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Abstract:

Background and_Objective: Higuchi’s method of determining fractal dimension (HFD)
occupies a valuable place in the study of a wide variety of physical signals. In comparison to
other methods, it provides more rapid, accurate estimations for the entire range of possible
fractal dimensions. However, a major difficulty in using the method is the correct choice of
tuning parameter (kmax) to compute the most accurate results. In the past researchers have used
various ad hoc methods to determine the appropriate kmax choice for their data. We provide a
more objective method of determining, a priori, the best value for the tuning parameter, given a
particular length data set. Methods: We create numerous simulations of fractional Brownian
motion to perform Monte Carlo simulations of the distribution of the calculated HFD. Results:
Experimental results show that HFD depends not only on k. but also on the length of the time
series, which enable derivation of an expression to find the appropriate kmax for an input time
series of unknown fractal dimension. Conclusion: The Higuchi method should not be used
indiscriminately without reference to the type of data whose fractal dimension is examined.
Monte Carlo simulations with different fractional Brownian motions increases the confidence
of evaluation results.
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1. INTRODUCTION

The Higuchi algorithm [1] is one of many widely used methods to compute fractal properties of
complex nonlinear physical signals [2]. It is often preferred when big data are analyzed because it
is stable, rapid, accurate, relatively low-cost, and excels better known linear methods. We call the
fractal dimension calculated via the Higuchi algorithm the Higuchi fractal dimension (HFD).

The Higuchi algorithm was first applied to turbulence in space plasmas [1] but is applicable to any
data generated by complex systems since these tend to exhibit multidimensional fluctuations over
many orders of magnitude. The method thus leverages the multiple scaling domains generated by
complex systems and derives their characteristic fractal (or multifractal) scaling exponents.

Over the past several decades the Higuchi algorithm has been extensively used to study pathologies
in biological systems. Its utility increases in an era of big data where real-time computation
continues to grow in importance [3,4]. The Higuchi algorithm has been successfully employed in
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numerous medical studies including human gait [5], epilepsy [6], disorders [7,8],
magnetoencephalograms [9,6], neuro-physiology [10], electroencephalograms [11,12,13], and
brain entrainment [ 14]. The Higuchi method generally exceeds the efficiency of well-known linear
methods such as the fast Fourier and wavelet transforms. Those methods work well when signals
are stationary, but the increasing richness of data that are not only nonstationary but generated by
non-equilibrium and noisy processes eliminates their advantages.

The Higuchi algorithm exhibits sensitive dependence on a tuning parameter kmax, defined in the
following section. In the original paper Higuchi did not elaborate on the selection of the tuning
parameter and for illustration used kmax=2!! for time series of length N=2!7. Subsequent authors
used similar values for the tuning parameter but it has been discovered that the tuning parameter
plays a crucial role in estimation the HFD. Several studies have addressed the issue of proper
selection of tuning parameter kmax. An early paper [15] calculated HFD values for kmax=3-10 for
time series ranging in length from N=50-1000, settling on kmax=6 as the optimum. The goal was
to determine, in their study of electroencephalograms, the most suitable pair of (kmax, N).

Table 1.

Use of Higuchi algorithm and parameters.

Reference Topic N kmax N/ Kmax
Higuchi (1988) Space plasmas 217 211 64
Wajnsztejn et al. (2016)  Psychological 1000 10 100
disorder
Gomolka et al. (2018) Heart rate 100 5 20
variability
Accardo et al. (1997) EEG 50-1000 6 (3-10) 8.3-166.7
Doyle et al. (2004) A/P gait 2400 60 40
Virkkala et al. (2002) EEG 200 8 25
Klonowski et al. (2004)  Economics 216 15 14.4
Mujiono et al. (2013) DNA 22 5-100 10%-10°
Zappasodi et al. (2014) EEG 2560 16 160
Gomez et al. (2009) MEG 848 48 17.7
Polychronaki et al. (2010) Epilepsy 800 2-80 10-400

Decades later the literature is unclear on the method of determining the appropriate value of the
tuning parameter, usually suggesting that kmax must be deter-mined on a case-by-case basis.
Several papers recommend plotting the calculated HFD against a range of kmax, and selecting the
appropriate kmax at the location where the calculated HFD approaches a local maximum or
asymptote, considered to be a saturation point [5,7]. Gomolka et al. (2018) [3] select kmax on the
basis of statistical tests that allow discrimination between known healthy and diabetic subjects.
Paramanathan and Uthayakumar (2008) [11] proposed to determine kmax based on a size-measure
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relationship, that employs a recursive length of the signal from different measuring scales. In most
cases researchers found that the calculated HFD is not much affected by length of the time-series
but depends more strongly on kmax. Therefore, a poorly chosen tuning parameter can severely
prejudice results.

