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Abstract: Inlet and outlet boundary conditions (BCs) play an important role in newly emerged im-
age-based computational hemodynamics for blood flows in human arteries anatomically extracted
from medical images. We developed physiological inlet and outlet BCs based on patients” medical
data and integrated them into the volumetric lattice Boltzmann method. The inlet BC is a pulsatile
paraboloidal velocity profile, which fits the real arterial shape, constructed from the Doppler veloc-
ity waveform. The BC of each outlet is a pulsatile pressure calculated from the three-element Wind-
kessel model, in which three physiological parameters are tuned by the corresponding Doppler ve-
locity waveform. Both velocity and pressure BCs are introduced into the lattice Boltzmann equa-
tions through Guo’s non-equilibrium extrapolation scheme. Meanwhile, we performed uncertainty
quantification for the impact of uncertainties on the computation results. An application study was
conducted for six human aortorenal arterial systems. The computed pressure waveforms have good
agreement with the medical measurement data. A systematic uncertainty quantification analysis
demonstrates the reliability of the computed pressure with associated uncertainties in the Windkes-
sel model. With the developed physiological BCs, the image-based computation hemodynamics is
expected to provide a computation potential for the noninvasive evaluation of hemodynamic ab-

normalities in diseased human vessels.

Keywords: volumetric lattice Boltzmann method; image-based computational hemodynamics;
three-element Windkessel model; boundary conditions; uncertainty quantification

1. Introduction

With the recent advances in medical imaging, computational power, and mathemat-
ical algorithms, image-based computational hemodynamics (ICHD) has emerged [1-7] as
a new capability giving rise to the potential for computation-aided diagnostics and ther-
apeutics in a patient-specific environment for cardiovascular diseases. Based on radiolog-
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ical imaging data, such as computed tomography angiography (CTA) images and Dop-
pler ultrasound (DUS) velocity waveforms, ICHD enables noninvasive and patient-spe-
cific quantification of pulsatile hemodynamics in human vessels. Such data, including ve-
locity vector, pressure, vorticity vector, and wall-shear stress (WSS) in the entire artery
segment with fine spatial and temporal resolutions, are not readily available from the cur-
rent standard clinical measurements. Through further postprocessing of the pulsatile he-
modynamic data, either the assessment of the true hemodynamic abnormality or the pre-
diction of potential therapeutic/surgical outcomes from an interventional treatment may
aid in clinical decision-making for various cardiovascular diseases.

A typical ICHD from medical data to medical insights mainly consists of three steps.
They are (1) image extractions of a three-dimensional anatomical geometry of the diseased
artery from CTA data and one-dimensional velocity waveforms from DUS images at inlet
and outlets, (2) computation of pulsatile hemodynamics employing physical parameters
together with the flow environment, and (3) post-processing of the computed pulsatile
hemodynamics with analysis, visualization, and parametrization to the key insights of the
disease assessment and potential therapeutic outcomes. Since only a segment of the blood
circulation system is being computed, boundary conditions (BCs) are required to be ap-
plied at the inlet(s) and outlet(s) of the vessel segment to represent the remaining vascular
network. In general, the introduction of the inlet BC is relatively straightforward, impos-
ing parabolic-like flow profiles at the cross-section of the inlet. Usually, an inlet cross-
section of a human vessel is not a perfect circle. Therefore, neither a steady Poiseuille-
Hagen nor an oscillating Womersley velocity profile can be directly constructed based on
a DUS-measured velocity waveform. The choices of the outflow BC in ICHD vary among
zero pressure or zero traction conditions, resistance or impedance conditions, reduced-
order models which can be an open or closed loop, and reduced-order one-dimensional
wave propagation equations [8-10]. To capture the interaction between the local three-
dimensional artery segment and the one-dimensional global circulation, the three-dimen-
sional flow solver must be coupled to a reduced-order lumped parameter network model.
Among them, the three-element Windkessel model [11-15] (WK3) has been commonly
used to construct such a network, in which a Windkessel circuit is adopted to model the
distal vasculature with one capacitor, modeling vessel compliance, and two resistors,
modeling proximal and distal flow resistances, respectively. Evidence has shown that the
WKS3 can well reproduce physiological pressure waveforms [16,17] in large vessels.

