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Abstract 17 

Higuchi’s method of determining fractal dimension (HFD) is an important, well-used, research 18 

tool that, compared to many other methods, gives rapid, efficient, and robust estimations for the 19 

range of possible fractal dimensions. One major shortcoming in applying the method is the 20 

correct choice of tuning parameter (kmax); a poor choice can generate spurious results, and there 21 

is no agreed upon methodology to solve this issue. We analyze multiple instances of synthetic 22 

fractal signals to minimize an error metric. This allows us to offer a new and general method that 23 

allows determination, a priori, of the best value for the tuning parameter, for a particular length 24 

data set. We demonstrate its use on physical data, by calculating fractal dimensions for a shell 25 

model of the nonlinear dynamics of MHD turbulence, and severe acute respiratory syndrome 26 

coronavirus 2 isolate Wuhan-Hu-1 from the family Coronaviridae.  27 

1. Introduction 28 

Since the seminal work of Mandelbrot & Van Ness (1968) the characterization of data in 29 

terms of fractal properties has found near ubiquitous and enduring use in diverse research areas, 30 

including research within the fields of engineering (Yang et al., 2021), hydrology (Zuo et al., 31 

2009; Koutsoyiannis, 2019), geology (Turcotte, 1992; Ranguelov & Ivanov, 2017), physics 32 

(Wang et al., 2018), space science (Wanliss & Reynolds, 2003; Cersosimo & Wanliss, 2007), 33 

medicine (Mitsutake et al., 2004; Grizzi et al., 2019), economics (Fama et al., 2021), financial 34 

markets (Wątorek et al., 2021) and many more. Fractal properties in nature and human dynamics 35 

arguably have served to yield increased understanding and improvement on human society.  36 

Higuchi’s method (Higuchi, 1988) is a widely applied time-domain technique to 37 

determine fractal properties of complex non-periodic, nonstationary physical data (Esteller et al., 38 

2001; Salazar-Varas & Vazquez, 2018; Yilmaz & Unal, 2020). That is, the method can 39 

accurately calculate the fractal dimension of time series. Higuchi initially developed it to study 40 

large-scale turbulent fluctuations of the interplanetary magnetic field. It is a modification to the 41 

method of Burlaga & Klein (1986) in which fluctuation properties of turbulent space plasmas can 42 

be studied beyond the inertial range. It is simple to implement, efficient, and can rapidly achieve 43 

accurate and stable values of fractal dimension, even in noisy, nonstationary data (Liehr & 44 

Massopust, 2020). The fractal dimension calculated via the Higuchi method is called the Higuchi 45 

fractal dimension (HFD). Since its initial development the Higuchi method has been applied to 46 

numerous fields of research. In medicine, for instance, it has found widespread use to detect and 47 

classify epileptic EEG signals (Lu et al., 2021), human locomotion (Santuz & Akay, 2020), and 48 

in engineering it has been used to detect faults in rolling bearings (Yang et al., 2021). One 49 

difficulty in using the Higuchi method is that certain parameters must be applied to the method, 50 

and inappropriate parameter selection results in spurious calculation of fractal properties. 51 

Although the method has been used for decades, and is widely employed at present, there is an 52 

absence of consensus of the appropriate method to determine the parameters that must be input. 53 

In this paper we expose this weakness of the Highuchi method so that there is wider appreciation 54 

of its limits, and suggest how to solve the drawbacks of this method when applied to different 55 

types of scientific data. 56 

The HFD computed depends on the length of the time series, and an internal tuning factor 57 

kmax. Higuchi’s original paper did not elaborate on the selection of the tuning factor but 58 

illustrated the method with kmax=211 for time series having length N=217. Subsequent authors 59 

used similar values for the tuning factor but we will show that the tuning factor plays a crucial 60 
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role in estimation the HFD. Higuchi’s method, if applied appropriately, can reliably find the time 61 

