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ABSTRACT
If a trader could predict price changes in the stock market better
than other traders, she would make a fortune. Similarly in the elec-
tricity market, a trader that could predict changes in the electricity
load, and thus electricity prices, would be able to make large pro�ts.
Predicting price changes in the electricity market better than other
market participants is hard, but in this paper, we show that attack-
ers can manipulate the electricity prices in small but predictable
ways, giving them a competitive advantage in the market.

Our attack is possible when the adversary controls a botnet of
high wattage devices such as air conditioning units, which are able
to abruptly change the total demand of the power grid. Such attacks
are called Manipulation of Demand via IoT (MaDIoT) attacks. In
this paper, we present a new variant of MaDIoT and name it Ma-
nipulation of Market via IoT (MaMIoT). MaMIoT is the �rst energy
market manipulation cyberattack that leverages high wattage IoT
botnets to slightly change the total demand of the power grid with
the aim of a�ecting the electricity prices in the favor of speci�c
market players. Using real-world data obtained from two major en-
ergy markets, we show that MaMIoT can signi�cantly increase the
pro�t of particular market players or �nancially damage a group
of players depending on the motivation of the attacker.
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1 INTRODUCTION
Real-world attacks, as well as demonstration projects, have shown
the e�ectiveness of cyberattacks against the power grid [31, 35,
63, 64]. These are direct attacks, meaning that they directly target
the critical components (e.g., generators) or the supervision and
control system of the power grids. Recent works, however, have
shown how to attack the power grid indirectly, by compromising
consumer devices (and not devices in the grid) [28, 51]. In partic-
ular, the adversary creates or rents a botnet of high wattage IoT
devices (e.g., an Internet-connected EV charger or water heater),
and then, collectively and abruptly changes the electricity demand
of thousands of these devices (via simultaneously turning them
on/o�), creating an unanticipated sudden power surge which can
potentially result in local or regional blackouts [28, 51].

In this paper, we analyze a new unexplored threat from high
wattage IoT botnets: attacks to the deregulated wholesale electric-
ity market [50]. According to the U.S. Energy Information Admin-
istration (EIA), the average price of electricity and total energy
consumption in the U.S. was 75 USD/MWh and 2.935⇥109 MWh,
respectively [55, 56], with approximately 220 billion USD transac-
tions. Such markets can be attractive targets for cybercriminals
around the world and sel�sh traders who are willing to manipulate
the market.

Market manipulation (creating arti�cial prices) is not a new
problem. In the U.S., the primary purpose of the Securities and
Exchange Commission (SEC) is to enforce the law against stock
market manipulation. Recently, security researchers started to study
how botnets can facilitate stock market manipulation [62]. In this
paper, we perform a similar study but in the electricity market.

In a role similar to that of the SEC for the stock market, the
Federal Energy Regulatory Commission (FERC) has oversight on
electricity markets in the U.S. and can impose penalties on enti-
ties that manipulate the prices. While there have been multiple
electricity market manipulation cases over the years, none of the
discovered cases so far has been enabled by cyberattacks [45].

The most visible example of electricity market manipulation is
the case of Enron [38]: Enron traders had names for strategies that
they used to manipulate the market. Some of these include “Death
Star,” where traders �led nonexistent transmission schedules in
order to get paid to alleviate congestion that did not exist; “Fat
boy”, where traders overscheduled power transmission re�ecting
nonexistent demand; “Get Shorty” focused on selling power and
services it did not have with the expectation that they would not be
asked to ful�ll the contract, and “Ricochet” focused on exporting
electricity outside of California, to be latter bought at higher prices
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by circumventing the local price caps [38]. While Enron was a high-
pro�le case, there are several other traders that have been �ned for
manipulating the market over the years, including JPMorgan [16,
21], Louis Dreyfus Energy Services [14], and Barclays [47]. Still,
there may be several other cases of market manipulation that are
not detected [14]. The di�culty in proving market manipulation
cases in the power grid might motivate attackers to use cyberattacks
in their e�orts to pro�t from (or shock) the electricity market.

Our proposed attack, which we call Manipulation of Market
via IoT (MaMIoT), exploits the relationship between demand and
price �uctuations [8] and manipulates the market prices by slightly
altering the total power consumption of the grid through a high
wattage IoT botnet. This botnet can give a huge advantage to the
malicious participants in the market, as they can predict sudden
(but small) changes in the demand for electricity (changes created
by the botnet). Being able to predict electricity demand changes is
akin to a stockbroker who could predict small �uctuations of the
stock prices in advance.

The market manipulation through MaMIoT can be implemented
in two general ways based on the ultimate goal and motivation of
the attacker: i) to provide additional �nancial pro�ts for one of the
market players (i.e., the attacker is one of the market players such
as the previously discovered market manipulation cases by FERC);
ii) to cause economic damage to the entire market (i.e., attacker
is a nation-state actor who is doing this as a part of a trade/cold
war). For each of the cases, we develop an optimization model to
maximize the pro�t (or damage) of a speci�c market player (or to
the entire market) while keeping the attack as stealthy as possible.
The input data for the optimizationmodels are obtained by crawling
and processing publicly available datasets from o�cial electricity
market websites (they can be similarly obtained through a trading
tool called Bloomberg terminal or similar trading software). The
outputs of the optimization models are the timeline of the botnet
activation/deactivation (to realize the manipulated prices) along
with the malicious bids/o�ers in the electricity market (to realize
the additional attack gain).

The main contributions of this paper are summarized as follows:

• This is the �rst paper in the literature that identi�es and
analyzes the emerging threat from the high wattage IoT
botnets to the wholesale electricity markets.

• In order to develop successful attacks, we develop optimiza-
tion algorithms to decide when and how to attack, subject
to the constraints of the market, and the power constraints
of the system. Using the optimization models helps us maxi-
mize the attacks’ gains.

• We evaluate and test the e�ectiveness of the attacks with
real-world traces.

• We propose a set of practical countermeasures to consider-
ably limit the damaging consequences and severity of the
studied attacks.

The rest of this paper is organized as follows. In Section 2, we
explain the basic structure of electricity markets and their various
players. We then present the threat model and attack feasibility in
Section 3.We develop a formulation of the attackmodel for di�erent
attackers in Section 4. In Section 5, we evaluate the performance
of the proposed approach with real-world case studies. We then

propose a set of practical countermeasures in Section 6. Finally, we
conclude and discuss open research questions in Section 7.

2 BACKGROUND
2.1 Structure of the Electricity Market
There are two main markets for electricity. The wholesale market
focuses on the bulk power grid, while the retail market is where indi-
vidual consumers (e.g., homeowners) interact with electric utilities.
In this paper, we focus on the wholesale market.

Before deregulation of the wholesale market in the 1980s and 90s,
the electricity industry operated as a monopoly, which meant that
generators, transmission lines, substations, and distribution lines
were owned and operated by monopolistic (sometimes government-
owned) utilities. Proposers of deregulation argued that rising elec-
tricity costs were due to the lack of an e�cient market.

With deregulation, electric utilities were forced to sell their gen-
eration plants and became wholesale consumers, having to pur-
chase electricity on the spot market everyday. Deregulated mar-
kets also allowed new participants (outside of electric utilities)
to join the wholesale markets such as banks, �nancial �rms, and
smaller traders; in fact, regulators of the electricity market encour-
age traders to join these markets in the hopes of making them more
e�cient. Deregulated electricity markets allow the participation
and competition of multiple energy producers and utilities in the
market providing customers with e�cient, cheap, and more reliable
energy [6]. There are in general four major players in the market:
producers (generators), consumers (retailers), a market operator,
and a regulator.

2.1.1 Producers. Generation companies such as nuclear or coal
power plants, hydropower plants, and wind farms mainly fall into
this category where their basic goal is to produce and sell electric
energy. They may also sell services such as frequency regulation,
voltage control, and reserves to help the system operators main-
tain the reliability of the power grid. A generation company can
own a single generator or a portfolio of generators with di�erent
technologies [32, 50]. In some cases, �nancial companies such as
JPMorgan rent a power plant with multiple generators to partici-
pate in the market and make pro�ts from their trading strategies
[16, 47]. Other traders can also buy electricity from producers and
then sell them in the wholesale market [38]. Electricity prices on
the supply side are highly a�ected by fuel prices.

2.1.2 Retailers. Retailers buy electrical energy from the wholesale
energy markets and resell it to consumers (e.g., homeowners). Elec-
tric utilities and electric vehicle (EV) aggregators1 are two examples
of such retailers [32, 58], but again, other traders can join themarket
and purchase electricity [38]. Consumer prices are highly a�ected
by weather and economic activity.

2.1.3 Market Operator (MO) or Independent System Operator (ISO).
Market operators (MO), and independent system operators (ISO),
run a computer program to match the bids and o�ers submitted
by producers and retailers [32]. A responsibility of the ISO is to
clear the market in such a way that it preserves the reliability of
1An EV aggregator is a market player who participates in the wholesale market on
behalf of a certain number of EVs and charges the batteries of these EVs based on a
signed contract.
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the power grid. For example, if all producers of electricity are in
one geographical area and all consumers in another, the ISO has to
make sure that the power transmission lines have the capacity to
transfer the amount of energy. Therefore, speci�c bids and o�ers
that violate the limitations of the power grid, will be removed from
the market to maintain the grid’s stability [32].

