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Abstract

Higuchi’s method of determining fractal dimension (HFD) is an important, well-used, research
tool that, compared to many other methods, gives rapid, efficient, and robust estimations for the
range of possible fractal dimensions. One major shortcoming in applying the method is the
correct choice of tuning parameter (kmax); @ poor choice can generate spurious results, and there
is no agreed upon methodology to solve this issue. We analyze multiple instances of synthetic
fractal signals to minimize an error metric. This allows us to offer a new and general method that
allows determination, a priori, of the best value for the tuning parameter, for a particular length
data set. We demonstrate its use on physical data, by calculating fractal dimensions for a shell
model of the nonlinear dynamics of MHD turbulence, and severe acute respiratory syndrome
coronavirus 2 isolate Wuhan-Hu-1 from the family Coronaviridae.

1. Introduction

Since the seminal work of Mandelbrot & Van Ness (1968) the characterization of data in
terms of fractal properties has found near ubiquitous and enduring use in diverse research areas,
including research within the fields of engineering (Yang et al., 2021), hydrology (Zuo et al.,
2009; Koutsoyiannis, 2019), geology (Turcotte, 1992; Ranguelov & Ivanov, 2017), physics
(Wang et al., 2018), space science (Wanliss & Reynolds, 2003; Cersosimo & Wanliss, 2007),
medicine (Mitsutake et al., 2004; Grizzi et al., 2019), economics (Fama et al., 2021), financial
markets (Watorek et al., 2021) and many more. Fractal properties in nature and human dynamics
arguably have served to yield increased understanding and improvement on human society.

Higuchi’s method (Higuchi, 1988) is a widely applied time-domain technique to
determine fractal properties of complex non-periodic, nonstationary physical data (Esteller et al.,
2001; Salazar-Varas & Vazquez, 2018; Yilmaz & Unal, 2020). That is, the method can
accurately calculate the fractal dimension of time series. Higuchi initially developed it to study
large-scale turbulent fluctuations of the interplanetary magnetic field. It is a modification to the
method of Burlaga & Klein (1986) in which fluctuation properties of turbulent space plasmas can
be studied beyond the inertial range. It is simple to implement, efficient, and can rapidly achieve
accurate and stable values of fractal dimension, even in noisy, nonstationary data (Liehr &
Massopust, 2020). The fractal dimension calculated via the Higuchi method is called the Higuchi
fractal dimension (HFD). Since its initial development the Higuchi method has been applied to
numerous fields of research. In medicine, for instance, it has found widespread use to detect and
classify epileptic EEG signals (Lu et al., 2021), human locomotion (Santuz & Akay, 2020), and
in engineering it has been used to detect faults in rolling bearings (Yang et al., 2021). One
difficulty in using the Higuchi method is that certain parameters must be applied to the method,
and inappropriate parameter selection results in spurious calculation of fractal properties.
Although the method has been used for decades, and is widely employed at present, there is an
absence of consensus of the appropriate method to determine the parameters that must be input.
In this paper we expose this weakness of the Highuchi method so that there is wider appreciation
of its limits, and suggest how to solve the drawbacks of this method when applied to different
types of scientific data.

The HFD computed depends on the length of the time series, and an internal tuning factor
kmax. Higuchi’s original paper did not elaborate on the selection of the tuning factor but
illustrated the method with kin.=2"" for time series having length N=2'7. Subsequent authors
used similar values for the tuning factor but we will show that the tuning factor plays a crucial
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role in estimation the HFD. Higuchi’s method, if applied appropriately, can reliably find the time
series fractal dimension. However, if the tuning factor is incorrectly selected, the method is
compromised from the outset.

