is  𝑛 ൅ 1. The efficiency is high since the number of function calls is linearly 

proportional to the dimensionality of input variables. 

2.3. Materials   

We studied six human aortorenal arterial systems. The medical data of each case in‐

cluded CTA images and DUS waveforms at the inlet and outlets, obtained from the elec‐

tronic medical libraries in Indiana University Methodist Hospital in Indianapolis, Indiana, 

USA, and Hangzhou First People’s Hospital, Hangzhou, China. The CTA resolutions are 

approximately 0.752 × 2.5 mm3 (US cases) and 0.652 × 0.6mm3 (China cases).   
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We show one representative case in Figure 5 to demonstrate the integration of VLBM 

and physiological BCs at inlet and outlets, for InVascular. The aortorenal arterial system, 

anatomically extracted from the patient’s CTA data, consists of the aortic artery (AA), left 

renal artery (LRA), and right renal artery (RRA). The inlet BC based on the DUS velocity 

waveform and outlet BCs of WK3 are imposed at the inlet and three outlets, respectively. 

A minor lumen reduction (circled, about 20% lumen reduction) is seen in the LRA. The 

DUS images are available at the AA inlet to construct a paraboloidal velocity profile and 

outlets of AA, LRA, and RRA to tune the r, R, and C parameters. The physical flow domain 

is 63 × 116 × 84 millimeter3. The cardiac cycle is 0.68 second with a time resolution of 6.79 

milliseconds. The density and kinematic viscosity are 1.06  103 kg/m3 and 3.3 × 10−6 m/s2, 

respectively. The dimensionless relaxation time  in VLBM is 0.5079.   

 

Figure 5. Integration of InVascular with velocity BC from DUS at inlet and pressure BCs through the 

WK3 model at outlets for quantification of TSPG (≡ 𝑝௔ െ 𝑝௥ሻ  in an aortorenal system extracted from 
patient’s CTA 

The WK3 parameters r, R, and C at the three outlets are listed in Table 1. The pulsatile 

pressure waveforms in AA, LRA, and RRA were invasively measured during a clinical 

intervention, which are used to validate the computed pressure below. As seen in Figure 

6 below, for a given pressure waveform, the pressure values at the peak and the end of 

the waveform are called systolic blood pressure,  𝑝௦௬௦, and diastolic blood pressure,  𝑝ௗ௜௔, 
respectively. The mean  arterial pressure  (MAP)  is defined as 𝑀𝐴𝑃 ൌ ൫𝑝௦௬௦ െ 𝑝ௗ௜௔൯/3 ൅
𝑝ௗ௜௔. 

 

Figure 6. Comparisons of pressure waveforms in (a) AA, (b) RRA, and (c) LRA between noninvasive 

computation (solid line) and invasive measurement (dashed line). 

Table 1. Values of resistance and compliance parameters, r, R, and C, in WK3 model at correspond‐

ing outlets tuned from the DUS data. 

Outlet 
r 

(dynes×s/cm5) 

R 

(dynes×s/cm5) 

105C 

(cm5/dynes) 

AA  88.0  2773.1  1.8 

LRA  2982.4  7666.03  0.36 

RRA  5972.8  15358.7  0.32 
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The spatial and temporal convergence checks are exhibited in Table 2. The relative 

errors are  the normalized differences of  the mean arterial pressure  (MAP) and systolic 

pressure (𝑃௦௬௦) between two successive grids and cycles, respectively. To balance the accu‐

racy and the computation cost, we chose 200 × 368 × 265 as the resolution for the simula‐

tion and run 10 cycles to produce the computational results. 

Table 2. Spatial (left) and temporal (right) convergence check. The spatial reoslution is represented 

by  the grid number along  the flow direction. MAP and  𝑝௦௬௦ stand  for mean arterial presure and 

systolic pressure, respectively. The relative error is the normalized difference of the correponding 

pressure values between two sucsessive grids and cycles. 

