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Abstract
Due to the failure of thermodynamics for low temperature near-extremal black
holes, it has long been conjectured that a ‘thermodynamic mass gap’ exists
between an extremal black hole and the lightest near-extremal state. For non-
supersymmetric near-extremal black holes in Einstein gravity with an AdS2
throat, no such gapwas found.Rather, at that energy scale, the spectrum exhibits
a continuumof states, up to non-perturbative corrections. In this paper, we com-
pute the partition function of near-BPS black holes in supergravity where the
emergent, broken, symmetry is PSU(1, 1|2). To reliably compute this partition
function, we show that the gravitational path integral can be reduced to that of
aN = 4 supersymmetric extension of the Schwarzian theory, which we define
and exactly quantize. In contrast to the non-supersymmetric case, we find that
black holes in supergravity have a mass gap and a large extremal black hole
degeneracy consistent with the Bekenstein–Hawking area. Our results verify a
plethora of string theory conjectures, concerning the scale of the mass gap and
the counting of extremal micro-states.
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1. Introduction and outline

The goal of this paper is to understand the energy levels of near-extremal charged black holes in
D dimensions from the perspective of the Euclidean gravitational path integral. The description
of such black holes simplifies due to their AdS2 × XD−2 near-horizon geometry, where XD−2 is
a compact space, specifying the geometry of the horizon.

The spectrum of near-extremal black holes has been a source of confusion over the years5.
The first manifestation of this was pointed out by Preskill et al [1] (see also [2, 3]). The ther-
modynamics derived from a semiclassical evaluation of the gravitational path integral gives
a temperature-dependent mass above extremality E = M −M0 as E ∼ 2π2ΦrT2, where M0

is the extremal mass. A similar analysis gives the semiclassical entropy S = S0 + 4π2ΦrT ,
where S0 = A0/(4GN) is proportional to the extremal area A0. This behavior is universal, but
the precise value of the parameter Φr depends on the details of the model. Because of this
scaling, it was noticed in [1] that the thermodynamic description of near-extremal black holes
breaks down at low enough temperatures, T � 1/Φr. At such temperatures, the naive semiclas-
sical analysis suggests that emitting even a single Hawking quanta is sufficient to change the
black hole’s temperature by a large amount6. String theory microstate counting examples [4]
indicate the resolution of this issue is the presence of a mass gap of order Egap ∼ 1/Φr in the
black hole spectrum7. However, its origin from the gravitational description has, so far, been
elusive.

A secondmanifestation of the gap problem is the question of the extremal black hole degen-
eracy. If the gravity description somehow breaks down at the energy scale E ∼ 1/Φr then it
is possible that the black hole entropy S0, obtained by a semiclassical computation, does not
correctly capture the degeneracy of the extremal black hole; rather, eS0 could instead capture
the number of extremal and near-extremal states within a ∼1/Φr energy interval. Neverthe-
less, while some authors claimed the extremal entropy vanishes [5], string theory examples
that preserve sufficient supersymmetry showed that the degeneracy at extremality (assumed to
be captured by an index) matches with the Bekenstein–Hawking area S0 [6].

In [7] these questions have been revisited using lessons from SYK [8, 9] and
Jackiw–Teitelboim (JT) gravity [10–17]. The procedure used to compute the higher dimen-
sional Euclidean path integral for non-supersymmetric black holes is the following. First, we
separate the full near extremal geometry into the near-horizon AdS2 × XD−2 throat (where the
interesting physics takes place) and the far away region, which we take to be flat. The sec-
ond step is to recast the D-dimensional theory on the throat as a 2D theory on AdS2. It was
argued in [7] that the temperature-dependence of the Euclidean path integral near-extremality
is solely captured by a JT gravity theory (composed of fluctuations around the AdS2 metric and
a dilaton which captures the size of XD−2), a dimensional reduction of D-dimensional gauge
fields to 2D, and a gauge field originating from isometries of the horizon XD−2. This reduc-
tion was considered classically in [18–32] but the new feature of [7] is the explanation that
quantum effects at low temperatures are also captured by this simple theory. It can be shown
that JT gravity exactly reduces to a boundary mode, the Schwarzian theory, which lives in the

5 By near-extremal we mean large charge black holes with a small but non-zero temperature (T � r−1
0 , where r0 is the

horizon radius at extremality).
6 An equivalent issue was pointed out in [2] due to the dependence ofΦr with Newton constantGN in particular models.
7 In this paper, we will focus on scales of order ∼1/Φr also captured by the gravity description. Of course, at a
completely different regime of even lower temperatures T ∼ e−S0 , we expect to find a discrete spectrum with spacing
of order e−S0 . This scale requires a UV completion of the gravitational theory.
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Figure 1. The near extremal 4D black hole. A similar picture applies to near-extremal
rotating BTZ black hole in AdS3.

boundary of the throat (shown in figure 1), and describes the breaking of the emergent SL(2,R)
symmetry in the throat. In this theory, one can compute the path integral exactly and extract
the near-extremal spectrum8.

With this new perspective, the authors of [7] addressed the puzzling questions about the ther-
modynamics of non-supersymmetric near-extremal Reissner–Nordström black holes. Regard-
ing the first confusion pointed out above, the scale T ∼ 1/Φr identified by [1] was found to be
the scale at which quantum effects in the gravitational path integral become large, and the
Schwarzian description becomes strongly coupled. This effect signals that the breaking of
the SL(2,R) conformal symmetry in the throat becomes important [19]. However, in contrast
with string theory proposals [4], it was found that for non-supersymmetric black holes, there
is no gap at the scale E ∼ 1/Φr and the gravitational path integral predicts a density of states
that goes smoothly to zero as E→ 0. For convenience, this density of states is reproduced here
in figure 2 in the left column. Regarding the second confusion about the ground state degen-
eracy of the extremal black hole [7], also predicts the entropy of the extremal black hole to be
much smaller than the naive prediction given by the area of the extremal horizon. A similar
conclusion was obtained for near-extremal rotating black holes in 3D gravity [37, 38].

The results of [7] thus show a very different spectrum of near-extremal black holes com-
pared to results obtained from microscopic counting: string theory predicts that the ground
state degeneracy of extremal black holes should agree with Bekenstein–Hawking extremal
area [6] and that the value of the mass gap Egap ∼ 1/Φr can be extrapolated from the weak
coupling regime [4]. The purpose of this paper is to resolve this puzzle. The solution is that
most examples in string theory involve supergravity and the extremal black hole preserves
some supersymmetries. In the cases studied in this paper, the temperature dependence of the
Euclidean path integral is captured by a supersymmetric generalization of JT gravity, which
describes the breaking of an emergent superconformal symmetry.

8 Integrating out the massive KK modes and other fields have the only possible effect of introducing temperature-
independent logarithmic corrections to S0 previously computed in [7, 33–36] and thus such modes will not affect the
computation of the density of states.
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Figure 2. Schematic shape of the black hole spectrum at fixed SU(2) charge J as a func-
tion of energy above extremality E. In 4D J is angular momentum while in AdS3 it is
the SU(2) charge (one of the two rotations along extra S3 in string theory) that breaks
supersymmetry. We show the semiclassical answer (red dashed) and the solution includ-
ing quantum effects (purple). (a) Answer for Einstein gravity. We see there is no gap
at scale E ∼ 1/Φr and the extremal entropy goes to zero. (b) Answer for supergravity
(either N = 2 in 4D or N = (4, 4) in 3D). We find a gap at the scale Egap =

1
8Φr

and
a number eS0 of extremal states, consistent with string theory expectations. (c) Einstein
gravity spectrum for J �= 0. (d) Supergravity spectrum for J �= 0, the jumps indicate
contributions from different supermultiplets J, J + 1/2 and J + 1.

In this paper, we will discuss the case of near-BPS near-extremal charged black holes in two
setups. The first is in four dimensions (D = 4), where such objects are described classically by
the Reissner–Nordström solutionwith aAdS2 × S2 throat.We will consider such black holes in
4D ungaugedN = 2 supergravity in asymptotically flat space [39]. The situation is depicted
in figure 1. In our conventions M0 = Q/

√
GN , proportional to the charge of the black hole,

and Φr =
√
GNQ3. Such a 4D theory has the right ingredients for SUSY preserving extremal

black holes [40–42]. The BPS nature of such gravitational solutions allows one to identify
them with corresponding string theory constructions, for example [43–46]. The second setup
we will consider is a near-extremal rotating black hole in (4, 4) supergravity in AdS3, with
a near-horizon geometry AdS2 × S1. This system is relevant for comparison with the D1/D5
system [6]. Even though some questions about the spectrum can be addressed using solely the
(4, 4) super-Virasoro algebra in this particular case thanks to the presence of an AdS3 throat,
we will be able to show in section 5 that the spectrum matches with the one derived from JT
gravity. The Virasoro analysis obviously does not generalize to other cases, for example the
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Reissner–Nordström black hole mentioned above, but the JT analysis does and is universal as
we explain below.

The main feature in 4D N = 2 supergravity and (4, 4) supergravity in AdS3, compared
to Einstein gravity, is the fact that the emerging symmetry in the throat becomes the super-
conformal group PSU(1, 1|2)⊃ SL(2,R)× SU(2). In 4D, this includes the AdS2 conformal
symmetry and the S2 isometries as bosonic subgroups [47–50]. In AdS3 the SU(2) arises
from a 3D gauge field. In the examples from string theory there is a second SU(2) gauge field
coming from the isometries of an extra S3 factor. This second SU(2) charge can be turned on
without breaking supersymmetry, and corresponds to the black hole of [51] which has rotation
along the S3. We find in both cases the relevant 2D mode in the throat controlling the tempera-
ture dependence of the partition function is given byN = 4 super-JT gravity, which describes
the breaking of PSU(1, 1|2) and becomes strongly coupled at low temperatures. We will first
define this theory and solve it exactly to extract the temperature dependence of the partition
function, and from it the black hole spectrum. In order to do this, we will show that N = 4
super-JT gravity is equivalent to aN = 4 super-Schwarzian theory, which we introduce in this
paper. We solve this theory using either path integral localization or canonical quantization9.

