

1 **Efficient Calculation of Fractal Properties via the Higuchi Method**

2 **J. A. Wanliss¹ and Grace E. Wanliss¹**

3

4 ¹Department of Physics, Presbyterian College, 503 S. Broad St., Clinton, SC, 29325.

5 Corresponding author: James Wanliss (jawanliss@presby.edu)

6

7 **Key Points:**

8 • Fractal dimension calculation via the Higuchi method is shown to depend on the tuning
9 parameter k_{\max} and also the length of the time series.

10 • We derive a best-fit to provide researchers with an efficient method of estimating and
11 appropriate k_{\max} , given their particular dataset.

12 **Data Availability:**

13 • The data that support the findings of this study are available from the corresponding
14 author, JAW, upon reasonable request.

15 **Disclosure of potential conflicts of interest—ethical and financial:**

16 • The authors declare that they have no conflict of interest.

17 **Abstract**

18 Higuchi's method of determining fractal dimension (*HFD*) is an important, well-used, research
 19 tool that, compared to many other methods, gives rapid, efficient, and robust estimations for the
 20 range of possible fractal dimensions. One major shortcoming in applying the method is the
 21 correct choice of tuning parameter (k_{max}); a poor choice can generate spurious results, and there
 22 is no agreed upon methodology to solve this issue. We analyze multiple instances of synthetic
 23 fractal signals to minimize an error metric. This allows us to offer a new and general method that
 24 allows determination, *a priori*, of the best value for the tuning parameter, for a particular length
 25 data set. We demonstrate its use on physical data, by calculating fractal dimensions for a shell
 26 model of the nonlinear dynamics of MHD turbulence, and severe acute respiratory syndrome
 27 coronavirus 2 isolate Wuhan-Hu-1 from the family *Coronaviridae*.

28 **1. Introduction**

29 Since the seminal work of Mandelbrot & Van Ness (1968) the characterization of data in
 30 terms of fractal properties has found near ubiquitous and enduring use in diverse research areas,
 31 including research within the fields of engineering (Yang et al., 2021), hydrology (Zuo et al.,
 32 2009; Koutsoyiannis, 2019), geology (Turcotte, 1992; Rangelov & Ivanov, 2017), physics
 33 (Wang et al., 2018), space science (Wanliss & Reynolds, 2003; Cersosimo & Wanliss, 2007),
 34 medicine (Mitsutake et al., 2004; Grizzi et al., 2019), economics (Fama et al., 2021), financial
 35 markets (Wątorek et al., 2021) and many more. Fractal properties in nature and human dynamics
 36 arguably have served to yield increased understanding and improvement on human society.

37 Higuchi's method (Higuchi, 1988) is a widely applied time-domain technique to
 38 determine fractal properties of complex non-periodic, nonstationary physical data (Esteller et al.,
 39 2001; Salazar-Varas & Vazquez, 2018; Yilmaz & Unal, 2020). That is, the method can
 40 accurately calculate the fractal dimension of time series. Higuchi initially developed it to study
 41 large-scale turbulent fluctuations of the interplanetary magnetic field. It is a modification to the
 42 method of Burlaga & Klein (1986) in which fluctuation properties of turbulent space plasmas can
 43 be studied beyond the inertial range. It is simple to implement, efficient, and can rapidly achieve
 44 accurate and stable values of fractal dimension, even in noisy, nonstationary data (Liehr &
 45 Massopust, 2020). The fractal dimension calculated via the Higuchi method is called the Higuchi
 46 fractal dimension (*HFD*). Since its initial development the Higuchi method has been applied to
 47 numerous fields of research. In medicine, for instance, it has found widespread use to detect and
 48 classify epileptic EEG signals (Lu et al., 2021), human locomotion (Santuz & Akay, 2020), and
 49 in engineering it has been used to detect faults in rolling bearings (Yang et al., 2021). One
 50 difficulty in using the Higuchi method is that certain parameters must be applied to the method,
 51 and inappropriate parameter selection results in spurious calculation of fractal properties.
 52 Although the method has been used for decades, and is widely employed at present, there is an
 53 absence of consensus of the appropriate method to determine the parameters that must be input.
 54 In this paper we expose this weakness of the Higuchi method so that there is wider appreciation
 55 of its limits, and suggest how to solve the drawbacks of this method when applied to different
 56 types of scientific data.

57 The *HFD* computed depends on the length of the time series, and an internal tuning factor
 58 k_{max} . Higuchi's original paper did not elaborate on the selection of the tuning factor but
 59 illustrated the method with $k_{max}=2^{11}$ for time series having length $N=2^{17}$. Subsequent authors
 60 used similar values for the tuning factor but we will show that the tuning factor plays a crucial

61 role in estimation the *HFD*. Higuchi's method, if applied appropriately, can reliably find the time
 62 series fractal dimension. However, if the tuning factor is incorrectly selected, the method is
 63 compromised from the outset.

64 How is the researcher to determine the appropriate tuning factor for their study that will
 65 optimize the calculation of a stable *HFD*, if it exists? In addition, how does the selection of the
 66 factor influence the value of the computed *HFD*? The literature is vague in answering these
 67 questions, and to do so is the main thrust of our research. Multiple studies have addressed the
 68 issue of proper selection of tuning factor k_{max} . Accardo et al. (1997) applied the method in their
 69 study of electroencephalograms, and sought the most suitable pair of (k_{max} , N). They
 70 experimented with $k_{max}=3-10$ on time series with lengths from $N=50-1000$, and settled on an
 71 optimum $k_{max}=6$. Some papers recommend plotting the *HFD* versus a range of k_{max} , and then
 72 selecting the appropriate k_{max} at the location where the calculated *HFD* approaches a local
 73 maximum or asymptote, which can be considered a saturation point (Doyle et al., 2004;
 74 Wajnsztejn et al., 2016). However, there is no reason that in every instance the *HFD* will reach a
 75 saturation point. Paramanathan and Uthayakumar (2008) proposed to determine the tuning factor
 76 k_{max} based on a size-measure relationship that employed a recursive length of the signal from
 77 different scales of measurement. Gomolka et al. (2018) selected k_{max} on the basis of statistical
 78 tests that allowed the best discrimination between already known diabetic and healthy subjects.
 79 But in the absence of such additional data between systems in different dynamic states (e.g.
 80 health or pathology), how can one select the correct tuning parameter?

81 In this paper we will try to answer these questions in a general way that is helpful to the
 82 community of researchers who utilize the Higuchi method. The organization of the paper is as
 83 follows. We will generate artificial time series with well-specified fractal dimension, then
 84 compare the *HFD* computed from these data for different values of the tuning parameter k_{max} .
 85 We will demonstrate the results on several examples of physical data.

86 2. Data and Method

87 In order to investigate the optimization of the Higuchi method we turn to the generation
 88 of synthetic time series with known fractal properties, to see how well the method performs. One
 89 difficulty resides in the the production of truly fractal time series of given dimension, which is a
 90 non-trivial task (Kijima and Tam, 2013). Therefore studies must concern themselves with the
 91 adequacy of the data-generating algorithms in addition to the fractal dimension estimation
 92 algorithms. We will consider synthetic time series realizations of processes with perfect and
 93 controlled scale invariance, viz. signals that have only a single type of scaling. Many other
 94 theoretical data types exist that have been used to analyze signals that lack local scaling
 95 regularity, but rather have a regularity which varies in time or space (Lévy Véhel, 2013; Wanliss
 96 et al., 2014). There is also a recent effort to generalize the Higuchi method to distinguish
 97 monofractal from multifractal dynamics based on relatively short time series (Carrizales-
 98 Velazquez et al., 2021).