series fractal dimension. However, if the tuning factor is incorrectly selected, the method is 62 

compromised from the outset.  63 

How is the researcher to determine the appropriate tuning factor for their study that will 64 

optimize the calculation of a stable HFD, if it exists? In addition, how does the selection of the 65 

factor influence the value of the computed HFD? The literature is vague in answering these 66 

questions, and to do so is the main thrust of our research. Multiple studies have addressed the 67 

issue of proper selection of tuning factor kmax. Accardo et al. (1997) applied the method in their 68 

study of electroencephalograms, and sought the most suitable pair of (kmax, N). They 69 

experimented with kmax=3-10 on time series with lengths from N=50-1000, and settled on an 70 

optimum kmax=6. Some papers recommend plotting the HFD versus a range of kmax, and then 71 

selecting the appropriate kmax at the location where the calculated HFD approaches a local 72 

maximum or asymptote, which can be considered a saturation point (Doyle et al., 2004; 73 

Wajnsztejn et al., 2016). However, there is no reason that in every instance the HFD will reach a 74 

saturation point. Paramanathan and Uthayakumar (2008) proposed to determine the tuning factor 75 

kmax based on a size-measure relationship that employed a recursive length of the signal from 76 

different scales of measurement. Gomolka et al. (2018) selected kmax on the basis of statistical 77 

tests that allowed the best discrimination between already known diabetic and healthy subjects. 78 

But in the absence of such additional data between systems in different dynamic states (e.g. 79 

health or pathology), how can one select the correct tuning parameter?  80 

In this paper we will try to answer these questions in a general way that is helpful to the 81 

community of researchers who utilize the Higuchi method. The organization of the paper is as 82 

follows. We will generate artificial time series with well-specified fractal dimension, then 83 

compare the HFD computed from these data for different values of the tuning parameter kmax. 84 

We will demonstrate the results on several examples of physical data. 85 

2. Data and Method 86 

In order to investigate the optimization of the Higuchi method we turn to the generation 87 

of synthetic time series with known fractal properties, to see how well the method performs. One 88 

difficulty resides in the the production of truly fractal time series of given dimension, which is a 89 

non-trivial task (Kijima and Tam, 2013). Therefore studies must concern themselves with the 90 

adequacy of the data-generating algorithms in addition to the fractal dimension estimation 91 

algorithms. We will consider synthetic time series realizations of processes with perfect and 92 

controlled scale invariance, viz. signals that have only a single type of scaling. Many other 93 

theoretical data types exist that have been used to analyze signals that lack local scaling 94 

regularity, but rather have a regularity which varies in time or space (Lévy Véhel, 2013; Wanliss 95 

et al., 2014). There is also a recent effort to generalize the Higuchi method to distinguish 96 

monofractal from multifractal dynamics based on relatively short time series (Carrizales-97 

Velazquez et al., 2021).  98 

In this paper we will limit the research to study of well-understood synthetic data with 99 

monofractal scaling. To illustrate how a monofractal scaling exponent can be derived we 100 

consider fractional Brownian motion (fBm) which is characterized by a single stable fractal 101 

dimension and is a continuous-time random process (Mandelbrot and Van Ness, 1968). Next, we 102 

research the these data and compare the fractal dimension recovered using the Higuchi algorithm 103 
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with the theoretical fractal dimension. The synthetic data time series can be written in terms of 104 

stochastic integrals of time integrations of fractional Gaussian noise: 105 

 106 

𝑩𝑯(𝒕) =
𝟏

𝚪 (𝑯 +
𝟏
𝟐)

{∫ [(𝒕 − 𝒔)𝑯−
𝟏
𝟐 − (−𝒔)𝑯−

𝟏
𝟐]𝒅𝑾(𝒔)

𝟎

−∞

+ ∫ (𝒕 − 𝒔)𝑯−
𝟏
𝟐𝒅𝑾(𝒔)