To contrast the results found in this paper, we show in figure 2 the spectrum of near-extremal
black holes derived from Einstein gravity in 4D coupled to a Maxwell field in the left panel. As
previouslymentioned, we see a small extremal entropy and a lack of a gap. In the right column,
we show the main result of this paper, the density of states for near-extremal black holes in 4D
N = 2 supergravity and (4, 4) supergravity in asymptotically AdS3. Through a computation
of the Euclidean path integral, independent of the UV completion of the theory, our analysis
verifies and predicts the following results:

• We find that extremal BPS states exhibit an exact degeneracy. This degeneracy is given
by the Bekenstein–Hawking horizon area, which is consistent with extremal microstate
countings in string theory [6]. This is not true for extremal non-BPS states with J �= 0.

• We observe the presence of amass gapEgap = 1/(8Φr). In the context of (4, 4) supergravity
in asymptotically AdS3 and the D1/D5 system, we verify the mass gap estimated at weak
coupling from long strings [4]. Here, this prediction is also expanded to black holes in 4D
N = 2 supergravity.

• We find that the extremal states are solely bosonic, implying the Witten index from a
microscopic model coincides with the black hole degeneracy (for previous arguments see
for example [55–57]). This implies that the typical counting of microstates in string theory
using an index, such as [6], is correct.

• A previous attempt to obtain the gap from a gravitational perspective was studied by Mal-
dacena and Strominger [58]. Their argument is only correct for black holes in AdS3, and
not for Reissner–Nordström for example. Our analysis that takes into account the break-
ing of PSU(1, 1|2) can in principle be applied to any system with this pattern of symmetry
breaking and applies to situations without an AdS3 factor in the throat.

• In combinationwith the prior non-supersymmetric results from [7], we conclude that these
features found in string theory examples heavily rely on supersymmetry and are special
to supergravity.

9 Previous attempts of defining the N = 4 super-Schwarzian are [52–54] however, explicit formulae for all the com-
ponents of theN = 4 super-Schwarzian were not presented. Furthermore, to our knowledge, no previous quantization
attempt has been made.
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Without jumping into all the details, we will give a summary of the technical results derived
below. TheN = 4 super-Schwarzian theory describing the spectrum of supersymmetric black
holes, is given by the following action

IN=4 = −Φr

∫
dτ

[
Sch( f , τ )+ Tr

(
g−1∂τg

)2
+ (fermions)

]
, (1.1)

where the Schwarzian derivative is defined as

Sch( f , τ ) ≡ ∂3
τ f

∂τ f
− 3

2

(
∂2
τ f

∂τ f

)2

. (1.2)

In the action (1.1), f (τ ) is a reparametrizationmode, g(τ ) is a SU(2) element, andwe ignore the
terms involving fermionic fields η(τ ) and η(τ ) in the doublet of SU(2). The field g(τ ) describes
fluctuations in the angular momentum J of the black hole in the 4D setup comes from the
isometries of S2. This theory has N = 4 Poincaré supersymmetry but breaks the emer-
gent superconformal PSU(1, 1|2) space-time symmetry10. According to the unbroken N = 4
Poincaré supersymmetry, supermultiplets organize into J = (J)⊕ 2(J − 1

2 )⊕ (J − 1) for
E �= 0 and states (J) for E = 0. Solving this theory exactly gives the density of supermultiplet
states labeled by their highest angular momentum J as

ρ(J,E) = eS0δJ,0δ(E)+
eS0J

4π2ΦrE2
sinh

(
2π

√
2Φr(E − E0(J))

)
Θ (E − E0(J)) ,

(1.3)

where we define E0(J) ≡ J2/(2Φr). The details of this formula can be found in section 3. For
example, states with zero angularmomentumcome from the contributionswith J = 0, J = 1/2
since 1/2 = (1/2)⊕ 2(0) and J = 1 since 1 = (1)⊕ 2(1/2)⊕ (0). This is the origin of the plot
in the right panel of figure 2. In the continuous part states with angular momentum J start at
an energy E0(J). This is not necessarily surprising since the same feature appears in the non-
supersymmetric case [7]. From the gravity perspective this is the correction to the extremality
bound of non-BPS extremal charged slightly-rotating black holes. The surprising feature in
the supersymmetric theory is that there are no states with zero angular momentum in the range
0 < E < 1/(8Φr).

The results of [7] and the presentwork on theN = 4 super-Schwarzian theory can be seen as
a low energy effective theory for black holes without andwith supersymmetry, respectively.We
are obtaining this effective theory from a detailed analysis of the gravitational path integral in
specific examples, but we expect it to be universal and depend only on the pattern of symmetry
breaking at low temperatures. We leave for future work the extensions of these ideas to cases
such as near-BPS black holes in gauged supergravity in asymptotically AdS4 or AdS5, relevant
within the AdS/CFT correspondence. The symmetries suggest the near-extremal spectrum is
described by theN = 2 super-Schwarzian theory introduced in [59],11 describing the breaking
of PSU(1, 1|1) ⊃ SL(2,R)× U(1).12 Such a super-Schwarzian theory sometimes exhibits a

10 Nonetheless, PSU(1, 1|2) is an important global symmetry for the action (1.1). We will clarify this in section 2.4.
11 To our knowledge, such a super-Schwarzian cannot describe the spectrum of near-BPS black holes in flatspace
because the number of supercharges that are preserved by the extremal solution is a multiple of 4 and 1D N = 2
super-Poincaré only has two supercharges.
12We describe properties of the spectrum of the N = 2 super-Schwarzian in appendix A. Progress on relating the
dynamics of near-BPS black holes in AdS4 to this super-Schwarzian theory was reported in [60]. Such a theory is, of
course, also relevant when studying near-extremal black holes in (2, 2) supergravity in AdS3.
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gap (depending on the value of the fundamentalU(1) R-symmetry charge and whether or not a
certainmixed anomaly is present in the theory) but, in contrast to theN = 4 super-Schwarzian,
does not generically have purely bosonic ground states.

Finally, our investigations are relevant to the relation between 2D gravity and SYK
models. While SYK models with N = 1 and N = 2 supersymmetry were constructed in
[59, 61], findingmodelswithN = 4 has been elusive.We hope understandingN = 4 super-JT
and super-Schwarzian can help find an SYK model with N = 4 supersymmetry, which is
described at low temperatures by theN = 4 super-Schwarzian theory we described. We leave
this for future work, but discuss difficulties in constructing such theories toward the end of the
paper.

The rest of the paper is organized as follows. In section 2 we introduce N = 4 super-
symmetric JT gravity, a 2D dilaton-gravity theory. We will use its BF description to argue
that the disk partition function is computed by an N = 4 version of the Schwarzian theory
living on the boundary. In section 3, we will study this boundary mode in its own right and
compute its partition function and density of states as a function of energy and charge. We
will explain in all details the features briefly described above. In section 4, we will perform
the dimensional reduction in the throat of a 4D near extremal black holes in N = 2 ungauged
supergravity and argue the resulting theory is N = 4 super-JT gravity. Using the results of
section 3, we will present the final result for the spectrumof near-extremal black holes in super-
gravity. In section 5 we analyze near-BPS near-extremal black holes in (4, 4) supergravity in
asymptotically AdS3 spaces, reaching similar conclusions regarding the black hole spectrum.
This example helps to make a precise connection with the long string origin of the black hole
gap in [4]. In section 6 we conclude and discuss future directions.

2. N = 4 Jackiw–Teitelboim gravity and the N = 4 super-Schwarzian

In order to be able to study the more complicated case of near-extremal black holes in 4D
N = 2 supergravity, we first need to introduce 2D N = 4 super-JT gravity and its relation
to the N = 4 super-Schwarzian. As we shall explain, the latter can be studied using a con-
ventional reformulation in terms of a BF theory. The difficulty will be in relating boundary
conditions in this BF theory to SUSY preserving boundary conditions, typically imposed in
the second formalism of gravity. The analysis of the N = 4 super-Schwarzian proves even
more complicated. While there have been past papers defining the N = 4 super-Schwarzian
derivative (in particular, we follow the definitions of [62, 63]), extracting all the components
of the super-symmetric action has, to our knowledge, not been previously done.

2.1. Formulation as a psu(1, 1|2) BF theory

To obtain the bulk action ofN = 4 super-JT gravity we start by considering a BF theory with
a psu(1, 1|2) superalgebra,

[Lm, Ln] = (m− n)Lm−n, [Ti, Tj] = iεi jkTk,

[Lm,Gp
α] =

(m
2
− α

)
Gp

α+m, [Lm,Gp
α] =

(m
2
− α

)
Gp

α+m,

[Ti,Gp
α] = −1

2

(
σi
)
p

q
Gq

α , [Ti,Gp
α] =

1
2

(
σi
)∗p

q
Gq

α,

{Gp
α,Gq

β} = 2δqpLα+β − 2(α− β)(σi)qpTi, (2.1)

7
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with all other commutators/anti-commutators between the generators vanishing. Here L0 and
L±1 are bosonic generators forming an sl(2,R) sub-algebra, Ti, i = 1, . . . , 3, are bosonic gen-
erators forming an su(2) sub-algebra, and Gp

α and Gq
β are the fermionic generators with

p, q = 1, 2 and α, β = − 1
2 ,

1
2 .