99 In this paper we will limit the research to study of well-understood synthetic data with
 100 monofractal scaling. To illustrate how a monofractal scaling exponent can be derived we
 101 consider fractional Brownian motion (fBm) which is characterized by a single stable fractal
 102 dimension and is a continuous-time random process (Mandelbrot and Van Ness, 1968). Next, we
 103 research the these data and compare the fractal dimension recovered using the Higuchi algorithm

104 with the theoretical fractal dimension. The synthetic data time series can be written in terms of
 105 stochastic integrals of time integrations of fractional Gaussian noise:

106

107
$$\mathbf{B}_H(t) = \frac{1}{\Gamma(H + \frac{1}{2})} \left\{ \int_{-\infty}^0 [(t-s)^{H-\frac{1}{2}} - (-s)^{H-\frac{1}{2}}] d\mathbf{W}(s) + \int_0^t (t-s)^{H-\frac{1}{2}} d\mathbf{W}(s) \right\}.$$

108

109 Here \mathbf{W} is a stationary and ergodic random white noise process with zero mean defined
 110 on $(-\infty, \infty)$. In the above equation $H \in (0, 1)$ is known as the Hurst exponent. The time series
 111 Hurst exponent is related to signal roughness averaged over multiple length scales. The higher
 112 the value of H , the smoother is the time series, and the longer trends tend to continue. For values
 113 closer to zero, the time series rapidly fluctuates, as shown in Fig. 1. The covariance function of
 114 the noisy signal can be expressed by:

115

116
$$\text{cov}\{\mathbf{B}_H(s), \mathbf{B}_H(t)\} = \frac{1}{2}\{|s|^{2H} + |t|^{2H} - |s-t|^{2H}\},$$

117

118 so that $\mathbf{B}_H(0) \equiv \mathbf{0}$ and $\text{var}\{\mathbf{B}_H(t)\} = t^{2H}$. For $H=1/2$ the white noise process reduces to the
 119 well-known random walk. The theoretical relationship between the Hurst exponent, H , and the
 120 Higuchi fractal dimension, HFD , is $HFD = 2 - H$, with values of HFD between 1 and 2.

121 We consider four different method generators of processes having long-range dependence
 122 to generate synthetic series with exact fractal dimension. First, we consider an exact wavelet-
 123 based method. This is based on a biorthogonal wavelet method proposed by Meyer and Sellan
 124 (Abry and Sellan, 1996; Bardet et al., 2003) and implemented in Matlab software and the wfbm
 125 calling function. The second is the method of Davies & Harte (1987) whose generation process
 126 uses a fast fourier transform basis and embeds the covariance matrix of the increments of the
 127 fractional Brownian motion in a circulant matrix. The third category of synthetic simulated data
 128 is produced using the Wood-Chan circulant matrix method (Wood and Chan, 1994), which is a
 129 generalization of the previous method (Coeurjolly, 2001). The fourth set of data are simulated
 130 using the Hosking method (Hosking, 1984), also known as the Durbin or Levinson method
 131 (Levinson, 1947), which utilizes the well-known conditional distribution of the multivariate
 132 Gaussian distribution on a recursive scheme to generate samples based on the explicit covariance
 133 structure. All these methods of producing simulated data are considered exact methods because
 134 they completely capture the covariance structure and produce a true realization of
 135 series with a single scaling parameter.

136 Fig. 1 shows various examples of time series produced via the Davies and Harte (1987)
 137 method. The smoothest curve corresponds to $H=0.9$, which implies high probability to observe
 138 long periods with increments of same sign. The roughest curve corresponds to $H=0.1$, which is
 139 sub-diffusive, with high probability that increments feature long sequences of oscillating sign.
 140 The curves show data for Hurst exponents $H=0.3, 0.5, 0.7, 0.9$, from top to bottom.

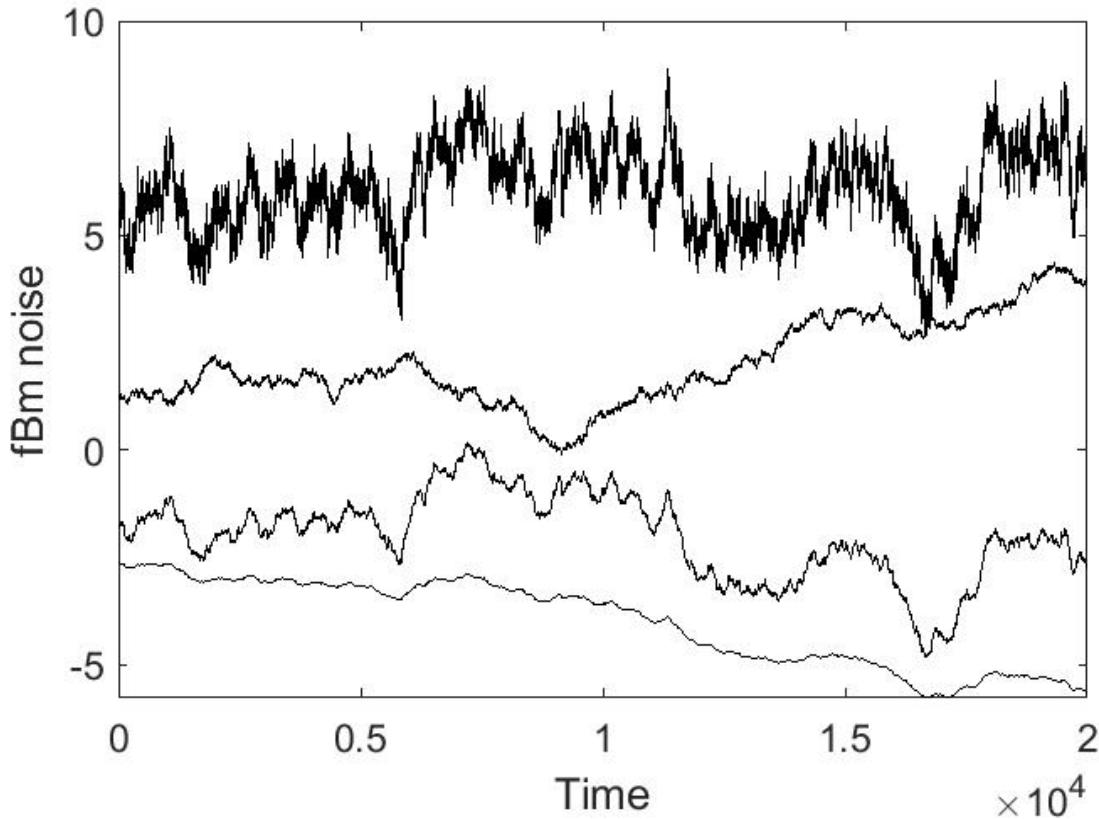


Figure 1. Examples of synthetic time series from the Davies and Harte (1987) method, characterized by Hurst exponent $H=0.3, 0.5, 0.7, 0.9$ (top to bottom).

141

142 For each of the four data generating methods we create 100 unique time series, of
 143 differing lengths up to maximum length 500,000 data points, for Hurst exponents
 144 $H=0.1, 0.3, 0.5, 0.7, 0.9$. Thus, for each time series length N we have 500 unique simulations of
 145 fBm for each method. This produces 44,000 data sets in total, for experimentation. We next
 146 apply the Higuchi method to each of these time series with an exact fractal dimension (FD) to
 147 determine how well the Higuchi method is able to accurately recover the theoretical value
 148 compared to the derived HFD .

149 Next we describe the Higuchi method. The Higuchi method takes a signal, discretized
 150 into the form of a time series, $x(1), x(2), \dots, x(N)$ and, from this series, derives a new time
 151 series, X_k^m , defined as:

152
$$X_k^m: x(m), x(m+k), x(m+2k), \dots, x\left(m + \left[\frac{N-k}{k}\right] \cdot k\right),$$

153 Here $[\cdot]$ represents the integer part of the enclosed value. The integer $m = 1, 2, \dots, k$ is the
 154 start time and k is the time interval, with $k = 1, \dots, k_{max}$; k_{max} is a free tuning parameter. This
 155 means that given time interval equal to k , spawns k -sets of new time series. For instance, if $k =$

156 **10** and the time series has length $N = 1000$, the following new time series are derived from the
 157 original data:

158

159 $X_{10}^1: x(1), x(11), x(21), \dots, x(991)),$ 160 $X_{10}^2: x(2), x(12), x(22), \dots, x(992)),$

161 .

162 .

163 .

164 $X_{10}^{10}: x(10), x(20), x(30), \dots, x(1000).$

165

166 These curves have lengths defined by:

167

$$168 L_m(k) = \frac{\left\{ \left(\sum_{i=1}^{\left[\frac{N-m}{k} \right]} |x(m+ik) - x(m+(i-1) \cdot k)| \right) \frac{N-1}{\left[\frac{N-m}{k} \right] \cdot k} \right\}}{k}.$$

169

170 The final term in the numerator is a normalization factor, $N - \frac{1}{\left[\frac{N-m}{k} \right]} \cdot k$. The length of the
 171 curve for the time interval k is then defined as the average over the k sets of $L_m(k)$:

172

173 $L(k) = \langle L_m(k) \rangle.$

174

175 In cases when this equation scales according to the rule $L(k) \propto k^{-HFD}$, we consider the
 176 time series to behave as a fractal with dimension HFD . Thus, the HFD is the slope of the straight
 177 line that fits the curve of $\ln(L(k))$ versus $\ln(1/k)$. Fig. 2 shows the $L(k)$ curve from simulated data
 178 for the fractal dimension $FD=1.7$ (corresponding to $H=0.3$) time series data in Fig. 1. The
 179 corresponding curve of $HFD(k_{\max})$ is shown in Fig. 3.