𝒕

𝟎

}. 107 

 108 

Here W is a stationary and ergodic random white noise process with zero mean defined 109 

on (-∞,∞). In the above equation 𝑯 ∈ (𝟎, 1) is known as the Hurst exponent. The time series 110 

Hurst exponent is related to signal roughness averaged over multiple length scales. The higher 111 

the value of H, the smoother is the time series, and the longer trends tend to continue. For values 112 

closer to zero, the time series rapidly fluctuates, as shown in Fig. 1. The covariance function of 113 

the noisy signal can be expressed by: 114 

 115 

𝒄𝒐𝒗{ 𝑩𝑯(𝒔), 𝑩𝑯(𝒕)} =
𝟏

𝟐
{|𝒔|𝟐𝑯 + |𝒕|𝟐𝑯 − |𝒔 − 𝒕|𝟐𝑯}, 116 

 117 

so that 𝑩𝑯(𝟎) ≡ 𝟎 and 𝒗𝒂𝒓{ 𝑩𝑯(𝒕)} = 𝒕𝟐𝑯. For H=1/2 the white noise process reduces to the 118 

well-known random walk. The theoretical relationship between the Hurst exponent, H, and the 119 

Higuchi fractal dimension, HFD, is HFD = 𝟐 − 𝑯, with values of HFD between 1 and 2.  120 

We consider four different method generators of processes having long-range dependence 121 

to generate synthetic series with exact fractal dimension. First, we consider an exact wavelet-122 

based method. This is based on a biorthogonal wavelet method proposed by Meyer and Sellan 123 

(Abry and Sellan, 1996; Bardet et al., 2003) and implemented in Matlab software and the wfbm 124 

calling function. The second is the method of Davies & Harte (1987) whose generation process 125 

uses a fast fourier transform basis and embeds the covariance matrix of the increments of the 126 

fractional Brownian motion in a circulant matrix. The third category of synthetic simulated data 127 

is produced using the Wood-Chan circulant matrix method (Wood and Chan, 1994), which is a 128 

generalization of the previous method (Coeurjolly, 2001). The fourth set of data are simulated 129 

using the Hosking method (Hosking, 1984), also known as the Durbin or Levinson method 130 

(Levinson, 1947), which utilizes the well-known conditional distribution of the multivariate 131 

Gaussian distribution on a recursive scheme to generate samples based on the explicit covariance 132 

structure. All these methods of producing simulated data are considered exact methods because 133 

they completely completely capture the covariance structure and produce a true realization of 134 

series with a single scaling parameter.  135 

Fig. 1 shows various examples of time series produced via the Davies and Harte (1987) 136 

method. The smoothest curve corresponds to H=0.9, which implies high probability to observe 137 

long periods with increments of same sign. The roughest curve corresponds to H=0.1, which is 138 

sub-diffusive, with high probability that increments feature long sequences of oscillating sign. 139 

The curves show data for Hurst exponents H=0.3,0.5,0.7,0.9, from top to bottom.  140 
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 141 

For each of the four data generating methods we create 100 unique time series, of 142 

differing lengths up to maximum length 500,000 data points, for Hurst exponents 143 

H=0.1,0.3,0.5,0.7,0.9. Thus, for each time series length N we have 500 unique simulations of 144 

fBm for each method. This produces 44,000 data sets in total, for experimentation. We next 145 

apply the Higuchi method to each of these time series with an exact fractal dimension (FD)to 146 

determine how well the Higuchi method is able to accurately recover the theoretical value 147 

compared to the derived HFD.  148 

Next we describe the Higuchi method. The Higuchi method takes a signal, discretized 149 

into the form of a time series, 𝒙(𝟏), 𝒙(𝟐), … , 𝒙(𝑵) and, from this series, derives a new time 150 