Spatial  Temporal 

Grid  MAP(mmHg) 
Relative Error 

(%) 
Cycle  𝑷𝒔𝒚𝒔  (mmHg) 

Relative Error 

(%) 

170  100    1  150   

180  87.5  12.5  3  154  2.7 

190  89  1.71  5  152  ‐1.3 

200  90  0.34  10  155  2.0 

210  90.15  0.19  15  155  0 

220  90.20  0.05  20  155  0 

3. Results 

In this section, we demonstrate the applicability and reliability of InVascular in two 

aspects. First, we use the representative study case to show the computed pulsatile pres‐

sure, velocity, and vorticity  fields  in  the arterial  system. The noninvasively  computed 

pressure waveforms are compared with the invasively measured ones at three locations. 

Second, we perform a systematic UQ analysis for the representative case and for all six 

cases to study how the r, R, and C parameters impact the computed pressure.   

3.1. Pulsatile Hemodynamics in an Aortorenal Arterial System 

We first demonstrate the accuracy of InVascular for the quantification of the pulsatile 

pressure field. Figure 6 shows the comparisons of the cyclic pressure waveforms  in  (a) 

AA, (b) RRA, and (c) LRA between noninvasive computation (solid lines) and invasive 

measurements (dashed lines). 

The  computed  pressure waveforms  agree  very well with  the medical measured 

waveforms. The pressure contours on (a) the AA‐LRA plane, (b)AA‐RRA plane, and (c) 

representative cross‐sections are plotted in Figure 7. The trans‐stenotic pressure gradient 

(𝑇𝑆𝑃𝐺) in the LRA can be calculated through ether 𝑀𝐴𝑃  or  𝑝௦௬௦.  The comparison of the 

TSPGs between noninvasive computation and invasive measurement is shown in Table 3. 

Again, both are in good agreement.   

 

Figure 7. Systolic pressure contours (a) the AA‐LRA plane, (b) AA‐RRA plane, and (c) representa‐

tive cross‐sections. 

   



Fluids 2022, 7, 30  10  of  15 
 

Table 3. Comparison of TSPG in LRA and RRA based on MAP  𝑎𝑛𝑑𝑝௦௬௦. 

𝑻𝑺𝑷𝑮 
𝑴𝑨𝑷  𝒑𝒔𝒚𝒔 

Computed  Measured  Computed  Measured 

𝑝௔ െ 𝑝௥, left  2.5  2.6  4.1  4.0 

𝑝௔ െ 𝑝௥, right  2.0  2.0  4.0  4.0 

We found that the fully‐developed BC and DUS‐based velocity BC, which are com‐

monly used in the LBM, cannot capture the physiological pressure waveform. Figure 8 

shows the cyclic evolution of the systolic pressure at a representative location in the arte‐

rial system under three different BCs with identical computation environments and con‐

ditions. Neither  the  fully‐developed BC  (long dash) nor DUS‐based velocity BC  (short 

dash) is convergent. The pressure (left scale) asymptotically increases with time and ex‐

ceeds the human blood pressure after a few cardiac cycles, whereas the WK3‐based pres‐

sure BC  (solid  line)  leads  to a convergent systolic pressure  (𝑝௦௬௦ ൎ 154.8 𝑚𝑚𝐻𝑔)  (right 
vertical scale) after 10 cardiac cycles. 

 

Figure 8. Cyclic evolution of systolic pressure in a representative location using three different BCs: 

velocity BC, pressure BC via WK3, and fully‐developed BC. 

Besides the pressure field, InVascular simultaneously computes the pulsatile velocity 

field, from which the vorticity and shear stress fields can be calculated. Figures 9 and 10 

show the velocity field with magnitude contours and streamlines and vorticity contours, 

respectively, at t = (a) 0.1, (b) 0.23, and (c) 0.63 in seconds in one cardiac cycle correspond‐

ing to systole (heart contraction, flow acceleration), diastole (heart relaxation, flow decel‐

eration), and the end of diastole respectively. In Figure 9, flow in AA is stronger at systole 

(a) than at diastole (b) but remains intensive in LRA and RRA at both time points and is 

better organized at systole  than at diastole. Whereas at  the end of diastole,  the  flow  is 

weak but chaotic. The vorticity contours shown in Figure 10 are similarly intensive in (a) 

and (b) with a large degree of skewness in AA, demonstrating the complexity of the flow 

in the real arteries. At the end of diastole, vorticity contours are much smaller and chaotic. 