180

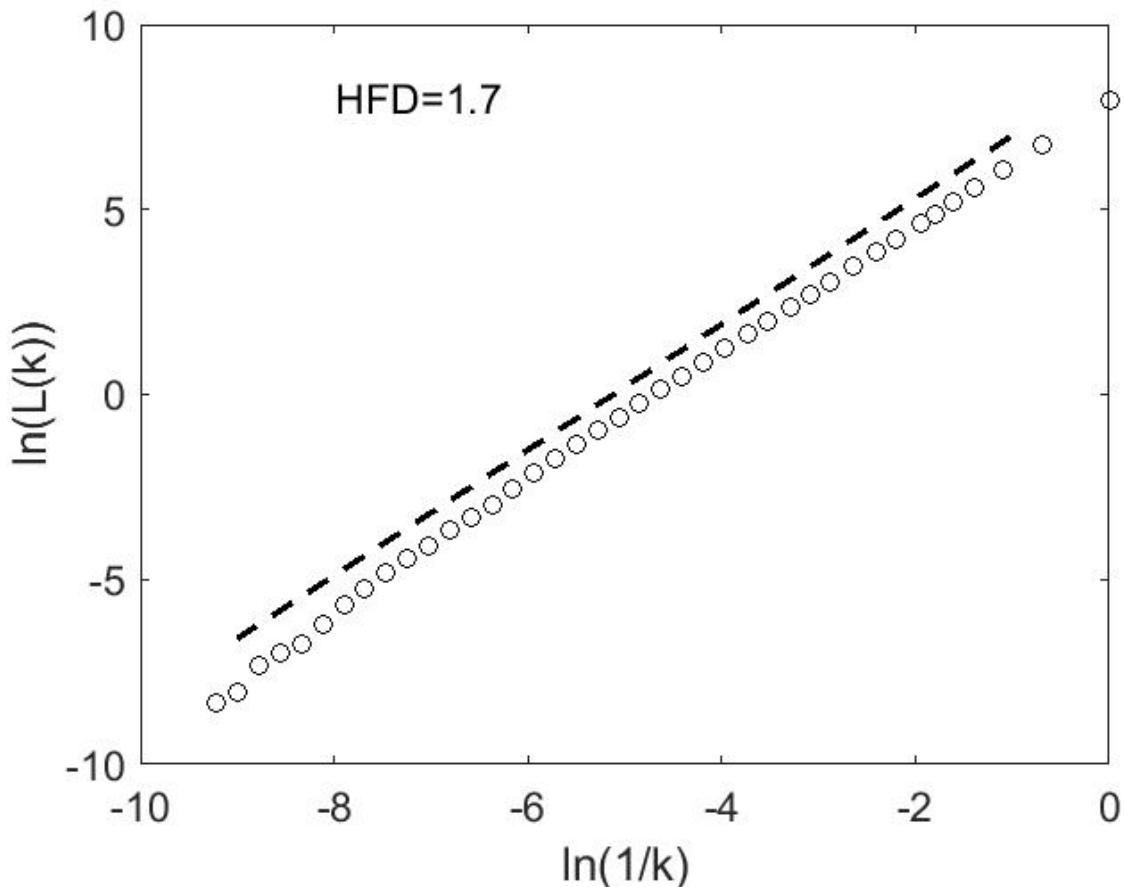


Figure 2. Average curve length versus scale size, k , for the time series with $HFD=1.7$.

181

182 We now turn to finding the best tuning parameter, k_{\max} , for the set of data we have
 183 simulated. As discussed in the Introduction, a common way to determine the tuning parameter
 184 relies upon finding the location, in plots like Fig. 3, of HFD versus a range of k_{\max} , where the
 185 calculated HFD approaches a local maximum or asymptote (Doyle et al., 2004; Wajnsztejn et al.,
 186 2016). We will call this a tuning curve. In Fig. 3, which is for the time series with $HFD=1.7$,
 187 there is only one local maximum which is located at $k_{\max}=7$ which produces a negligible error of
 188 0.5%. There are three places where the Higuchi method finds a best value is achieved for this
 189 simulation, viz. $k_{\max}=4, 14, 727$. In this particular instantiation of a fBm the most effective
 190 tuning parameter would thus be $k_{\max}=4, 14$, or 727. The easiest method would be to use the
 191 smallest k_{\max} since this results in the least computational effort. However, in this case, using the
 192 local maxima method yields an acceptable estimate result with little additional effort.

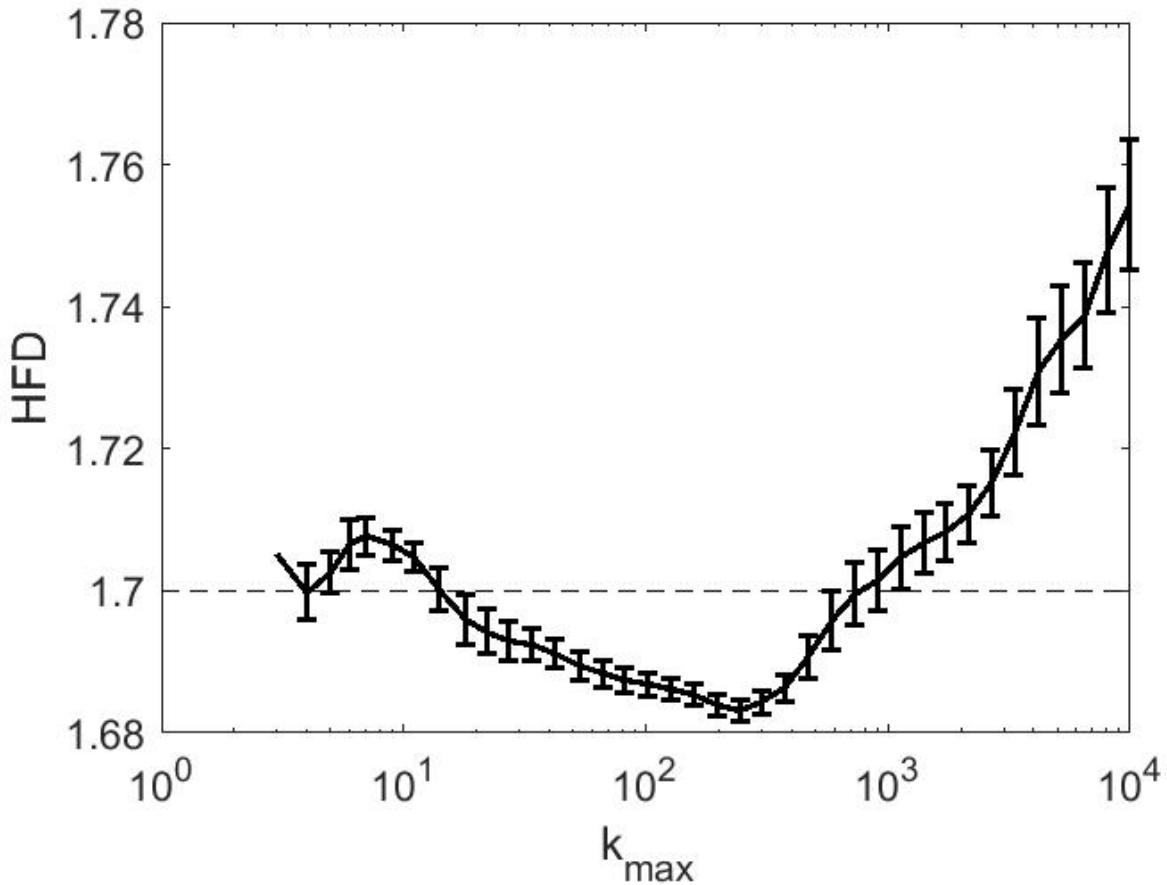


Figure 3. Curve showing the relationship between HFD and k_{\max} for the $FD=1.7$ time series shown in Fig. 1.

193

194 **3 Results**

195 There is no reason to expect that a local maxima exists in every case in a tuning curve
 196 and is therefore searching through these curves for asymptotes is not a general or practical
 197 method to determine the best tuning parameter k_{\max} . For instance, Fig. 4 shows the tuning curves
 198 for $HFD=1.9, 1.5, 1.3, 1.1$ computed from the simulated data of Fig. 1. The black horizontal
 199 dashed line in each subplot shows the theoretical value of the fractal dimension. There is not
 200 always a local maximum or an asymptotic convergence to a set value of HFD . For $HFD=1.9$ a
 201 peak occurs but only near $k_{\max} \sim 5000$; the region of the plateau is found at the tuning parameter
 202 that yields the largest error in fractal dimension. This indicates that in this fBm realization a
 203 much smaller k_{\max} would be appropriate.