How is the researcher to determine the appropriate tuning factor for their study that will
optimize the calculation of a stable HF'D, if it exists? In addition, how does the selection of the
factor influence the value of the computed HFD? The literature is vague in answering these
questions, and to do so is the main thrust of our research. Multiple studies have addressed the
issue of proper selection of tuning factor kma. Accardo et al. (1997) applied the method in their
study of electroencephalograms, and sought the most suitable pair of (kmax, N). They
experimented with knq=3-10 on time series with lengths from N=50-1000, and settled on an
optimum k«=6. Some papers recommend plotting the HF'D versus a range of knax, and then
selecting the appropriate knqx at the location where the calculated HFD approaches a local
maximum or asymptote, which can be considered a saturation point (Doyle et al., 2004;
Wajnsztejn et al., 2016). However, there is no reason that in every instance the HFD will reach a
saturation point. Paramanathan and Uthayakumar (2008) proposed to determine the tuning factor
kmax based on a size-measure relationship that employed a recursive length of the signal from
different scales of measurement. Gomolka et al. (2018) selected ki On the basis of statistical
tests that allowed the best discrimination between already known diabetic and healthy subjects.
But in the absence of such additional data between systems in different dynamic states (e.g.
health or pathology), how can one select the correct tuning parameter?

In this paper we will try to answer these questions in a general way that is helpful to the
community of researchers who utilize the Higuchi method. The organization of the paper is as
follows. We will generate artificial time series with well-specified fractal dimension, then
compare the HFD computed from these data for different values of the tuning parameter k.
We will demonstrate the results on several examples of physical data.

2. Data and Method

In order to investigate the optimization of the Higuchi method we turn to the generation
of synthetic time series with known fractal properties, to see how well the method performs. One
difficulty resides in the the production of truly fractal time series of given dimension, which is a
non-trivial task (Kijima and Tam, 2013). Therefore studies must concern themselves with the
adequacy of the data-generating algorithms in addition to the fractal dimension estimation
algorithms. We will consider synthetic time series realizations of processes with perfect and
controlled scale invariance, viz. signals that have only a single type of scaling. Many other
theoretical data types exist that have been used to analyze signals that lack local scaling
regularity, but rather have a regularity which varies in time or space (Lévy Véhel, 2013; Wanliss
et al., 2014). There is also a recent effort to generalize the Higuchi method to distinguish
monofractal from multifractal dynamics based on relatively short time series (Carrizales-
Velazquez et al., 2021).

In this paper we will limit the research to study of well-understood synthetic data with
monofractal scaling. To illustrate how a monofractal scaling exponent can be derived we
consider fractional Brownian motion (fBm) which is characterized by a single stable fractal
dimension and is a continuous-time random process (Mandelbrot and Van Ness, 1968). Next, we
research the these data and compare the fractal dimension recovered using the Higuchi algorithm
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with the theoretical fractal dimension. The synthetic data time series can be written in terms of
stochastic integrals of time integrations of fractional Gaussian noise:

0 t
Bu© = ——— [ 1= 9" - " Raws) + [ (¢ 5" Raws)|
r (H + i) - 0

Here W is a stationary and ergodic random white noise process with zero mean defined
on (-00,0). In the above equation H € (0, 1) is known as the Hurst exponent. The time series
Hurst exponent is related to signal roughness averaged over multiple length scales. The higher
the value of H, the smoother is the time series, and the longer trends tend to continue. For values
closer to zero, the time series rapidly fluctuates, as shown in Fig. 1. The covariance function of
the noisy signal can be expressed by:

1
cov{ By(s), By ()} = 5 {Is|*" + [¢|*" — |s — ¢|*"},

so that By (0) = 0 and var{ By (t)} = t*!. For H=1/2 the white noise process reduces to the
well-known random walk. The theoretical relationship between the Hurst exponent, H, and the
Higuchi fractal dimension, HFD, is HFD = 2 — H, with values of HFD between 1 and 2.

We consider four different method generators of processes having long-range dependence
to generate synthetic series with exact fractal dimension. First, we consider an exact wavelet-
based method. This is based on a biorthogonal wavelet method proposed by Meyer and Sellan
(Abry and Sellan, 1996; Bardet et al., 2003) and implemented in Matlab software and the wfbm
calling function. The second is the method of Davies & Harte (1987) whose generation process
uses a fast fourier transform basis and embeds the covariance matrix of the increments of the
fractional Brownian motion in a circulant matrix. The third category of synthetic simulated data
is produced using the Wood-Chan circulant matrix method (Wood and Chan, 1994), which is a
generalization of the previous method (Coeurjolly, 2001). The fourth set of data are simulated
using the Hosking method (Hosking, 1984), also known as the Durbin or Levinson method
(Levinson, 1947), which utilizes the well-known conditional distribution of the multivariate
Gaussian distribution on a recursive scheme to generate samples based on the explicit covariance
structure. All these methods of producing simulated data are considered exact methods because
they completely completely capture the covariance structure and produce a true realization of
series with a single scaling parameter.