2.1.4 Regulator. A regulator is a government organization respon-
sible for ensuring the fair and e�cient operation of market players.
This organization monitors the market, studies its environment,
and determines a set of rules to prevent abuse, manipulation, and
fraud by the market players. The regulator also sets the prices for
the products and services that are provided by monopolies or single
parties to preserve fairness in the market [32].

2.2 Day-Ahead and Real-Time Markets
The wholesale market is di�erent than various other markets in
that the products cannot be stored, so the production of electricity
has to match the demand for electricity at every point in time,
which in turn can lead to high volatility of electricity prices. To
hedge this price volatility, the market is divided into two parts: the
day-ahead market (which helps stabilize the prices of electricity)
and the real-time market [50].

In the day-ahead market, all players in the market make forecasts
of how much electricity will be needed for the next day, and then
at 12pm, they make o�ers for the amount of electricity they will
produce (or buy) for every hour of the 24 hours of the next day.
About four hours later the market is cleared by the ISO, and it
releases the speci�c commitments for each player. For example, if
player 1 submitted a bid for consuming 2MWh for a price of $15
from 3 pm to 4 pm, player 1 has to do that, otherwise, she will be
penalized �nancially.

Since predicting the exact energy demand a day in advance is
impossible, the market needs to have a real-time component to
correct prediction errors from the day-ahead market. If the day-
ahead market committed to less generation than what is currently
in demand, players make new bids and o�ers for electricity. If
the day-ahead market is committed to more generation than what
is currently in demand, the prices of electricity in the real-time
market can plummet and in some cases can become negative (asking
industries to consume electricity and being rewarded for that).

Both markets work the same way. Bids/o�ers submitted to the
ISO (for the day-ahead or real-time market) at a speci�c time slot
are shown in Figure 1. As illustrated in the �gure, each player of
the market submits a quantity-price pair to the ISO for each time
interval. The ISO sorts the bids/o�ers based on the suggested prices
and solves the optimization problem expressed in equations (1)–(4)
to maximize the social welfare of the market players and determine
the optimal price of the market at each time slot while satisfying
the power system physical constraints.
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Figure 1: Illustration of a typical bid/o�er in themarket and
its settlement mechanism.

B~BC4< A4;8018;8C~ 2>=BCA08=CB (4)
The intuition behind equation (1) is tomaximize the area between

the red and the green curve in Figure 1. %⇡3 is the power demand
(in MWh) by player 3 and _⇡3 is the price player 3 is willing to pay
to buy that amount of power. In the �gure, %⇡3 is one of the steps in
the x-axis of the red curve and _⇡3 is one of the steps in the y-axis
of the red curve. Similarly, %(B is the amount of power supplier B
is willing to provide at price _(B . At the market-clearing price, all
players are happy because consumers are buying for less than (or
equal) to their bid, and suppliers are receiving more (or equal) for
the generation they promised. Equations (2) and (3) denote that
one of the bids or o�ers is not going to be accepted in its totality
(e.g., that is why in Figure 1 the red line intersects the green line,
meaning that one of the supply o�ers is cut shorter than what the
supplier was o�ering). Finally, Equation (4) is beyond the scope
of this paper, but it basically deals with the physical topology of
the grid and makes sure that the scheduled supply and demand do
not violate any capacity constraints of the transmission lines in the
power grid.

3 THREAT MODEL
We assume our attacker has a high wattage botnet, as proposed in
recent work [15, 28, 51]. The di�erence with previous work on high
wattage botnets is that we are not using the botnet in an attempt
to cause electricity blackouts, instead, we study how an attacker
can pro�t from the botnet by manipulating the electricity market.

For example, one of the possible ways to pro�t from the electric-
ity markets is by creating congestion. Power companies that buy
or sell in the wholesale market can get hurt by sudden price spikes,
but they can buy a �nancial instrument known as a congestion
contract, which acts as a hedge against losses. Financial �rms such
as DC Energy or Saracen Energy can also buy these contracts, and
then pro�t when the grid becomes overburdened [14]. An attacker
with a high wattage botnet can attempt to create congestion in
speci�c areas of the grid, or speci�c times.

Market manipulation in the wholesale electricity market is not
new. Perhaps the most popular case of wholesale electricity market
manipulation is the case of Enron, a company that claimed revenues
of over 100 billion during 2000 according to Fortune magazine, and
who Fortune magazine named America’s Most Innovative Company
for six consecutive years. In the deregulated wholesale electricity
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market, traders–often pure middlemen who do not own power
plants–began to apply their experience in market trading. Enron
used a variety of strategies to manipulate the electricity market
in California. These strategies included o�ering to sell electricity
but schedule it in a way that cannot be delivered (e.g., through
a low capacity line), scheduling too much electricity to �ow on
some lines so the ISO would pay to relieve that congestion, and
urging operators to remove power generation plants to perform
unnecessary maintenance, in order to cut the supply and share
the pro�ts of higher prices for generators [19]. Enron traders even
labeled these strategies, with names such as “Death Star,” “Fat Boy,”
“Get Shorty,” “Ricochet,” and “Mega Watt Laundering”. Enron later
claimed that all competitors were employing similar strategies but
avoided these names [38].

There are dozens of investigations formarket manipulation every
year. One high-pro�le case happened when FERC found evidence of
manipulative bidding by JPMorgan in the California electricity mar-
ket back in 2013 [21]. After a long �ght in court, JPMorgan agreed
to pay $410 million USD to settle allegations [16]. The company
had rented two power plants and used manipulative bidding strate-
gies in the market by creating arti�cial conditions (e.g., temporary
power shortage in the grid) to sell the generated power at expensive
premium rates [16]. Another market manipulation case occurred
when Louis Dreyfus Energy Services began buying cheap conges-
tion contracts in an area with a lot of generation (wind turbines) and
then a second trader created the impression that congestion was hit-
ting the desired area, thus pro�ting by nonexistent congestion [14].
More recently in 2017, FERC approved a $105 million settlement
with the British bank Barclays for market manipulation [47].

In this paper, we focus on attackers with access to a high wattage
botnet that can manipulate the market. We consider two di�erent
types of attackers:

Attacker Type I: The �rst attacker is a fraudulent trader, similar
to one of the cases identi�ed in the last two paragraphs. The
goal of this trader is to use the high wattage botnet to her
advantage, manipulating the electricity market and pro�ting
�nancially from the attack.

Attacker Type II: The second attacker does not participate in the
market, but instead uses the high wattage botnet to make the
market as ine�cient as possible, and thus cause widespread
economic damage to operators of the power grid.

The overall structure of the threat model for these attackers is
shown in Figure 2. Attackers �rst crawl the historical and real-time
market data from available online sources to obtain the optimization
parameters that are necessary for designing the attack scenarios
( 0�). An Attacker Type I (fraudulent insider) then submits bids or
purchase orders, and then also submits commands to the botnet
( 1�). An Attacker Type II does not participate in the market, and
simply sends commands to the botnet to cause market ine�ciencies
( 2�).

3.1 Basics of MaMIoT
The intuition behind the MaMIoT attack is the following: with a
high wattage IoT botnet, the attacker can predict better the real-
time demand than other peers in the market, because the high

High-Wattage 
IoT Botnet

Bloomberg Terminal

ISO Website

Market Historical 
Data

Attacker 
(C&C Server)

Online Data

�

�

� Attacker I:
a) Malicious 
bids/offers
b) Botnet 
schedule

Attacker II: 
a) Botnet 
schedule DA and RT 

Markets

�

� �

Figure 2: The overall view of the threat model and attack
scenarios. 0� Crawler: Crawling the historical and real-time
market data to be used for designing the attack scenario,
1� Attacker Type I: Submitting the malicious bids/o�ers to
the day-ahead and real-timemarkets andmodifying the grid
demand with the available botnet, 2�Attacker Type II: Mod-
ifying the grid demand with the available botnet.

wattage IoT botnet can allow the attacker to increase or decrease
the electricity load slightly at will.

While not entirely an accurate analogy, using an example from
the airplane industry can provide insights into how the electricity
market can be manipulated: suppose you book an airline ticket
for a �ight you do not intend to board: it is a waste of time and
money unless you are sure the �ight will be overbooked and the
airline will have to dish out rewards to passengers who agree to stay
home [40]. Similarly, if you commit to producing electric power
in the day-ahead market but the load does not materialize in the
real-time market (e.g., by turning o� several high wattage IoT bots),
you will get rewarded for not producing the power you did not
have in the �rst place. On the other hand, an attacker can increase
the load on a given day by turning on several high wattage IoT bots.
If the attacker is prepared (e.g., putting two generators in service
for the day, instead of only one), it can deliver electricity in the
real-time market at lower prices than other generators who did not
anticipate this extra demand (and who did not turn on reserves).

More concretely, an adversary can manipulate the real-time
market prices by slightly changing the total demand of the power
grid through a high wattage IoT botnet. This observation can be
mathematically represented as:

_'): = _') 0: + U:�⇡
(~BC4<
:

,8: 2 ⌦ (5)

where _'): is the manipulated real-time market price, _') 0
:

is the

original market price, �⇡(~BC4<
:

is the power grid demand ma-
nipulation, and U: is a constant number that can be obtained by
analyzing market historical data. Additionally, : and ⌦ are the
indexes and set of time intervals (e.g., 15 min.) in the market. Ac-
cording to this equation, an attacker can manipulate the real-time

Session 5A: Control System Security  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1341



       (a) 

       (b) 
 
Figure 3: The coe�cient representing the price-load sensi-
tivity in the real-time market obtained from analyzing the
market historical data for one month. a) New York ISO; b)
California ISO.

market price in his own favor by slightly changing the total demand
of the power grid through high wattage IoT botnets (�⇡(~BC4<

:
).

