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Abstract:  
Background and Objective: Higuchi’s method of determining fractal dimension (HFD) 

occupies a valuable place in the study of a wide variety of physical signals. In comparison to 

other methods, it provides more rapid, accurate estimations for the entire range of possible 

fractal dimensions. However, a major difficulty in using the method is the correct choice of 

tuning parameter (kmax) to compute the most accurate results. In the past researchers have used 

various ad hoc methods to determine the appropriate kmax choice for their data. We provide a 

more objective method of determining, a priori, the best value for the tuning parameter, given a 

particular length data set. Methods: We create numerous simulations of fractional Brownian 

motion to perform Monte Carlo simulations of the distribution of the calculated HFD. Results: 

Experimental results show that HFD depends not only on kmax but also on the length of the time 

series, which enable derivation of an expression to find the appropriate kmax for an input time 

series of unknown fractal dimension. Conclusion: The Higuchi method should not be used 

indiscriminately without reference to the type of data whose fractal dimension is examined. 

Monte Carlo simulations with different fractional Brownian motions increases the confidence 

of evaluation results.  
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1. INTRODUCTION 

 

The Higuchi algorithm [1] is one of many widely used methods to compute fractal properties of 

complex nonlinear physical signals [2]. It is often preferred when big data are analyzed because it 

is stable, rapid, accurate, relatively low-cost, and excels better known linear methods. We call the 

fractal dimension calculated via the Higuchi algorithm the Higuchi fractal dimension (HFD).  

 

The Higuchi algorithm was first applied to turbulence in space plasmas [1] but is applicable to any 

data generated by complex systems since these tend to exhibit multidimensional fluctuations over 

many orders of magnitude. The method thus leverages the multiple scaling domains generated by 

complex systems and derives their characteristic fractal (or multifractal) scaling exponents. 

 

Over the past several decades the Higuchi algorithm has been extensively used to study pathologies 

in biological systems. Its utility increases in an era of big data where real-time computation 

continues to grow in importance [3,4]. The Higuchi algorithm has been successfully employed in 
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numerous medical studies including human gait [5], epilepsy [6], disorders [7,8],  

magnetoencephalograms [9,6], neuro-physiology [10], electroencephalograms [11,12,13], and 

brain entrainment [14]. The Higuchi method generally exceeds the efficiency of well-known linear 

methods such as the fast Fourier and wavelet transforms. Those methods work well when signals 

are stationary, but the increasing richness of data that are not only nonstationary but generated by 

non-equilibrium and noisy processes eliminates their advantages. 

 

The Higuchi algorithm exhibits sensitive dependence on a tuning parameter kmax, defined in the 

following section. In the original paper Higuchi did not elaborate on the selection of the tuning 

parameter and for illustration used kmax=211 for time series of length N=217. Subsequent authors 

used similar values for the tuning parameter but it has been discovered that the tuning parameter 

plays a crucial role in estimation the HFD. Several studies have addressed the issue of proper 

selection of tuning parameter kmax. An early paper [15] calculated HFD values for kmax=3-10 for 

time series ranging in length from N=50-1000, settling on kmax=6 as the optimum. The goal was 

to determine, in their study of electroencephalograms, the most suitable pair of (kmax, N).  

 

 

Table 1.  

Use of Higuchi algorithm and parameters. 

Reference Topic N kmax N/ kmax 

Higuchi (1988) Space plasmas 217 211 64 

Wajnsztejn et al. (2016) Psychological 

disorder 

1000 10 100 

Gomolka et al. (2018) Heart rate 

variability 

100 5 20 

Accardo et al. (1997) EEG 50-1000 6 (3-10) 8.3-166.7 

Doyle et al. (2004) A/P gait 2400 60 40 

Virkkala et al. (2002) EEG 200 8 25 

Klonowski et al. (2004) Economics 216 15 14.4 

Mujiono et al. (2013) DNA 222 5-100 104-106 

Zappasodi et al. (2014) EEG 2560 16 160 

Gomez et al. (2009) MEG 848 48 17.7 

Polychronaki et al. (2010) Epilepsy 800 2-80 10-400 

 

Decades later the literature is unclear on the method of determining the appropriate value of the 

tuning parameter, usually suggesting that kmax must be deter-mined on a case-by-case basis. 