Fig. 1 shows various examples of time series produced via the Davies and Harte (1987)
method. The smoothest curve corresponds to H=0.9, which implies high probability to observe
long periods with increments of same sign. The roughest curve corresponds to H=0.1, which is
sub-diffusive, with high probability that increments feature long sequences of oscillating sign.
The curves show data for Hurst exponents H=0.3,0.5,0.7,0.9, from top to bottom.
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Figure 1. Examples of synthetic time series from the Davies and Harte (1987) method,
characterized by Hurst exponent H=0.3,0.5,0.7,0.9 (top to bottom).

For each of the four data generating methods we create 100 unique time series, of
differing lengths up to maximum length 500,000 data points, for Hurst exponents
H=0.1,0.3,0.5,0.7,0.9. Thus, for each time series length N we have 500 unique simulations of
fBm for each method. This produces 44,000 data sets in total, for experimentation. We next
apply the Higuchi method to each of these time series with an exact fractal dimension (FD)to
determine how well the Higuchi method is able to accurately recover the theoretical value
compared to the derived HFD.

Next we describe the Higuchi method. The Higuchi method takes a signal, discretized
into the form of a time series, x(1), x(2), ..., x(N) and, from this series, derives a new time
series, X}, defined as:

Xp x(m), x(m + k), x(m + 2k), ..., x (m + [NT_k] . k)),

Here [] represents the integer part of the enclosed value. The integer m = 1, 2, ..., k is the
start time and k is the time interval, with k = 1, ..., K;pax; Kinax 1S @ free tuning parameter. This
means that given time interval equal to k, spawns k-sets of new time series. For instance, if k =
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10 and the time series has length N = 1000, the following new time series are derived from the
original data:

X1o: x(1),x(11),x(21), ...,x(991)),
X2 x(2),x(12),x(22), ...,x(992)),

X19: x(10),x(20), x(30), ..., x(1000).

These curves have lengths defined by:

N-1

N-m
<Z[=f ]lx(m + lk) — x(m + (l - 1) ' kl)m

k

Lm(k) = Kk

The final term in the numerator is a normalization factor, N — ﬁ - k. The length of the
Tk

curve for the time interval k is then defined as the average over the k sets of L, (k):

L(k) = (Lp(K))-

In cases when this equation scales according to the rule L(k) o< k™2 we consider the

time series to behave as a fractal with dimension HFD. Thus, the HFD is the slope of the straight
line that fits the curve of In(L(k)) versus In(1/k). Fig. 2 shows the L(k) curve from simulated data
for the fractal dimension FD=1.7 (corresponding to H=0.3) time series data in Fig. 1. The
corresponding curve of HFD(kmax) is shown in Fig. 3.
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Figure 2. Average curve length versus scale size, k, for the time series with HFD=1.7.

We now turn to finding the best tuning parameter, kmax, for the set of data we have
simulated. As discussed in the Introduction, a common way to determine the tuning parameter
relies upon finding the location, in plots like Fig. 3, of HFD versus a range of kmax, where the
calculated HFD approaches a local maximum or asymptote (Doyle et al., 2004; Wajnsztejn et al.,
2016). We will call this a tuning curve. In Fig. 3, which is for the time series with HFD=1.7,
there is only one local maximum which is located at kmax=7 which produces a negligible error of
0.5%. There are three places where the Higuchi method finds a best value is achieved for this
simulation, viz. kmax =4, 14, 727. In this particular instantiation of a fBm the most effective
tuning parameter would thus be kmax=4, 14, or 727. The easiest method would be to use the
smallest kmax since this results in the least computational effort. However, in this case, using the
local maxima method yields an acceptable estimate result with little additional effort.
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Figure 3. Curve showing the relationship between HFD and kmax for the FD=1.7 time series
shown in Fig. 1.