The action ofN = 4 super-JT gravity is given by,

IBF = −i
∫

Str φF, F = dA− A ∧ A, (2.2)

where A is a psu(1, 1|2) gauge field with a field strength F and φ is a zero-form field trans-
forming in the adjoint of psu(1, 1|2). Above, Str φF = 〈φ,F〉 is a quadratic bilinear form
invariant under adjoint transformations. Such a form can be obtained from the quadratic
Casimir of psu(1, 1|2).13 We define the gauge field in terms of the supermultiplet of the frame
ea and spin connection ω, also consisting of the SU(2) gauge field Bi and the gravitinos
ψp

α as14:

A(x) =

√
Λ

2

[
e1(x)L0 +

e2(x)
2

(L1 − L−1)

]
− ω(x)

2
(L1 + L−1)+ Bi(x)Ti

+

(
Λ

2

) 1
4 (

ψp
α(x)Gp

α + ψp
α(x)Gp

α

)
. (2.3)

The zero-form field φ(x) is fixed in terms of the supermultiplet of the SL(2,R) Lagrange
multipliers φ1,2 and φ0,

φ(x) = 2φ1(x)L0 + φ2(x) (L1 − L−1)− φ0(x) (L1 + L−1)+ bi(x)Ti

+

(
Λ

2

)− 1
4 (

λpα(x)Gp
α + λp

α(x)Gp
α

)
. (2.4)

Here, λ and λ, and ψ and ψ should be understood as independent components of A and
are not related to the Hermitian conjugates of each other. In such a case, the action can be
written as,

13 The quadratic Casimir of the superalgebra can be written as,

C2 = L20 −
1
2
{L1,L−1} − TiT

i +
1
4
(iσ2)βα[Gp

α,G p
β ].

Rewriting C2 = gABX
AXB with X = {L0, L±, Ti, Gp

α, G p
α}, we can define the invariant quadratic form by using the

metric, ηpsu(1,1|2)
AB = (−1)[XA ](g−1

AB ), where [XA] = 0, 1 for bosonic, and respectively, fermionic generators. In such a
case, we can define the supertrace as, Str BF = 〈B,F〉 = ηABB

AFB.
14We choose such conventions for the sl(2,R) components of the gauge field in order to agree with [64].
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IN=4
JT = i

∫
⎛⎜⎜⎜⎜⎝ φ0︸︷︷︸

∼ Dilaton

⎡⎢⎢⎢⎢⎣ dω +
Λ

4
εabe

a ∧ eb︸ ︷︷ ︸
d2x
2

√
g(R+Λ)

−
√
2Λψp

α ∧ ψp
α︸ ︷︷ ︸

Gravitino ψp
α contribution

multiplying the dilaton

⎤⎥⎥⎥⎥⎦
−

√
Λ

2
φa︸︷︷︸

Super-torsion
Lagr.multiplier

[
dea − εab ω ∧ eb + 2(γa)αβψ

p
α ∧ ψp

β
]

︸ ︷︷ ︸
super-torsion component τa

(2.5)

− trSU(2)[b (dB+ B ∧ B)]︸ ︷︷ ︸
SU(2) BF theory

+

√
Λ

2
bqpψ

p ∧ γ3ψq︸ ︷︷ ︸
SU(2) BF super-partner

+ 2λDψ + 2D∗ψλ︸ ︷︷ ︸
Gravitino ψpα and

dilatino λp
α contribution

⎞⎟⎟⎟⎠ ,

where we have outlined the important terms in the action which will ease the comparison with
the near-horizon action which we shall obtain in section 4.1.15

The equations of motion for φ1,2 act as Lagrange multipliers and imposes that the super-
torsion vanishes. After integrating out φ1,2, one can replace e1, e2 and ω in terms of the metric
gμν to obtain the supergravity action (2.5) in the second order formalism. The JT gravity dilaton
is given by−iφ0 ≡ Φ. When comparing the gravitational theory obtained from the dimensional
reduction of the near-horizon region of near-BPS black holes to the N = 4 super-JT action
we will use this latter form. For simplicity, in the remainder of this section we will fix the
cosmological constant,Λ = 2. Later, when discussing the effective action for the near-horizon
region of the near-BP black holes wewill revert to a general cosmological constant, determined
by the radius of the black hole.

We can complete the dictionary between the BF theory (2.5) and the second-order super-
JT gravity by noting that infinitesimal PSU(1, 1|2) gauge transformations in the former, map
to infinitesimal diffeomorphisms in the latter. In particular, the infinitesimal supersymmetric
transformations on all the fields in (2.5) can be obtained by considering the infinitesimal gauge
transformation whose gauge parameter takes the form Λ = εpαGpα + εpαGpα.

With this mapping between the BF theory (2.5) and N = 4 super-JT gravity in mind, we
can now analyze the supersymmetric boundary conditions applied to the theory (2.5) which
will be necessary in section 4 to understand the gluing of the near-horizon region of near-BPS
black holes to asymptotic flatspace. As we will see, these boundary conditions will reduce the
gravitational path integral to that of theN = 4 super-Schwarzian.

2.2. The super-JT boundary conditions

We begin, just like in the non-supersymmetric case, by imposing that the boundary metric
is fixed and proper boundary length is large, L = β/ε, with ε small. Working in Fefferman–
Graham gauge, where the metric can be written as

ds2 = dr2 +

(
1
4
e2r − L̃(τ )+ . . .

)
dτ 2, (2.6)

15 Above, our normalization of the SU(2) trace is given such that trSU(2)(TiT j) = − 1
2 δ

i j. The covariant derivative is

given by D = γ3d +
√

Λ
2 γae

a + 1
2ω + γ3

2 B
i(σi), and D∗ is the conjugate ofD. We choose γ1 = σ1, γ2 = −σ3, and

γ3 = γ1γ2 = iσ2.
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we consider the boundary to be at fixed, but large, r. To satisfy the boundary conditions we
identify τ ∼ τ + β and cut-off the geometry at e−r = ε/2. We fix the leading component of
the boundary metric and allow the sub-leading component, L̃(τ ), to vary. The . . . represent
terms that are further sub-leading in r which we do not need to fix.

Similarly, we require that the dilaton takes an asymptotically large and constant value
at the boundary, Φ|∂M ≡ −iφ0|∂M = Φr/ε. Next, we discuss the boundary conditions for
the super-partners of the frame and spin-connection. If working in the Fefferman–Graham
gauge (2.6), then, in order to preserve supersymmetry, we impose that the leading compo-
nent of the gravitino is fixed and vanishes ψpα = O(e−r/2) and ψqα = O(e−r/2). Similarly, to
again preserve supersymmetry,we impose that the leading contribution of the dilatino vanishes
at asymptotically large values λ = O(e−r/2). Finally, we describe the boundary conditions for
the SU(2) gauge field and its Lagrange multiplier. From the perspective of the higher dimen-
sional black holes which we will study in section 4, the SU(2) gauge field appears from the
isometry of S2 along which we perform the dimensional reduction.We would therefore, like to
fix Dirichlet boundary conditions at the boundary of the asymptotically flat region. As we will
describe in detail in section 4, imposing these boundary conditions in the asymptotically flat
region translates to fixing a linear combination of the zero-form field b and the SU(2) gauge
field B at the boundary of the near-horizon region.

We would now like to translate the boundary conditions discussed above in the second-order
formalism to boundary conditions in the BF theory (2.5). We will follow the steps outlined
in [65] (explained also recently in [64]) in non-supersymmetric JT gravity and will obtain
results similar to [66], which studied boundary conditions in JT supergravitywith anOSp(2,N )
isometry group. Fixing the Fefferman–Graham gauge for the metric (2.6) yields the value of
the frame e1,2 and spin connection ω [64]

e1 = dr, e2 =

(
1
2
er − L̃(τ )e−r

)
dτ , ω = −

(
1
2
er + L̃(τ )e−r

)
dτ.

(2.7)

Fixing the decaying piece of the gravitino we can gauge fix all other components of the
PSU(1, 1|2) gauge field along the boundary to be

Aτ (τ ) = L1
er

2
+ L−1L̃(τ )e−r + Biτ (τ )Ti

+ e−
r
2
ψp(τ )
2

Gp, − 1
2
+ e−

r
2
ψp(τ )
2

Gp, − 1
2
+ O(e−2r), (2.8)

where we have used the shorthand notation ψp(τ ) ≡ ψp, 1
2 and ψp(τ ) ≡ ψp, 1

2 on the boundary
∂M. We can now impose the equations of motion of Aτ in the proximity of the boundary
Dτφ = 0, or rather due to only fixing the leading orders of Aτ and φ, Dτφ = O(e−r), where D
denotes the PSU(1, 1|2) covariant derivative. This implies that the zero-form field φ should be
constrained to take the form

φ(τ ) = −iΦrL1e
r + 2iΦ′

rL0 + (ψλ+ ψλ− 2iL̃Φr − 2iΦ′′
r )L−1e

−r + bi(x)Ti

+ λpGp, 12
er/2 −

(
2(λp)′ − iΦrλ

p − Biτ (σ
i∗)pq λ

q
)
Gp,− 1

2
e−r/2

+ λpGp, 12
er/2 −

(
2(λp)′ − iΦrλ

p − Biτ (σ
i )pq λ

q
)
Gp,− 1

2
e−r/2 + O(e−2r),

(2.9)

10
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where, again, we have used the short-hand notation λp(τ ) = λp,
1
2 and λp(τ ) = λp,

1
2 on the

boundary ∂M and where Φ′
r ≡ ∂τΦr(τ ) denotes the derivative with respect to the boundary

time τ .16

If we want to impose the boundary conditions for the dilaton (Φr = const), the dilati-
nos (λp,

1
2 = 0 and λp,

1
2 = 0) and the zero-form field bi(x) we can then relate the gauge

field in (2.8) to the zero-form field φ(τ ) as −2iΦrAτ (τ ) = φ(τ ), where Φr is the renormal-
ized value of the dilaton. Thus, in the first-order formalism and in the gauge in which Aτ takes
the form (2.8), the boundary condition that we want to impose is δ(2iΦrAτ (τ )+ φ(τ ))|∂M = 0.
The boundary term necessary for such a boundary condition to have a well defined variational
principle is [66]:

IBF, bdy. =
i
2

∫
∂M

StrφA = Φr

∫
∂M

dτ StrA2
τ . (2.10)

Integrating out the field Φ in the bulk we find that the bulk term yields no contribution.
Replacing Aτ in (2.10) we find that the action can then be rewritten as

IBF, bdy. = −Φr

∫
∂M

dτ

[
L̃(τ )+ 1

2

(
(B1

τ )
2 + (B2

τ )
2 + (B3

τ )
2
)]