Several papers recommend plotting the calculated HFD against a range of kmax, and selecting the 

appropriate kmax at the location where the calculated HFD approaches a local maximum or 

asymptote, considered to be a saturation point [5,7]. Gomolka et al. (2018) [3] select kmax on the 

basis of statistical tests that allow discrimination between known healthy and diabetic subjects. 

Paramanathan and Uthayakumar (2008) [11] proposed to determine kmax based on a size-measure 
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relationship, that employs a recursive length of the signal from different measuring scales. In most 

cases researchers found that the calculated HFD is not much affected by length of the time-series 

but depends more strongly on kmax. Therefore, a poorly chosen tuning parameter can severely 

prejudice results.  

 

Table 1 shows a sample of pairs of (kmax, N) from the literature. There is clearly no established 

procedure widely accepted for determining the tuning parameter. The plethora of values selected 

for the tuning parameter makes it clear that the community would benefit from a careful 

consideration of selection criteria for the tuning parameter, especially with long time-series and 

big data where it is impractical to examine an almost infinite number of curves of HFD against 

kmax.  

 

In summary, one of main the difficulties in performing the Higuchi algorithm is that it relies on a 

tuning parameter, kmax, that in most cases must be selected before the fractal dimension is 

computed. Our goal in this paper is to explore the optimum sample pairs between the tuning 

parameter and length of the time series for the most general types of data. 

 

2. MATERIALS AND METHODS  

 

The Higuchi algorithm takes a signal and discretizes it into the form of a time series, 

𝑥(1), 𝑥(2), … , 𝑥(𝑁). From this series we derive a new time series, 𝑋𝑘
𝑚, defined as follows: 

 

𝑋𝑘
𝑚: 𝑥(𝑚), 𝑥(𝑚 + 𝑘), 𝑥(𝑚 + 2𝑘), … , 𝑥 (𝑚 + [

𝑁 − 𝑘

𝑘
] ∙ 𝑘)), 

 

where [] represents the integer part of the enclosed value. The integer 𝑚 = 1,2, … , 𝑘 is the start 

time; 𝑘 is the time interval, with 𝑘 = 1, … , 𝑘𝑚𝑎𝑥; 𝑘𝑚𝑎𝑥 is a free tuning parameter. This means that 

a given time interval equal to 𝑘, spawns 𝑘-sets of new time series. For instance, if 𝑘 = 3 and the 

time series has length 𝑁 = 40, the following three time series are derived from the original data: 

 

𝑋3
1: 𝑥(1), 𝑥(4), 𝑥(7), … , 𝑥(40),

𝑋3
2: 𝑥(2), 𝑥(5), 𝑥(8), … , 𝑥(38),

𝑋3
3: 𝑥(3), 𝑥(6), 𝑥(9), … , 𝑥(39).

 

 

The length of any one of these curves is given by: 

 

𝐿𝑚(𝑘) =

{(∑ |𝑥(𝑚 + 𝑖𝑘) − 𝑥(𝑚 + (𝑖 − 1) ∙ 𝑘|
[
𝑁−𝑚

𝑘
]

𝑖=1
)

𝑁 − 1

[
𝑁 − 𝑚

𝑘
] ∙ 𝑘

}

𝑘
. 
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The length of the curve for the time interval 𝑘 is then defined as the average over the 𝑘 sets of 

𝐿𝑚(𝑘): 
 

𝐿(𝑘) = 〈𝐿𝑚(𝑘)〉. 
 