3 Results

There is no reason to expect that a local maxima exists in every case in a tuning curve
and is therefore searching through these curves for asymptotes is not a general or practical
method to determine the best tuning parameter kmax. For instance, Fig. 4 shows the tuning curves
for HFD=1.9, 1.5, 1.3, 1.1 computed from the simulated data of Fig. 1. The black horizontal
dashed line in each subplot shows the theoretical value of the fractal dimension. There is not
always a local maximum or an asymptotic convergence to a set value of HFD. For HFD=1.9 a
peak occurs but only near kmax ~5000; the region of the plateau is found at the tuning parameter
that yields the largest error in fractal dimension. This indicates that in this fBm realization a
much smaller kmax would be appropriate.

We now turn to analyzing the simulated realizations of fBm. The smallest time series
length we select has N=1,000, and the largest has N=500,000 data points, and compute the HFD
for each of these series, as a function of tuning parameter kmax. We use values between kmax =2
and kmax =N/2. This gives a new data set comprised of HFD values as a function of the time
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series length, and the tuning parameter, yielding HFD=HFD(N Kkmax). The error to be minimized
is written by:

EN, kpay) = 100 = [HFD = FDneory |
yYmax) — .

FDtheory
1.93 15 - -
1.92
148
o 191 "
s kS
1.9
1.46
1.89
1.88 1.44 :
10° 10° 10 102 10°
k
max
1.45
121
118
e 01186
I T
114
112
. ‘ 11 . 4 L
100 10° 102 10° 10 100 10° 102 10°
k. k
max max

Figure 4. Curves showing the relationship between HFD and kmax for the HFD=1.9,1.5,1.3,1.1
time series shown in Fig. 1. The dashed horizontal curves show the theoretical value for the
HFD.

The previous equation gives the percentage error to be averaged over all synthetic time
series simulations to yield a general result for all simulation data considered. As researchers do
not generally know a priori which method of simulating artificial data most closely follows the
statistics of any particular physical or research data set it is appropriate to use a range of
synthetic simulated time series with known fractal dimension, as an average result gives the most
general answer. Fig. 5 shows surface plots comparing the percentage error HFD versus the
tuning parameter kmax and time series length, N for the theoretical HFD=1.7 for each of the four
simulation methods described in the previous section. The curve of least error is shown as a thick
grey line.

Each method of simulation yields a different curve of least error. Fig. 5b, which is the
curve for the Wood-Chan circulant matrix method (Wood and Chan, 1994), has the lowest
overall error. The Hosking (1984) method yields HFD values with the greatest errors (Fig. 5d).
Overall, the location of the minimum error curve varies widely depending on the generation
algorithm for the synthetic data.
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By taking a geometric mean of these minimum error curves for all HFD values we derive
a best-fit curve using a sum of sines function since this gave a simple function with few terms
and a fit with small sum squared error. Fig. 6 shows the relationship between the time series
length and the tuning parameter, for different HFD values, and the dashed curve shows the best
fit, given by the following equation:

kmax = [Al Sin(Bl * N + Cl) + AZ Sin(BZ * N + Cz)] (*)

Here [] represents the integer part of the enclosed function value. Table 1 shows the
parameter values for the best-fit. Fig. 6 shows that for short time series the use of a plateau
criterion to select the kmax tuning parameter will result in the use of values smaller than those
proposed by this generalized study. For example, in Fig. 1 a time series of length N=20,000 is
used. Fig. 3 shows the curve of HFD versus kmax. Our fitting function yields kmax=47 for this
length data set.
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Figure 5. Surface showing the average percentage error between the Higuchi method fractal
dimension and theoretical FD=1.7 averaged over 100 datasets of different length, N. The curve
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of least error is shown (a.) Wavelet generation method, (b.) Wood-Chan method, (c.) Davies-
Harte method, and (d.) Hosking method. The curve of least error is shown as a thick grey line.

240
1 50 T T T T T T
100
P
©
S
e
50
O 1 1 1 1 1 1
103 107 10°
N
Figure 6. Comparison of the average minimum error curve (solid) and the best fit sum of sines
function (dashed).
241
242
243 Table 1. Fitting parameters for best-fit sum of sin function, Kymq, = [A1 Sin(By * N + C;) + A, sin(B, * N + C,)].
Ay 129.843.0
B (1.292+0.045)x107
G 0.04488+0.0255
Az 18.82+2.56
B (6.488+0.280)x107
C 1.332+0.220