Based on our analysis, U: changes considerably at every hour in a
given market. Therefore the attacker needs to be strategic and �nd
the optimal time to attack, as changing the load at di�erent times
will give di�erent bene�ts.

By analyzing the historical data of two large electricity markets
(New York and California) [11, 12, 42, 43] during one month period,
we can estimate the value of U: at each time interval; this is illus-
trated in Figure 3. According to this �gure, the real-time market
price in the New York market is more sensitive to demand manip-
ulation compared to the California market. As we can see, price
manipulation at certain hours (19-21) can be done with a fewer
number of high wattage IoT bots because of the higher price-load
sensitivity factor (U: ). For example, a high wattage IoT botnet with
100,000 bots can change the system demand by 1% and this could
result in +15 USD (⇠30% increase) in New York and +5 USD (⇠20%
increase) in California.

Launching successful market manipulation attacks requires so-
phisticated strategies for maximizing the objective function while
maintaining the committed resources cleared in the market, and a
low pro�le to avoid being detected by the market regulator. Before
we discuss sophisticated optimization strategies, we �rst describe a
naive baseline attack.

3.2 Baseline Attack
A naive attack strategy for a consumer to get lower electricity prices
would be to turn o� all high wattage devices in the botnet. With
lower demand, the price of electricity will fall and the consumer
will pay less for electricity. The equivalent naive attack strategy
for a generator is to turn on all high wattage devices in the botnet,

 

Figure 4: The pro�t breakdown of the simulated market
player in a single day with di�erent bidding strategies in
the New York market. DA: day-ahead pro�t, RT: real-time
pro�t, Penalty: market penalties, Pro�t: overall pro�t.

increasing the demand, and thus increasing electricity prices. The
algorithm for the baseline attack is outlined in Algorithm 1.

Algorithm 1 Baseline Attacker

1: function ��������(*'!�($ )
2: �8BC>A~ = ⇠A0F; (*'!�($ ) ù Read market historical data
3: for : = 1 to  do
4: U: = (C0C8BC82B (�8BC>A~) ù Estimate price-load

sensitivity at each time slot
5: 1>C=4C: = "0G8<8I4 (U: ) ù Maximize the price at each

time slot and �nd the relevant botnet attack
6: return 1>C=4C:

Although the baseline attack may seem reasonable and e�ective
at �rst glance, our analysis shows that it has two major weaknesses.
First, if the adversary tries to bene�t a single market player, this
price manipulation must be accompanied by the consideration of
the player’s physical constraints; otherwise, this strategy will lead
to lower attack gains because of the inevitable market penalties
(making promises to produce or consume electricity, and then not
being able to ful�ll these promises). Figure 4 illustrates the pro�t
breakdown of a typical market player in a single day with di�erent
bidding strategies. As we can see, the overall pro�t of the player
increases in the baseline attack scenario compared to when there
is no attacks. However, there are some penalties in the baseline
attack scenario because of the violation of the market limitations
and the exclusion of the player’s physical constraints (breaking
the promises, as explained above). To prevent these penalties, we
need a more sophisticated attacker, which we introduce in the next
section. In the more sophisticated attack, the adversary gains less
pro�t in the day-ahead market; however, he obtains a large pro�t in
the real-time market with no market penalty. The small day-ahead
pro�t reduction can be regarded as the preparation cost for gaining
the maximum pro�t in the real-time market with no penalties.

The second weakness of the baseline attack model is that the
adversary might be detected by FERC fairly easily. Stealth is a key
point for the success of MaMIoT attacks as this will allow the attacks
to be repeatable (otherwise short-term gains will be small). Figure 5
shows the system load pro�le associated with di�erent bidding
strategies mentioned in Figure 4. As can be seen, the load pro�le
of the system during the baseline attack exceeds the upper limit
of a typical load forecasting error. Therefore the system operator
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Figure 5: This �gure shows that the optimized attack is less
disruptive to the grid than the baseline attack. The opti-
mized attack only activates the botnet at certain times, and
with fewer active bots.

can easily di�erentiate and detect this as an anomaly. Conversely,
the load pro�le of the optimization-based attack remains within
the lower and upper error limit band, and hence, it will be hard to
di�erentiate these small electricity changes from the general daily
errors in load forecasting.

In short, while the naive attack may be better for the adversary
than not launching attacks, the gains will be short-lived. There
are too many variables and constraints (physical constraints of
the player, market constraints, and stealth constraints) that the
baseline attack does not consider. Therefore, we introduce more
sophisticated adversaries who leverage mathematical optimization
frameworks to maximize the attack gains.

3.3 Attacker Type I
There are two main decision variables for this type of attacker:
i) malicious bids/o�ers made by the market player (attacker), and
ii) system demand alteration at each time interval through the high
wattage IoT botnet (see 1� in Figure 2).

To determine the key parameters (e.g., price-load sensitivity (U)
as shown in Figure 3) for the optimization model, the adversary
�rst analyzes publicly available historical market data from the
market’s website [12, 43, 46] or on a Bloomberg terminal [1]. Next,
the attacker runs an optimization problem to determine the mali-
cious day-ahead and real-time bids/o�ers in the electricity market
and the required system demand change of each time slot (this will
be realized through the high wattage IoT botnet). In addition, we
constrain attacks to be stealthy so that it is hard to accuse a speci�c
market player of abuse. The algorithm for the �rst attacker type is
outlined as follows (we will give details in Section 4.1):

3.4 Attacker Type II
In this case, the attacker is a nation-state actor whose goal is to
maximize the economic damage to a group of market players by
manipulating real-time market prices through high wattage IoT
botnets. Because this attacker is external to the system, the only
decision variable that is needed to be implemented in the market
is the power demand changes at each time interval through the
available high wattage IoT botnet (see 2� in Figure 2).

Financial markets have already seen nation-state attacks as part
of cold/trade wars and MaMIoT is the �rst cyber-based energy
market manipulation that could damage the electric industry gen-
eration/demand of a targeted country [2]. A nation-state attacker

Algorithm 2 Attacker Type I

1: function A�����I(*'!�($ )
2: �8BC>A~ = ⇠A0F; (*'!�($ ) ù Read market historical data
3: for : = 1 to  do
4: U: = (C0C8BC82B (�8BC>A~) ù Estimate price-load

sensitivity at each time slot
5: ⇡BC40;C⌘~,<0G

:
= (C0C8BC82B (�8BC>A~) ù Estimate stealth

parameter at each time slot
6: 1>C=4C: ,⌫83

⇡�
C ,⌫83'): =

$?C8<8I0C8>=(U: ,⇡
BC40;C⌘~,<0G
:

, ?⌘~B82B) ù Maximize the
player’s gain subject to player’s physical constraints, stealth
constraints, and market constraints

7: return 1>C=4C: ,⌫83
⇡�
C ,⌫83'):

could even be a foreign investor in generation/demand compa-
nies who wants to alter the total revenue of the electricity genera-
tion/consumption corporations to a�ect their stock shares in his
favor.

Similar to the previous attacker, the nation-state actor analyzes
the historical market data to obtain price-load sensitivity at each
time slot (price-load sensitivity (U) as shown in Figure 3). Then, the
attacker solves an optimization problem to determine the optimal
attack vector to be implemented with the botnet of high wattage
IoT devices at each time interval. As mentioned earlier, we design
the attack mechanism to be stealthy. The algorithm for the sec-
ond attacker type is outlined as follows (we will provide details in
Section 4.2):

Algorithm 3 Attacker type II

1: function A�����II(*'!�($ )
2: �8BC>A~ = ⇠A0F; (*'!�($ ) ù Read market historical data
3: for : = 1 to  do
4: U: = (C0C8BC82B (�8BC>A~) ù Estimate price-load

sensitivity at each time slot
5: ⇡BC40;C⌘~,<0G

:
= (C0C8BC82B (�8BC>A~) ù Estimate stealth

parameter at each time slot
6: 1>C=4C: = $?C8<8I0C8>=(U: ,⇡

BC40;C⌘~,<0G
:

) ù
Maximize the attack’s gain subject to stealth constraints and
market constraints

7: return 1>C=4C:

3.5 Attack Feasibility
When we consider the feasibility of the MaMIoT attack there are
two questions that come up, i) Will this attack work in practice? and
ii) Can one acquire, compromise, and control a large botnet of high
wattage IoT devices located within certain geographic boundaries
(e.g., within the state of California)?

We argue the answer to both of these questions is yes. To start,
the command and control of IoT botnets is not new [49]. As IoT
devices have grown in complexity and become more widely de-
ployed, their power consumption has increased accordingly. This is
emphasized in [23] where we see the average power consumption
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of an air puri�er is 200W, making the premise of a high wattage
IoT botnet fairly reasonable.

3.5.1 Number of Available High Wa�age IoT Bots. The number of
high wattage IoT devices that an attacker can use in a MaMIoT
attack is growing. The number of houses with smart thermostats
in North America alone has increased at an unprecedented scale,
representing a small fraction of the total high wattage IoT devices in
the automation �eld (see Figure A1 in Appendix) [53]. EV chargers
are another big source of high wattage devices. Concerning the
matter of location, attackers can trivially determine whether a
compromised device is within a certain geographical area through
the device’s IP address.