In this work, we present the physiological inlet and outlet BCs in volumetric lattice
Boltzmann method (VLBM) [18] for ICHD together with uncertainty quantification (UQ).
The lattice Boltzmann method (LBM) [19,20] is a class of computational fluid dynamics
(CFD) methods for solving complex flows. Instead of directly solving a set of nonlinear
partial differential equations, i.e., Navier-stokes (NS) equations, the LBM is a discretized
kinetic model on a regular lattice to solve the dynamics of incompressible fluid flow.. Due
toits particulate nature and local dynamics, the LBM has its advantages over the NS-based
CFD methods, especially in dealing with complex boundaries [18,21], incorporating mi-
croscopic interactions [22,23] in multiphase flows, and implementing GPU (Graphics Pro-
cessing Unit) parallel computing [21,24]. Nevertheless, the LBM has not been extensively
used for ICHD so far and the majority of attempts have imposed non-physiological BCs.
An example is the zero pressure BC [25-28] at the outlets. The zero pressure BC, although
easy to be implemented, is well known to lead to unrealistic hemodynamics, in part be-
cause of its inability to capture physiologic levels of pressure [6]. Few other studies have
used the fully developed BC [18,29] at the outlets, which is also inappropriate for a pulsa-
tile flow in arbitrary flow domains. In this paper, we develop the physiological velocity
BC at the inlet based on the DUS waveform and pressure BC at each outlet via WK3 model
tuned by the corresponding DUS waveform and then integrated them into the VLBM. We
study six aortorenal arterial systems, with given CTA image data and DUS velocity wave-
forms of each, for noninvasive quantification of pulsatile hemodynamics. To demonstrate
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the accuracy of the computation, we compare the computed pressure waves with the cor-
responding invasive pressure measurements during digital subtraction angiography
(DSA) in the clinic. Meanwhile, we perform uncertainty quantification to demonstrate the
reliability of the computation.

2. Methods and Materials

We have previously developed and validated a VLBM solver [30] for solving image-
based pore-scale porous media flows. The solver synergistically employs the traditional
node-based LBM for image segmentation and the cell-based VLBM [18] for CFD, enabling
a seamless connection between these two parts and unified GPU parallelization for fast
computation [21,31,32].

The VLBM is formulated on a cell-based mesh. Fluid particles are uniformly distrib-
uted in lattice cells, as opposed to sitting at lattice nodes in conventional LBM. As sche-
matized in Figure 1, an arbitrary boundary (black line) separates a fluid domain (without
dots) from a solid boundary structure (with dots). Three distinct cells are characterized
through a volumetric parameter, i.e., the occupation of solid volume AV;(x) in the cell
with total volume AV (x), defined as P(x) = AV;(x)/AV(x). Thus three different cells,
fluid cell (P = 0), solid cell (P = 1), and boundary cell (0 < P < 1), can be distinguished.

Fluid| cell
(750)

Boundary cell
0¢72<1)
P

Figure 1. Three types of lattice cells in VLBM: fluid cell (P = 0), solid cell (P = 1), and boundary
cell (0 < P < 1). The solid line represents an arbitrary boundary of the flow domain.

On a lattice space with b directions of discrete molecular velocity, VLBM deals with
the time evolution of the particle population, n;(x,t), corresponding to the ith velocity e;

[n(x, ) = nj 7 (x,1)] ;i=0,..,b @

n;(x + e;6t,t + 6t) = n;(x,t) — -

where n;9(x,t) and 7 are the corresponding equilibrium particle population and relax-
ation time, respectively. The resulting density p(x,t) and velocity u(x, t) in the fluid do-
main are

p(x,0) = > m(x, /[1 - P(x, 0] @

and

uxt) = ) emi(x,6)/ ) mx0 ®)
The pressure field p(x, t) is then calculated from:

p(x,t) — po = cZ[p(x,t) — pol 4)

where p, and p, are reference pressure and density, respectively. In this work, we

adapted the VLBM solver to ICHD, named InVascular, based on medical imaging data.
The implementation flow chart of InVascular is shown in Figure 2. It starts with the

image segmentation from CTA image data to extract the anatomical geometry using the
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conventional LBM with D3Q?7 lattice model [33]. A distance field [34] governed by a level
set equation [35] is solved in which the zero-level distance represents the morphological
boundary of the vessel segment. From the distance field, P(x) of each cell is calculated
and then, together with the inlet and outlet BCs, fed to VLBM [18] with D3Q19 lattice
model. Both image segmentation and computational hemodynamics (dashed part in Fig-
ure 2) are carried out on a unified mesh and connected seamlessly. Thus the state-of-the-
art GPU parallelism can be efficiently utilized. The detailed formulation of LBM for image
segmentation and VLBM computational hemodynamics, as well as the connection be-
tween them, and the GPU parallelization are referred to in our published papers [21,30].
In this paper, we focus on the integration of the physiological inlet and outlet BCs with
the VLBM, as highlighted in Figure 2.