204 We now turn to analyzing the simulated realizations of fBm. The smallest time series
 205 length we select has $N=1,000$, and the largest has $N=500,000$ data points, and compute the HFD
 206 for each of these series, as a function of tuning parameter k_{\max} . We use values between $k_{\max}=2$
 207 and $k_{\max}=N/2$. This gives a new data set comprised of HFD values as a function of the time

208 series length, and the tuning parameter, yielding $HFD=HFD(N,k_{max})$. The error to be minimized
 209 is written by:

210

$$E(N, k_{max}) = 100 * \frac{[HFD - FD_{theory}]}{FD_{theory}}.$$

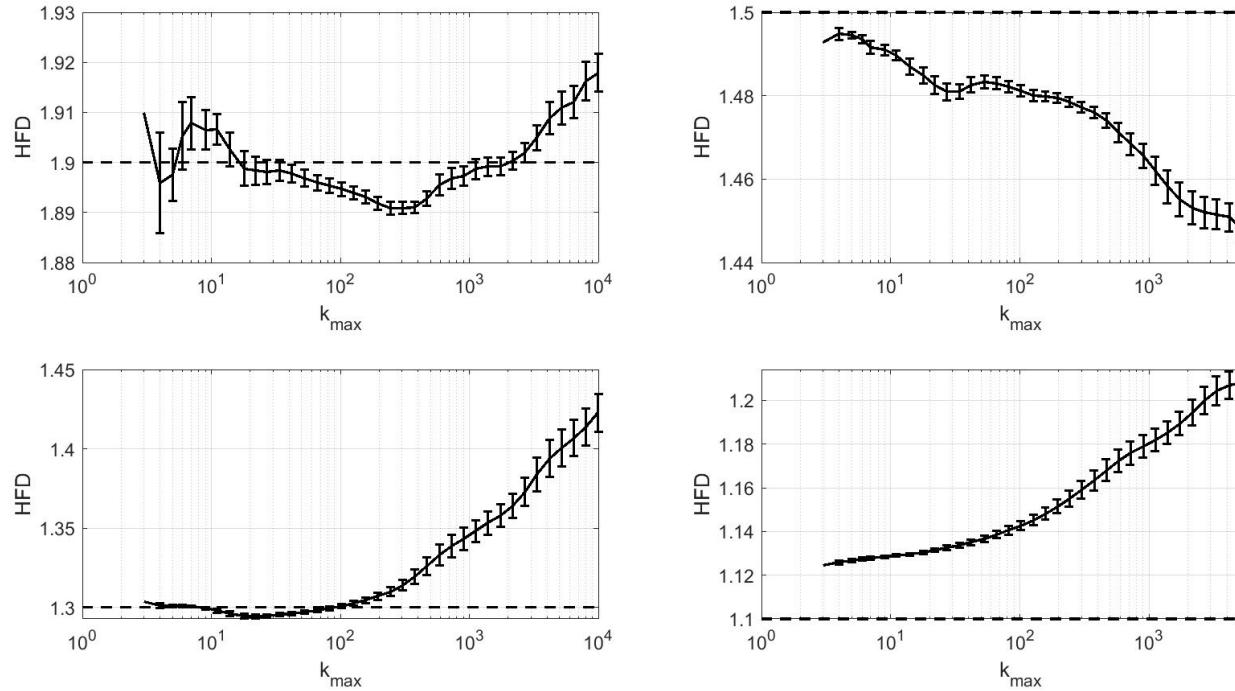


Figure 4. Curves showing the relationship between HFD and k_{max} for the $HFD=1.9, 1.5, 1.3, 1.1$ time series shown in Fig. 1. The dashed horizontal curves show the theoretical value for the HFD .

211

212 The previous equation gives the percentage error to be averaged over all synthetic time
 213 series simulations to yield a general result for all simulation data considered. As researchers do
 214 not generally know *a priori* which method of simulating artificial data most closely follows the
 215 statistics of any particular physical or research data set it is appropriate to use a range of
 216 synthetic simulated time series with known fractal dimension, as an average result gives the most
 217 general answer. Fig. 5 shows surface plots comparing the percentage error HFD versus the
 218 tuning parameter k_{max} and time series length, N for the theoretical $HFD=1.7$ for each of the four
 219 simulation methods described in the previous section. The curve of least error is shown as a thick
 220 grey line.

221 Each method of simulation yields a different curve of least error. Fig. 5b, which is the
 222 curve for the Wood-Chan circulant matrix method (Wood and Chan, 1994), has the lowest
 223 overall error. The Hosking (1984) method yields HFD values with the greatest errors (Fig. 5d).
 224 Overall, the location of the minimum error curve varies widely depending on the generation
 225 algorithm for the synthetic data.

226 By taking a geometric mean of these minimum error curves for all HFD values we derive
 227 a best-fit curve using a sum of sines function since this gave a simple function with few terms
 228 and a fit with small sum squared error. Fig. 6 shows the relationship between the time series
 229 length and the tuning parameter, for different HFD values, and the dashed curve shows the best
 230 fit, given by the following equation:

231

232
$$k_{max} = [A_1 \sin(B_1 * N + C_1) + A_2 \sin(B_2 * N + C_2)]. \quad (*)$$

233

234 Here [] represents the integer part of the enclosed function value. Table 1 shows the
 235 parameter values for the best-fit. Fig. 6 shows that for short time series the use of a plateau
 236 criterion to select the k_{max} tuning parameter will result in the use of values smaller than those
 237 proposed by this generalized study. For example, in Fig. 1 a time series of length $N=20,000$ is
 238 used. Fig. 3 shows the curve of HFD versus k_{max} . Our fitting function yields $k_{max}=47$ for this
 239 length data set.