If this equation scales according to the rule 𝐿(𝑘) ∝ 𝑘−𝐷 , then the time series behaves as a fractal 

with dimension D. Thus, the HFD is defined as the slope of the straight line that fits the curve of 

ln(L(k)) versus ln(1/k).  

 

 

The data we experiment on are theoretically derived fractional Brownian motions (fBm). fBm is a 

continuous-time random process proposed by Mandelbrot and Van Ness (1968) [19]. A signal that 

displays fBm is expressed in terms of stochastic integrals of time integrations of fractional 

Gaussian noise: 

 

𝐵𝐻(𝑡) =
1

Γ (𝐻 +
1
2)

{∫ [(𝑡 − 𝑠)𝐻−
1
2 − (−𝑠)𝐻−

1
2]𝑑𝑊(𝑠)

0

−∞

+ ∫ (𝑡 − 𝑠)𝐻−
1
2𝑑𝑊(𝑠)

𝑡

0

} 

 

 

Figure 1. Sample fBm for HFD between 1.1 and 1.9. 
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Here W is a white noise process defined on (-∞,∞) , and 𝐻 ∈ (0, 1) is known as the Hurst 

parameter. The Hurst exponent for the signal is its roughness averaged over many length scales. 

The covariance function is given by 

 

𝑐𝑜𝑣{ 𝐵𝐻(𝑠), 𝐵𝐻(𝑡)} =
1

2
{|𝑠|2𝐻 + |𝑡|2𝐻 − |𝑠 − 𝑡|2𝐻} 

 

so that 𝐵𝐻(0) ≡ 0 and 𝑣𝑎𝑟{ 𝐵𝐻(𝑡)} = 𝑡2𝐻 . This means that for the special case H=1/2, fBm 

reduces to the well-known random walk. The relationship between H and HFD is HFD = 2 − 𝐻, 

with values between 1 and 2. Thus, we are able to use the fBm process as our data source with a 

well-defined HFD in order to determine how well the Higuchi algorithm is able to accurately 

recover the theoretical value. 

 

Fig. 1 shows sample data of fBm signals for different values of the HFD. We create these data 

using a wavelet-based synthesis of fBm generation based on a biorthogonal wavelet method 

proposed by Meyer and Sellan [16,17] implemented in Matlab software. Fig. 2 shows examples of 

how, in the Higuchi algorithm, the slope is calculated from the slope of linear fits for the curve of 

ln(L(k)) versus ln(1/k) for theoretical values of HFD of 1.3 and 1.7. 

 

 

Figure 2. HFD is defined as the slope of the straight line that fits the curve of ln(L(k)) versus ln(1/k). 
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3. RESULTS AND DISCUSSIONS  

 

One way that is suggested to find the optimal kmax is by plotting the calculated HFD against the 

kmax, and by selecting the value in the range for which HFD(k) achieves a plateau. This assumes 

that a plateau is achieved in every case for different classes of HFD. It is not a priori evident that 

this will be the case since, as is demonstrated in Fig. 1, different values for the fractal dimension 

create time series with different roughness, which will influence the accuracy of the Higuchi 

algorithm. Those with HFD below 1.5 are smoother curves having clear long-range dependence 

while curves with higher values are rougher.  

 

Fig. 3 shows the error between the theoretical HFD and the value calculated via the Higuchi 

algorithm, for time series of length N=1,000, and varying values of kmax. In general, for the 

smallest kmax=2 the persistent time series, with HFD<1.5 produces an underestimate the 

theoretical fractal dimension, and antipersistent time series an overestimate. What we note here 

is that not every case shows the HFD estimate reaches a plateau, thus demonstrating that seeking 

to find the optimum tuning parameter by a plateau is not in general a valid procedure in the 

Higuchi algorithm. Indeed, for the persistent time series there is no plateau that is achieved. The 

antipersistent curves do show a clear plateau yet, contrary to general recommendations, selecting 

kmax near the plateau does not yield the lowest error, which is rather achieved for kmax values far 

beyond the plateau (i.e. for HFD=1.9, 1.7). 