series, 𝑿𝒌
𝒎, defined as: 151 

𝑿𝒌
𝒎: 𝒙(𝒎), 𝒙(𝒎 + 𝒌), 𝒙(𝒎 + 𝟐𝒌), … , 𝒙 (𝒎 + [

𝑵 − 𝒌

𝒌
] ∙ 𝒌)), 152 

Here [] represents the integer part of the enclosed value. The integer 𝒎 = 𝟏, 𝟐, … , 𝒌 is the 153 

start time and 𝒌 is the time interval, with 𝒌 = 𝟏, … , 𝒌𝒎𝒂𝒙; 𝒌𝒎𝒂𝒙 is a free tuning parameter. This 154 

means that given time interval equal to 𝒌, spawns 𝒌-sets of new time series. For instance, if 𝒌 =155 

Figure 1. Examples of synthetic time series from the Davies and Harte (1987) method, 

characterized by Hurst exponent H=0.3,0.5,0.7,0.9 (top to bottom). 
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𝟏𝟎 and the time series has length 𝑵 = 𝟏𝟎𝟎𝟎, the following new time series are derived from the 156 

original data: 157 

 158 

𝑿𝟏𝟎
𝟏 : 𝒙(𝟏), 𝒙(𝟏𝟏), 𝒙(𝟐𝟏), … , 𝒙(𝟗𝟗𝟏)), 159 

𝑿𝟏𝟎
𝟐 : 𝒙(𝟐), 𝒙(𝟏𝟐), 𝒙(𝟐𝟐), … , 𝒙(𝟗𝟗𝟐)), 160 

. 161 

. 162 

. 163 

𝑿𝟏𝟎
𝟏𝟎: 𝒙(𝟏𝟎), 𝒙(𝟐𝟎), 𝒙(𝟑𝟎), … , 𝒙(𝟏𝟎𝟎𝟎). 164 

 165 

These curves have lengths defined by: 166 

 167 

𝑳𝒎(𝒌) =

{(∑ |𝒙(𝒎 + 𝒊𝒌) − 𝒙(𝒎 + (𝒊 − 𝟏) ∙ 𝒌|
[
𝑵−𝒎

𝒌
]

𝒊=𝟏
)

𝑵 − 𝟏

[
𝑵 − 𝒎

𝒌
] ∙ 𝒌

}

𝒌
. 168 

 169 

The final term in the numerator is a normalization factor, 𝑵 −
𝟏

[
𝑵−𝒎

𝒌
]

∙ 𝒌. The length of the 170 

curve for the time interval 𝒌 is then defined as the average over the 𝒌 sets of 𝑳𝒎(𝒌): 171 

 172 

𝑳(𝒌) = 〈𝑳𝒎(𝒌)〉. 173 

 174 

In cases when this equation scales according to the rule 𝑳(𝒌) ∝ 𝒌−𝐇𝐅𝑫, we consider the 175 

time series to behave as a fractal with dimension HFD. Thus, the HFD is the slope of the straight 176 

line that fits the curve of ln(L(k)) versus ln(1/k). Fig. 2 shows the L(k) curve from simulated data 177 

for the fractal dimension FD=1.7 (corresponding to H=0.3) time series data in Fig. 1. The 178 

corresponding curve of HFD(kmax) is shown in Fig. 3. 179 

 180 
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Figure 2. Average curve length versus scale size, k, for the time series with HFD=1.7. 

 181 

We now turn to finding the best tuning parameter, kmax, for the set of data we have 182 

simulated. As discussed in the Introduction, a common way to determine the tuning parameter 183 

relies upon finding the location, in plots like Fig. 3, of  HFD versus a range of kmax, where the 184 

calculated HFD approaches a local maximum or asymptote (Doyle et al., 2004; Wajnsztejn et al., 185 

2016). We will call this a tuning curve. In Fig. 3, which is for the time series with HFD=1.7, 186 

there is only one local maximum which is located at  kmax=7 which produces a negligible error of 187 