CTA image data

Inlet Boundary Conditions J
(LBM, D3Q7)

1

1

| DUS image Physiopathological
1 data information

P(x

1

1

1

1
{(1) 3-D anatomicalextraction} |
1
1

I Rod
1 [ Outlet Boundary Conditions J

(VLBM, D3Q19)

[(2) Computational hemodynamics}l [ Three-element WindKessel model }

(3) Post-processing for medical
guidelines and insights

Figure 2. Flow chart of InVascular: (1) 3-D anatomical extraction of vessel segment from CTA image
data; (2) ICHD with the inputs of P(x) and inlet and outlet BCs based on DUS image data as well
as three-element WK model; and (3) post-processing for intepretation and medical insights. The
unified LBM (dashed part) is accelerated by GPU parallelism

2.1. Physiological Inlet and Outlet Boundary Conditions

In this part, we present the algorithms to construct the physiological inlet and outlet
BCs based on the DUS velocity waveforms. The inlet BC is a velocity profile, and the out-
put BC is a pressure calculated from WKB3. Both velocity and pressure BCs are introduced
into VLBM.

2.1.1. Implementation of Velocity and Pressure BCs in VLBM
In the VLBM, we employed the non-equilibrium extrapolation boundary condition
developed by Guo et al. [36] as follows.
ny(xp, 1) — 0/ (xp, ) = ny(x5,t) — 0 (xf, £) (5)

for i-th direction where x;, and x; are the boundary cell and its next fluid cell along that
direction, respectively. If the velocity, u(xy,t), is known at the boundary cell, the velocity
BCis:

n;(xp, t) = n; (p(xf, t), u(xy, t)) +n(xp,t) — 0 (xp,t) (6)
Whereas if the pressure p(x,t) is given at the boundary cell, the pressure BC reads:
n(xp, £) = n;? (p(xp, O, u(xp, 1)) + 0y (xp,t) — 0 (x5, 1) 7)

where p(xp,t) is calculated from Equation (4). We use the velocity BC and pressure BC
at the inlet and each outlet, respectively.

In InVascular, the inlet and outlet BCs are based on the patient’'s DUS data, as shown
by the shaded part in Figure 2. We present the introduction of the inlet and outlet BCs in
the following subsections.
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2.1.2. Lumen-Fitted Velocity BC Profile at an Inlet

The DUS measured velocity waveform, u;,(t), has been commonly used as the in-
flow BC [6] in ICHD. For a pipe with its radius of R, the typical way to introduce the
pulsatile velocity to drive the flow into the pipe is to construct a parabolic profile of
Poiseuille flow, u(r,t) = uy,(r, t)(1 — r?/R?), in which 7 is the distance to the pipe center.
However, real arterial lumens are often not perfectly circular. To use this parabolic veloc-
ity profile, one needs to extend the inlet from noncircular to circular, which may introduce
an unrealistic inflow.

We present an algorithm, as illustrated in Figure 3, for an irregular paraboloid-like
velocity profile that fits the real inlet cross-section. The velocity waveform of u;,(t) is
digitized from the patient’s DUS shown in Figure 3a. It should be noted that, for a blood
flow, the inflow velocity is pulsatile thus the irregular velocity profile needs to be con-
structed at every time point and the time resolution should be fine enough, determined
through a temporal convergence check. To refine the temporal resolution, we use linear
interpolation.

1 alfififafy

1lHT(1f2]2]|2]|2(2]2]2]2
3 M
1111 2| 2] 2|2 ] ia]2] 2] T 100
1]2]2 al4lalaa]a]ala]3]3]2]2 089
o078
12 4l 4] 4 41515|5]5|5|515)5]4] 3| 3|2 087
1 056
Y122 4141411111‘2[1 ooa
ey1f2fz2f2]2f2 12|11 033
022
Tatalala]2f2f 2f 2] 2 z]2f 2] 2] 2] 41 041

1115 1 ({1
Side View Top View

(b) ()

Figure 3. Illustration of inlet boundary condition from DUS image data for an irregular artery plane.
(a) A generic DUS image recording velocity magnitude waveform u;,(t). (b) An example of index-
ing to construct an irregular paraboloidal velocity profile on the inlet plane. (¢) Normalized velocity
distribution on inlet plane varying from u;, at the center to zero at the edge.

Assume the inlet plane is perpendicular to the z-direction, i.e., the direction of the
bloodstream, and it is located at z = z,. On the plane, each cell has known P(i, j, z,) with
i=1,..,N, and j = 1,..., N,. The algorithm to generate an irregular paraboloidal velocity
profile at time f includes the following steps, schematized in Figure 3b.

(1) Declare a matrix Ny X Ny,i.e., Ljj (i =1,..,Ny,j =1,..,N,)and initialize itas L;; =

0.