(2.11)

Thus, it is convenient to define

L(τ ) = L̃(τ )+ 1
2

(
(B1

τ )
2 + (B2

τ )
2 + (B3

τ )
2
)
, fromwhich

IBF, bdy. = −Φr

∫
∂M

dτ L(τ ). (2.12)

We will not determine L(τ ) explicitly. Rather we will see how L(τ ) (and all other variables in
(2.8)) transform under the gauge transformations that preserve the asymptotic form of (2.8). In
general in a BF theory with gauge groupG, boundary gauge transformations are parametrized
by functions g in loop(G)/G. However, since we are preserving the asymptotic form (2.8)
which comes from working in the Fefferman–Graham gauge (2.7) the space of gauge
transformations is instead parametrized byDiff(S1|4)/PSU(1, 1|2). Therefore, theway in which
L(τ ) transforms under this special class of gauge transformations will yield how the boundary
Lagrangian transforms under Diff(S1|4)/PSU(1, 1|2). From here, we will show in section 2.3.3
that the boundary Lagrangian can be identified with the N = 4 super-Schwarzian derivative.
Thus, to do this identification, we note that L(τ ), Bτ (τ ), and ψ

p(τ ) transform as

δΛL = ξL′ + 2Lξ′ + ξ′′′ − Biτ (t
i)′ +

1
2

(
3ψε′ + ψ′ε− 3ε′ψ − εψ′) ,

δΛψ
p = ξ(ψp)′ +

3
2
ψpξ′ − εpL− 2(εp)′′ − 1

2
ti(σi)pq ψ

q + (Biτ )
′(σi)pqε

q + 2Biτ (σ
i)pq (ε

q)′,

δΛB
i
τ =

(
ξBiτ

)′ − (ti)′ +
1
2
ψσiε+

1
2
εσiψ + iεi jk t j Bkτ , (2.13)

under the gauge transformation which preserves the form of Aτ in (2.8):

16We will motivate why the parameter Φr in (2.9) can be identified with the renormalized dilaton shortly.
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Λ(τ ) =
ξ

2
L1 − ξ′L0 +

(
1
2
ψε+

1
2
ψε− 1

2
ξ(Ba)2 + Lξ + ξ′′

)
L−1 − (ti − ξBiτ )Ti

+
1
2
εpGp, 12

−
(
(εp)′ − 1

2
ξψp − 1

2
Biτ (σ

i∗)pq ε
q

)
Gp,− 1

2
+

1
2
εpGp, 12

−
(
εp − 1

2
ξψp − 1

2
Biτ (σ

i)pq ε
q

)
Gp,− 1

2
. (2.14)

It is not a coincidence that Λ(τ ) takes the same form (up to the redefinition (2.12)) as φ(τ ) in
(2.9). This follows from requiring that the leading result in both DτΛ (since we require that
the gauge transformation Λ not change the asymptotic form of Aτ (2.8)) and Dτφ (since we
impose the equation of motion for A by also using (2.8)) both vanish. With these transforma-
tions in mind, we now proceed by introducing the necessary technology to define the N = 4
Schwarzian derivative. Following that, we will finally show that this Schwarzian derivative can
be identified with the boundary Lagrangian L(τ ) from (2.12).

Finally, we can extend this analysis to the case when the SU(2) chemical potential, α,
is turned on. In order to do this we can generalize the previous boundary condition from
Aτ − iφ

2Φr
= 0 to Aτ − iφ

2Φr
= 2πi

β αT3, where α ∼ α+ 1. This does not modify the bound-
ary conditions of gravity and the fermions but now the SU(2) gauge field boundary condi-
tion is Bτ − Φ−1

r b = 2πi
β
αT3, supporting the identification of α with a chemical potential. In

section 4.4 we explain how from the 4D near-extremal black hole perspective this boundary
condition is equivalent to fixing the holonomy of the gauge field in the asymptotically flat
region, which is related to fixing the boundary 4D angular velocity.

2.3. The N = 4 supersymmetric boundary mode

So far we have seen that N = 4 super-JT gravity can be reduced to a boundary theory. In
this section, we will see this theory can be recasted as aN = 4 super-reparametrization mode
with a super-Schwarzian action. We will first review in section 2.3.1 the definition of super-
diffeomorphisms. In section 2.3.2 we will define the super-Schwarzian derivative that will be
the action and in section 2.3.3 we will put everything together to write down the final boundary
action.

2.3.1. Super-diffeomorphisms. To match with theN = 4 super-JT theory defined previously
we will be interested in SU(2) extended N = 4 supersymmetry17. We will begin by giving a
super-space description ofN = 4 super-diffeomorphisms.

Consider anN = 4 super-line parametrized by a bosonic variable τ and fermionic variables
θp and θq, where p, q = 1, 2. The coordinatesθp and θq transform respectively in the fundamen-
tal and antifundamental representations of a local SU(2) symmetry. We will omit the indices
and simply write θ and θ when it is clear by context. We define the four super-derivatives as

Dp =
∂

∂θp
+

1
2
θp∂τ , Dq =

∂

∂θq
+

1
2
θq∂τ . (2.15)

The SU(2) indices will be raised and lowered by the antisymmetric tensors εpq and εpq with
ε12 = ε21 = 1. We will denote by σi with i = 1, 2, 3 the Pauli matrices and indices will be

17 Other choices with alsoN = 4 are the O(4) extended algebra studied for example in [67], we will not be interested
in those for the purposes of this paper.
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contracted from ‘left-bottom’ to ‘right-up’, e.g. θσiθ = θp(σi)pqθ
q. We will sometimes group

the coordinates of theN = 4 super-line as Z = (τ , θp, θp).
We will study general reparametrizations of the super-line, which will become the degrees

of freedom in the path integral that defines the Schwarzian theory. These have the following
form

τ → τ ′(τ , θ, θ), θp → θ′
p(τ , θ, θ), θq → θ′q(τ , θ, θ), (2.16)

and satisfy a set of constrains given by

Dpθ
′
q = 0, Dpθ′

b
= 0, (2.17)

Dpτ
′ − 1

2
(Dpθ

′q)θ′q = 0, Dpτ ′ − 1
2
(Dpθ′q)θ

′q = 0 (2.18)

analyzed in [62, 63]. They guarantee that the superderivatives transform homogeneously and
preserve the global SU(2) symmetry. We will refer to the space of solutions of these constrains
as N = 4 super-diffeomorphisms and denote it as Diff(S1|4), indicating one bosonic and four
fermionic directions.

Next we will look at some examples. The simplest super-reparametrizations are purely
bosonic. They are given in terms of an arbitrary function f (τ ) and an arbitrary SU(2) matrix
g(τ ). The solutions of the constraints have the form

τ → f (τ )+
1
8
f ′′(τ )(θθ)2, (2.19)

θp → g

(
τ − 1

2
θθ

)p

q

θq

√
f ′
(
τ − 1

2
θθ

)
, (2.20)

θp → θqg

(
τ +

1
2
θθ

)q

p

√
f ′
(
τ +

1
2
θθ

)
. (2.21)

Another simple example are the ‘chiral’ and ‘anti-chiral’ fermionic transformations. The chiral
ones are parametrized in terms of two fermionic functions ηp(τ ) in the fundamental of SU(2)
and the reparametrization is given by

τ → τ +
1
2
θη

(
τ +

1
2
θθ

)
+

1
4
∂τ (θη(τ ))2, (2.22)

θp → θp + ηp
(
τ − 1

2
θθ

)
, (2.23)

θp → θp

(
1+ θη′

(
τ − 1

2
θθ

))
. (2.24)

The anti-chiral are parametrized by ηp(τ ) in the antifundamental, and the reparametrization is
given by

τ → τ +
1
2
θη

(
τ − 1

2
θθ

)
+

1
4
∂τ (θη(τ ))

2, (2.25)
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θp → θp
(
1+ θη′

(
τ +

1
2
θθ

))
, (2.26)

θp → θp + ηp

(
τ +

1
2
θθ

)
. (2.27)

The most general element of Diff(S1|4) is obtained by a general fermionic transformation
followed by a bosonic one18. We parametrize Diff(S1|4) in terms of the degrees of freedom
f (τ ), g(τ ) ∈ SU(2), ηp(τ ), ηp(τ ), where p= 1, 2. It is hard to determine the finite form that
has all parameters turned on since such answer contains a large number of terms. Therefore,
we will not write it down explicitly although its straightforward to get from the results pre-
sented so far. Instead, it is useful to analyze the most general infinitesimal transformation. Up
to O(η) is given by

τ → f

(
τ − 1

2
η

(
τ − 1

2
θθ

)
θ +

1
2
θη

(
τ +

1
2
θθ

))
+

1
8
f ′′(τ )

(
(θ + η)(θ + η)

)2
(2.28)

θp → Fp
q

(
τ − 1

2
θθ

)(
θq + ηq

(
τ − 1

2
θθ

))
+ ∂τ

(
Fp

q (τ ) θqθη (τ )
)

(2.29)

θ̄p →
(
θ̄q + η̄q

(
τ +

1
2
θ̄θ

))
Fqp

(
τ +

1
2
θ̄θ

)
+ ∂τ

(
η (τ ) θ̄θ̄qF

q
p (τ )

)
, (2.30)

where we use Fp
q(τ ) =

√
f ′(τ )gpq(τ ).