0.5%. There are three places where the Higuchi method finds a best value is achieved for this 188 

simulation, viz. kmax =4, 14, 727. In this particular instantiation of a fBm the most effective 189 

tuning parameter would thus be kmax=4, 14, or 727. The easiest method would be to use the 190 

smallest kmax since this results in the least computational effort. However, in this case, using the 191 

local maxima method yields an acceptable estimate result with little additional effort. 192 
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 193 

3 Results 194 

There is no reason to expect that a local maxima exists in every case in a tuning curve 195 

and is therefore searching through these curves for asymptotes is not a general or practical 196 

method to determine the best tuning parameter kmax. For instance, Fig. 4 shows the tuning curves 197 

for HFD=1.9, 1.5, 1.3, 1.1 computed from the simulated data of Fig. 1. The black horizontal 198 

dashed line in each subplot shows the theoretical value of the fractal dimension. There is not 199 

always a local maximum or an asymptotic convergence to a set value of HFD. For HFD=1.9 a 200 

peak occurs but only near kmax ~5000; the region of the plateau is found at the tuning parameter 201 

that yields the largest error in fractal dimension. This indicates that in this fBm realization a 202 

much smaller kmax would be appropriate.  203 

We now turn to analyzing the simulated realizations of fBm. The smallest time series 204 

length we select has N=1,000, and the largest has N=500,000 data points, and compute the HFD 205 

for each of these series, as a function of tuning parameter kmax. We use values between kmax =2 206 

and kmax =N/2. This gives a new data set comprised of HFD values as a function of the time 207 

 

Figure 3. Curve showing the relationship between HFD and kmax for the FD=1.7 time series 

shown in Fig. 1.  
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series length, and the tuning parameter, yielding HFD=HFD(N,kmax). The error to be minimized 208 

is written by: 209 

𝐸(𝑁, 𝑘𝑚𝑎𝑥) = 100 ∗
[𝐻𝐹𝐷 − 𝐹𝐷𝑡ℎ𝑒𝑜𝑟𝑦]

𝐹𝐷𝑡ℎ𝑒𝑜𝑟𝑦
. 210 

 

Figure 4. Curves showing the relationship between HFD and kmax for the HFD=1.9,1.5,1.3,1.1 

time series shown in Fig. 1. The dashed horizontal curves show the theoretical value for the 

HFD. 

 211 

The previous equation gives the percentage error to be averaged over all synthetic time 212 

series simulations to yield a general result for all simulation data considered. As researchers do 213 

not generally know a priori which method of simulating artificial data most closely follows the 214 

statistics of any particular physical or research data set it is appropriate to use a range of 215 

synthetic simulated time series with known fractal dimension, as an average result gives the most 216 

general answer. Fig. 5 shows surface plots comparing the percentage error HFD versus the 217 

tuning parameter kmax and time series length, N for the theoretical HFD=1.7 for each of the four 218 

simulation methods described in the previous section. The curve of least error is shown as a thick 219 

grey line.  220 

Each method of simulation yields a different curve of least error. Fig. 5b, which is the 221 

curve for the Wood-Chan circulant matrix method (Wood and Chan, 1994), has the lowest 222 

overall error. The Hosking (1984) method yields HFD values with the greatest errors (Fig. 5d). 223 

Overall, the location of the minimum error curve varies widely depending on the generation 224 

algorithm for the synthetic data. 225 
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By taking a geometric mean of these minimum error curves for all HFD values we derive 226 

a best-fit curve using a sum of sines function since this gave a simple function with few terms 227 

and a fit with small sum squared error. Fig. 6 shows the relationship between the time series 228 

length and the tuning parameter, for different HFD values, and the dashed curve shows the best 229 

fit, given by the following equation: 230 

 231 

𝑘𝑚𝑎𝑥 = [𝐴1 sin(𝐵1 ∗ 𝑁 + 𝐶1) + 𝐴2 sin(𝐵2 ∗ 𝑁 + 𝐶2)].                      (*) 232 

 233 

Here [] represents the integer part of the enclosed function value. Table 1 shows the 234 

parameter values for the best-fit. Fig. 6 shows that for short time series the use of a plateau 235 

criterion to select the kmax tuning parameter will result in the use of values smaller than those 236 

proposed by this generalized study. For example, in Fig. 1 a time series of length N=20,000 is 237 

used. Fig. 3 shows the curve of HFD versus kmax. Our fitting function yields kmax=47 for this 238 

length data set. 239 

a.)