(2) Loopifrom1to N, andjfrom1to N,,if
a. acell's P isneither 0 nor 1 (i.e., a boundary cell), assign L;; = 0 for this cell and
define its velocity magnitude 0,
b. acell's P is 0 (i.e, a fluid cell) and the L;; value of any neighboring cell is 0, as-
sign L;; = 1 for this cell,
c. acell's P is 0 and the L;; value of any neighboring cell is 1, assign L;; =2 for
this cell,
d. continue until all the fluid cells are assigned. The last index of the cell labeling is
L =M.
(3) Loopifrom1to Nyandjfrom1to N, and define velocity magnitude as u;;(t) =

Ly X ug (£) /M.

The largest velocity u;,(t) is recognized at the cell labeled as L;; = M. The velocity
reduces radially from u;,(t) at label M (center) to zero at label L;; = 0 (wall). Figure 3c
shows two views of paraboloid-like velocity distribution on an irregular inlet plane at a
time point. The inlet velocity profile is introduced in VLBM through Equation (6).
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2.1.3. WK3-Based Pressure BC at an Outlet

For the outlet BC, we use the popular WK3 model in an open vessel loop to calculate
the pressure, p(t), on the outlet plane. It has been well-known that WK3 is the best outlet
BC model among other physiologically relevant zero-dimenensional outflow models to
simulate the peripheral vasculature [37] and has been popularly used when significant
compliance is located in the modeled distal vasculature [12]. As shown in Figure 4, WK3
is an analogy to an electrical circuit, which models the distal vasculature with one capac-
itor, modeling vessel compliance and two resistors, modeling proximal and distal re-
sistance. The flow rate (Q) and the mean pressure (p) over the outlet plane are related by
the following ordinary differential equation [12]

dp 1 dQ 1

St —p =Tt — 8
act ReP =@ Tre U RC ®

where r and R represent the proximal and distal resistances, and C is the compliance of

the distal vasculature. Specifically, r is used to absorb the incoming waves and reduce
artificial wave reflections. Equation (8) has an analytical solution.

p(o) = et/ |

0

t
eS/(RO) [r dQ(s)/ds + (r + Rﬁés))] ds + p—g 9)
where p,_, is the initial pressure at the outlet.

In Equation (9), the three elements, , C, and R, specified at each outlet, must be tuned
to obtain the physiological values for the total outflow rate Q. and target systolic (psys)
and diastolic (pg,) pressure, with the mean arterial pressure, p, = (Dsys + 2Pqia)/3,
based on patient’s clinical data. For an aortorenal system, see Figure 5 below, we use bra-
chial pressure for a pressure target and DUS velocity waveform for the target flow rate
(Q) with the understanding that the capacitor and resistors have independent functional-
ities in the WK3 circuit: a capacitor reflects the pulsatility of blood flow whereas a resistor
determines the flow rate [15]

R
AN
o c

Figure 4. WK3 model consists of one capacitor (C), modeling vessel compliance, and two resistors
(r and R), modeling proximal and distal resistance, respectively.

The integration of the WK3 model [15] and VLBM is described as follows

(1) Determine the total resistance in the arterial segment

a. Assume the total system compliance C; = 0.1 c¢cm’/dynes.

b. Calculate the total resistance R;(=7 + R) = p,,/Q;.

(2) Determine r and R at each outlet based on the published works: the proximal re-
sistance r weights 28% [38,39] and 5.6% [40] out of the total resistance in the renal
artery and abdominal aorta, respectively.

(3) Tune r and R based on DUS flow rate at each outlet.

a. Integrate the pressure BC from the WK3, Equation (9), into VLBM, Equation (7),
and run InVascular. In one pulsation, r, R, and C remain the same but Q (#) at each
outlet is obtained from the simulation.

b. Once a simulation is done, check if the flow rate at each outlet matches that calcu-
lated from DUS imaging data. If yes, r and R are determined; If not, adjust R: and
repeat (1) b, (2), and (3).

(4) Determine the compliance C at each outlet.

a. Distribute C, to each outlet proportional to the corresponding mean flow rate.
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b. Check if the mean arterial pressure PP matches p;, at the inlet. If not, adjust

C; in (1) a. and repeat (1) and (2).
The outlet BC at each outlet is introduced in VLBM through Equations (4) and (7)
after the pressure is obtained from Equation (9) at each time step.

2.2. Uncertainty Quantification

There is no doubt that uncertainty always exists in any modeling and simulation pro-
cess [41]. In the process shown in the flowchart of InVascular in Figure 2, uncertainties
come from noises introduced during image scanning and the extraction of the arterial seg-
mentation, the use of empirical blood properties, parameters involved in the boundary
conditions, and so on. The uncertainties in the input variables will affect the output (he-
modynamics) of InVascular. Following the common practice in uncertainty quantification
(UQ), we treat the parameters with uncertainty as random variables and quantify their
effects on the output variables. In this study, we use the common UQ method: the First
Order Second Moment (FOSM) [42] method.