Table 1 shows a sample of pairs of (kmax, N) from the literature. There is clearly no established
procedure widely accepted for determining the tuning parameter. The plethora of values selected
for the tuning parameter makes it clear that the community would benefit from a careful
consideration of selection criteria for the tuning parameter, especially with long time-series and
big data where it is impractical to examine an almost infinite number of curves of HFD against

kmax .

In summary, one of main the difficulties in performing the Higuchi algorithm is that it relies on a
tuning parameter, kmax, that in most cases must be selected before the fractal dimension is
computed. Our goal in this paper is to explore the optimum sample pairs between the tuning
parameter and length of the time series for the most general types of data.

2. MATERIALS AND METHODS

The Higuchi algorithm takes a signal and discretizes it into the form of a time series,
x(1), x(2), ..., x(N). From this series we derive a new time series, X}, defined as follows:

N—k
Xt x(m), x(m + k), x(m + 2k), ..., x (m + [T . k)),

where [] represents the integer part of the enclosed value. The integer m = 1,2, ..., k is the start
time; k is the time interval, with k = 1, ..., k;0x; Kmax 1 @ free tuning parameter. This means that
a given time interval equal to k, spawns k-sets of new time series. For instance, if k = 3 and the
time series has length N = 40, the following three time series are derived from the original data:

XL x(1), x(4), x(7), ..., x(40),
X2:2(2),x(5), x(8), ..., x(38),
X3:x(3),x(6),x(9), ..., x(39).

The length of any one of these curves is given by:

N-m
(Zl[j]lx(m +ik) —x(m+ (i—1)- k|)ﬁ
K

k

Lm(k) = k
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The length of the curve for the time interval k is then defined as the average over the k sets of
L (K):

L(k) = (L (k).
If this equation scales according to the rule L(k) o k=P, then the time series behaves as a fractal

with dimension D. Thus, the HFD is defined as the slope of the straight line that fits the curve of
In(L(k)) versus In(1/k).

W

0 200 400 600 800 1000

Figure 1. Sample fBm for HFD between 1.1 and 1.9.

The data we experiment on are theoretically derived fractional Brownian motions (fBm). fBm is a
continuous-time random process proposed by Mandelbrot and Van Ness (1968) [19]. A signal that
displays fBm is expressed in terms of stochastic integrals of time integrations of fractional
Gaussian noise:

0 1 1 t 1
By(t) = %{ f [(t—5)"2— (—s)"2]dW (s) + f (t— S)H—de(s)}
r (H + 7) —® 0
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Here W is a white noise process defined on (-c0,00) , and H € (0, 1) is known as the Hurst
parameter. The Hurst exponent for the signal is its roughness averaged over many length scales.
The covariance function is given by

cov{ By (s), By()} = %{ISIZH + [t = |s — ¢}

so that By (0) = 0 and var{By(t)} = t?". This means that for the special case H=1/2, fBm
reduces to the well-known random walk. The relationship between H and HFD is HFD = 2 — H,
with values between 1 and 2. Thus, we are able to use the fBm process as our data source with a
well-defined HFD in order to determine how well the Higuchi algorithm is able to accurately
recover the theoretical value.

Fig. 1 shows sample data of fBm signals for different values of the HFD. We create these data
using a wavelet-based synthesis of fBm generation based on a biorthogonal wavelet method
proposed by Meyer and Sellan [16,17] implemented in Matlab software. Fig. 2 shows examples of
how, in the Higuchi algorithm, the slope is calculated from the slope of linear fits for the curve of
In(L(k)) versus In(1/k) for theoretical values of HFD of 1.3 and 1.7.