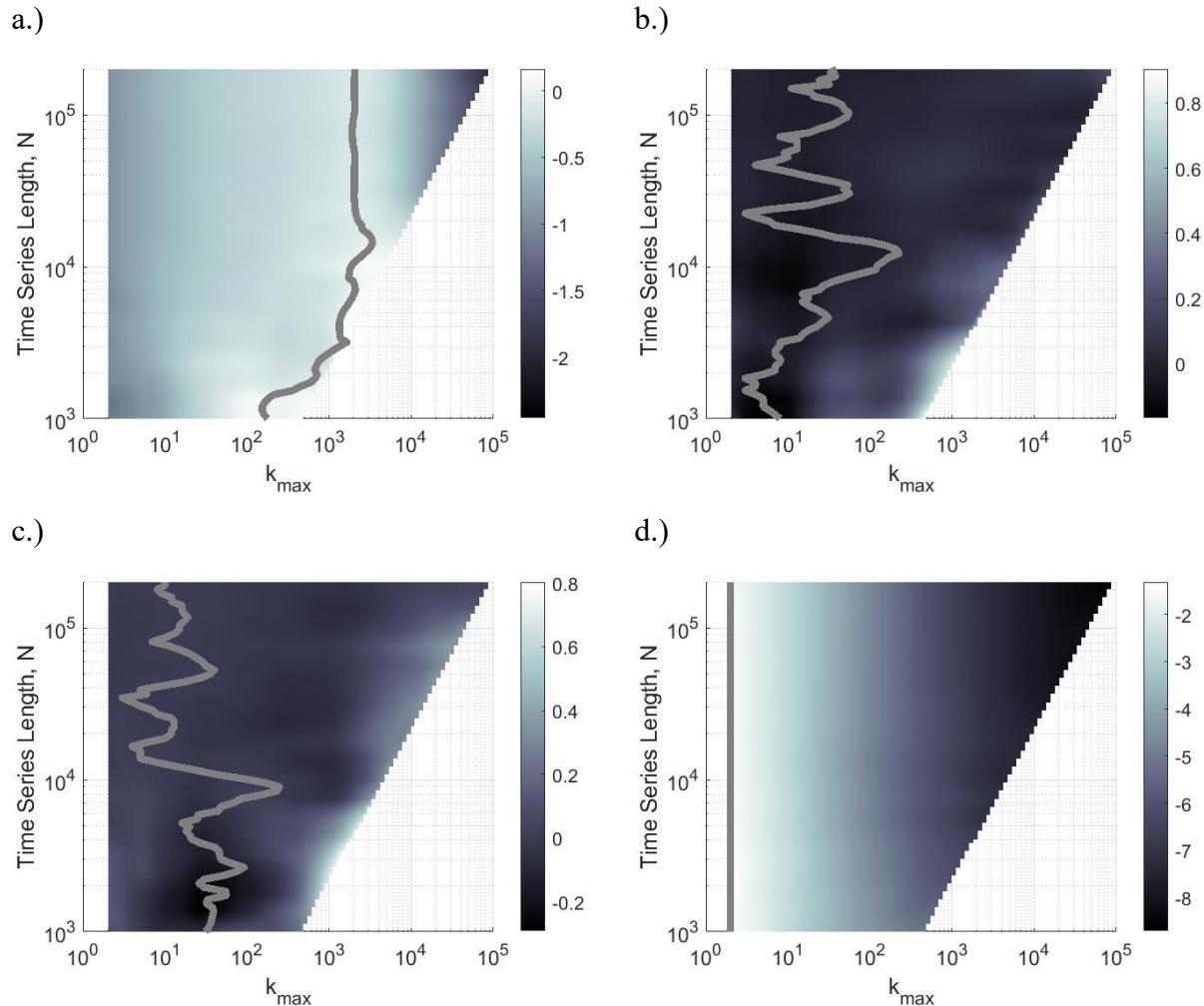


Figure 5. Surface showing the average percentage error between the Higuchi method fractal dimension and theoretical $FD=1.7$ averaged over 100 datasets of different length, N . The curve

of least error is shown (a.) Wavelet generation method, (b.) Wood-Chan method, (c.) Davies-Harte method, and (d.) Hosking method. The curve of least error is shown as a thick grey line.

240

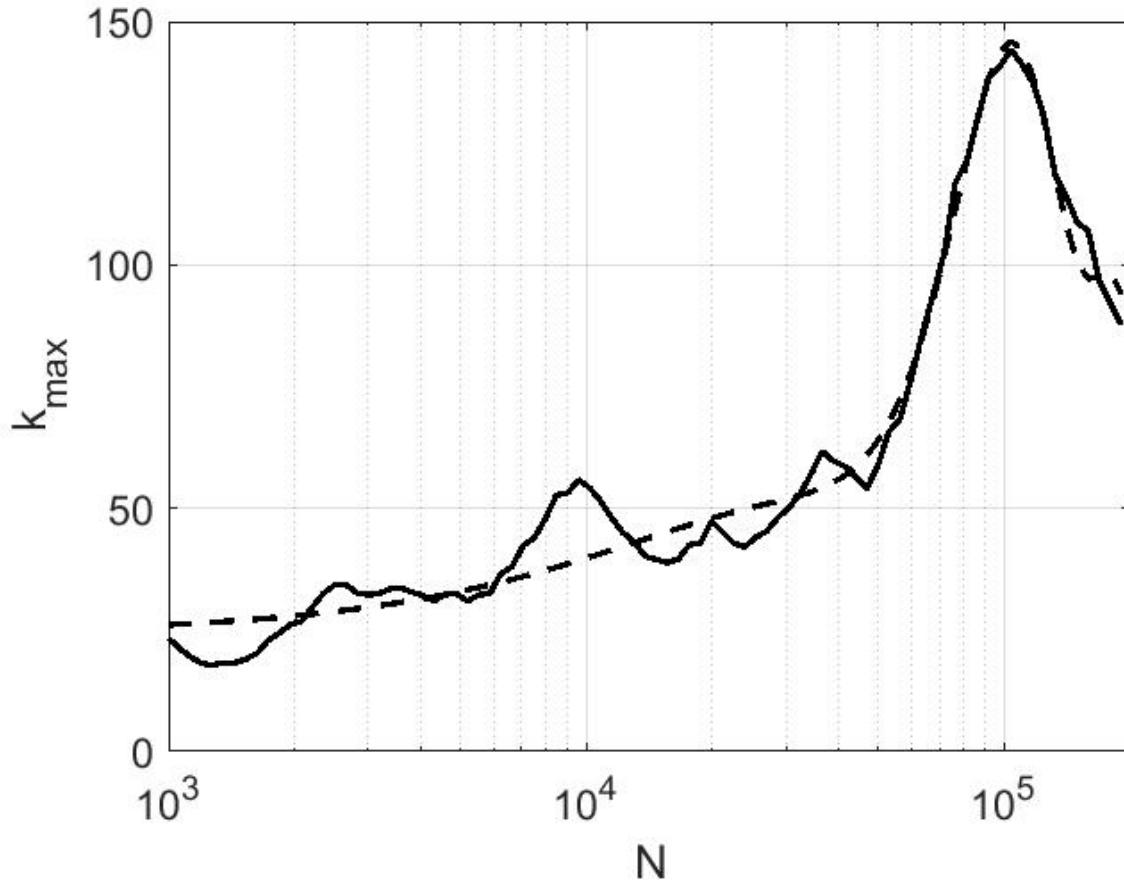


Figure 6. Comparison of the average minimum error curve (solid) and the best fit sum of sines function (dashed).

241

242

243 *Table 1. Fitting parameters for best-fit sum of sin function, $k_{max} = [A_1 \sin(B_1 * N + C_1) + A_2 \sin(B_2 * N + C_2)]$.*

A_1	129.8 ± 3.0
B_1	$(1.292 \pm 0.045) \times 10^{-5}$
C_1	0.04488 ± 0.0255
A_2	18.82 ± 2.56
B_2	$(6.488 \pm 0.280) \times 10^{-5}$
C_2	1.332 ± 0.220

244

245 **4 Applications**

246 In this section we present two applications of the Higuchi method with the corrections
 247 applied to determining the appropriate tuning parameter. The first is a shell model of the nonlinear
 248 dynamics of MHD turbulence. We effect this via simplified approximations of the Navier–
 249 Stokes fluid equations (Obukhov, 1971; Gledzer, 1973; Yamada and Ohkitani, 1988). We use the
 250 MHD Gledzer–Ohkitani–Yamada (GOY) shell model, which captures the intermittent dynamics
 251 of the energy cascade in MHD turbulence (Lepreti et al., 2004) as it moves along through the
 252 shells in a front-like manner.

253 Shell models of MHD turbulence are an example of dynamical systems incorporating
 254 simplified versions of the Navier–Stokes or MHD turbulence equations. They attempt to
 255 conserve some of the invariants in the limit of no dissipation. We use the SHELL-ATM code
 256 (Buchlin & Velli, 2006) to produce a time series of length $N=500,000$ of the magnetic energy
 257 dissipation rate (ϵ_b) as a function of time obtained in the MHD shell model (Fig. 7a). The model
 258 is described in detail in Lepreti et al. (2004). In short, the SHELL-ATM model makes it possible
 259 to obtain rapid simulations of MHD turbulence in volumes in which a longitudinal magnetic field
 260 dominates. Model construction begins via division of the wave-vector space (k-space) into a
 261 number, N , of discrete shells with known radius $k_n = k_0 2^n$ ($n=0,1,\dots,N$) (Giuliani & Carbone,
 262 1998). Each shell is then assigned complex dynamical Elsässer-like fields $u_n(t)$ and $b_n(t)$,
 263 which represent longitudinal velocity increments and magnetic field increments. The magnetic
 264 energy dissipation rate is defined by

$$265 \epsilon_b(t) = \eta \sum_{n=1}^N k_n^2 |b_n^2|$$

266 where η is the kinematic resistivity. To find the solutions to the above equations we solve the
 267 equations
 268

$$270 \frac{db_n}{dt} = -\eta k_n^2 b_n + \frac{1}{6} ik_n (u_{n+1} b_{n+2} - b_{n+1} u_{n+2}) \\ 271 - \frac{1}{6} ik_n [(u_{n-1} b_{n+1} - b_{n-1} u_{n+1}) + (u_{n-2} b_{n-1} - b_{n-2} u_{n-1})]^* + f_n$$

272
 273 and

$$274 \frac{du_n}{dt} = -\nu k_n^2 u_n + ik_n (u_{n+1} u_{n+2} - b_{n+1} b_{n+2}) \\ 275 - \frac{1}{4} ik_n \left[(u_{n-1} u_{n+1} - b_{n-1} b_{n+1}) + \frac{(u_{n-2} b_{n-1} - b_{n-2} u_{n-1})}{2} \right]^* + g_n$$

276
 277 where ν is the kinematic viscosity and (f_n, g_n) are forcing terms operating on the magnetic and
 278 velocity increments. The symbol $*$ represents a complex conjugate. The forcing terms are
 279 calculated from the Langevin equation driven by a Gaussian white noise.