244



245

246
247
248
249
250
251
252

253
254
255
256
257
258
259
260
261
262
263
264

265

266

267
268

269

270

271

272
273

274

275

276

277
278
279

manuscript submitted to Nonlinear Dynamics, Springer

4 Applications

In this section we present two applications of the Higuchi method with the corrections
applied to determing the appropriate tuning parameter. The first is a shell model of the nonlinear
dynamics of MHD turbulence. We effect this via simplified approximations of the Navier—
Stokes fluid equations (Obukhov, 1971; Gledzer, 1973; Yamada and Ohkitani, 1988). We use the
MHD Gledzer—Ohkitani—Yamada (GOY) shell model, which captures the intermittent dynamics
of the energy cascade in MHD turbulence (Lepreti et al., 2004) as it moves along through the
shells in a front-like manner.

Shell models of MHD turbulence are an example of dynamical systems incorporating
simplified versions of the Navier—Stokes or MHD turbulence equations. They attempt to
conserve some of the invariants in the limit of no dissipation.We use the SHELL-ATM code
(Buchlin & Velli, 2006) to produce a time series of length N=500,000 of the magnetic energy
dissipation rate (€p) as a function of time obtained in the MHD shell model (Fig. 7a). The model
is described in detail in Lepreti et al. (2004). In short, the SHELL-ATM model makes it possible
to obtain rapid simulations of MHD turbulence in volumes in which a longitudinal magnetic field
dominates. Model construction begins via division of the wave-vector space (k-space) into a
number, N, of discrete shells with known radius k,, = ky2™ (n=0,1,...,N) (Giuliani & Carbone,
1998). Each shell is then assigned complex dynamical Elsdsser-like fields u,, (t) and b,,(t),
which represent longitudinal velocity increments and magnetic field increments. The magnetic
energy disspation rate is defined by

N
e() =1 ) kI
n=1

where 1 is the kinematic resistivity. To find the solutions to the above equations we solve the
equations

db, 2 1,
W = —r’knbn + g lkn(un+1bn+2 - bn+1un+2)
1
- gikn[(un—lbn+1 — by qUny1) + Wn_z2bnoy — bppun D"+ fr
and
du .
d_tn = _Vkrzlun + lkn(un+1un+2 - bn+1bn+2)

1. (Un-2bp—1 = by_pun_1)|
- Zlkn (un—lun+1 - bn—lbn+1) + = = 2 = = + In

where v is the kinematic viscosity and (f,, g, ) are forcing terms operating on the magnetic and
velocity increments. The symbol * represents a complex conjugate. The forcing terms are
calculated from the Langevin equation driven by a Gaussian white noise.
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These data in Fig. 7a display clear intermittent bursts of dissipated energy. Fig. 7b shows
average curve length versus scale size, k, for the time series. Fig. 7c¢ shows the relationship
between HFD and kmax. There is no asymptote which may indicate an appropriate value of kmax.
We now use Eqn. (*) to select the appropriate tuning parameter kmax determined from our prior
analysis for data featuring a single fractal scaling, for varying lengths, N, of the time series. Fig.
7d shows the computed HFD selected. There is a variation in the fractal dimension with values
being estimated as smaller from shorter lengths of the time series, and overall HFD~1.04-1.13.

0.035
0.03 1
0.025
0.02
i
0.015 1
0.01r 1
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5 1
0 1 2 3 4
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%10

Fig. 7a. Magnetic energy dissipation rate

for the GOY shell model.

1.5

14

1.3

HFD

1.2

11

max

108

In(L(k)

-10

-15

-20

-10 5 0
In(1/k)

Fig. 7b. Average curve length versus scale
size, k.
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The second data example is that of the severe acute respiratory syndrome coronavirus 2
isolate Wuhan-Hu-1. Wu et al. (2020) reported on the identification of the novel RNA virus
strain from the family Coronaviridae, which is designated here "WH-Human-1' coronavirus. We
obtained these data from the National Center for Biotechnology Information (NCBI), which is
part of the United States National Library of Medicine (NLM), a branch of the National Institutes