We introduce now an important sub-group of the super-reparametrizations, the global super-
conformal group PSU(1, 1|2). It is generated by six bosonic variables (three from SL(2) and
three from SU(2)) and eight fermionic. The general case can be found in [63]. Instead we will
write down the bosonic generators

τ → aτ + b
cτ + d

− c
4(cτ + d)3

(θθ)2, (2.31)

θp → [ei�t·�σ]pqθ
q 1

c
(
τ − 1

2θθ
)
+ d

, (2.32)

θp → θq[e−i�t·�σ]qp
1

c
(
τ + 1

2θθ
)
+ d

, (2.33)

with a, b, c, d ∈ R such that ad − bc = 1 and c > 0. This is precisely of the form (2.19) where
f (τ ) is a global conformal transformationPSL(2,R)while (t1, t2, t3) parametrize a global SU(2)
transformation. The fermionic generators can be parametrized by two constant spinor doublets
η and η̃ and act as

τ → τ +
1
2
(θ − η̃)η − 1

2
η(θ − η̃), (2.34)

θp → θp + ηp − η̃p, (2.35)

18 In writing the Schwarzian derivative, the order of the composition is important. In particular, to compute theN = 4
super-Schwarzian we compose the bosonic transformation with a fermionic one in this order. The order of compositions
will however be unimportant when localizing the path integral.
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θp → θp + ηp − η̃p. (2.36)

As anticipated there are eight fermionic generators. As explained above, the most general case
is a composition of bosonic and fermionic.

2.3.2. Super-Schwarzian action. The Schwarzian derivative associated to reparametrizations
of the N = 4 super-circle was defined by Matsuda and Uematsu in [63] (see also [62]). The
Schwarzian derivative is given in terms of superspace variables as

Si(Z; Z′) = −2DσiD log

(
1
2
(Dpθ

′q)(Dpθ′q)

)
. (2.37)

It satisfies the following chain rule

Si(Z; Z′) =
1
2
(σi)pq(σ

j)q
′

p′(Dpθ
′′p′ )(Dqθ′′q′)S

j(Z′′; Z′)+ Si(Z; Z′′). (2.38)

Another defining property is the fact that Si(Z; Z′) = 0 whenever the super-reparametrization is
an element of the global PSU(1, 1|2) as in (2.31). This will prove consequential in section 2.4
when studying the global symmetries of the N = 4 super-Schwarzian action which we shall
define shortly.

The derivative Si is a superfield with several components. We can extract the bosonic piece
we want to associate to the Schwarzian action. In the notation of [63] it is

Si(Z; Z′) ⊃ −θσiθ Sb(τ , θ, θ; τ ′, θ′, θ′). (2.39)

One motivation of this choice is to look at purely bosonic transformations defined in
equation (2.19). For simplicity let us briefly consider Z′ = (τ ′, θ′, θ′) where τ ′, θ′ and θ′ take
the special form (2.19), in terms of an arbitrary f (τ ) and set g(τ ) = 1. Then the definition
above gives the super-Schwarzian

Si(Z, Z′) = −Sch( f , τ )θσiθ. (2.40)

Another motivation is that when we interpret Si as a superconformal generator, that component
generates bosonic translations along the circle and we want to identify this as the action of the
Schwarzian theory.

The super-Schwarzian satisfies the constrains DpDqSi = DpDqSi = 0. Therefore, as a
superfield it can be expanded in the following components

Si = 2SiT + θσiS f + S fσ
iθ − θσiθSb + iεi jkθσ jθ∂τS

k
T

− 1
2
(θθ)θσi∂τS f +

1
2
(θθ)∂τS fσ

iθ +
1
4
(θθ)2∂2

τS
i
T . (2.41)

Then the super-Schwarzian action is

IN=4 = −Φr

∫
dτ Sb[ f (τ ), g(τ ), η(τ )], (2.42)

whereΦr can be viewed as a coupling constant whose role we shall soon discuss and the factor
of 12 above is chosen such that it simplifies the factor in (2.40).
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We can rewrite the action in super-field notation by defining S = θσiθSi, where we sum over
i = 1, 2, 3. Then, using the expansion of Si gives19,

S = 2θσiSiTθ − 3(θθ)θS f + 3(θθ)S fθ + 3Sb(θθ)
2. (2.43)

Then the action (2.42) can be rewritten as IN=4 ∼ Φr

∫
dτ d4θS. Note that in terms of the

S[ f (τ ), g(τ ), η(τ )] there is no obvious chain rule analogous to (2.38). For this reason it will
oftentimes be easier to work with Si instead of the super-field S. To make things concrete, it
is informative to write the Schwarzian action when focusing on purely bosonic components,
when setting η(τ ) = 0 in (2.42):

IN=4,bosonic[ f (τ ), g(τ ), η(τ ) = 0] = −
∫ β

0
dτ Φr

[
Sch( f , τ )+ Tr(g−1∂τg)2

]
.

(2.44)

Since η(τ ) = 0 is a solution to the equations of motion we will soon use the above action to
extract the classical saddle point when quantizing the super-Schwarzian action at the level of
the path integral.

2.3.3. Transformation law and a match with the JT boundary term. In this section, we shall
derive explicitly the infinitesimal transformation rules of theN = 4 super-Schwarzian (2.41).
We will expand f (τ ) ≈ τ + ξ(τ ), g ≈ 1+ iti(τ )σi, η ≈ ε(τ ) and η ≈ ε(τ ) and work to linear
order in ξ, ti, ε and ε. A convenient way to encode the infinitesimal reparametrizations of the
super line (2.16) that automatically satisfies the constraints (2.17) is to use a super-field as in
[62, 63]:

E(Z) = ξ

(
τ +

1
2
θθ

)
+ ξ

(
τ − 1

2
θθ

)
+ θε

(
τ − 1

2
θθ

)
− ε

(
τ +

1
2
θθ

)
θ +

1
2
θσiθti(τ ). (2.45)

Under such a reparametrization (2.45), the super-Schwarzian (2.41) transforms in the same
way as the super-energy momentum tensor, which is given in [63]:

δES
i = ∂τ

(
E(Z)Si

)
+ DE(Z)DSi + DE(Z)DSi

− iεi jk
(
Dσ jDE

)
Sk − 2DσiD∂τE(z). (2.46)

Now substitute (2.41) and (2.45) into (2.46), and collect in components:

δES
i = 2δESiT + θσiδES f + δES fσ

iθ − θσiθδESb + iεi jkθσ jθ∂τ δES
k
T + · · · ,

(2.47)

19 This is a simpler expression of Si for which more components are present. We can construct S from an Si as long as
Si satisfies DpDqSi = DpDqSi = 0. To derive this we use that

(θσiθ)(θσiθ) = −3(θθ)2, εi jk(θσiθ)(θσ jθ) = 0,

(θσiθ)(θσiG) = −3(θθ)(θG), (θσiθ)(Gσiθ) = 3(θθ)(Gθ).
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we obtain the infinitesimal transformation of SiT , S f , Sf , Sb. Note that the terms in . . . are purely
determined by lower components, and thus it is enough to focus on the terms up to O(θθ). As
a result, the transformations of SiT , S f , S f , Sb are given by:

δESb = ξS′b + 2Sbξ′ + ξ′′′ − SiT(t
i)′ +

1
2

(
3Sf ε′ + S′fε− 3ε′S f − εS′f

)
,

δES
p
f = ξ(Spf )

′ +
3
2
Spfξ

′ − εpSb − 2(εp)′′ − 1
2
ti(σi)pqS

q
f + (SiT)

′(σi)pqε
q + 2SiT(σ

i)pq(ε
q)′,

δES
i
T =

(
ξSiT

)′ − (ti)′ +
1
2
S fσ

iε+
1
2
εσiS f + iεi jkt jSkT . (2.48)

We note that they exactly agree with the infinitesimal transformation deduced from the
boundary action of the BF theory (2.13) with the field identification:

L ↔ Sb,

ψp ↔ Spf ,

Biτ ↔ SiT . (2.49)

Since the infinitesimal transformations and PSU(1, 1|2) invariance suffices to determine the
global form of the action as the N = 4 super-Schwarzian, it then follows that the bound-
ary action (2.12) from BF theory agrees with our definition of the Schwarzian action (2.42).
Therefore, the path integral in the N = 4 super-JT gravity with the boundary conditions dis-
cussed in section 2.2 can be reduced to that for the N = 4 super-Schwarzian action defined
by (2.42).

2.4. Spacetime and global symmetries

Before analyzing the quantization of the super-Schwarzian theory, it is useful to study the
space-time and global symmetries present in this action.

A useful way to discuss symmetries of a quantum field theory is to cast it in terms of inter-
nal symmetries and spacetime symmetries. The continuous internal symmetries of (2.42) form
PSU(1, 1|2),20 generated by (2.31)–(2.36), directly acting on

(
f (τ ), g(τ ), ηp(τ ), ηp(τ )

)
. They

are zero modes of the N = 4 super-Schwarzian derivative, and the action (2.42) is invariant
due to the chain rule (2.38). Specifically,

Si(Z, h ◦ Z′(Z)) = Si(Z, Z′(Z)), (2.50)

where h is a composition of the bosonic and fermionic transformations in (2.31)–(2.36) which
we apply to the super-reparametrization Z ′(Z). These transformations are the supersymmet-
ric generalization of the SL(2, R) : f (τ )→ a f (τ )+b

c f (τ )+d , and we will have to quotient out such
transformations as we proceed to compute the partition function [13–15], in order to obtain a
well-defined partition function. Furthermore, aside from thePSU(1, 1|2) that has an SU(2) sub-
group which acts on the left of the field g(τ ) there is an additional SU(2) symmetry which acts
on the right of the field g(τ ). This additional symmetry does not act on f (τ ) or on the fermionic

20 It is sometimes confusing whether the group is SU(1, 1|2) or PSU(1, 1|2). We note that SU(1, 1|2) contains an extra
U(1) factor generated by identity, due to the cancellation of SL(2) part and SU(2) part of the super-trace in the algebra
[68]. We do not have such an U(1) factor in (2.13), and, therefore, our symmetry group is PSU(1, 1|2).
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fields η and η. Thus, to summarize the continuous internal symmetry is, up to discrete factors,
PSU(1, 1|2)× SU(2).21

The N = 4 super-Schwarzian theory also admits spacetime symmetries. To see this
consider the transformation (2.48); for the transformation ξ(τ ) = ξ corresponding to
τ → τ + ξ (time translations), ti(τ ) = ti corresponding to constant infinitesimal rotation of
θp (R-symmetry rotations), and ε(τ ) = ε corresponding to θ → θ + ε (super-translations), the
action Sb is invariant up to a total derivative. Together, all such infinitesimal transformations
generate theN = 4 super-Poincaré spacetime symmetry. They satisfy the algebra

{Qp,Q
q} = 2δqpH, with Qp = i

∂

∂θp
+ θp∂τ , Q

p = −i ∂

∂θp
− θp∂τ , H = ∂τ

(2.51)

while all other commutators vanish. It is straightforward to identify theseN = 4 supercharges
from the Noether procedure using the transformation (2.48): Sb is the charge generating time
translations (and is thus theHamiltonian of the theory),S f is the generator of super-translations,
and SiT is the generator ofR-symmetry rotations.Note that theHamiltonian here is not one of the
generators of PSU(1, 1|2), since it is in fact the super-Schwarzian itself, and thus proportional
to the quadratic Casimir of the PSU(1, 1|2). This is quite analogous to the non-supersymmetric
case [8, 69, 70].