280

281 These data in Fig. 7a display clear intermittent bursts of dissipated energy. Fig. 7b shows
 282 average curve length versus scale size, k , for the time series. Fig. 7c shows the relationship
 283 between HFD and k_{max} . There is no asymptote which may indicate an appropriate value of k_{max} .
 284 We now use Eqn. (*) to select the appropriate tuning parameter k_{max} determined from our prior
 285 analysis for data featuring a single fractal scaling, for varying lengths, N , of the time series. Fig.
 286 7d shows the computed HFD selected. There is a variation in the fractal dimension with values
 287 being estimated as smaller from shorter lengths of the time series, and overall $HFD \sim 1.04-1.13$.

288

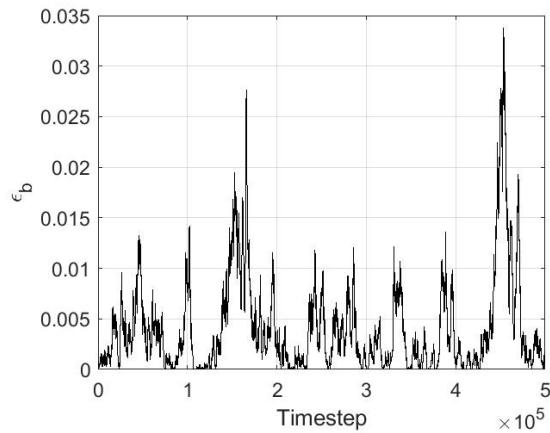


Fig. 7a. Magnetic energy dissipation rate for the GOY shell model.

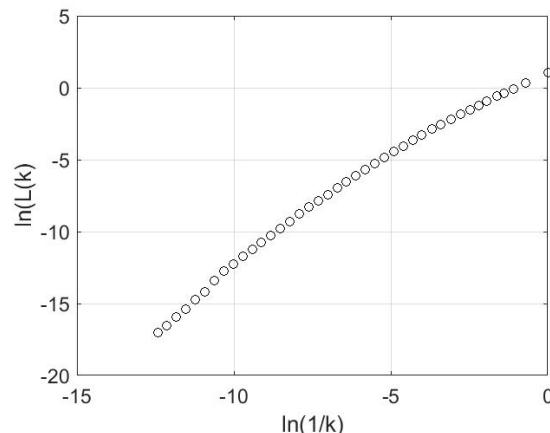
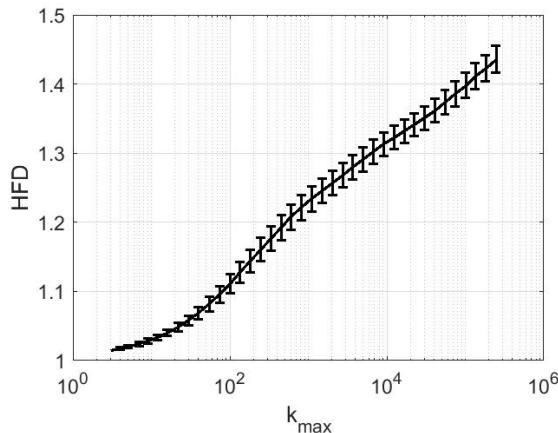
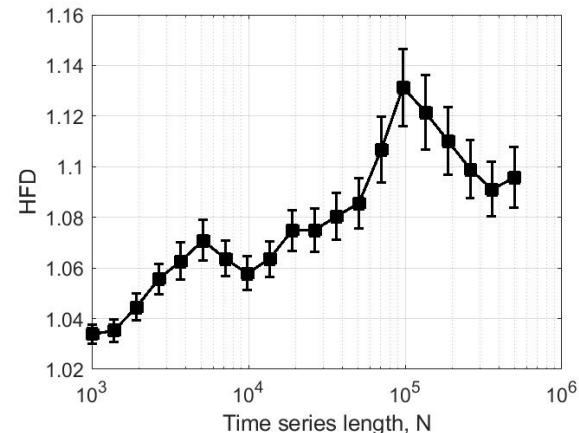


Fig. 7b. Average curve length versus scale size, k .



289

290 The second data example is that of the severe acute respiratory syndrome coronavirus 2
 291 isolate Wuhan-Hu-1. Wu et al. (2020) reported on the identification of the novel RNA virus
 292 strain from the family *Coronaviridae*, which is designated here 'WH-Human-1' coronavirus. We
 293 obtained these data from the National Center for Biotechnology Information (NCBI), which is
 294 part of the United States National Library of Medicine (NLM), a branch of the National Institutes
 295 of Health (NIH).

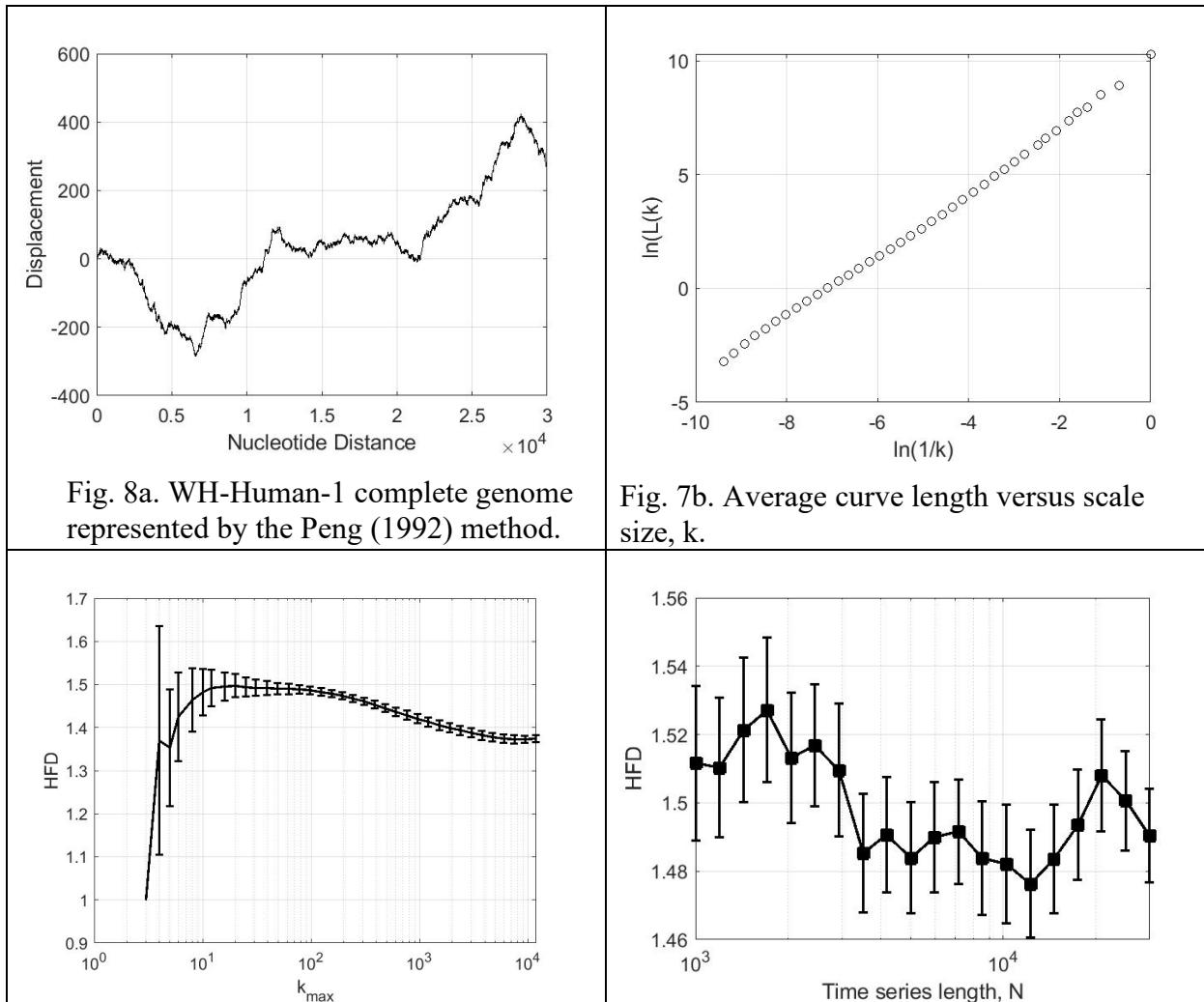


Fig. 8a. WH-Human-1 complete genome represented by the Peng (1992) method.