A MaMIoT attack does not need a signi�cant number of com-
promised high wattage IoT devices to be e�ective, but as the size
of the botnet increases so does the economic impact of the attack
(discussed at length in Section 5). Even with a small botnet of high
wattage devices, the attack can be extremely devastating as illus-
trated in Sections 5.3 and 5.4. All things considered if we take into
account that IoT botnets, such as Mirai, are capable of containing
over six hundred thousand compromised devices [5], a future im-
plementation of MaMIoT with a high wattage botnet of 100,000
bots would be a common scenario. Now, we discuss how this botnet
could be obtained.

3.5.2 IoT Botnet Acquisition. Since the release of its source code in
2016, variants of Mirai have run rampant [34] and have been cred-
ited with several attacks including assaults against OVH (French
cloud computing company), Dyn (DNS service provider), and the
Liberian Internet infrastructure. These and other IoT malware such
as, Bashlite, Reaper, Satori, and Linux.Aidra, have been able to infect
IoT devices through primarily known and patchable vulnerabilities
[49] resulting in a low barrier to entry for the supply and demand
of botnet for hire services.

Botnet rental services level the playing �eld for entities that
are unable to create/deploy malware for building their own army
of bots. On the dark web, buyers can obtain access to DDoS ser-
vices for periods ranging from days to several months [13]. Within
their service period, clients can launch a limited or unlimited (for a
premium) number of attacks per day with a guaranteed minimum
duration ranging from minutes to hours. Some of the available
botnet rental services can be found in the Appendix. Based on the
presented results in Section 5, even if the cost of building/renting
a high wattage IoT botnet is ten times bigger than what is men-
tioned in a realistic botnet rental service, this cost is still negligible
compared with the attack gain.

3.5.3 E�ect of the A�ack on the End User’s Billing Statement. The
�nancial e�ect of the proposed attacks on each end-user depends
on their monthly total power consumption as well as the dura-
tion of the attack. According to the EIA, the average electricity
consumption of Americans is 914 kWh per month. Tennessee has
the highest electricity consumption at 1,282 kWh per residential
customer, and Hawaii has the lowest at 517.75 kWh per residential
customer [57]. Assuming that each of the high wattage IoT bots
consumes 3 kW electricity and considering the stealth strategies
explained in Sections Appendix II and 5 (the attack is carried out
100 days per year (8 days/month) and each bot is turned on for 3

hours on average during the daily attack), each compromised home
would consume 72 kWhmore electricity in each month. This means
a 7.8% increase in the billing statement in the attacked residents,
which will likely be unnoticeable. For example, a typical customer
who pays $120 monthly for his electricity bill in the US, will pay
$129 if he is attacked. Note that the considered numbers are as-
sociated with the most severe IoT botnet attack on the electricity
market (see NY3 and CA3 in Figures 7, 13, and 14). For example,
replacing 3 kW with 1 kW will lead to a trivial 2.6% increase in the
monthly electricity bill.

4 FORMULATION OF THE ATTACK MODEL
In this section, we explain the optimization models that adversaries
can employ to determine the attack scenarios as explained in Sec-
tion 3.

4.1 Attacker Type I
As mentioned in Section 3, this type of attacker is one of the market
players whose goal is to maximize his own pro�t by manipulat-
ing the real-time system demand through the strategic use of high
wattage IoT botnets. To show the e�ectiveness of the MaMIoT
attack, we present one sample optimization model for a common
market player: a generation company. Note that without loss of gen-
erality, the proposed optimization framework with slight changes
can be leveraged to model the other types of market players. It is
worth mentioning that the detailed explanations of the notation
used in the following equations are given in Appendix I for quick
referencing.

We assume that a conventional power plant, which includes
multiple steam turbines and generators, can control a botnet of
high wattage IoT devices to make pro�t from the energy market.
The following optimization problem is developed to determine the
optimal o�ers in the day-ahead and real-time markets along with
the attack vector to be sent to the bots in the botnet. The objective
function of the model is de�ned as:

maximize ?A> 5 8C⌧ =
’

62⌦⌧

’
C 2⌦)

?A> 5 8C⇡�,⌧
6C

+
’

62⌦⌧

’
:2⌦ 

?A> 5 8C') ,⌧
6:

�
’

:2⌦ 

⇠>BC⌫>C=4C:

(6)

where ?A> 5 8C⌧ is the total pro�t of the generation company. Sim-
ilarly, ?A> 5 8C⇡�,⌧

6C and ?A> 5 8C') ,⌧
6:

denote the pro�t of unit 6 at
hourly (sub-hourly) time interval C (:) in the day-ahead and real-
time markets, respectively. Also, ⇠>BC⌫>C=4C: represent the cost of
building/renting the required botnet for the desired attack. These
variables can be calculated as follows:

?A> 5 8C⇡�,⌧
6C = _⇡�

C %⇡�,⌧
6C �

⇣
_(*6 D6C + _(⇡6 E6C

⌘
�_⌧,⇠>=BC0=C

6 G⌧6C ,86 2 ⌦⌧ , C 2 ⌦)

(7)

?A> 5 8C')6: = _'): %') ,⌧
6:

�
⇣
_⌧,�D4;
6 %')6:

⌘

�
_⇡�,⇡4E
C

K
⇣
%⇡�,⇡4E+,⌧
6C + %⇡�,⇡4E�,⌧

6C

⌘
,

86 2 ⌦⌧ ,: 2 ⌦ , C 2 ⌦: ,

(8)
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⇠>BC⌫>C=4C: = _⌫>C=4C: ⇡0CC02:
: ,8: 2 ⌦ . (9)

The day-ahead pro�t for each unit, ?A> 5 8C⇡�,⌧
6C , includes the rev-

enue from the day-ahead market participation (_⇡�
C %⇡�,⌧

6C ) minus
the costs associated with the unit start-up, shut-down (_(*6 D6C +
_(⇡6 E6C ), and its constant operation (_⌧,⇠>=BC0=C

6 G⌧6C ). The real-time
pro�t for each unit, ?A> 5 8C') ,⌧

6:
, includes the revenue from the real-

time market participation (_'): %') ,⌧
6:

) minus the fuel cost of the

unit (_⌧,�D4;
6 %')6: ) along with the cost associated with the penalty

for deviating from the day-ahead bid in real-time operation. Ac-
cording to our analysis, the real-time market price (i.e., _'): ) in (8)
can be notably a�ected by the real-time power mismatch between
the system generation and demand. This property can be e�ectively
used by the adversary to change the pro�t which can be obtained
from the real-time market. The attacker can change the real-time
system demand through the high wattage IoT botnets and a�ect the
real-time market price in his favor. By analyzing the historical data
of the market (which is publicly available on the o�cial websites of
ISOs and Bloomberg terminal [1, 11, 12, 42, 43, 46]), we can extract
the relationship between the system real-time power mismatch and
the real-time market price. In this paper, we assumed a linear model
for this change as follows:

_'): = _') 0: + U:�⇡
(~BC4<
:

,8: 2 ⌦ (10)

where _'): is the real-time market price after the attack, _') 0
:

is

the expected real-time market price before the attack, �⇡(~BC4<
:

is
the total change in the system demand which can be done through
a high wattage IoT botnet, and U: is a constant number which can
be obtained by analyzing market historical data. According to (10),
the attacker can signi�cantly alter the real-time market price in his
favor if he has access to a large number of compromised IoT devices.
However, if the attacker changes the system demand signi�cantly,
it can be easily detected by the ISO in the market as an anomaly.
Therefore, in order to keep the attack stealthy and undetectable, we
need to limit the system demand change to stay within the normal
load forecasting error (as determined from historical market data).
The mathematical representation of this limitation can be de�ned
as:

��⇡BC40;C⌘~,max
:

 �⇡(~BC4<
:

= ⇡0CC02:
: � ⇡02CD0;

:

 �⇡BC40;C⌘~,max
:

,8: 2 ⌦ 

(11)

in which �⇡BC40;C⌘~,max
:

is the average of the load forecasting error
at time slot: which is determined by analyzing themarket historical
data from the ISO’s public website. Another point that should be
considered here is that the system demand alteration should be
capped with the maximum capability of the high wattage IoT botnet,
that is,

��⇡1>C=4C ,max
:

 �⇡(~BC4<
:

= ⇡0CC02:
: � ⇡02CD0;

:

 �⇡1>C=4C ,max
:

,8: 2 ⌦ 

(12)

where �⇡1>C=4C ,max
:

is the maximum capability of the IoT botnet
at time slot : . This parameter represents the maximum capability
of the attacker in changing the total demand of the power grid.
It should be noted that additional strategies, such as limiting the
number of hours for the demand alteration, can be embedded in
(11) to maintain attack stealth. The physical constraints associated
with the power plant are listed as follows:

%�2C,⌧
6:

= %⇡�,⌧
6C +

⇣
%⇡�,⇡4E+,⌧
6C � %⇡�,⇡4E�,⌧

6C

⌘
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6:
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G⌧6C � G⌧6 (C�1) � G⌧6g ,86 2 ⌦⌧ , C 2 ⌦) , C < C1,

g 2
h
C + 1,min(C +)* ,⌧

6 � 1,) )
i
,

(18)

G⌧6 (C�1) � G⌧6C � 1 � G⌧6g ,86 2 ⌦⌧ , C 2 ⌦) , C < C1,

g 2
h
C + 1,min(C +)⇡,⌧

6 � 1,) )
i
,

(19)

The group of (13)–(19) is related to the physical constraints of
every power plant including various types of units. More speci�-
cally, the real-time output power of each generating unit at each
time slot can be calculated through (13). Equation (14) describes
the constraint in which the output power of a generator must be
between its minimum and maximum amount when it is running
(i.e., G6C = 1). Also, equation (15) de�nes the ramp limit on the
increase/decrease of the output power of each generator. Generator
start-up and shut-down constraints are modeled through (16)–(17).
Finally, depending on the type of the unit, it has minimum up and
down time limitations which are mathematically represented via
(18)–(19).