We would like to stress that even though PSU(1, 1|2) plays a big role in constructing the
Schwarzian action, the theory is not invariant under spacetime superconformal PSU(1, 1|2)
symmetries. The spectrum is not organized according to PSU(1, 1|2) representations. Only the
N = 4 super-Poincaré sub-group is a spacetime symmetry.

It is also useful to briefly discuss some of the discrete internal and spacetime symmetries
of the theory. The N = 4 super-Schwarzian has a time reversal symmetry T which acts on
the fermionic fields as T η(τ ) = iη(−τ ) and T η(τ ) = iη(−τ ) and on the bosonic fields as
T f (τ ) = f (−τ ) and T g(τ ) = g(−τ ); in such a case, T 2 = 1 and the symmetry is ZT

2 . There
is also a Z

F
2 fermionic symmetry (−1)F which solely acts on the fermionic fields22. Thus,

the symmetry is Z
F
2 × Z

T
2 . We can now address discrete factors for the internal symmetry

group of the theory. In (2.31)–(2.36) we note that the transformation given by the center of
SL(2,R) with a = d = −1 and b = c = 0 (acting as η →−η and η →−η) is redundant with
the composition of the two center transformations for the two SU(2), the first of which acts as
g→−g, η →−η, η →−η, and the second of which acts solely on g→−g. Furthermore, this
transformation is again redundant with the (−1)F symmetry mentioned previously. Thus, the
bosonic subgroup of the symmetry group for the theory is given by

SL(2,R)× SU(2)× SU(2)× Z
F
2

Z2
× Z

T
2 . (2.52)

Consequently, we note that even-dimensional representations of SU(2) (half-integer spins)
need to be fermionic and odd-dimensional representations of SU(2) (integer spins) need to be
bosonic. Since we will be able to decompose our partition function as a sum over SU(2) char-
acters, this fact will play an important role in easily obtaining the supersymmetric index from
the theory by using the result for the partition function.

21 There is also an outer SU(2) inherited from the PSU(1, 1|2) algebra. It acts on (η1 (τ ) ,−η2 (τ )) as a doublet. In the
4d setup we later consider, this is the R symmetry of the N = 2 supergravity that is broken by stringy effects.
22 The same time-reversal properties are also true in the N = 1 theory [71].
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3. Quantizing the N = 4 Schwarzian theory

In this section, we will study theN = 4 super-Schwarzian theory in more detail. In particular
we will compute the exact partition function and density of states. We will do the calculation
in two ways, first using the localization method of Stanford and Witten [72] and second using
the 2D CFT approach of [69], and find agreement. Then we will analyze the spectrum that we
derive and point out some salient features like the large zero temperature degeneracy and the
presence of a gap.

3.1. The action

TheN = 4 super-line can be parametrized in superspace by (τ , θp, θp), p= 1, 2, where θ and
θ are Grassman variables transforming as fundamental and anti-fundamental of an SU(2) sym-
metry. N = 4 super-reparametrizations are parametrized by a bosonic field f (τ ) ∈ Diff(S1),
a local transformation g(τ ) ∈ SU(2) (or more precisely the loop group) and fermionic fields
ηp(τ ) and ηp(τ ). In terms of a super-reparametrization these fields can be roughly written as

τ → f (τ )+ · · · , (3.1)

θp → gpq(τ )θ
q
√
f ′(τ )+ ηp(τ )+ · · · , (3.2)

θp → θq g
q
p(τ )

√
f ′(τ )+ ηp(τ )+ · · · . (3.3)

The dots correspond to terms that are fixed by the super-reparametrization constrains
and can be found in the previous section. We also defined a Schwarzian action
IN=4 = −Φr

∫
dτSb[ f , g, η, η] invariant underPSU(1, 1|2) transformations acting on the fields

( f , g, η, η). The bosonic component of this action is

IN=4 = −Φr

∫ β

0
dτ

[
Sch( f , τ )+ Tr (g−1∂τg)2 + (fermions)

]
(3.4)

which gives the usual Schwarzian action and a particle moving on SU(2). The extra terms
involve the fermions η and η.

In this section, we will compute the Euclidean path integral giving the partition function23,

Z(β,α) =
∫ D fDgDηDη

PSU(1, 1|2) exp

(
Φr

∫
dτ Sb[ f , g, η, η]

)
, (3.5)

where Φr is a dimensionful coupling constant of the theory. The inverse temperature β and
chemical potentialsα appears in the path integral through the boundary conditions of the fields:

f (τ + β) = f (τ ), g(τ + β) = e2πiασ
3
g(τ ), η(τ + β) = −e2πiασ

3
η(τ ),

(3.6)

and similarly for η. In the rest of this section we will evaluate this path integral as a function
of β, α and the coupling Φr, and rewrite it as a trace over a Hilbert space with a possibly
continuous spectrum.

23We leave the measure implicit in this formula. We take the measure to be the Pfaffian of the symplectic form over
the integration space Diff(S1|4)/PSU(1, 1|2), studied in [52].
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3.2. The partition function

3.2.1. Method1: fermionic localization. In this section,wewill solve the theory following [72].
The integration space is a coadjoint orbit and the super-Schwarzian action generates a U(1)
symmetry. Even though we will not work out the measure and symplectic form in detail, we
will assume it is chosen such that we can apply the Duistermaat–Heckman theorem. Therefore,
we will compute the classical saddles, the one-loop determinants, and put everything together
into the final answer (3.18).

The N = 4 saddle-point: as previously mentioned, the bosonic part of the N = 4
Schwarzian action is given by

IN=4,bosonic = −
∫ β

0
dτ Φr

[
Sch( f , τ )+ Tr(g−1∂τg)2

]
. (3.7)

The equations of motion for f (τ ) and g(τ ) imply that:

∂τSch( f , τ ) = 0, ∂τ Tr (g−1∂τg)2 = 0. (3.8)

The solution for the Schwarzian is well-known and is given by f (τ ) = tan(πτ/β). The solution
for the SU(2) adjoint field takes the form g = exp(itiεiτ ), where εi is a constant that needs is
set by the boundary conditions for the field g(τ ). To make the computation easier we note
that all solutions can be transformed to the diagonal form (g = exp(iσ3ε

3τ )) using an SU(2)
transformation. If require that the field g be periodic, than we have that ε3 = 2πn/β, with
n ∈ Z. More generally, the SU(2) symmetry could have a fugacity which would imply that the
field g is no longer periodic; rather, it has g(β) = zg(0) where z ∈ SU(2) is the fugacity. Once
again, since the partition function only depends on the conjugacy class of z, we can perform
an SU(2) transformation to diagonalize z = exp(2πiασ3). The solution for h is then given by

g = exp
(
2πiσ3(n+ α) τ

β

)
.

In such a case, the on-shell value of the action IN=4,bosonic is given by:

I on-shellN=4,bosonic = −2π2Φr

β

(
1− 4(n+ α)2

)
, (3.9)

Now that we have the on-shell action we can proceed by computing the one-loop determinant
which is sufficient for fully computing the partition function.

The one-loop determinant: to compute the one-loop determinant, we have to account for
all quadratic fluctuations in the theory. The quadratic fluctuations of the Schwarzian field have
been analyzed in great detail [14, 72], and its contributions to the one-loopdeterminant is given,
up to an overall proportionality constant, by

det
Schw.,one-loop

=

(
Φr

β

) 3
2

. (3.10)

The quadratic fluctuation around the saddle-point of the SU(2)-group element can be param-

etrized as g(τ ) = exp
(
σ3

[
2πi(n+ α) τ

β
+ ε3(τ )

])
exp

(
ε2(τ )σ2

)
exp

(
ε1(τ )σ1

)
, and yields a

contribution to the action [73]
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ISU(2),quad =
8π2Φr

β
(n+ α)2

− 2Φr

∫ β

0
dτ

(
(ε1(τ )′)2 + (ε2(τ )′)2 − (ε3(τ )′)2 +

8π(n+ α)
β

ε2(τ )ε1(τ )′
)
,

(3.11)

and the one-loop determinant obtained from integrating out these modes for each value of n is
given by [73]:

det
SU(2),one-loop

=
Φ3/2
r (n+ α)

β3/2 sin(2πα)
. (3.12)

Finally, we discuss the quadratic contribution of the fermionic fields. By using the saddle-
point solution for f (τ ) and g(τ ) and by quadratically expanding the super-Schwarzian action:

Iferm.,quad. = Φr

∫ β

0
dτ

(
ηp

[
2π2

β2

(
1+ 2(n+ α)2

)
∂τ − ∂3

τ

]
ηp

+ ∂τη
p

[
12π2(n+ α)2

β2
+

8iπ(n+ α)∂τ
β

− 3∂2
τ

]
ηp

)
. (3.13)

Expanding the fermionic fields in Fourier modes,

η1(τ ) = ei
2π(n+α)τ

β

∑
m1∈...,− 1

2 ,
1
2 ,...

√
β

2π
η1m1

e−i
2πm1τ

β (3.14)

η2(τ ) = e−i 2π(n+α)τ
β

∑
m2∈...,− 1

2 ,
1
2 ,...