 

b.)

 

c.)

 

d.)

 

Figure 5. Surface showing the average percentage error between the Higuchi method fractal 

dimension and theoretical FD=1.7 averaged over 100 datasets of different length, N. The curve 
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of least error is shown (a.) Wavelet generation method, (b.) Wood-Chan method, (c.) Davies-

Harte method, and (d.) Hosking method. The curve of least error is shown as a thick grey line. 

 240 

 

Figure 6. Comparison of the average minimum error curve (solid) and the best fit sum of sines 

function (dashed). 

 241 

 242 
Table 1. Fitting parameters for best-fit sum of sin function, 𝑘𝑚𝑎𝑥 = [𝐴1 𝑠𝑖𝑛(𝐵1 ∗ 𝑁 + 𝐶1) + 𝐴2 𝑠𝑖𝑛(𝐵2 ∗ 𝑁 + 𝐶2)]. 243 

A1 129.8±3.0 

B1 (1.292±0.045)×10-5 

C1 0.04488±0.0255 

A2 18.82±2.56 

B2 (6.488±0.280)×10-5 

C2 1.332±0.220 

 244 
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4 Applications 245 

In this section we present two applications of the Higuchi method with the corrections 246 

applied to determing the appropriate tuning parameter. The first is a shell model of the nonlinear 247 

dynamics of MHD turbulence. We effect this via simplified approximations of the Navier–248 

Stokes fluid equations (Obukhov, 1971; Gledzer, 1973; Yamada and Ohkitani, 1988). We use the 249 

MHD Gledzer–Ohkitani–Yamada (GOY) shell model, which captures the intermittent dynamics 250 

of the energy cascade in MHD turbulence (Lepreti et al., 2004) as it moves along through the 251 

shells in a front-like manner.  252 

Shell models of MHD turbulence are an example of dynamical systems incorporating 253 

simplified versions of the Navier–Stokes or MHD turbulence equations. They attempt to 254 

conserve some of the invariants in the limit of no dissipation.We use the SHELL-ATM code 255 

(Buchlin & Velli, 2006) to produce a time series of length N=500,000 of the magnetic energy 256 

dissipation rate (𝜖𝑏) as a function of time obtained in the MHD shell model (Fig. 7a). The model 257 

is described in detail in Lepreti et al. (2004). In short, the SHELL-ATM model makes it possible 258 

to obtain rapid simulations of MHD turbulence in volumes in which a longitudinal magnetic field 259 

dominates. Model construction begins via division of the wave-vector space (k-space) into a 260 

number, N, of discrete shells with known radius 𝑘𝑛 = 𝑘02𝑛 (n=0,1,…,N) (Giuliani & Carbone, 261 

1998). Each shell is then assigned complex dynamical Elsässer-like fields 𝑢𝑛(𝑡) and 𝑏𝑛(𝑡), 262 

which represent longitudinal velocity increments and magnetic field increments. The magnetic 263 

energy disspation rate is defined by 264 

𝜖𝑏(𝑡) = 𝜂 ∑ 𝑘𝑛
2|𝑏𝑛

2|

𝑁

𝑛=1

 265 

 266 

where η is the kinematic resistivity. To find the solutions to the above equations we solve the 267 