 

Figure 3. Error difference between Higuchi algorithm and theoretical HFD values, versus kmax, for 

different fBm's of length N=1,000 
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In order to explore how the HFD depends on the tuning parameter we created 100 independent 

time series with lengths, N, varying between 1,000 and 200,000 data points. Next, for each of 

these series, we compute the HFD for different values of kmax, allowing kmax to vary between kmax 

=2 and kmax =N/2. The idea is to produce Monte Carlo simulations from which to derive a 

distribution of outcomes that can be analyzed. This results in a set of HFD values as a function of 

the time series length, and the tuning parameter, kmax. Next, we create surface plots comparing 

the HFD versus the tuning parameter kmax and time series length, N. To best compare the results 

for various theoretical HFD from the wavelet method, we calculate an error metric, defined as, 

the percentage error: 

 

𝐸(𝑘𝑚𝑎𝑥 , 𝑁) = 100 ∗ (𝐻𝐹𝐷 − 𝐻𝐹𝐷𝑡ℎ𝑒𝑜𝑟𝑦)/𝐻𝐹𝐷𝑡ℎ𝑒𝑜𝑟𝑦 

 

 

This error metric allows one to easily see where the Higuchi algorithm best approximates the 

correct HFD, and where it produces overestimates or underestimates. Fig. 4-8 shows the surface 

plots for E(kmax,N) for values of HFD=1.9, 1.7, 1.5, 1.3, 1.1. The grey line overlaid in each figure 

shows the curves of minimum error, corresponding to the kmax tuning parameter that yields the 

best correspondence between the theoretical and HFD values for a given N, averaged over 100 

unique time series.  

 

 

Figure 4. Surface showing the percentage error between the Higuchi algorithm and theoretical 

HFD=1.9. The curve of least error is shown as a thick grey line. 
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Figure 5. Surface showing the percentage error between the Higuchi algorithm and theoretical 

HFD=1.7. The curve of least error is shown as a thick grey line. 

 

Figure 6. Surface showing the percentage error between the Higuchi algorithm and theoretical 

HFD=1.5. The curve of least error is shown as a thick grey line. 
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Figure 7. Surface showing the percentage error between the Higuchi algorithm and theoretical 

HFD=1.3. The curve of least error is shown as a thick grey line. 

 

Figure 8. Surface showing the percentage error between the Higuchi algorithm and theoretical 

HFD=1.1. The curve of least error is shown as a thick grey line. 
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By taking a simple average of these minimum error curves of least error we are able to derive a 

best-fit curve using a cubic function, shown in Fig. 9 as the dashed curve, for the average 

relationship between the time series length and the tuning parameter, for different HFD values: 

 

ln(𝑘𝑚𝑎𝑥) = 0.04235[ln(𝑁)]3 − 1.392[ln(𝑁)]2 + 15.15ln(𝑁) − 47.29. 
 

 This function can be used to generate a tuning parameter estimate that can be expected to yield 

accurate results for the HFD, for cases where N<200,000. 

 

 

4. APPLICATION TO GENETICS 

 

We next demonstrate analysis on physical data, that of a complete genome of a bacterial organism, 

viz. the proteobacteria Acidovorax avenae which attacks the Cucurbitaceae family. These data are 

freely available from the National Center for Biotechnology Information (NCBI), which is part of 

 

Figure 9. Comparison of the average minimum error curve (solid) and the best fit cubic function 

(dashed).  

http://www.granthaalayah.com/


[Wanliss*,Vol(Iss.):Month,Year] 

 

         
Article scope 

INTERNATIONAL JOURNAL of RESEARCH –

GRANTHAALAYAH 
A knowledge Repository 

 

Http://www.granthaalayah.com ©International Journal of Research -GRANTHAALAYAH [1-9] 
 

the United States National Library of Medicine (NLM), a branch of the National Institutes of 

Health (NIH). 