√
β

2π
η2m2

ei
2πm2τ

β , (3.15)

where we impose anti-periodic boundary conditions for the fermionic fields when α = 0 and
we impose boundary conditions consistent with the introduction of the fugacity zwhen α �= 0.
We can then rewrite the action as,

Iferm.,quad. =
2π2iΦr

β

⎡⎣∑
p=1,2

∑
mp∈...,− 1

2 ,
1
2 ,...

(mp − n− α)(4m2
p− 1)ηpmpη

p
−mp

⎤⎦ .

(3.16)

We are interested in computing the dependence of the one-loop determinant on n, α, β and
Φr. The β and Φr dependence is captured by the existence of the four-fermionic zero modes
with mp = ±1/2. As in [72], to compute the rest of the one-loop determinant, we will reg-
ularize this result by dividing the result by the one-loop determinant with n = 0 and α = 0.
We thus find that the regularized one-loop determinant is given, again up to a proportionality
constant, by
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det
ferm.,one-loop

=
β4

Φ4
r

∏
p=1,2

∏
mp∈...,− 5

2 ,−
3
2 ,

3
2 ,

5
2 ,...

m− n− α

m
=

β4

Φ4
r

cos(πα)2

(1− 4(n+ α)2)2
.

(3.17)

Final answer: thus, accounting for the saddle-point value of the action (3.9) together with
the one-loop determinants (3.10), (3.12), and (3.17), we find that the partition function of the
N = 4 Schwarzian theory is given, up to an overall proportionality constant, by:

ZN=4 Schw. =
∑
n∈Z

det
Schw., one-loop

det
SU(2), one-loop

det
ferm., one-loop

e−I
on-shell
N=4,bosonic

=
∑
n∈Z

βcot(πα)(α+ n)
Φr(1− 4(n+ α)2)2

e
2π2Φr

β (1−4(n+α)2). (3.18)

We will thus continue bymatching this result using the completely distinctmethod of canonical
quantization, after which we will come back to a detailed analysis of the spectrum associated
to (3.18) in section 3.4.

3.2.2. Method 2: canonical quantization. In this section, we will compute the partition
function of the N = 4 super-Schwarzian theory using the canonical quantization approach
of [69] (for a very recent discussion explaining the connection to the localization approach see
also [74]).

We will illustrate briefly the idea first. The localization formula we used above can be
applied to integrals that generally have the following form

Z =

∫
dq dpe−H(p,q), (3.19)

where the integral is over a symplectic space (a classical phase space) with coordinates (q, p)
and H(q, p) generates via the Poisson brackets a U(1) symmetry. In the case of the bosonic
Schwarzian theory the integration manifold is Diff(S1)/SL(2,R) which a coadjoint orbit of the
Virasoro group (and, therefore, symplectic), and H(p, q) is the Schwarzian action. Instead of
using localization, we can obtain this integral using the following identity

lim
h̄→0

Tr
(
e−H(p,q)

)
=

∫
dq dpe−H(p,q), (3.20)

where the left-hand side is h̄→ 0 limit of the trace evaluated over the Hilbert space obtained by
quantizing the phase space. In the case of the Schwarzian, the quantization ofDiff(S1)/SL(2,R)
is the identity representation of the Virasoro algebra with central charge c ∼ 1/h̄. The left-
hand side of (3.20) can by very easily computed at finite c as a Virasoro vacuum character by
counting descendants, and a very simple calculation gives the Schwarzian path integral [69]. In
the bosonic case, the main advantage of this method is the possibility to compute correlation
functions which are not available using localization. In this case, we will use it as a double
check on our previous result.

For the case of theN = 4 super-Schwarzian the integration space is Diff(S1|4)/PSU(1, 1|2)
which is a coadjoint orbit of super-Virasoro and, therefore, also symplectic. We will assume
that the quantization of this phase space, the Hilbert space in (3.20), is equivalent to the identity
representation of the small N = 4 Virasoro algebra with central charge c ∼ 1/h̄. The N = 4
super-Schwarzian partition function is then the semiclassical limit of the vacuum character.
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Lets begin then by recalling the super-Virasoro algebra involved in this problem. The
bosonic generators are Ln and Tin where n is an integer and i = 1, 2, 3 label the generators
of a Kac–Moody SU(2) at level k. Their algebra is

[Lm, Ln] = (m− n)Lm+n +
k
2
m(m2 − 1)δn+m,0 (3.21)

[Tim, T
j
n] = iεi jkTkm+n +

k
2
mδm+n,0δi, j (3.22)

[Lm, Tin] = −nTim+n. (3.23)

The central charge of the bosonic Virasoro sector is c = 6k, which is fixed by a Jacobi identity.
The fermionic generators are Gp

r and Gp
s , p= 1, 2. They transform in the fundamental and

antifundamental of the SU(2). The Fouriermode parameter r, s are integer in the Ramond sector
or half-integer in the Neveu–Schwarz sector. The rest of the algebra, involving the fermionic
generators, can be found for example in [75], and is given by

{Gp
r ,G

q
s} = 2δpqLr+s − 2(r − s)σipqT

i
r+s +

k
2
(4r2 − 1)δr+s,0,

[Tim,G
p
r ] = −1

2
σipqG

q
m+r, [Tim,G

p
r ] =

1
2
σipq

�
Gq
m+r, {Gp

r ,G
q
s} = {Gp

r ,G
q
s} = 0

[Lm,Gp
r ] =

(m
2
− r

)
Gp
m+r, [Lm,Gp

r ] =
(m
2
− r

)
Gp
m+r, (3.24)

where σipq are the Pauli matrices. In that reference, Eguchi and Taormina also construct the
unitary representations of the algebra.

For the application we have in mind in this paper, the Schwarzian path integral, we will only
need the massless representations in the NS sector, due to the fact that we want the Schwarzian
fermions to be antiperiodic as explained in [69].24 General representations are labeled by h,
the eigenvalue of L0, and �, the spin of the SU(2) representation, and the massless sector has
(h = �, �) with half-integer � = 0, 12 , . . . ,

k
2 . For the Schwarzian path integral we will need the

� = 0 representation. The characters are defined by

χ�(k; q, z) ≡ TrNS
[
(−1)FqL0−

c
24 zT

3
0

]
, (3.25)

over a representation � of the algebra.We need to insert (−1)F such that the fermions along the
quantization direction are periodic and survive the semiclassical limit (see discussion in [69]).

These characters were computed by Eguchi and Taormina [76] by simply counting states.
They are given by the following expression25

χ�(k; q, z = e2πiy) = e2πik
y2
τ q−

k
4 q�+

1
4
iθ3(q,−z)θ3(q,−z−1)

η(q)3θ1(q, z2)

[
μ(z, q)− μ(z−1, q)

]
,

(3.26)

24 If we wanted the Schwarzian theory Witten index we would use the characters in the Ramond sector.
25 The origin of the first factor in the right-hand side is explained in section 5 of [77].
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where θ3(q, z) is the Jacobi theta function and we defined the function

μ(z, q) ≡
∑
n∈Z

q(k+1)n2+(2�+1)nz2(k+1)n+2�+1(
1− zqn+

1
2

)(
1− zqn+

1
2

) . (3.27)

Now we have all the ingredients to extract the Schwarzian partition function from the
h̄ ∼ 1/k→ 0(c→∞) limit applied to the above expression for the identity � = 0 represen-
tation. As explained in [69] we need to consider the following scaling

z = e2πiατ, q = e2πiτ with τ =
i
k
4πΦr

β
. (3.28)

We then take τ · k fixed in the limit and this constant is related to the ratio Φr/β in the
Schwarzian theory. This choice of z and q is written directly in terms of α and β which will
become the chemical potential and inverse temperature in the Schwarzian limit.

When taking the Schwarzian limit we will only keep track of the dependence on α and β
since any prefactor can be absorbed in a redefinition of the zero-point entropy and energy. We
will not go over all the details but some useful intermediate steps are

μ(z, q)− μ(z−1, q) ∼ 8e
2π2Φr

β 4α2

π2|τ |2
∑
n∈Z

(α+ n)
(1− 4(α+ n)2)2

e−
2π2Φr

β 4(n+α)2 . (3.29)

Using equation (3.15) of [78] gives the following limit

i

(
θ4(q, z)
η(q)3

)2
η(q)3

θ4

(
q, z2q

1
2

) ∼ τ

tan πα
, (3.30)

which is related in a simple way to the Jacobi theta functions appearing in the character.
Including the rest of the terms the semiclassical k→∞ limit of the vacuum character is

χ�=0(k→∞; q, z) ∼
∑
n∈Z

β cot(πα)(α+ n)
Φr(1− 4(n+ α)2)2

e
2π2Φr

β (1−4(n+α)2). (3.31)

This precisely reproduces the partition function computed by localization, given in
equation (3.18) (An analogous match was checked in [69] for the case of N = 1 and N = 2
super-Schwarzian).

We can mention some interesting features of this expression. First of all the factor of cot πα
is important for the formula to make sense. When α→ 0 or 1 it is crucial to include this factor
for the final answer to be finite. The same happens when α→ 1/2 since otherwise the sum
would be divergent.