Fig. 7b. Average curve length versus scale size, k .

296

297 To analyze the fractal patterns in the genome one must convert the nucleotide sequence
 298 from a symbolic sequence, meaning A,G,C,T into a time series. We follow the Peng (1992)
 299 method in which DNA is represented as a “random walk” with two parameters ruling the
 300 direction of the “walk” and the resulting dynamics. We start with the first nucleotide. If it is a
 301 pyrimidine base, we move up one position. Every subsequent pyrimidine base moves up one
 302 position. When a purine base is encountered in the series the walk steps down one position. The
 303 nucleotide distance from the first nucleotide is then plotted versus the displacement, as in Fig. 8a.
 304 Fig. 8b shows average curve length versus scale size, k , for the time series. Fig. 8c shows the
 305 relationship shows the computed HFD against tuning parameter k_{\max} from the whole time series
 306 of length $N=29,903$. In this case there is a distinct asymptote at $k_{\max}=20$, which yields
 307 $HFD=1.497$. To test our method we again use Eqn. (*) to select the appropriate tuning parameter
 308 k_{\max} , for varying lengths, N , of the time series. Fig. 8d shows the computed HFD selected. There
 309 is no statistically significant variation in the fractal dimension with values being estimated at
 310 $HFD\sim 1.5$.

311 Our analysis shows that the fractal dimension of WH-Human-1 coronavirus genome is
 312 different from its fractal dimension computed from electron microscopic and atomic force

313 microscopic images of 40 coronaviruses (CoV), as reported by Swapna et al. (2021) who found a
 314 scale-invariant dimension of 1.820. This indicated that the images of the virus feature higher
 315 complexity and greater roughness than the pattern we have detected in the genome.

316 **5 Conclusions**

317 Higuchi's method to compute the fractal dimension of physical signals is widely used in
 318 research. However, a major difficulty in applying the method is the correct choice of tuning
 319 parameter (k_{\max}) to compute the most accurate results. Poor selection of k_{\max} can result in values
 320 of the fractal dimension that are spurious, and this can result in potentially invalid interpretations
 321 of data. In the past researchers have used various ad hoc methods to determine the appropriate
 322 tuning parameter for their particular data. We have shown that a method such as seeking a
 323 convergence of the computed *HFD* to a plateau is not in general a valid procedure as not every
 324 data instance shows the *HFD* estimate reaches a plateau.

325 In this paper we have sought to find a more general method of determining, *a priori*, the
 326 optimum tuning parameter k_{\max} for a time series of length N . To study this problem we generated
 327 synthetic time series of known *HFD* and applied the Higuchi method to each, averaging results
 328 over the different fbm within $HFD=[1.9, 1.7, 1.5, 1.3, 1.1]$ categories. These data allow the
 329 calculation of curves showing where in (N, k_{\max}) -space the most appropriate tuning parameter
 330 should be selected. We found that fractal dimension calculation via the Higuchi method is
 331 sensitive to both the tuning parameter k_{\max} and also the length of the time series. We derive a
 332 best-fit curve fitting the location of the average minimum *HFD* error to provide researchers with
 333 an efficient method of estimating and appropriate k_{\max} , given their particular dataset.

334 We applied the modified method to two physical cases, one from physics and one from
 335 bioinformatics. In the latter case we considered the *Coronaviridae* genome of the severe acute
 336 respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, first reported by Wu et al. (2020). Our
 337 analysis of this data showed strong evidence of monofractality (Fig. 8b) with $HFD \sim 1.5$ (Fig. 8d).

338 In the former case we computed the magnetic energy dissipation rate from a shell model
 339 of the nonlinear dynamics of MHD turbulence. We used simplified approximations of the
 340 Navier–Stokes fluid equations (Obukhov, 1971; Gledzer, 1973; Yamada and Ohkitani, 1988), in
 341 particular the MHD Gledzer–Ohkitani–Yamada (GOY) shell model, and found $HFD \sim 1.10$ (Fig.
 342 7d). These data have been reported to feature a multifractal scaling (Pisarenko et al., 1993) and
 343 this is consistent with our results in Fig. 8b which show evidence of nonlinear behaviour, which
 344 is possibly a reason why there is about a 10 percent variation in the HFD calculation (Fig. 7d).

345 It is clear that accurate calculation of fractal dimension can be a delicate process and is
 346 influenced not only by the method used, but also by the nature of the data. Studies must therefore
 347 concern themselves not only with the type of data, but also with the adequacy of the data-
 348 generating algorithms, and fractal estimation algorithms. We considered only synthetic time
 349 series realizations of processes with perfect and controlled scale invariance, viz. signals that have
 350 only a single type of scaling. However, many other theoretical data types exist. For instance,
 351 numerous geophysical signals do not have local scaling regularity, but rather have a regularity
 352 which varies in time or space (Dobias & Wanliss, 2009; Lévy Véhel, 2013). Data that are
 353 multifractal require a variety of scaling exponents to fully describe the dynamics, and methods to
 354 generalize the Higuchi method to these more complex data types are going forward at present
 355 (Carrizales-Velazquez et al., 2021).

356 **Acknowledgment**357 National Science Foundation Award AGS-2053689 and SC-INBRE.
358359 **References**

360 Abry, P., F. Sellan (1996), *The wavelet-based synthesis for the fractional Brownian motion*
361 *proposed by F. Sellan and Y. Meyer: Remarks and fast implementation*, Appl. and Comp.
362 Harmonic Anal., 3(4), 377–383.

363 Accardo, A. et al (1997), *Use of the fractal dimension for the analysis of*
364 *electroencephalographic time series*, Biol. Cybern. 77 (5) (1997) 339–350.

365 Bardet, J.-M., G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M.S. Taqqu (2003), *Generators of*
366 *long-range dependence processes: a survey*, Theory and applications of long-range dependence,
367 Birkhäuser, 579–623.

368 Burlaga, L. F. and Klein, L. W. (1986), *Fractal Structure of the Interplanetary Magnetic Field*, J.
369 Geophys. Res., 91, A1, 347–350.

370 Carrizales-Velazquez, C., Donner, R. V., & Guzmán-Vargas, L. (2021), Generalization of
371 Higuchi's fractal dimension for multifractal analysis of time series with limited length, arXiv
372 preprint arXiv:2105.11055.

373 Cersosimo, D. O., and J. A. Wanliss (2007), *Initial studies of high latitude magnetic field data*
374 *during different magnetospheric conditions*, Earth Planets Space, 59(1), 39–43.J.-F. Coeurjolly
375 (2000), *Simulation and identification of the fractional Brownian motion: a bibliographic and*
376 *comparative study*, Journal of Statistical Software, Vol. 5, 7, 1-53, doi:// 10.18637/jss.v005.i07

377 Davies, Robert B., and D. S. Harte. (1987), *Tests for Hurst effect*, Biometrika 74, no. 1 (1987):
378 95-101.

379 Dobias, P. and Wanliss, J.A. (2009), *Intermittency of Storms and Substorms: Is it Related to the*
380 *Critical Behaviour?*, Annales Geophysicae, 27, 5, 2011-2018, <https://doi.org/10.5194/angeo-27-2011-2009>.

382 Doyle, T. L. A. (2004), *Discriminating between elderly and young using a fractal dimension*
383 *analysis of centre of pressure*, Int. J. Med. Sci. 2004 1(1): 11-20.

384 Esteller, R., G. Vachtsevanos, J. Echauz, and B. Litt (2001), *A comparison of waveform fractal*
385 *dimension algorithms*, IEEE Trans Circ Syst I Fundam Theory Appl, 48:177–183.

386 Fama, Eugene F., Cochrane, John H. and Moskowitz, Tobias J.. *The Fama Portfolio: Selected*
387 *Papers of Eugene F. Fama*, Chicago: University of Chicago Press, 2021.
388 <https://doi.org/10.7208/9780226426983>

389 Giuliani, P. and Carbone, V. (1998). *A note on shell models for MHD turbulence*. Europhys.
390 Lett. 43, 527-532, <https://doi.org/10.1209/epl/i1998-00386-y>.

391 Gledzer, E. B. (1973), *System of Hydrodynamic Type Allowing 2 Quadratic Integrals of Motion*,
392 Sov. Phys. Dokl. SSSR, 18, 216–217, 1973.

393 Gomolka R.S. et al (2018), *Higuchi Fractal Dimension of Heart Rate Variability During*
394 *Percutaneous Auricular Vagus Nerve Stimulation in Healthy and Diabetic Subjects*, *Front.*
395 *Physiol.* 9:1162. doi: 10.3389/fphys.2018.01162

396 Grizzi, F., Castello, A., Qehajaj, D., Russo, C., & Lopci, E. (2019). *The complexity and fractal*
397 *geometry of nuclear medicine images*. *Molecular Imaging and Biology*, 21(3), 401-409.