 

In order to analyze hidden patterns in the genome, the nucleotide sequence must be converted 

from a symbolic sequence, meaning A,G,C,T; to a numeric representation. The Peng method 

[18] was followed wherein DNA is represented as a “random walk” with two parameters ruling 

the direction of the “walk” and the resulting displacement. Starting from the first nucleotide, 

every time we encounter a pyrimidine base, we move up one position. On the other hand, when a 

purine base is encountered in the series we move down one position. The nucleotide distance 
from the first nucleotide is then plotted versus the displacement, as in Fig. 10. Fig. 11 shows the 

computed HFD against tuning parameter kmax from time series of length N=200,000 that are 

subsets from the original series shown in Fig. 10. We took 39 non-overlapping series and 

computed curves for each of them. Fig. 11 shows that the curves (black lines) computed from 

different subsets of the genome are very similar, which indicates that the fractal dimension does 

not vary significantly along the genome.  

 

Figure 10. Acidovorax avenae complete genome represented by the Peng [16] method. 
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In each case the results show a clear plateau and an HFD<1.5, indicating a persistent time series, 

though with widely divergent values due to the different tuning parameter.  

 

 

The plateau region is shown with the arrows and, using a plateau as the measure of where to 

select kmax, suggests the best tuning parameter should be in the range kmax =10-50, thus yielding 

HFD~1.49. However, our analysis, given time series length N=200,000, recommends a value 

around kmax =1,000 (grey triangle) which yields HFD~1.42. This difference allows one to easily 

see where the Higuchi algorithm best approximates the correct HFD, and where it produces over- 

or underestimates. 

 

 

 

 

Figure 11. HFD calculated for varying length kmax between 2 and 100,000 for nonoverlapping time 

series of length N=200,000 from Acidovorax Avenae. The grey triangle shows where our research 

indicates the appropriate kmax should be situated. 
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5. CONCLUSIONS & RECOMMENDATIONS  

 

The Higuchi algorithm [1] is one of many widely used methods to compute fractal properties of 

complex nonlinear physical signals from a wide variety of research areas [2, 20, 21, 22]. Over the 

past decades the Higuchi algorithm has been extensively used to study pathologies in biological 

systems and to discriminate between healthy signals and those displaying pathologies. It is often 

preferred when large amounts of data are analyzed because it is stable, rapid, accurate, relatively 

low-cost, and excels better known linear methods for study fractal properties of a time series. 

However, the method requires the user to input a free tuning parameter, kmax., the selection of 

which influences computational efficiency of the algorithm and, more importantly, the value of 

the computed HFD. Thus, all the benefits of the algorithm can be negated by poor selection of the 

tuning parameter. Different values of kmax can produce widely divergent estimates for the HFD 

from the same time series, thus it is imperative to have a method for appropriately determining the 

best tuning.  

 

It has been suggested (e.g. by Doyle et al. (2004) and Wajnsztejn et al. (2016)) [5,7] that the best 

kmax to derive the most precise HFD should be where the calculated HFD(kmax) approaches a local 

maximum or asymptote, considered to be a saturation point. However, as we have demonstrated 

in Fig. 3, it is not a given that any physical data will result in such a plateau or saturation point. 

This methodology can produce spurious results and can be a time consuming, iterative process. 

 

In this paper we have explored Monte Carlo computer realisations of wavelet derived fBm time 

series, with known HFD. We have demonstrated that calculation of an accurate HFD depends not 

only on the appropriate kmax but is also dependent on time series length, N. We have calculated a 

relationship that determines the appropriate kmax to obtain the best HFD, given the time series 

length. We find that a third order polynomial will yield an appropriate kmax given the particular 

time series length, N. In general, persistent time series, with HFD<1.5, tended to need smaller kmax 

than antipersistent series.  

 

In a future work we will extend these results to larger data sets and explore the effects from 

simulations of synthetic synthetic time series with known fractal properties, to see how well the 

method performs, and how it is influenced by the generation algorithms. 
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