4 ' ' ' : J h
D
2L
e (0 | HFD=1.302
e HFD=1.691
=,
£ Ll
4t .
6 ' ' ' ' :
-6 -5 -4 -3 -2 -1 0
In(1/k)
Figure 2. HFD is defined as the slope of the straight line that fits the curve of In(L(k)) versus In(1/k).
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3. RESULTS AND DISCUSSIONS

One way that is suggested to find the optimal k.4 is by plotting the calculated HFD against the
kmax, and by selecting the value in the range for which HFD(k) achieves a plateau. This assumes
that a plateau is achieved in every case for different classes of HF'D. It is not a priori evident that
this will be the case since, as is demonstrated in Fig. 1, different values for the fractal dimension
create time series with different roughness, which will influence the accuracy of the Higuchi
algorithm. Those with HFD below 1.5 are smoother curves having clear long-range dependence
while curves with higher values are rougher.

Fig. 3 shows the error between the theoretical HFD and the value calculated via the Higuchi
algorithm, for time series of length N=1,000, and varying values of kua. In general, for the
smallest knax=2 the persistent time series, with HFD<1.5 produces an underestimate the
theoretical fractal dimension, and antipersistent time series an overestimate. What we note here
is that not every case shows the HFD estimate reaches a plateau, thus demonstrating that seeking
to find the optimum tuning parameter by a plateau is not in general a valid procedure in the
Higuchi algorithm. Indeed, for the persistent time series there is no plateau that is achieved. The
antipersistent curves do show a clear plateau yet, contrary to general recommendations, selecting
kmax near the plateau does not yield the lowest error, which is rather achieved for k. values far
beyond the plateau (i.e. for HFD=1.9, 1.7).
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Figure 3. Error difference between Higuchi algorithm and theoretical HFD values, versus kmay, for
different fBm's of length N=1,000
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In order to explore how the HFD depends on the tuning parameter we created 100 independent
time series with lengths, N, varying between 1,000 and 200,000 data points. Next, for each of
these series, we compute the HFD for different values of kpax, allowing knax to vary between kimax
=2 and kmax =N/2. The idea is to produce Monte Carlo simulations from which to derive a
distribution of outcomes that can be analyzed. This results in a set of HFD values as a function of
the time series length, and the tuning parameter, kn.. Next, we create surface plots comparing
the HF'D versus the tuning parameter kn.. and time series length, N. To best compare the results
for various theoretical HF'D from the wavelet method, we calculate an error metric, defined as,
the percentage error:

E(kmax’N) =100 * (HFD - HFDtheory)/HFDtheory
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Figure 4. Surface showing the percentage error between the Higuchi algorithm and theoretical
HFD=1.9. The curve of least error is shown as a thick grey line.

This error metric allows one to easily see where the Higuchi algorithm best approximates the
correct HFD, and where it produces overestimates or underestimates. Fig. 4-8 shows the surface
plots for E(kmax,N) for values of HFD=1.9, 1.7, 1.5, 1.3, 1.1. The grey line overlaid in each figure
shows the curves of minimum error, corresponding to the kuax tuning parameter that yields the
best correspondence between the theoretical and HFD values for a given N, averaged over 100
unique time series.
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Figure 5. Surface showing the percentage error between the Higuchi algorithm and theoretical
HFD=1.7. The curve of least error is shown as a thick grey line.
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Figure 6. Surface showing the percentage error between the Higuchi algorithm and theoretical
HFD=1.5. The curve of least error is shown as a thick grey line.
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Figure 7. Surface showing the percentage error between the Higuchi algorithm and theoretical
HFD=1.3. The curve of least error is shown as a thick grey line.
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Figure 8. Surface showing the percentage error between the Higuchi algorithm and theoretical
HFD=1.1. The curve of least error is shown as a thick grey line.
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By taking a simple average of these minimum error curves of least error we are able to derive a
best-fit curve using a cubic function, shown in Fig. 9 as the dashed curve, for the average
relationship between the time series length and the tuning parameter, for different HFD values:

(k) = 0.04235[In(N)]3 — 1.392[In(N)]? + 15.15In(N) — 47.29.

This function can be used to generate a tuning parameter estimate that can be expected to yield
accurate results for the HFD, for cases where N<200,000.

s R
103 -
)
E
£
102 I 1
10° 10* 10°
N
Figure 9. Comparison of the average minimum error curve (solid) and the best fit cubic function
(dashed).