equations 268 

 269 

𝑑𝑏𝑛

𝑑𝑡
= −𝜂𝑘𝑛

2𝑏𝑛 +
1

6
𝑖𝑘𝑛(𝑢𝑛+1𝑏𝑛+2 − 𝑏𝑛+1𝑢𝑛+2)270 

−
1

6
𝑖𝑘𝑛[(𝑢𝑛−1𝑏𝑛+1 − 𝑏𝑛−1𝑢𝑛+1) + (𝑢𝑛−2𝑏𝑛−1 − 𝑏𝑛−2𝑢𝑛−1)]∗ + 𝑓𝑛 271 

 272 

and 273 

𝑑𝑢𝑛

𝑑𝑡
= −𝜈𝑘𝑛

2𝑢𝑛 + 𝑖𝑘𝑛(𝑢𝑛+1𝑢𝑛+2 − 𝑏𝑛+1𝑏𝑛+2)274 

−
1

4
𝑖𝑘𝑛 [(𝑢𝑛−1𝑢𝑛+1 − 𝑏𝑛−1𝑏𝑛+1) +

(𝑢𝑛−2𝑏𝑛−1 − 𝑏𝑛−2𝑢𝑛−1)

2
]

∗

+ 𝑔𝑛 275 

 276 

where ν is the kinematic viscosity and (𝑓𝑛, 𝑔𝑛) are forcing terms operating on the magnetic and 277 

velocity increments. The symbol * represents a complex conjugate. The forcing terms are 278 

calculated from the Langevin equation driven by a Gaussian white noise. 279 
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 280 

These data in Fig. 7a display clear intermittent bursts of dissipated energy. Fig. 7b shows 281 

average curve length versus scale size, k, for the time series. Fig. 7c shows the relationship 282 

between HFD and kmax. There is no asymptote which may indicate an appropriate value of kmax. 283 

We now use Eqn. (*) to select the appropriate tuning parameter kmax determined from our prior 284 

analysis for data featuring a single fractal scaling, for varying lengths, N, of the time series. Fig. 285 

7d shows the computed HFD selected. There is a variation in the fractal dimension with values 286 

being estimated as smaller from shorter lengths of the time series, and overall HFD~1.04-1.13. 287 

 288 

 

Fig. 7a. Magnetic energy dissipation rate 

for the GOY shell model. 

 

Fig. 7b. Average curve length versus scale 

size, k. 

  

 289 

The second data example is that of the severe acute respiratory syndrome coronavirus 2 290 

isolate Wuhan-Hu-1. Wu et al. (2020) reported on the identification of the novel RNA virus 291 

strain from the family Coronaviridae, which is designated here 'WH-Human-1' coronavirus. We 292 

obtained these data from the National Center for Biotechnology Information (NCBI), which is 293 

part of the United States National Library of Medicine (NLM), a branch of the National Institutes 294 

of Health (NIH).  295 
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Fig. 8a. WH-Human-1 complete genome 

represented by the Peng (1992) method. 

 

Fig. 7b. Average curve length versus scale 

size, k. 

  

 296 

To analyze the fractal patterns in the genome one must convert the nucleotide sequence 297 

from a symbolic sequence, meaning A,G,C,T into a time series. We follow the Peng (1992) 298 

method in which DNA is represented as a “random walk” with two parameters ruling the 299 

direction of the “walk” and the resulting dynamics. We start with the first nucleotide. If it is a 300 

pyrimidine base, we move up one position. Every subsequent pyrimidine base moves up one 301 

position. When a purine base is encountered in the series the walk steps down one position. The 302 

nucleotide distance from the first nucleotide is then plotted versus the displacement, as in Fig. 8a. 303 

Fig. 8b shows average curve length versus scale size, k, for the time series. Fig. 8c shows the 304 

relationship shows the computed HFD against tuning parameter kmax from the whole time series 305 

of length N=29,903. In this case there is a distinct asymptote at kmax=20, which yields 306 

HFD=1.497. To test our method we again use Eqn. (*) to select the appropriate tuning parameter 307 

kmax, for varying lengths, N, of the time series. Fig. 8d shows the computed HFD selected. There 308 

is no statistically significant variation in the fractal dimension with values being estimated at 309 