398 Higuchi, T. (1988), *Approach to an irregular time series on the basis of the fractal theory*, *Phys*
399 *D* 31:277–283.

400 Hosking, Jonathan RM. (1984), *Modeling persistence in hydrological time series using*
401 *fractional differencing*, *Water resources research* 20, no. 12 (1984): 1898-1908.

402 Kijima, M. and Chun Ming Tam (2013), *Fractional Brownian Motions in Financial Models and*
403 *Their Monte Carlo Simulation, Theory and Applications of Monte Carlo Simulations*, Victor
404 (Wai Kin) Chan, IntechOpen, DOI: 10.5772/53568.

405 Koutsoyiannis, D. *Time's arrow in stochastic characterization and simulation of atmospheric*
406 *and hydrological processes*. *Hydrol. Sci. J.* 2019, 64, 1013–1037.

407 Lepreti, F., Carbone, V., Giuliani, P., Sorriso-Valvo, L., and Veltri, P. (2004), *Statistical*
408 *Properties of Dissipation Bursts within Turbulence: Solar Flares and Geomagnetic Activity*,
409 *Planet. Space Sci.*, 52, 957–962, <https://doi.org/10.1016/j.pss.2004.03.001>, 2004.

410 Levinson, N. (1947), *The wiener rms error criterion in filter design and prediction*, *Journal of*
411 *Mathematics and Physics*, Vol 25 (1947) 261–278.

412 Lévy Véhel, J.: *Beyond multifractional Brownian motion: new stochastic models for geophysical*
413 *modelling*, *Nonlin. Processes Geophys.*, 20, 643–655, <https://doi.org/10.5194/npg-20-643-2013>,
414 2013.

415 Liehr, Lukas, Massopust, Peter (2020), *On the mathematical validity of the Higuchi method*,
416 *Physica D: Nonlinear Phenomena*, 402, 132265, doi:10.1016/j.physd.2019.132265.

417 Lu, XiaoJie, JiQian Zhang, ShouFang Huang, Jun Lu, MingQuan Ye, MaoSheng Wang,
418 *Detection and classification of epileptic EEG signals by the methods of nonlinear dynamics*,
419 *Chaos, Solitons & Fractals*, Volume 151, 2021, 111032, doi:10.1016/j.chaos.2021.111032.

420 Mandelbrot, B. and Van Ness, J.W. (1968), *Fractional Brownian motions: Fractional noises*
421 *and applications*, *SIAM Rev.* 10, No. 4, 422–437.

422 Mitsutake G, Otsuka K, Oinuma S, Ferguson I, Cornélissen G, Wanliss J, Halberg F (2004),
423 *Does exposure to an artificial ULF magnetic field affect blood pressure, heart rate variability*
424 *and mood?* *Biomed Pharmacother* 58:S20–S27. doi:10.1016/S0753-3322(04)80004-0

425 Nobukawa, Sou, Yamanishi, Teruya, Nishimura, Haruhiko, Wada, Yuji, Kikuchi, Mitsuru, and
426 Takahashi, Tetsuya (February 2019), *Atypical temporal-scale-specific fractal changes in*
427 *Alzheimer's disease EEG and their relevance to cognitive decline*, *Cognitive Neurodynamics*, 13
428 (1): 1–11, doi:10.1007/s11571-018-9509-x

429 Obukhov, A. M. (1971), *Some General Properties of Equations Describing The Dynamics of the*
430 *Atmosphere*, *Akad. Nauk. SSSR, Izv. Seria Fiz. Atmos. Okeana*, 7, 695–704, 1971.

431 Paramanathan, P. and Uthayakumar, R. (2008), *Application of fractal theory in analysis of*
432 *human electroencephalographic Signals*, *Comput. Biol. Med.* 38 (3) (2008) 372–378.

433 Pisarenko, D., Biferale, L., Courvoisier, D., Frisch, U., & Vergassola, M. (1993), *Further results*
434 *on multifractality in shell models*, Physics of Fluids A: Fluid Dynamics, 5(10), 2533-2538.

435 Ranguelov, B., & Ivanov, Y. (2017). *Fractal properties of the elements of Plate tectonics*.
436 Journal of mining and Geological Sciences, 60(1), 83-89.

437 Salazar-Varas, R. and R.A. Vazquez (2018), *Time-Invariant EEG Classification Based on the*
438 *Fractal Dimension*, In: Castro F., Miranda-Jiménez S., González-Mendoza M. (eds) *Advances in*
439 *Computational Intelligence*. MICAI 2017. Lecture Notes in Computer Science, vol 10633.
440 Springer, Cham. https://doi.org/10.1007/978-3-030-02840-4_26

441 Santuz, Alessandro and Turgay Akay, *Fractal analysis of muscle activity patterns during*
442 *locomotion: pitfalls and how to avoid them*, Journal of Neurophysiology, 2020, 124:4, 1083-
443 1091, doi: 10.1152/jn.00360.2020

444 Swapna, M.S., Sreejyothi, S., Raj, V. et al. (2021), *Is SARS CoV-2 a Multifractal?—Unveiling*
445 *the Fractality and Fractal Structure*, Braz J Phys 51, 731–737, doi:10.1007/s13538-020-00844-w

446 Wajnsztejn, R. et al (2016), *Higuchi fractal dimension applied to RR intervals in children with*
447 *attention deficit hyperactivity disorder*, J. Hum. Growth Dev. 26, 147–153. doi:
448 10.7322/jhgd.119256

449 Wang, W., Moore, M. A., & Katzgraber, H. G. (2018). *Fractal dimension of interfaces in*
450 *Edwards-Anderson spin glasses for up to six space dimensions*. Physical Review E, 97(3),
451 032104.

452 Wanliss, J. A., and M. A. Reynolds (2003), *Measurement of the stochasticity of low-latitude*
453 *geomagnetic temporal variations*, Ann. Geophys., 21, 2025.

454 Wanliss, J. A., Shiokawa, K., & Yumoto, K. (2014). *Latitudinal variation of stochastic*
455 *properties of the geomagnetic field*. Nonlinear Processes in Geophysics, 21(2), 347-356.

456 Wanliss, J., Arriaza, R. H., Wanliss, G., and Gordon, S. (2021). *Optimization of the Higuchi*
457 *Method*. International Journal of Research -GRANTHAALAYAH, 9(11), 202-213.
458 doi:10.29121/granthaalayah.v9.i11.2021.4393

459 Wątorek, M., Drożdż, S., Kwapień, J., Minati, L., Oświęcimka, P., & Stanuszek, M. (2021),
460 *Multiscale characteristics of the emerging global cryptocurrency market*, Physics Reports, 901,
461 2021, 1-82, <https://doi.org/10.1016/j.physrep.2020.10.005>.

462 Wood, Andrew T.A., and Grace Chan (1994), *Simulation of stationary Gaussian processes in [0,*
463 *1]d*, Journal of computational and graphical statistics 3, no. 4 (1994): 409-432.

464 Wu, F., Zhao, S., Yu, B. et al. (2020), *A new coronavirus associated with human respiratory*
465 *disease in China*, Nature 579, 265–269, <https://doi.org/10.1038/s41586-020-2008-3>

466 Yamada, M. and Ohkitani, K. (1988), *Lyapunov Spectrum of a Model of Two-Dimensional*
467 *Turbulence*, Phys. Rev. Lett., 60, 983–986, <https://doi.org/10.1103/PhysRevLett.60.983>, 1988.

468 Yang X, Xiang Y, Jiang B., *On multi-fault detection of rolling bearing through probabilistic*
469 *principal component analysis denoising and Higuchi fractal dimension transformation*, Journal
470 *of Vibration and Control*, February 2021, doi:10.1177/1077546321989527

471 Yilmaz, A., Unal, G. (2020), *Multiscale Higuchi's fractal dimension method*, Nonlinear Dyn
472 101, 1441–1455 (2020), <https://doi.org/10.1007/s11071-020-05826-w>

473 Zuo, Renguang, Cheng, Qiuming, Agterberg, F.P., Xia, Qinglin (2009) *Application of singularity*
474 *mapping technique to identify local anomalies using stream sediment geochemical data, a case*
475 *study from Gangdese, Tibet, western China.* Journal of Geochemical Exploration, 101 (3). 225-
476 235 doi:10.1016/j.gexplo.2008.08.003