Denote output variables by ¥ = (Y,,Y,..,¥,)T and input variables by X=
(X1, X5, ..., X,)T, where m and n are the numbers of output and input variables, respec-
tively. If the elements of X are non-normally distributed and dependent, Rosenblatt
transformation [43] can be used to transform X into independent and normal variables.

Suppose the black-box models of InVascular are given by:

Yj = gj(X); j=12,..,m) (10)
Linearizing a model at the mean values, p = (s, t, ..., thy,), of X, yields

Vi~ g +VIX-p),j=12.,m 1)

where V = (a_g 99 3_g)T is the gradient of g;(X) at p. Since Y; is approximated as

0X1’ 0%y " 9Xn & J . J pp
a linear combination of X, itis also normally distributed, denoted by N (uy]., cr}?j) with Hy
and oy, the mean and standard deviation of Y}, respectively. The two parameters are

given as follows.

pry = 9%, = 12, .m (12

n

ag;\* , .
oF, = Z (axi-) 02j=12,..,m 13)

i=1

where o; is the standard deviation of X;. The covariance between output variables Y;

and Y} is calculated by
n
99;\ (99k\ .

Cik = Z <6_X,> <6_X,) o (14)

i=1
Then the joint probability density function (PDF) of output Y = (13, Y5, ..., ¥,,)T is de-
termined by the mean vector py = (,uyl, Uyys e ,uym)T and covariance matrix Xy =
(Cf")j,k=1,2,...,m' Since g;(X) is a black box, its gradient is evaluated numerically by the fi-
nite difference method. The total computational cost, measured by the number of function

(model) calls, is n + 1. The efficiency is high since the number of function calls is linearly
proportional to the dimensionality of input variables.

2.3. Materials

We studied six human aortorenal arterial systems. The medical data of each case in-
cluded CTA images and DUS waveforms at the inlet and outlets, obtained from the elec-
tronic medical libraries in Indiana University Methodist Hospital in Indianapolis, Indiana,
USA, and Hangzhou First People’s Hospital, Hangzhou, China. The CTA resolutions are
approximately 0.752 x 2.5 mm? (US cases) and 0.652 x 0.6mm? (China cases).
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We show one representative case in Figure 5 to demonstrate the integration of VLBM
and physiological BCs at inlet and outlets, for InVascular. The aortorenal arterial system,
anatomically extracted from the patient’s CTA data, consists of the aortic artery (AA), left
renal artery (LRA), and right renal artery (RRA). The inlet BC based on the DUS velocity
waveform and outlet BCs of WK3 are imposed at the inlet and three outlets, respectively.
A minor lumen reduction (circled, about 20% lumen reduction) is seen in the LRA. The
DUS images are available at the AA inlet to construct a paraboloidal velocity profile and
outlets of AA, LRA, and RRA to tune the 1, R, and C parameters. The physical flow domain
is 63 x 116 x 84 millimeter3. The cardiac cycle is 0.68 second with a time resolution of 6.79
milliseconds. The density and kinematic viscosity are 1.06 x 10° kg/m? and 3.3 x 106 m/s?,
respectively. The dimensionless relaxation time rin VLBM is 0.5079.

W o /\ Pulsatile velocity BC
3 from DUS

- — |

s :

Pa —Pr

Left renal artery
(LRA)

.

r Stenosis
€

ht renal
R ‘(‘ﬁ;f ey InVascular ”
(VLBM+ GPU) pr

Stenosis

Aortic artery
= (AA)
Pulsatile pressure BC
through WK3 model

Figure 5. Integration of InVascular with velocity BC from DUS at inlet and pressure BCs through the
WK3 model at outlets for quantification of TSPG (= p, — p;-) inan aortorenal system extracted from
patient’s CTA

The WKS3 parameters r, R, and C at the three outlets are listed in Table 1. The pulsatile
pressure waveforms in AA, LRA, and RRA were invasively measured during a clinical
intervention, which are used to validate the computed pressure below. As seen in Figure
6 below, for a given pressure waveform, the pressure values at the peak and the end of
the waveform are called systolic blood pressure, ps,s, and diastolic blood pressure, pgq,
respectively. The mean arterial pressure (MAP) is defined as MAP = (psys — Paia)/3 +

Pdia-

160
150
140

__ 130

£120

E 110} |
%100 :
90 +

80
70

~— ¥ - —
600 01 02 03 04 05 06 0 01 02 03 04 05 06 L‘ 01 02 03 04 05 06
(s) s S

Figure 6. Comparisons of pressure waveforms in (a) AA, (b) RRA, and (c) LRA between noninvasive
computation (solid line) and invasive measurement (dashed line).