HFD~1.5.  310 

Our analysis shows that the fractal dimension of WH-Human-1 coronavirus genome is 311 

different from its fractal dimension computed from electron microscopic and atomic force 312 
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microscopic images of 40 coronaviruses (CoV), as reported by Swapna et al. (2021) who found a 313 

scale-invariant dimension of 1.820. This indicated that the images of the virus feature higher 314 

complexity and greater roughness than the pattern we have detected in the genome. 315 

5 Conclusions 316 

Higuchi’s method to compute the fractal dimension of physical signals is widely used in 317 

research. However, a major difficulty in applying the method is the correct choice of tuning 318 

parameter (kmax) to compute the most accurate results. Poor selection of kmax can result in values 319 

of the fractal dimension that are spurious, and this can result in potentially invalid interpretations 320 

of data. In the past researchers have used various ad hoc methods to determine the appropriate 321 

tuning parameter for their particular data. We have shown that a method such as seeking a 322 

convergence of the computed HFD to a plateau is not in general a valid procedure as not every 323 

data instance shows the HFD estimate reaches a plateau. 324 

In this paper we have sought to find a more general method of determining, a priori, the 325 

optimum tuning parameter kmax for a time series of length N. To study this problem we generated 326 

synthetic time series of known HFD and applied the Higuchi method to each, averaging results 327 

over the different fbm within HFD=[1.9,1.7,1.5,1.3,1.1] categories. These data allow the 328 

calculation of curves showing where in (N, kmax)-space the most appropriate tuning parameter 329 

should be selected. We found that fractal dimension calculation via the Higuchi method is 330 

sensitive to both the tuning parameter kmax and also the length of the time series. We derive a 331 

best-fit curve fitting the location of the average minimum HFD error to provide researchers with 332 

an efficient method of estimating and appropriate kmax, given their particular dataset.  333 

We applied the modified method to two physical cases, one from physics and one from 334 

bioinformatics. In the latter case we considered the Coronaviridae genome of the severe acute 335 

respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, first reported by Wu et al. (2020). Our 336 

analysis of this data showed strong evidence of monofractality (Fig. 8b) with HFD~1.5 (Fig. 8d).  337 

In the former case we computed the magnetic energy dissipation rate from a shell model 338 

of the nonlinear dynamics of of MHD turbulence. We used simplified approximations of the 339 

Navier–Stokes fluid equations (Obukhov, 1971; Gledzer, 1973; Yamada and Ohkitani, 1988), in 340 

particular the MHD Gledzer–Ohkitani–Yamada (GOY) shell model, and found HFD~1.10 (Fig. 341 

7d). These data have been reported to feature a multifractal scaling (Pisarenko et al., 1993) and 342 

this is consistent with our results in Fig. 8b which show evidence of nonlinear behaviour, which 343 

is possibly a reason why there is about a 10 percent variation in the HFD calculation (Fig. 7d). 344 

It is clear that accurate calculation of fractal dimension can be a delicate process and is 345 

influenced not only by the method used, but also by the nature of the data. Studies must therefore 346 

concern themselves not only with the type of data, but also with the adequacy of the data-347 

generating algorithms, and fractal estimation algorithms. We considered only synthetic time 348 

series realizations of processes with perfect and controlled scale invariance, viz. signals that have 349 

only a single type of scaling. However, many other theoretical data types exist. For instance, 350 

numerous geophysical signals do not have local scaling regularity, but rather have a regularity 351 

which varies in time or space (Dobias & Wanliss, 2009; Lévy Véhel, 2013). Data that are 352 

multifractal require a variety of scaling exponents to fully describe the dynamics, and methods to 353 

generalize the Higuchi method to these more complex data types are going forward at present 354 

(Carrizales-Velazquez et al., 2021).  355 
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