Ultimately, most electricity markets do not allow the players
to deviate too much from their submitted bids in the day-ahead
market [12, 43, 46]. The mathematical model of this constraint is
given as:

0  %⇡�,⇡4E+,⌧
6C  ^%⇡�,⌧

6C ,86 2 ⌦⌧ , C 2 ⌦) (20)

0  %⇡�,⇡4E�,⌧
6C  ^%⇡�,⌧

6C ,86 2 ⌦⌧ , C 2 ⌦) (21)

where ^ (e.g., %20) is the percentage that allows the players to
deviate from their day-ahead bids subject to a speci�ed penalty.
Di�erent markets may have various regulations which can be math-
ematically incorporated in the optimization model without the loss
of generality. It should be noted that the proposed optimization
formulation considers the integrated behavior of all market players
including the malicious one. The e�ect of the attack on the other
market players is discussed in Section 5.
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4.2 Attacker Type II
As pointed out in Section 3, this type of attacker is a nation state
actor whose goal is to maximize the economic damage to the market
players by manipulating the system real-time demand through high
wattage IoT devices. This attack can target either the generation
side or the demand side depending on the ultimate goal of the
attacker. The optimization model for attacking the demand side
companies (i.e., retailers) is as:

maximize 42>=><82 30<064 =’
:2⌦ 

⇣
⇡0CC02:
: _'): � ⇡02CD0;

: _') 0:

⌘
�

’
:2⌦ 

_⌫>C=4C: ⇡0CC02:
:

(22)
BD1 942C C>
(10)–(12).
According to this model, the attacker seeks to maximize the

economic damage to the retailers through a�ecting the real-time
market prices while keeping his attack stealthy. Similar to this case,
the model for attacking the generation side can be de�ned as:

maximize 42>=><82 30<064 =’
:2⌦ 

⇣
⌧02CD0;
: _') 0: �⌧0CC02:

: _'):

⌘
�

’
:2⌦ 

_⌫>C=4C: ⇡0CC02:
:

(23)
BD1 942C C>
(10)–(12).
Note that in both of the aforementioned models we assumed that

the attacker can attack either the generation side or the demand
side in one day. We can easily modify this assumption by changing
the limits of the sums in the objective functions.

5 NUMERICAL ANALYSIS AND DISCUSSION
5.1 Description of the Studied Test Cases
To evaluate the attack scenarios with real-world datasets, we col-
lected market data associated with New York and California ISOs
during a one-year (May 2018 – May 2019) period [11, 12, 42, 43].
The historical data is presently available on the ISOs websites and
on Bloomberg terminal, and are updated every 5 minutes. Publicly
available historical datasets are also typically available in the other
electricity markets around the world which makes these markets
vulnerable to attacks such as MaMIoT. The California ISO is one of
the largest ISOs in the world, which is responsible for delivering
roughly 0.300 ⇥ 109 MWh of electricity each year to its customers
[10]. Similarly, the New York ISO is another large electricity market
in the US with 0.156⇥109 MWh of total annual energy consumption
[41]. In the following subsections, we will present our analysis of
the aforementioned markets. Since the direct implementation of
this attack in electricity markets can have huge �nancial conse-
quences (e.g., 2 million USD per day with a relatively small botnet),
we have used the real-world market data to simulate the attack
with reasonable and detailed models. This helped us avoid any law-
related repercussions while investigating the attack consequences
with real-world data.

 

   (a) 

 

   (b) 

Figure 6: Typical load forecasting error band: a) New York
ISO (580 MW); b) California ISO (2265 MW).

5.2 Determining the Input Parameters of the
Optimization Models

As explained in Section 4.1, a slight deviation of the system’s real-
time loads from their forecasted value has a linear e�ect on the
real-time market price (see (10)). In order to launch a successful
MaMIoT attack, the adversary must �rst obtain this relationship
from the market historical data. In fact, the goal is to determine U:
for the market under investigation. Since the trends in load pro�les
and market prices change every month, the U: parameter must also
be updated every month. Figure 3 shows the value of this parameter
for the California and New York markets for each time interval from
the market data on June 2019. This �gure was acquired through
analyzing the historical data of these markets.

Another important parameter that plays a key role in keeping
the attack stealthy is �⇡BC40;C⌘~,max

:
. According to our analysis, the

average prediction error of the system real-time demand at di�erent
time slots is 580 MW and 2265 MW in the New York and California
ISOs. Figure 6 shows a typical day-ahead forecast and the real-time
demand associated with each of the analyzed markets. The dashed
lines in the �gure indicate the upper and lower prediction errors
for each market. The �gure illustrates that the load forecasting
error band for the California market is higher than that of the New
York market. Some reasons for this are: i) the California market is a
bigger market and has more maximum power capacity, and ii) the
share of �exible loads in the California market is larger than that
of the New York market. By limiting the system demand change to
the speci�ed error range (typical prediction error), the attacker can
make the attack look similar to normal real-time system demand,
thereby keeping the attack stealthy and repeatable. Note that in
the simulated cases, we considered three di�erent average power
consumption for each bot within the botnet (see Figures 7, 13, and
14). The subscripts 1, 2, and 3 of each bar plot in the �gures represent
1kW, 2kW, and 3kW for the two markets (NY and CA), respectively.
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Figure 7: Total additional daily pro�t of the power plant
owner versus the number of compromised high wattage IoT
devices.

5.3 Market Player Attacker Results
In this section, we assume that the attacker owns a power plant and
can participate in the day-ahead and real-time electricity markets.
This power plant includes ten di�erent units whose technical char-
acteristics are given in Appendix IV. The maximum power genera-
tion of the power plant is 1990 MW. We simulated the participation
of this power plant in the New York and California markets and
assumed that the player had control over a high wattage IoT botnet.
Figure 7 illustrates the total additional daily pro�t the power plant
owner stands to gain versus the varying numbers of compromised
high wattage IoT devices in the botnet. According to this �gure, as
the size of the botnet increases, the total additional pro�t increases
in both of the studied markets. Our analysis revealed that the power
plant owner can gain up to 326,000 USD daily pro�t (in NYISO)
without the implementation of MaMIoT attack (�⇡1>C=4C,max

:
= 0),

but with only 200,000 compromised IoT devices (with an average
power consumption of 3 kW per device), they could gain an addi-
tional 150,000 USD in pro�t. This is 30% more than the base case
without any attacks. By implementing the MaMIoT attack for only
100 days in a year, the studied market player would be able to gain
an additional 15 million USD in pro�t from the electricity market.
Interestingly, MaMIoT does not require any speci�c number of
compromised IoT devices to launch a successful attack. This means
that the success rate for the attack is 100% with any given botnet
size. However, working with a smaller-sized botnet simply results
in less additional pro�t.

Figure 7 shows that with a larger number of compromised IoT
devices, the attacker can gain more economic pro�t from the bigger
electricitymarkets. Another interesting observation from Figure 7 is
that the daily additional pro�t of the power plant owner in the New
York market saturates once the botnet size exceeds 200,000 bots.
The reason being the attacker can only control 600 MW of system
demand with 200,000 bots (with an average power consumption
of 3 kW per device). However, according to Figure 6, a stealth
attack on the New York ISO can alter a maximum 580 MW of
the system’s total demand in real-time. So, although the attacker
controls over 580 MW with more than 200,000 bots, he is limited
to the allowable range (below 580 MW) to keep the attack stealthy.
With the maximum demand alteration for botnets greater than
200,000 bots capped at 580 MW, the attack’s e�ect will be the same
in all the cases where the botnet size is greater than 200,000 bots.

 

       (a) 

 
(b) 

Figure 8: Load pro�le of the power grid at each time interval
associated with attacks launched by the power plant owner
with di�erent botnet sizes: a) New York ISO; b) California
ISO. Notice how the attack increases and decreases the con-
sumption of energy.

Figure 8 shows the load pro�le of the system at each time inter-
val associated with di�erent botnet sizes. In this �gure, attackers
10k, 50k, 100k, 150k, 200k, and 250k are associated with botnets
with 10,000, 50,000, 100,000, 150,000, 200,000, and 250,000 compro-
mised high wattage IoT devices. The �gure shows the attacked
load pro�les are within the speci�ed load forecasting error range
and therefore maintain stealth in the proposed attack model. The
manipulated system load pro�le is very similar to typical real-time
system demand. This makes it very hard for the market regulator
or ISO to detect one player is abusing the market mechanism in
his own favor. Such stealth strategies enable the adversary to re-
peat his attack and multiple times per month and make signi�cant
additional pro�ts from the electricity markets.

Figure 9 illustrates the pro�t breakdown of the adversary in the
New York and California markets with di�erent attack scenarios.
As can be seen, the overall pro�t of the attacker in both New York
and California markets is maximum when the adversary uses the
optimization-based attack. The baseline attack excludes the key
constraints in the attack scenario, and hence, causes monetary
penalties from the market. The optimization-based attack on the
other hand has zero penalties in both markets, which leads to the
maximum pro�t for the malicious market player.