Table 1. Values of resistance and compliance parameters, #, R, and C, in WK3 model at correspond-
ing outlets tuned from the DUS data.

Outlet y R 1¢C
(dynesxs/cm®) (dynesxs/cm®) (cm®/dynes)
AA 88.0 2773.1 1.8
LRA 2982.4 7666.03 0.36

RRA 5972.8 15358.7 0.32




Fluids 2022, 7, 30

9 of 15

The spatial and temporal convergence checks are exhibited in Table 2. The relative
errors are the normalized differences of the mean arterial pressure (MAP) and systolic
pressure (P,s) between two successive grids and cycles, respectively. To balance the accu-
racy and the computation cost, we chose 200 x 368 x 265 as the resolution for the simula-
tion and run 10 cycles to produce the computational results.

Table 2. Spatial (left) and temporal (right) convergence check. The spatial reoslution is represented
by the grid number along the flow direction. MAP and p, stand for mean arterial presure and
systolic pressure, respectively. The relative error is the normalized difference of the correponding
pressure values between two sucsessive grids and cycles.

Spatial Temporal

Grid MAP(mmHg) Relative Error Cycle Py, (mmHg) Relative Error
(%) (%)

170 100 1 150

180 87.5 12.5 3 154 2.7

190 89 1.71 5 152 -1.3

200 90 0.34 10 155 2.0

210 90.15 0.19 15 155 0

220 90.20 0.05 20 155 0

3. Results

In this section, we demonstrate the applicability and reliability of InVascular in two
aspects. First, we use the representative study case to show the computed pulsatile pres-
sure, velocity, and vorticity fields in the arterial system. The noninvasively computed
pressure waveforms are compared with the invasively measured ones at three locations.
Second, we perform a systematic UQ analysis for the representative case and for all six
cases to study how the 1, R, and C parameters impact the computed pressure.

3.1. Pulsatile Hemodynamics in an Aortorenal Arterial System

We first demonstrate the accuracy of InVascular for the quantification of the pulsatile
pressure field. Figure 6 shows the comparisons of the cyclic pressure waveforms in (a)
AA, (b) RRA, and (c) LRA between noninvasive computation (solid lines) and invasive
measurements (dashed lines).

The computed pressure waveforms agree very well with the medical measured
waveforms. The pressure contours on (a) the AA-LRA plane, (b)AA-RRA plane, and (c)
representative cross-sections are plotted in Figure 7. The trans-stenotic pressure gradient
(TSPG) in the LRA can be calculated through ether MAP or ps,,. The comparison of the
TSPGs between noninvasive computation and invasive measurement is shown in Table 3.
Again, both are in good agreement.

p(mmHg)

154 |
150
146 |
142
138
134 |
130 |

()

Figure 7. Systolic pressure contours (a) the AA-LRA plane, (b) AA-RRA plane, and (c) representa-
tive cross-sections.
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Table 3. Comparison of TSPG in LRA and RRA based on MAP andpg,.
TSPG MAP Psys
Computed Measured Computed Measured
Pa — Py, left 2.5 2.6 4.1 4.0
Pa — Pr, right 2.0 2.0 4.0 4.0

We found that the fully-developed BC and DUS-based velocity BC, which are com-
monly used in the LBM, cannot capture the physiological pressure waveform. Figure 8
shows the cyclic evolution of the systolic pressure at a representative location in the arte-
rial system under three different BCs with identical computation environments and con-
ditions. Neither the fully-developed BC (long dash) nor DUS-based velocity BC (short
dash) is convergent. The pressure (left scale) asymptotically increases with time and ex-
ceeds the human blood pressure after a few cardiac cycles, whereas the WK3-based pres-
sure BC (solid line) leads to a convergent systolic pressure (ps,s ~ 154.8 mmHg) (right
vertical scale) after 10 cardiac cycles.

2000 160
I /
+ — — — = Velocity BC // 4159
I Pressure BCviaWK3 1
= i — — — — Fully developed BC 7 =158
&) ¥ pedBC 1188
£1500 |- , 5
€ I / 4157
E // £
e ’ 7156
2 // e ﬁ
o rE
- — 155 0
§1000 - // - 8
o i Ve - 154
e e P Rar®
= U =
2] 3 7/ . 1,..0
° z - 1535
> | 7 -7 >
' 500 - P - 152?
7 -~ =192
L P
AT =151
aPie
~-
| | 1 1 | 1 L
2 4 0 12 14

6 8 1
Cardiac Cycle

Figure 8. Cyclic evolution of systolic pressure in a representative location using three different BCs:
velocity BC, pressure BC via WK3, and fully-developed BC.