 

Figure 9. Velocity contours and streamlines at  t =  (a) 0.10  (systole),  (b) 0.23, and  (c) 0.63  (end of 

diastole) in seconds. 
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Figure 10. Z‐component (vertically up) and x‐component (horizontally right) vorticity contours at t 

= (a) 0.10, (b) 0.23, and (c) 0.63 in seconds. 

3.2. Impact of r, C and R Parameters on Pressure Quantification   

Although the WK3 has been popularly used to model the physiological BC at each 

outlet of the artery segment (see Figure 5), its parameters reflecting resistances, r and R, 

and compliance, C, are determined empirically [38–40], which is subjected to uncertainty. 

To demonstrate the impact of the uncertainty in r‐C‐R parameters on the quantification of 

proximal and distal pressure, we performed a UQ analysis using FOSM. The input varia‐

bles are the r, R, and C parameters  in WK3, defined  in Table 4. The elements of  𝐗  are 
independently and normally distributed. The output variables are the pressure values in 

AA, LRA, and RRA, defined in Table 5. In this study, we assumed that the standard devi‐

ation of a random input variable is 3% of its mean. We performed UQ for five cases. The 

input distributions for the representative case in Section 3.1 are shown in Table 4.   

Table 4. Input distributions for the representative case in Section 3.1. 

Artery  Parameter  Variables  Mean 
Standard Devi‐

ation 
Distribution Type 

AA  r(dynes×s/cm5)  𝑋ଵ  108.12  3.24  Normal 

AA  R(dynes×s/cm5)  𝑋ଶ  3386.38  101.59  Normal 

LRA  r(dynes×s/cm5)  𝑋ଷ  2879.76  86.39  Normal 

LRA  R(dynes×s/cm5)  𝑋ସ  7386.06  221.58  Normal 

RRA  r(dynes×s/cm5)  𝑋ହ  3306.39  99.19  Normal 

RRA  R(dynes×s/cm5)  𝑋଺  8505.96  255.18  Normal 

AA  C(cm5/dynes)  𝑋଻  1.0 ൈ 10ିହ  3.0 ൈ 10ି଻  Normal 

LRA  C(cm5/dynes)  𝑋଼  5.4 ൈ 10ି଺  1.62 ൈ 10ି଻  Normal 

RRA  C(cm5/dynes)  𝑋ଽ  4.8 ൈ 10ି଺  1.43 ൈ 10ି଻  Normal 

Table 5. UQ results. 

Artery  Output Variable  Mean  𝝁𝒚𝟏   Standard Deviation  𝝈𝒚𝟏  95% Confidence Interval 
AA  𝑌ଵ  (mmHg)  155.80  1.37  [153.05, 158.55] 

LRA  𝑌ଶ  (mmHg)  141.72  1.12  [139.49, 143.95] 

RRA  𝑌ଷ  (mmHg)  144.61  1.12  [142.37, 147.86] 

UQ results are given in Table 5. All the model output variables are normally distrib‐

uted. For example,  𝑌ଵ~𝑁൫𝜇௒భ ,𝜎௒భ൯ ൌ 𝑁ሺ155.80 𝑚𝑚𝐻𝑔, 1.37ሻ. With these results, we know 

complete information about the simulation predictions, including the 95% confidence in‐

tervals of the model predictions. The formula for 95% confidence interval is  𝜇௒೔ േ2𝜎௒೔. For 
example, the 95% confidence interval of  𝑌ଵ  is [153.051, 158.55] mmHg unit. This means 

that  the chance  the actual value of  𝑌ଵ  falling  into  the  interval  is 95%, or we have 95% 

confidence that the actual value of  𝑌ଵ  is between 153.05 mmHg and 158.56 mmHg. The 

results of mean and standard deviation from five patients are also given in Table 6. The 

95% confidence intervals of the model predictions of five patients are in Table 7. 
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Table 6. Mean and standard deviation of five patient cases. 