To illustrate the interaction between multiple market players
in the New York market, we considered 21 generation players and
20 consumer players. For the �rst case, let’s assume one of the
generation players is malicious and can control a botnet of high
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Figure 9: The pro�t breakdown of the simulated market
player in a single day with di�erent bidding strategies in
the New York and California markets. DA: day-ahead pro�t,
RT: real-time pro�t, Penalty: market penalties, Pro�t: over-
all pro�t.

wattage devices. Figure 10 shows the overall daily pro�t of the
market players during the no attack and optimization-based attack
scenarios. As it can be seen, the manipulations of the malicious
market player increase the gain of the other generation players
in the market as well. However, since the adversary knows about
the manipulated real-time prices in advance, he prepares for the
manipulated situation and obtains the maximum pro�t out of that.
The consumer market players lose small pro�ts because of this
market manipulation.

In the other simulated case, we assumed that the adversary is one
of the consumer players in the New York market. Accordingly, one
of the 20 players on the consumer side is malicious and can control
a high wattage IoT botnet. Figure 11 shows the overall daily pro�t
of the market players during the no attack and optimization-based
attack scenarios. As it can be seen, the malicious market player
gains the maximum pro�t from the attack while the other consumer
players gain marginal pro�t from the manipulations. Conversely,
the benign generation players lose small pro�ts because of the price
manipulations.

Finally, as it was discussed in Section 4.1, the day-ahead price
forecasts are used to determine the optimal attack scenario by the
malicious market player. Here, we aim to analyze the e�ect of
prediction error in this parameter on the attack’s gain. Figure 12
shows the daily pro�t of the attacker in both markets versus the
estimation error in the day-ahead market prices. according to this
�gure, the adversary’s gain does not change signi�cantly with the
increase in the estimation error. This observation illustrates that
we made a reasonable assumption in our formulation to consider
this parameter in the optimization model.

5.4 Nation-State Attacker Results
As explained in Section 4.2, this type of attacker is a nation-state
actor who can target the generation or demand-side players in a
speci�c electricity market. To attack the demand side, we executed
the �rst optimization model with the objective function given in
(22). Figure 13 shows the total daily economic damage that the
attacker can impose on the demand side players of the studied
markets versus the number of compromised high wattage IoT de-
vices. According to this �gure, with only 200,000 compromised IoT
devices, the attacker can impose 3.5 million USD and 5 million USD

 

 
              (a) 

 
              (b) 
 

Malicious Player 

Figure 10: The daily pro�t of the market players in the New
York ISO (only 21st generation player is malicious). a) Gen-
eration players, and b) Consumer players.

 
              (a) 

 
              (b) 
 

Malicious Player 

Figure 11: The daily pro�t of the market players in the New
York ISO (only 20th consumer player is malicious). a) Gener-
ation players, and b) Consumer players.

daily economic damage to the California and New York markets,
respectively. If we simulate the attacker performing the attack 100
days per year, the annual economic damage would be 350 million
USD and 500 million USD for the California and New York markets.
From the �gure, we see the economic damage to the California
market is higher than that of the New York market when the size of
the botnet is big enough (more than 270,000 compromised devices).
Note that the attacker can impose this huge economic damage on
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Figure 12: Total additional daily pro�t of the malicious mar-
ket player versus the estimation error in the day-aheadmar-
ket price. This plot shows that the e�ect of the prediction
error in the attack is not signi�cant.

the studied markets while his attack is still stealthy. Interested read-
ers can refer to Appendix IV.1 to see the load pro�le of the system
during the attack scenarios.

The nation-state attacker can also target the players in the gen-
eration side of the market. To evaluate this attack on the studied
markets, we executed the proposed optimization model with the
objective function given in (23). Figure 14 shows the total daily
economic damage to the generation companies in each of the stud-
ied markets versus the number of compromised IoT devices that
the attacker controls. According to this �gure, with only 200,000
compromised IoT devices, the attacker can impose 2.8 million USD
and 2.9 million USD economic damage to the generation companies
in the California and New York ISOs, respectively. Similar to the
demand side attack and with the assumption that the attacker will
launch MaMIoT attack on the studied markets 100 days per year,
the total annual economic damage will be 280 million USD and 290
million USD in the California and New York markets, respectively.
The attacker can cause greater damage in the California market
than the New York market once the botnet size exceeds 220,000
compromised devices. Even with a small number of compromised
IoT bots, the attacker can still cause notable damage to the studied
markets. For example, if the botnet includes 10,000 bots (with 3 kW
average power consumption for each bot), the annual economic
damage to the generation companies will be 1.75 million USD and
2.5 million USD in the California and New York markets, respec-
tively. To achieve this, we assume that the attacker will launch
MaMIoT attack 100 days per year. It is worth mentioning that the
SO is not able to detect the attack in any of the simulated scenarios
as the system load pro�le is very similar to typical real-time system
demand. Interested readers can refer to Appendix IV.1 for further
detailed analysis on the stealthiness of the MaMIoT attack in the
generation side companies of the studied markets.

6 COUNTERMEASURES
While currently there is no single e�ective countermeasure to pre-
vent the MaMIoT attack, a combination of the following strategies
could be employed to reduce its damaging consequences.

Section 5 illustrates the economic consequence from attacker
II is much more detrimental than attacker I. Attackers in class II
are more likely to occur in real-world scenarios because of the re-
duced concern for negative legal repercussions, such as prosecution.

 

Figure 13: Total daily economic damage that the nation state
attacker can impose on the demand side of the studied mar-
kets versus the number of compromised high wattage IoT
devices.
 

 

Figure 14: Total daily economic damage that the nation state
attacker can impose on the generation side of the studied
markets versus the number of compromised high wattage
IoT devices.

Therefore reducing the e�ect and possibility of nation-state attack-
ers is the �rst priority in determining countermeasures. Publicly
available historical market data is one of the biggest contributing
factors for making the MaMIoT attack possible. To eliminate the
risk of nation state attackers, the ISOs should only release detailed
market data to market players. This new data privacy plan would
add the �rst barrier for nation state attackers to get access to recent
historical market data for estimating price sensitivity and other
crucial parameters required to launch a successful stealth attack.
Without this information (U: and �⇡BC40;C⌘~,max

:
), the economic

consequence of an undetectable attack is limited. An intelligent
attacker would be forced to launch an overly conservative attack
to maintain stealth, causing minimal demand changes.

Figures 15 and 16 show the daily economic damage of the attacker
type II on both simulated markets versus the estimation error in
the stealth and price-load sensitivity parameters, respectively. As
can be seen, the in�uence of the attack severely declines following
the increase in the estimation error of the key parameters (⇠50%
in�uence decline when there is 25% estimation error). These results
verify the partial e�ectiveness of the data privacy countermeasure
discussed in the previous paragraph.

While tightening access to historical market data will thwart
many attackers, it may also prevent researchers andmarket analysts
from performing analyses on these markets. To avoid this, a more
practical solution would be releasing redacted or altered versions of
themarket data or even delaying the release of the full datasets, such
that it cannot be used in real-time. This would signi�cantly reduce
the e�ectiveness of the MaMIoT attack by a nation-state actor.
This strategy would make it very hard for the attacker to estimate
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Figure 15: Total daily economic damage of the nation state
adversary in the simulated markets versus the estimation
error in the stealth parameter (⇡BC40;C⌘~,max).

 

 

Figure 16: Total daily economic damage of the nation state
adversary in the simulated markets versus the estimation
error in the price-load sensitivity parameter (U).

the crucial parameters of the optimization models reliably. As an
illustrative example, our analysis shows that releasing the down-
sampled (i.e., every 2 hours instead of every 5 minutes) version
of the market data with a month delay can decrease the attack
economic damage up to 87%.

Themost e�ective and practical countermeasure againstMaMIoT
attacks is to develop and install non-intrusive load monitoring
(NILM) or non-intrusive appliance load monitoring (NIALM) algo-
rithms on the electricity meters of homes in the power grid. NILM
and NIALM can be de�ned as the process of analyzing voltage and
current going into a house (through the electricity meters) and de-
ducing what appliances are used at which times in the house as well
as their individual energy consumption [3]. These algorithms have
been traditionally developed to help the home owners and/or utility
companies optimize the energy usage of the home and minimize
their monthly electricity bill. It goes without saying that NILM is
considered a low-cost alternative to attaching individual monitors
on each appliance. With the recent advancements in the �eld of
machine learning, especially with the introduction of deep learning,
reliable NILM algorithms can be developed to quickly detect the
MaMIoT attacks and inform the suspicious activities to the home
owner and utility companies. For example, the NILM can easily
reveal the suspicious use of electric oven in the morning when the
home owner is at work and detect it as an anomaly in the meter’s
data. Of course, further detailed analysis is needed to design and
tune reliable and state-of-the-art NILM algorithms to be used in
practice. A sample data of a residential customer which can be
used in the NILM attack detection is shown in Figure 17 [33]. To

Figure 17: A sample data of a residential customerwhich can
be used in the NILM attack detection [33].

address the privacy concerns of the customers, the developed ma-
chine learning can learn about the energy usage pattern without a
speci�c reference to the used devices in the house. In such cases,
the issued alert by the trained model will let the home owner to
know there is an authorized use of the devices in the house without
point to a speci�c device.