Besides the pressure field, InVascular simultaneously computes the pulsatile velocity
field, from which the vorticity and shear stress fields can be calculated. Figures 9 and 10
show the velocity field with magnitude contours and streamlines and vorticity contours,
respectively, at t = (a) 0.1, (b) 0.23, and (c) 0.63 in seconds in one cardiac cycle correspond-
ing to systole (heart contraction, flow acceleration), diastole (heart relaxation, flow decel-
eration), and the end of diastole respectively. In Figure 9, flow in AA is stronger at systole
(a) than at diastole (b) but remains intensive in LRA and RRA at both time points and is
better organized at systole than at diastole. Whereas at the end of diastole, the flow is
weak but chaotic. The vorticity contours shown in Figure 10 are similarly intensive in (a)
and (b) with a large degree of skewness in AA, demonstrating the complexity of the flow
in the real arteries. At the end of diastole, vorticity contours are much smaller and chaotic.

(b) t=0.23(s) s =i

(a)t=0.10(s) SR (¢) t=0.63(s)

Figure 9. Velocity contours and streamlines at t = (a) 0.10 (systole), (b) 0.23, and (c) 0.63 (end of
diastole) in seconds.
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Figure 10. Z-component (vertically up) and x-component (horizontally right) vorticity contours at t
= (a) 0.10, (b) 0.23, and (c) 0.63 in seconds.

3.2. Impact of v, C and R Parameters on Pressure Quantification

Although the WKS3 has been popularly used to model the physiological BC at each
outlet of the artery segment (see Figure 5), its parameters reflecting resistances, r and R,
and compliance, C, are determined empirically [38—40], which is subjected to uncertainty.
To demonstrate the impact of the uncertainty in r-C-R parameters on the quantification of
proximal and distal pressure, we performed a UQ analysis using FOSM. The input varia-
bles are the r, R, and C parameters in WK3, defined in Table 4. The elements of X are
independently and normally distributed. The output variables are the pressure values in
AA, LRA, and RRA, defined in Table 5. In this study, we assumed that the standard devi-
ation of a random input variable is 3% of its mean. We performed UQ for five cases. The
input distributions for the representative case in Section 3.1 are shown in Table 4.

Table 4. Input distributions for the representative case in Section 3.1.

Standard Devi-

Artery Parameter Variables Mean ation Distribution Type
AA r(dynesxs/cm®) Xy 108.12 3.24 Normal
AA R(dynesxs/cmd) X, 3386.38 101.59 Normal
LRA r(dynesxs/cm®) X3 2879.76 86.39 Normal
LRA R(dynesxs/cm®) X, 7386.06 221.58 Normal
RRA r(dynesxs/cm®) X5 3306.39 99.19 Normal
RRA R(dynesxs/cm®) X 8505.96 255.18 Normal
AA C(cm?®/dynes) X, 1.0 x 1075 3.0%x 1077 Normal
LRA C(cm®/dynes) Xg 54x10°° 1.62 x 1077 Normal
RRA C(cm?®/dynes) X 48x107° 1.43 x 1077 Normal

Table 5. UQ results.

Artery  Output Variable Mean u,  Standard Deviation o, 95% Confidence Interval

AA Y, (mmHg) 155.80 1.37 [153.05, 158.55]
LRA Y, (mmHg) 141.72 1.12 [139.49, 143.95]
RRA Y, (mmHg) 144.61 1.12 [142.37, 147.86]

UQ results are given in Table 5. All the model output variables are normally distrib-
uted. For example, Y;~N (,uyl, ayl) = N(155.80 mmHg, 1.37). With these results, we know
complete information about the simulation predictions, including the 95% confidence in-
tervals of the model predictions. The formula for 95% confidence interval is uy, +20y,. For
example, the 95% confidence interval of Y; is [153.051, 158.55] mmHg unit. This means
that the chance the actual value of ¥; falling into the interval is 95%, or we have 95%
confidence that the actual value of Y; is between 153.05 mmHg and 158.56 mmHg. The
results of mean and standard deviation from five patients are also given in Table 6. The
95% confidence intervals of the model predictions of five patients are in Table 7.



Fluids 2022, 7, 30

12 of 15

Table 6. Mean and standard deviation of five patient cases.

Case Y; (mmHg) Y, (mmHg) Y3 (mmHg)
1 N(156.80,1.37%) N(141.72,1.11%) N(144.61,1.12%)
2 N(163.61,2.062) N(154.25,1.93%) N(56.42,0.09%)
3 N(157.22,1.54%) N(152.35,1.452%) N(153.85,1.47%)
4 N(109.71,0.93%) N(106.49,0.89?%) N(74.50,0.56%)
5 N(123.21,0.97%) N(117.34,0.89?) N(102.17,1.242)

Table 7. 95% confidence intervals of model predictions of five patient cases.