Case  𝒀𝟏  (mmHg)  𝒀𝟐  (mmHg)  𝒀𝟑  (mmHg) 
1  𝑁ሺ156.80, 1.37ଶሻ  𝑁ሺ141.72, 1.11ଶሻ  𝑁ሺ144.61, 1.12ଶሻ 
2  𝑁ሺ163.61, 2.06ଶሻ  𝑁ሺ154.25, 1.93ଶሻ  𝑁ሺ56.42, 0.09ଶሻ 
3  𝑁ሺ157.22, 1.54ଶሻ  𝑁ሺ152.35, 1.45ଶሻ  𝑁ሺ153.85, 1.47ଶሻ 
4  𝑁ሺ109.71, 0.93ଶሻ  𝑁ሺ106.49, 0.89ଶሻ  𝑁ሺ74.50, 0.56ଶሻ 
5  𝑁ሺ123.21, 0.97ଶሻ  𝑁ሺ117.34, 0.89ଶሻ  𝑁ሺ102.17, 1.24ଶሻ 

Table 7. 95% confidence intervals of model predictions of five patient cases. 

Case  𝒀𝟏  (mmHg)  𝒀𝟐  (mmHg)  𝒀𝟑  (mmHg) 
1  [153.05, 158.55]  [139.49, 143.95]  [142.37, 146.86] 

2  [159.48, 167.74]  [150.38, 158.12]  [56.25, 56.59] 

3  [154.14, 160.30]  [149.45,155.25]  [150.92,156.79] 

4  [107.84, 111.58]  [104.72,108.27]  [73.37,75.62] 

5  [121.28, 125.15]  [115.57, 119.11]  [99.69,104.64] 

4. Discussion 

We have presented the physiological inlet and outlet BCs for ICHD and integrated 

them into our in‐house computational platform, InVascular. Using the unified LBM mod‐

eling  for  image segmentation and computational hemodynamics,  InVascular seamlessly 

integrates the anatomical extraction of the interested arterial segment and quantification 

of pulsatile hemodynamics and achieves fast computation via GPU parallel computing. 

The inlet BC is a pulsatile velocity. A paraboloidal velocity profile is constructed based on 

the DUS velocity waveform, which fits the real shape of the arterial lumen (usually noncir‐

cular). Each outlet BC is a pulsatile pressure determined by WK3 during the simulation. 

The inlet velocity and outlet pressure BCs are introduced in the VLBM via a non‐equilib‐

rium extrapolation BC scheme. Using InVascular, we performed UQ analysis to quantify 

the impact of input variations caused by uncertainties. We applied InVascular into a hu‐

man aortorenal arterial system extracted  from medical CTA  imaging data and demon‐

strated the applicability and reliability of InVascular for a real‐world flow system. Six cases 

were studied. The pressure waveforms in AA, LRA, and RRA computed from InVascular 

have excellent agreements with  the  invasive measurements. The pulsatile velocity and 

then vorticity fields are shown as well. Due to the lack of available data, the validation of 

the velocity quantification has not been conducted. A systematic UQ analysis focuses on 

the impact of the variation of r, R, and C parameters on the quantification of the pressure 

field. Results include joint probability density of the computed pressure, which also pro‐

vides the uncertainty or the confidence of the prediction. Due to the suitability of LBM for 

GPU parallel computing, InVascular features exceptionally fast computation speed. With 

a great potential to further speed up through parallel optimization and/or multiple GPU 

cards, the computation time is expected to be around 10 minutes per patient case. Such a 

computation capability is critically important for the clinical use of InVascular, enabling 

massive numerical analysis through parametrization to assess the true degree of existing 

arterial stenosis, either severe for immediate therapeutics or mild to avoid unnecessary 

intervention, within clinic permitted time. 
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Nomenclatures 

AA  Aortic Artery 

BC  Boundary Condition 

CFD  Computational Fluid Dynamics 

CTA  Computed Tomography Angiography 

DUS  Doppler Ultrasound 

FOSM  First‐Order Second Moment 

GPU  Graphic Processing Unit 

ICHD  Image‐Based Computational Hemodynamics 

LBM  Lattice Boltzmann Method 

LRA  Left Renal Artery 

MAP  Mean Arterial Pressure 

N‐S  Navier‐Stokes 

RRA  Right Renal Artery 

TSPG  Trans‐Stenotic Pressure Gradient 

UQ  Uncertainty Quantification 

VLBM  Volumetric Lattice Boltzmann Method 

WK3  Three‐Element Windkessel Model 

WSS  Wall‐Shear Stress 
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