7 CONCLUSIONS
In this paper, we introduced MaMIoT, the �rst energy market ma-
nipulation cyberattack in which an adversary can slightly alter the
power system real-time demand through a botnet of high wattage
IoT devices to help market players gain additional pro�t from the
electricity market or cause major economic damage to a set of
market players. We evaluated the attack models on real datasets
from the two big electricity markets in the U.S., the California and
New York markets. The simulation results revealed that with only
200,000 bots in a botnet, the attacker can cause 2.8 (2.1) million
USD and 3.8 (2.2) million USD worth of economic damage to the
demand (generation) side players of the California and New York
markets, respectively. We also showed that the MaMIoT attack can
help a typical power plant owner gain an additional 30% in pro�t
from the energy market, all while maintaining attack stealth for
increased repeatability.

We hope that this paper raises awareness of the signi�cance of
MaMIoT attacks to the market operators, ISOs, IoT manufacturers,
and system security experts to make the electricity markets more
secure against cyberattacks. In the near future, this problem will be
even more critical as the number of smart appliances with Internet
connectivity continues to grow.
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Appendix I NOMENCLATURE
The notation used throughout the paper is reproduced below for
quick reference.

Indices and Sets
3,⌦⇡ Index and set of submitted demand bids to the

electricity market.
B,⌦( Index and set of submitted generation o�ers to

the electricity market.
6,⌦⌧ Index and set of generating units within the

power plant.
C,⌦) Index and set of hourly time intervals.
:,⌦ Index and set of sub-hourly time intervals (e.g.,

15 min.).
⌦: Set of hourly time intervals associated with :C⌘

sub-hourly time interval. For example, ⌦3 = 1
or ⌦5 = 2 for 15 min. sub-hourly time intervals.

K Number of sub-hourly time slots within one
hour, K = 20A3 (⌦ )

20A3 (⌦) ) (e.g., K = 4 for 15 min.
sub-hourly time intervals).

Parameters
⇡02CD0; Actual demand of the system before attack.
%⇡,max/%(,max Submitted energy quantity bids/o�ers to the

market by its players.
%min/%max Minimum/maximum output power of generat-

ing units.
'* /'⇡ Ramp-up/down limit of generating units.
)* ,⌧/)⇡,⌧ Minimum up/down time of generating units

within the power plant.
U Constant coe�cient de�ning the dependency

of real-timemarket price on the system demand
change at each time slot.

^ The percentage of the day-ahead bids which are
allowed to be deviated in real-time operation
with speci�c penalties.

_⇡/_( Submitted demand/supply price to the market.
_⇡� Hourly day-ahead market price.
_') ,0 Sub-hourly expected real-time market price be-

fore the load alteration attack.
_⇡�,⇡4E Penalty price for the day-ahead bid/o�er devia-

tion.
_(* /_(⇡ Start-up/shut-down cost of generating units.
_⌧,⇠>=BC0=C Constant running cost of generating units.
_⌧,�D4; Fuel price of generating units.
�C Duration of each sub-hourly time interval within

one hour (i.e., 0.25 for 15 min. sub-hourly inter-
vals).

�⇡BC40;C⌘~,max Average of the load forecasting error at each
time slot.

�⇡1>C=4C,max Maximum capability of the attacker in chang-
ing system demand at each time slot.

Variables
%⇡/%( Accepted energy bids/o�ers in the market.
?A> 5 8C⌧ Total pro�t of the power plant participating in

the day-ahead and real-time markets.
?A> 5 8C⇡�,⌧ Hourly pro�t of the generating units obtained

from the day-ahead market.
?A> 5 8C') ,⌧ Sub-hourly pro�t of the generating units ob-

tained from the real-time market.
%⇡�,⌧ Hourly energy quantity o�ers of generating

units in the day-ahead market.
%') ,⌧ Sub-hourly energy quantity o�ers of generat-

ing units in the real-time market.
%⇡4E+/�,⌧ Hourly positive/negative deviation of generat-

ing unit output power from the accepted day-
ahead o�ers.

%�2C ,⌧ Sub-hourly real-time output power of generat-
ing units.

_') Sub-hourly real-time market price a�ected by
MaMIoT.

�⇡(~BC4< Sub-hourly system demand alteration through
MaMIoT.

⇡0CC02: Sub-hourly system demand following MaMIoT
attack.

D⌧/E⌧ Binary indicator for start-up/shut-down of gen-
erating units (e.g., D⌧6C = 1 means generator 6
starts up at hour C and E⌧6C = 1 means generator
6 shuts down at hour C ).

G⌧ Scheduled status of generating units (e.g, G⌧6C =
1 denotes unit 6 is running at hour C ).

Appendix II STEALTH STRATEGIES
In order to make the MaMIoT attack repeatable and add to the moti-
vation of the attackers, the adversary can employ several strategies,
alone or in combination. Some of the practical strategies are out-
lined as follows:

Appendix II.0.1 From the End-User’s Perspective. It goes without
saying that the attacker should try to hide his activity from the
compromised homes. To achieve this goal, one e�ective strategy
would be the use of compromised high wattage IoT devices when
the awareness of the home owner is very low. According to the
typical time of use for some popular categories of high wattage
home IoT devices summerized in the Appendix, it can be surmised
that there are many opportunities for botnet attacks outside of the
normal time of use which would be undetected by an end user.
While some HVAC devices such as AC and heaters tend to run
on/o� all day, others such as an EV charger may only consume
power during “after work” hours when end users are home.

In order to conceal additional device usage for limited period
of time (i.e., 1-3 hours on average), the attacker can classify the
compromised IoT devices and leverage their potential based on
their availability time. For example devices such as ovens are used
during hours when presumably no one is in the kitchen (1-4AM)
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while devices such as EV chargers can be used during the night
when the EV is connected to the grid. Some of these devices such
the EV charger have been proven to have a great potential in these
attacks [59].

Appendix II.0.2 From the Market Operator’s Perspective. Addition-
ally, the attacker needs to hide his activity from the market operator.
The following items list some of the practical strategies in this cat-
egory.
I) Smooth Load Pro�le Changes: The main way the system oper-
ator (SO) can detect the MaMIoT attack, is to analyze the daily
load pro�le of the system. A naive attacker changes the system
demand without considering any limitations, which might lead
to a noticeable di�erence between the attacked load pro�le and a
typical benign one. In this paper, we formulate the model such that
the attacked load pro�le of the system becomes very similar to a
typical daily load pro�le, making it very challenging for the SO to
detect any abnormalities in the system (see Section 5 for numerical
results).
II) The Frequency of Attack: As the frequency of the attack increases,
the possibility of it being caught by SO increases as well. A smart
attacker will launch the MaMIoT attack only for a certain number
of days (e.g., 100) in each year. By doing this the attack days can
be determined randomly, making it hard for the SO to determine
which days are normal and which days the market is attacked.
III) Choosing a Suboptimal Attack Scenario: In this strategy, the
attacker does not implement the optimal attack scenario on the
market. Instead, he sacri�ces a portion of his pro�t to make his
attack stealthier. To achieve this, the attacker runs the proposed
optimization model and chooses a suboptimal point (e.g., 80% of
the optimal point).
IV) Targeting Other Players: In this strategy, the attacker occasionally
maximizes the pro�t of the other players in the market to defer the
suspicion of the SO onto them. These players can be the competitors
of the attacker or the entities whose loss result in economic bene�t
for the attacker.

Appendix III ADDITIONAL EVIDENCE ON
HIGHWATTAGE IOT BOTNET

The domain space of high wattage IoT devices for use in the IoT
Skimmer attack is very large. Fig. A1 shows the trend of the growing
number of houses with smart thermostats in North America alone,
representing a fraction of the total high wattage IoT devices in the
automation �eld [53]. Concerning the matter of location, attackers
can trivially determine whether a compromised device is within a
certain geographical area through the device’s IP address.

Table AI gives a breakdown of some advertised and estimated
costs for utilizing DDoS for hire and IoT botnet rental services.
This table shows how the commoditization of cybercrime has made
it feasible to launch attacks for less than the cost of most cyber
certi�cations. It is worth mentioning that although the botnets
presented in Table AI are not necessarily built from high wattage
IoT devices, the given numbers in the table can still be used for
estimating the cost of building/renting a typical high wattage IoT
botnet.

Table AII shows the typical time of use for some popular cat-
egories of high wattage home IoT devices. From the table it can

 

Figure A1: The growing trend of homes with smart ther-
mostats in the North America region [53].

be surmised that there are many opportunities for botnet attacks
outside of the normal time of use which would be undetected by an
end user. While some HVAC devices such as AC and heaters tend to
run on/o� all day, others such as an EV charger may only consume
power during “after work” hours when end users are home.

In order to conceal additional device usage for limited period
of time (i.e., 1-3 hours on average), the attacker can classify the
compromised IoT devices and leverage their potential based on their
availability time. For example devices such as ovens are used during
hours when presumably no one is in the kitchen (1-4AM) while
devices such as EV chargers can be used during the night when the
EV is connected to the grid (see Table AII). Some of these devices
such the EV charger have been proven to have a great potential in
these attacks [59].

Appendix IV POWER PLANT SIMULATION
DATA

The simulated power plant consists of ten di�erent units (genera-
tors) with the technical characteristics given in Table AIII [52]. In
this table, the units of the given parameters in the �rst row from
left to right are USD/MWh, USD, USD, USD, MW/hr, MW/hr, hr, hr,
MW, MW, hr, nothing, and hr. Also,* 0

6 denotes time periods unit 6
has been on at the beginning of the planning horizon (end of hour
0). Similarly, (06 represents the time periods that unit 6 has been
shut-down at the beginning of the planning horizon.