4. APPLICATION TO GENETICS

We next demonstrate analysis on physical data, that of a complete genome of a bacterial organism,
viz. the proteobacteria Acidovorax avenae which attacks the Cucurbitaceae family. These data are
freely available from the National Center for Biotechnology Information (NCBI), which is part of
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the United States National Library of Medicine (NLM), a branch of the National Institutes of
Health (NIH).

%10

Displacement

5]
Nucleotide distance % 10°

Figure 10. Acidovorax avenae complete genome represented by the Peng [16] method.

In order to analyze hidden patterns in the genome, the nucleotide sequence must be converted
from a symbolic sequence, meaning A,G,C,T; to a numeric representation. The Peng method
[18] was followed wherein DNA is represented as a “random walk” with two parameters ruling
the direction of the “walk” and the resulting displacement. Starting from the first nucleotide,
every time we encounter a pyrimidine base, we move up one position. On the other hand, when a
purine base is encountered in the series we move down one position. The nucleotide distance
from the first nucleotide is then plotted versus the displacement, as in Fig. 10. Fig. 11 shows the
computed HFD against tuning parameter kmax from time series of length N=200,000 that are
subsets from the original series shown in Fig. 10. We took 39 non-overlapping series and
computed curves for each of them. Fig. 11 shows that the curves (black lines) computed from
different subsets of the genome are very similar, which indicates that the fractal dimension does
not vary significantly along the genome.
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In each case the results show a clear plateau and an HFD<1.5, indicating a persistent time series,
though with widely divergent values due to the different tuning parameter.
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Figure 11. HFD calculated for varying length kmax between 2 and 100,000 for nonoverlapping time
series of length N=200,000 from Acidovorax Avenae. The grey triangle shows where our research
indicates the appropriate knax should be situated.

The plateau region is shown with the arrows and, using a plateau as the measure of where to
select knmax, suggests the best tuning parameter should be in the range ke =10-50, thus yielding
HFD~1.49. However, our analysis, given time series length N=200,000, recommends a value
around ke =1,000 (grey triangle) which yields HFD~1.42. This difference allows one to easily
see where the Higuchi algorithm best approximates the correct HFD, and where it produces over-
or underestimates.
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5. CONCLUSIONS & RECOMMENDATIONS

The Higuchi algorithm [1] is one of many widely used methods to compute fractal properties of
complex nonlinear physical signals from a wide variety of research areas [2, 20, 21, 22]. Over the
past decades the Higuchi algorithm has been extensively used to study pathologies in biological
systems and to discriminate between healthy signals and those displaying pathologies. It is often
preferred when large amounts of data are analyzed because it is stable, rapid, accurate, relatively
low-cost, and excels better known linear methods for study fractal properties of a time series.
However, the method requires the user to input a free tuning parameter, knax., the selection of
which influences computational efficiency of the algorithm and, more importantly, the value of
the computed HFD. Thus, all the benefits of the algorithm can be negated by poor selection of the
tuning parameter. Different values of k. can produce widely divergent estimates for the HFD
from the same time series, thus it is imperative to have a method for appropriately determining the
best tuning.

It has been suggested (e.g. by Doyle et al. (2004) and Wajnsztejn et al. (2016)) [5,7] that the best
kmax to derive the most precise HF'D should be where the calculated HF'D(kmax) approaches a local
maximum or asymptote, considered to be a saturation point. However, as we have demonstrated
in Fig. 3, it is not a given that any physical data will result in such a plateau or saturation point.
This methodology can produce spurious results and can be a time consuming, iterative process.

In this paper we have explored Monte Carlo computer realisations of wavelet derived fBm time
series, with known HFD. We have demonstrated that calculation of an accurate HF'D depends not
only on the appropriate knax but is also dependent on time series length, N. We have calculated a
relationship that determines the appropriate kuqx to obtain the best HFD, given the time series
length. We find that a third order polynomial will yield an appropriate knax given the particular
time series length, N. In general, persistent time series, with HFD<1.5, tended to need smaller kyqx
than antipersistent series.

In a future work we will extend these results to larger data sets and explore the effects from
simulations of synthetic synthetic time series with known fractal properties, to see how well the
method performs, and how it is influenced by the generation algorithms.
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