Case Y; (mmHg) Y, (mmHg) Y; (mmHg)
1 [153.05, 158.55] [139.49, 143.95] [142.37, 146.86]
2 [159.48, 167.74] [150.38, 158.12] [56.25, 56.59]
3 [154.14, 160.30] [149.45,155.25] [150.92,156.79]
4 [107.84, 111.58] [104.72,108.27] [73.37,75.62]
5 [121.28, 125.15] [115.57,119.11] [99.69,104.64]

4. Discussion

We have presented the physiological inlet and outlet BCs for ICHD and integrated
them into our in-house computational platform, InVascular. Using the unified LBM mod-
eling for image segmentation and computational hemodynamics, InVascular seamlessly
integrates the anatomical extraction of the interested arterial segment and quantification
of pulsatile hemodynamics and achieves fast computation via GPU parallel computing.
The inlet BC is a pulsatile velocity. A paraboloidal velocity profile is constructed based on
the DUS velocity waveform, which fits the real shape of the arterial lumen (usually noncir-
cular). Each outlet BC is a pulsatile pressure determined by WK3 during the simulation.
The inlet velocity and outlet pressure BCs are introduced in the VLBM via a non-equilib-
rium extrapolation BC scheme. Using InVascular, we performed UQ analysis to quantify
the impact of input variations caused by uncertainties. We applied InVascular into a hu-
man aortorenal arterial system extracted from medical CTA imaging data and demon-
strated the applicability and reliability of InVascular for a real-world flow system. Six cases
were studied. The pressure waveforms in AA, LRA, and RRA computed from InVascular
have excellent agreements with the invasive measurements. The pulsatile velocity and
then vorticity fields are shown as well. Due to the lack of available data, the validation of
the velocity quantification has not been conducted. A systematic UQ analysis focuses on
the impact of the variation of r, R, and C parameters on the quantification of the pressure
field. Results include joint probability density of the computed pressure, which also pro-
vides the uncertainty or the confidence of the prediction. Due to the suitability of LBM for
GPU parallel computing, InVascular features exceptionally fast computation speed. With
a great potential to further speed up through parallel optimization and/or multiple GPU
cards, the computation time is expected to be around 10 minutes per patient case. Such a
computation capability is critically important for the clinical use of InVascular, enabling
massive numerical analysis through parametrization to assess the true degree of existing
arterial stenosis, either severe for immediate therapeutics or mild to avoid unnecessary
intervention, within clinic permitted time.

Author Contributions: Conceptualization, H.Y. and X.D.; methodology, H.Y., X.D., M.K. and C.Z,;
formal analysis, M.K., H-W. and R.C,; investigation, H.Y., X.D., M.K. and H.W.; data curation, M.K.
and H.Y.; resources: A.P.S., X.F. and J.L.; writing—original draft preparation, M.K., H.Y. and X.D.;
writing—review and editing, H.Y. and X.D.; visualization, M.K. and H.W.; supervision, H.Y., X.D.
and A.P.S; project administration, H.Y.; funding acquisition, H.Y., X.D. and A.P.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by NSF through grant CBET 1803845. This work used the Ex-
treme Science and Engineering Discovery Environment (XSEDE), which is supported by National



Fluids 2022, 7, 30 13 of 15

Science Foundation Grant No. ACI-1548562. The 1st and corresponding author would like to also
acknowledge the IUPUI University Fellowship and IUPUI MEE Graduate Fellowship.

Institutional Review Board Statement: The IRB approval (#1309233521R003 |N) was obtained for
the patients enrolled at Indiana University. The study (#116-01) was approved by the Ethics Com-
mittee of Hangzhou First People’s Hospital. The investigation conformed to the principles outlined
in the Declaration of Helsinki.

Informed Consent Statement: It only involved a retrospective analysis of clinically indicated pro-
cedures; therefore, informed consent was not required.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclatures
AA Aortic Artery
BC Boundary Condition
CFD Computational Fluid Dynamics
CTA Computed Tomography Angiography
DUS Doppler Ultrasound
FOSM First-Order Second Moment
GPU Graphic Processing Unit
ICHD Image-Based Computational Hemodynamics
LBM Lattice Boltzmann Method
LRA Left Renal Artery
MAP Mean Arterial Pressure
N-S Navier-Stokes
RRA Right Renal Artery
TSPG Trans-Stenotic Pressure Gradient
UuQ Uncertainty Quantification
VLBM Volumetric Lattice Boltzmann Method
WK3 Three-Element Windkessel Model
WSS Wall-Shear Stress
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