Appendix IV.1 Stealthiness of the Attack
In this section, we added the additional simulation results illus-
trating the stealth of the MaMIoT attack for attacker II (nation
state attacker). Figure A2 depicts the load pro�le of the studied
electricity markets under di�erent levels of MaMIoT attacks on the
demand side companies and further illustrates how all of the attack
scenarios stay within a normal load forecasting error range. As
can be seen in the �gure, since the system demand change in the
California ISO is much less sensible than the New York ISO, the
attack detection in the California market will be a harder process.

The load pro�le of the California and New York ISOs under
di�erent levels of MaMIoT attacks on the generation side companies
is represented in Figure A3. Similar to the demand side attack,
the load pro�le of di�erent attacks are within the normal load
forecasting error range. As a general rule, which is true in most of
the time intervals, the nation state attacker can harm the demand
side companies by increasing the real-time market system demand.
On the other hand, decreasing the system real-time demand will
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Table AI: IoT Botnet Rental and DDoS for Hire Cost Breakdown

Name Botnet Size Rental Cost Duration Bandwidth Type of Bots
JenX [25] - $20/target - 295Gbps small/o�ce routers
Mirai variant [13] 50k $3-4000/2 weeks 1 hour - cameras, routers, DVRs, etc.
Bushido [30] 20k $20-150/month - 500Gbps cameras, routers, DVRs, etc.
Reaper [24] 30k - - - cameras, routers, DVRs, etc.
Satori [26] 100k - - - small/o�ce routers
Estimate for
IoT Botnet Services [7] - ⇠$15/week - 300Gbps -

Estimate for
DDoS Services [29] - $20-45/month 1 hour 220Gbps -

Table AII: High Wattage consumer IoT Device Availability [18]. Wattage represents maximum per device.

Smart IoT Device Energy Consumption (W) Peak Use Time Avg Use Length Time to Attack
Water Heater [36] 5000 Morning 3h/day Early Morning
AC [54] 1000 All-day 9h/day Anytime
Garage Opener [27] 1100 All-day 3min/day Midday
Fridge [48] 900 All-day 24h/day Midday
Heater [20] 1500 Evening 3h/day Anytime
EV charger [44] 12000 Evening 8h/day Early Morning
Oven and Stove [37] 4000 Evening 1h/day Early Morning
Washer [22] 1200 Sporadic 2h/wk Early Morning
Dryer [22] 1800 Sporadic 2h/wk Early Morning
Dishwasher [60] 852 Sporadic 120min/day Early Morning
Treadmill [9] 735 Sporadic 90min/wk Early Morning

Table AIII: Technical Data of the Simulated Power Plant Units [52]

Unit _⌧,�D4;
6 _⌧,⇠>=BC0=C

6 _(*6 _(⇡6 '*6 '⇡6 )* ,⌧
6 )⇡,⌧

6 %min
6 %max

6 * 0
6 G⌧6 (C=0) (06

61 12.1 82 42.6 42.6 80 80 3 2 80 200 1 0 1
62 12.6 49 50.6 50.6 120 120 4 2 120 320 2 0 0
63 13.2 100 57.1 57.1 50 50 3 2 50 150 3 0 3
64 13.9 105 47.1 47.9 250 250 5 3 250 520 1 1 0
65 13.5 72 56.6 56.9 80 80 4 2 80 280 1 1 0
66 15.4 29 141.5 141.5 50 50 3 2 50 150 0 0 0
67 14 32 113.5 113.5 30 30 3 2 30 120 0 1 0
68 13.5 40 42.6 42.6 30 30 3 2 30 110 0 0 0
69 15 25 50.6 50.6 20 20 0 0 20 80 0 0 0
610 14.3 15 57.1 57.1 20 20 0 0 20 60 0 0 0

lead to economic damage to the generation side companies in the
electricity markets.

Appendix V RELATEDWORK
Appendix V.1 Attacks on Financial Markets

and Historical Electricity Market
Manipulation Cases

Financial markets have been recently a popular target for cyber-
criminals around the world. In this line, hackers have leveraged the
concept of market manipulation to a�ect the speci�c market play-
ers or the entire market with the aim of gaining monetary pro�ts

or causing �nancial damage to the market players. Market manipu-
lation can be de�ned as the deliberate and malicious interference
with the market values to create an arti�cial price for a tradable
entity [2]. One of the main ways employed by cybercriminals to
implement the market manipulation attack in �nancial markets is
the DDoS attack. In this attack the adversary deliberately reduces
the availability of products and/or services from a targeted com-
pany or even an entire �nancial exchange platform, to a�ect the
associated stock prices. Many companies which deliver services to
their clients via online or web applications could fall victim. In this
type of attack, while the victim does not experience physical loss,
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Figure A2: Load pro�le of the power grid at each time inter-
val associated with attacks on the demand side companies
with di�erent botnet sizes: a) New York ISO; b) California
ISO.

they could be severely a�ected by the negative consequences of
service unavailability and reduced investor con�dence.

The biggest market manipulation attack campaign which lever-
aged the DDoS attack against US �nancial markets to date was the
Operation Digital Tornado campaign organized by a group called
L0ngWave99. Between February and April 2012, this campaign
launched over six DDoS attacks against US securities and commodi-
ties exchange [2]. The Al-Qassam Cyber Fighters, known as QCF,
was an attack campaign supported by anti-Western rhetoric group
Hamas that claimed responsibility for Operation Ababil, a series of
DDoS attacks against US �nancial institutions between 2012 and
2013 [2]. The full list and detailed explanation of attacks in this
category can be found in [2].

In the electricity market domain, since the passage of the Energy
Policy Act of 2005, fraud andmarketmanipulation have been the top
enforcement priority of the Federal Energy Regulatory Commission
(FERC). For �scal year 2018, FERC reported 16 potential market
manipulation cases, 14 of which were closed with no action [45].
The reason for most of these no action closures was that no evidence
was discovered on the detail and mechanism of the attacks which
greatly undermined the credibility of allegations. From this we
see that market manipulation attack in electricity markets is an
emerging �eld which needs signi�cant research and investigation.

 

          (a) 

 
          (b) 

Figure A3: Load pro�le of the power grid at each time inter-
val associatedwith attacks on the generation side companies
with di�erent botnet sizes: a) New York ISO; b) California
ISO.

Appendix V.2 Indirect Attacks on Power
Systems

In recent years, many researchers have studied the e�ect of indirect
cyberattacks on di�erent sectors of the power grid. In these attacks,
the adversaries try to indirectly a�ect the normal operation of the
system to sabotage stand-alone components or cause blackout in
the entire grid [4, 15, 17, 39, 51, 61]. This class of attacks was �rst
introduced in [39] where the system total demand was altered by
the intruders to cause over�ow in the power transmission lines and
other system components, pushing the grid towards instability. The
attack stems from compromising the load control signals associated
with big industrial loads and data centers. By securing the commu-
nication channels between the control center and controllable loads,
the risk of this attack is greatly reduced. The possibility of load
altering to attack big data centers with the aim of causing power
outages was studied in [61]. The authors showed that exploiting the
attack vectors in cloud environments (platform as a service (PaaS),
infrastructure as a service (IaaS), and software as a service (SaaS))
can be e�ectively used for taking down big data centers. According
to this paper, defense and prevention mechanisms for such attacks
are either impractical or extremely expensive.

The authors in [4] developed a software-based protection scheme
to detect and protect against the load altering attacks introduced in
[39]. This protection system is purely software and does not require
any changes in the traditional communication channels/protocols.
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In [15, 17, 51], the authors studied the possibility of exploiting com-
promised IoT devices to alter the total demand of the power grid
and cause instability in the system. More speci�cally, the method
developed in [17] is an optimization-based approach which requires
a complete knowledge about the power grid (topology of the grid,
detailed parameters of the transmission lines/generators, and real-
time regional generation/demand). However, implementation of
this attack is very challenging in practice as the required informa-
tion may not be readily available to attackers. To overcome this
challenge, Dabrowski et al. proposed a new method to increase
the total system demand through remotely activating CPUs, GPUs,
hard disks, screen brightness, and printers to cause frequency insta-
bility in the European power grid [15]. Although the new approach
did not require as much detailed information about the system
components, the number of compromised IoT devices needed for a
successful attack is quite high because the devices do not consume
a lot of power. Soltan et al. proposed the use of high wattage IoT
devices to launch various types of attacks (frequency instability,

power line cascade tripping, and black start restoration interrup-
tion) on a power grid to cause blackouts in the entire system [51].
More recently, Haung et al. conducted in-depth analysis on the im-
pact of high wattage IoT attacks on the power grid and illustrated
that launching random attacks on the grid may not lead to large
scale blackouts if the embedded protection schemes in the system
work properly [28].

Despite the numerous improvements of these works [28, 51] over
the previous ones, they all still su�er from the followingweaknesses:
i) they require a large number of compromised IoT devices to launch
a successful attack, ii) the proposed attacks are not stealthy, and
iii) there is no direct economic pro�t for the attacker to launch
these attacks. Motivated by these points, this paper presents a new
attack mechanism based on a botnet of high wattage IoT devices
to attack deregulated electricity markets while requiring only a
minimal number of bots, maintaining stealth, and o�ering �nancial
gain.
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