of Health (NIH).
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Fig. 8a. WH-Human-1 complete genome | Fig. 7b. Average curve length versus scale
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To analyze the fractal patterns in the genome one must convert the nucleotide sequence
from a symbolic sequence, meaning A,G,C,T into a time series. We follow the Peng (1992)
method in which DNA is represented as a “random walk” with two parameters ruling the
direction of the “walk” and the resulting dynamics. We start with the first nucleotide. If it is a
pyrimidine base, we move up one position. Every subsequent pyrimidine base moves up one
position. When a purine base is encountered in the series the walk steps down one position. The
nucleotide distance from the first nucleotide is then plotted versus the displacement, as in Fig. 8a.
Fig. 8b shows average curve length versus scale size, k, for the time series. Fig. 8c shows the
relationship shows the computed HFD against tuning parameter kmax from the whole time series
of length N=29,903. In this case there is a distinct asymptote at kmax=20, which yields
HFD=1.497. To test our method we again use Eqn. (*) to select the appropriate tuning parameter
kmax, for varying lengths, N, of the time series. Fig. 8d shows the computed HFD selected. There
1s no statistically significant variation in the fractal dimension with values being estimated at
HFD~1.5.

Our analysis shows that the fractal dimension of WH-Human-1 coronavirus genome is
different from its fractal dimension computed from electron microscopic and atomic force
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microscopic images of 40 coronaviruses (CoV), as reported by Swapna et al. (2021) who found a
scale-invariant dimension of 1.820. This indicated that the images of the virus feature higher
complexity and greater roughness than the pattern we have detected in the genome.

5 Conclusions

Higuchi’s method to compute the fractal dimension of physical signals is widely used in
research. However, a major difficulty in applying the method is the correct choice of tuning
parameter (kmax) to compute the most accurate results. Poor selection of kmax can result in values
of the fractal dimension that are spurious, and this can result in potentially invalid interpretations
of data. In the past researchers have used various ad hoc methods to determine the appropriate
tuning parameter for their particular data. We have shown that a method such as seeking a
convergence of the computed HFD to a plateau is not in general a valid procedure as not every
data instance shows the HF'D estimate reaches a plateau.

In this paper we have sought to find a more general method of determining, a priori, the
optimum tuning parameter kmax for a time series of length N. To study this problem we generated
synthetic time series of known HFD and applied the Higuchi method to each, averaging results
over the different fbm within HFD=[1.9,1.7,1.5,1.3,1.1] categories. These data allow the
calculation of curves showing where in (N, kmax)-space the most appropriate tuning parameter
should be selected. We found that fractal dimension calculation via the Higuchi method is
sensitive to both the tuning parameter kmax and also the length of the time series. We derive a
best-fit curve fitting the location of the average minimum HFD error to provide researchers with
an efficient method of estimating and appropriate kmax, given their particular dataset.

We applied the modified method to two physical cases, one from physics and one from
bioinformatics. In the latter case we considered the Coronaviridae genome of the severe acute
respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, first reported by Wu et al. (2020). Our
analysis of this data showed strong evidence of monofractality (Fig. 8b) with HFD~1.5 (Fig. 8d).

In the former case we computed the magnetic energy dissipation rate from a shell model
of the nonlinear dynamics of of MHD turbulence. We used simplified approximations of the
Navier—Stokes fluid equations (Obukhov, 1971; Gledzer, 1973; Yamada and Ohkitani, 1988), in
particular the MHD Gledzer—Ohkitani—Yamada (GOY) shell model, and found HFD~1.10 (Fig.
7d). These data have been reported to feature a multifractal scaling (Pisarenko et al., 1993) and
this is consistent with our results in Fig. 8b which show evidence of nonlinear behaviour, which
is possibly a reason why there is about a 10 percent variation in the HFD calculation (Fig. 7d).

It is clear that accurate calculation of fractal dimension can be a delicate process and is
influenced not only by the method used, but also by the nature of the data. Studies must therefore
concern themselves not only with the type of data, but also with the adequacy of the data-
generating algorithms, and fractal estimation algorithms. We considered only synthetic time
series realizations of processes with perfect and controlled scale invariance, viz. signals that have
only a single type of scaling. However, many other theoretical data types exist. For instance,
numerous geophysical signals do not have local scaling regularity, but rather have a regularity
which varies in time or space (Dobias & Wanliss, 2009; Lévy Véhel, 2013). Data that are
multifractal require a variety of scaling exponents to fully describe the dynamics, and methods to
generalize the Higuchi method to these more complex data types are going forward at present
(Carrizales-Velazquez et al., 2021).
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