From the 2D CFT perspective the identity representation is invariant under the generators
of the global PSU(1, 1|2) algebra. In terms of the Virasoro algebra those generators are

Bosonic: L−1, L0, L1, T
1
0 , T

2
0 , T

3
0 , Fermionic: Ga

± 1
2
, Ga

± 1
2
, (3.32)

which satisfy the same superalgebra as (2.1). It is important to take the fermionic genera-
tors in the NS sector. These produce the pre-factor of β1 in the character. In the localiza-
tion calculation this factor basically counts the number of bosonic and fermionic zero modes
Z ∼ β(#fermion)/2−(#bosons)/2. In the case of the small N = 4 algebra there are eight fermionic
zero modes and six bosonic zero modes, giving a factor of β.
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3.3. N = 4 supermultiplets

Before extracting the spectrum from the exact partition function we first explain what prop-
erties we expect it to have. The super-Schwarzian theory we are studying captures the
explicit breaking of the superconformal symmetry group PSU(1, 1|2). Still, as we have seen in
section 2.4, translations, super-translations and rigid SU(2) rotations are symmetries. We can
write the fermionic generators as Qp and Q

p with p= 1, 2. Then a part of the algebra that we
will use here is

{Qp,Qq} = 2δbaH, {Qp,Qq} = {Qp,Qq} = 0. (3.33)

These generators can be written in terms of the Schwarzian fields but we will not need it for the
manipulations here. Imaginewe first diagonalizeH and look at some states with energyE. Then
as long as E �= 0 the operators Q ∼ â act as a SU(2) doublet of lowering fermionic operators
and Q ∼ â† as a SU(2) doublet of rising fermionic operators. To construct a representation we
can begin with a state |J〉 which transforms as a spin J representation of SU(2), constructed
such that Qp|J〉 = 0. The supermultiplet will have states acting with a single charge Qq|J〉,
which can be expanded into (1/2)⊗ J = (J − 1/2)⊕ (J + 1/2); and acting with two charges
Q1Q2|J〉 of spin J. Therefore, the supermultiplet with E �= 0, starting with J �= 0 is made of
(J − 1/2)⊕ 2(J)⊕ (J + 1/2). When we construct a supermultiplet starting with a singlet |0〉,
theQq|0〉 transforms as a doublet andQ1Q2|0〉 as another singlet, giving 2(0)⊕ (1/2). Labeling
the supermultiplet by the state with highest SU(2) spin, the E �= 0 part of the spectrum should
organize as

J = (J)⊕ 2(J − 1/2)⊕ (J − 1), J � 1 (3.34)

1/2 = (1/2)⊕ 2(0). (3.35)

Finally we might also have states with E = 0. Starting with a spin-J representation |J〉, having
H|J〉 = 0 implies that all supercharges annihilate the state and, therefore, that’s the whole
supermultiplet.

Taking these considerations into account, we can expect the partition function of theN = 4
super-Schwarzian theory to be expanded in the following way

Z(β,α) =
∑
J

χJ(α)ρext(J)+
∫

dE e−βE
(
χ1/2(α)+ 2χ0(α)

)
ρcont(1/2,E)

+
∑
J�1

∫
dE e−βE

(
χJ(α)+ 2χJ− 1

2
(α)+ χJ−1(α)

)
ρcont(J,E),

(3.36)

where the sums are over half-integer J and χJ(α) ≡
∑J

m=−J e
4πiαm = sin(2J+1)2πα

sin 2πα is the charac-
ter of a spin-J representation of SU(2). In the first line, the first term corresponds to states with
E = 0 while the second term to the E �= 0 multiplet 1/2. The second line corresponds to the
sum over all other E �= 0 supermultiplets. Therefore, ρ(J,E) is the density of supermultiplets
with energy E �= 0 and highest spin J, while ρext(J) is the density of E = 0 states of spin J.

We will see in the next section that the spectrum of the N = 4 super-Schwarzian derived
from the exact partition function we computed above has precisely this form (although with
only singlet J = 0 zero energy states).
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3.4. Exact density of states

The final answer for the exact N = 4 super-Schwarzian theory partition function is given by
the following function of inverse temperature β and SU(2) chemical potential α as

Z(β,α) = eS0
∑
n∈Z

β

Φr

2 cot(πα)(α+ n)
π3(1− 4(n+ α)2)2

e
2π2Φr

β (1−4(n+α)2). (3.37)

We have fixed the overall normalization in a way that will be convenient later. We will write
this answer as a trace over a Hilbert space (albeit with continuous spectrum) realizing it has
precisely the form (3.36).

To understand the physics of this partition function we want to extract the density of states
as a function of energy at fixed SU(2) charge, which we will refer to as angular momentum
(anticipating the application to near extremal black holes in 4D). To do that we begin by per-
forming an inverse Laplace transform and define the fixed-chemical-potential density of states

Z(β,α) =
∫

dEe−βED(α,E). (3.38)

Applying this to our result (3.37) gives

D(α,E) = DE=0(α)δ(E)+ Dcont(α,E), (3.39)

where we separate the BPS and continuous part of the spectrum26,

DE=0(α) = eS0
∑
n∈Z

4(α+ n)
π tan πα(1− 4(α+ n)2)

= eS0 (3.40)

Dcont(α,E) = eS0
∑
n∈Z

4(α+ n)
π tan πα

I2
(
2π

√
2ΦrE(1− 4(α+ n)2)

)
E(1− 4(α+ n)2)

. (3.41)

We see the first line corresponding only to states with zero energy is independent of α. This
means it only gets contributions from zero charge (angular momentum) states. We chose the
normalization of the partition function such that this gives exp (S0) and can be interpreted as
the degeneracy of ground states.

To find the density of states we use the following identity to rewrite (3.41) as

Dcont(α,E) = eS0
∞∑
m=1

m sin 2πmα
tan πα

sinh
(
2π

√
2ΦrE − 1

4m
2
)

2π2ΦrE2
Θ

(
E − m2

8Φr

)
.

(3.42)

We defined theHeaviside functionΘ(x) such thatΘ(x > 0) = 1 andΘ(x < 0) = 0. The depen-
dence with the chemical potential can be expanded in SU(2) characters in the following simple

26 The sum in DE=0(α) is at face value divergent. To regulate it we used the following prescription
limN→∞

∑N
n=−N

4(α+n)
π tan πα(1−4(α+n)2 )

= 1. We can verify that this is the correct prescription by checking that after

integrating over energies, this gives back the original partition function.
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way

2 sin 2πmα
tan πα

= χJ(α)+ 2χJ− 1
2
(α)+ χJ−1(α), J ≡ m/2, with m > 1

(3.43)

2 sin 2πα
tan πα

= χ1/2(α)+ 2χ0(α), J ≡ m/2, with m = 1, (3.44)

where in the right-hand side we defined the angular momentum J in terms of the integer m. In
principle we can use this formula to extract the density of states for each SU(2) representation.
Instead we will notice this is precisely the combination in equation (3.36) where J now labels
the supermultiplet J. The second line with m = 1 involves the special case 1/2. Comparing
(3.36) with (3.42) we can extract the density of supermultiplets ρcont(J,E) for E �= 0 and using
(3.40) we can write the density of E = 0 states ρext(J). The final answer is given by

ρext(J) = eS0δJ,0. (3.45)

ρcont(J,E) =
eS0J

4π2ΦrE2
sinh

(
2π

√
2Φr(E − E0(J))

)
Θ (E − E0(J)) , for J � 1

2
,

(3.46)

where the gap for each supermultiplet labeled by J is given by E0(J) ≡ J2/(2Φr).
Using this result we can get a simple picture of the shape of the spectrum. First we have a

number eS0 of states at exactly E = 0 which are all in the supermultiplet 0, an SU(2) singlet.
These are the extremal BPS states of the black hole as we will see in the next section. For
small energies there are no states until we reach the gap in the spectrum given by the threshold
energy for the supermultiplet 1

2 = ( 12 )⊕ 2(0), given by

Egap =
1

8Φr
, (3.47)

and for E > Egap we have a continuumof states. Something similar is true for highermultiplets
J > 1/2, but now the continuum starts at a supermultiplet-dependent gap

E0(J) =
1

2Φr
J2. (3.48)

It is perhaps not surprising that states with spin J start at E0(J). The surprising feature is that
there are no states with J = 0 at energies 0 < E < Egap.

In figure 3we depict the shape of the spectrumof theN = 4 super-Schwarzian theory. In the
left panel we show the degeneracy of supermultiplets, with the supermultiplet-dependent gap
mentioned above. In the right we show the degeneracy of states (not supermultiplets) with
J = 0 as an illustration. We see the delta function from 0 but also contributions from the
continuum coming from (0) ⊂ 1/2 and (0) ⊂ 1.

For each supermultiplet, the density of states has a spectral edge ρcont(J,E) ∼ (E − E0(J))1/2

characteristic of a Hermitian random matrix model, although we will not follow this direction
in this paper.

We can make some comments regarding the calculation of the N = 4 super-Schwarzian
Witten index. First it is straightforward to show that the fermion number can be computed in
the following way

(−1)F = e2πiT
3

(3.49)
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Figure 3. Left: density of supermultiplets labeled by the highest spin J. We show
0, which is simply a delta function at E = 0; 1/2 which is continuous but starts at
Egap ≡ E0(1/2); and 1 which is also continuous starting at E0(1). Right: degeneracy
for all states with J = 0. These come from 0, the delta function at E = 0, 1/2, starting at
Egap, and 1, starting at E0(1). All other supermultiplets do not have a J = 0 component.

acting on a SU(2) representation of spin J.27 Using the density of states derived above it is easy
to extract the index. First all states with E = 0 have J = 0 and, therefore, (−1)F = 1. States
with J > 1/2 contribute in the following way

e2πiJ
[
χJ(α)− 2χJ−1/2(α)+ χJ−1(α)

]
. (3.50)

It is easy to see that when α = 0 this combination exactly vanishes since there is the same
number of bosonic and fermionic states in the supermultiplet. The same is true for 1/2 which
gives χ1/2(α)− 2χ0(α) and also vanishes forα = 0. Therefore, theWitten index of theN = 4
super-Schwarzian theory is given by eS0 and counts the number of ground states.

As a final comment, there are two different definitions of the N = 2 super-Schwarzian
theory that differ on the presence of a ’t Hooft anomaly, as we review in appendix A. Since the
gauge group of theN = 4 super-Schwarzian is SU(2) we think there cannot be such anomaly
[17] and the theory is unique, but this deserves further investigation.

3.5. Comparison with a pure bosonic theory

To finish this section we would like to compare this solution to a non-supersymmetric version
of the theory, such as the one in [7]. Imagine we have a bosonic Schwarzian theory coupled to
an SU(2) mode. The action is

I = −Φr

∫
dτ Sch( f , τ )+ K

∫
dτ Tr

(
g−1∂τg

)2
, (3.51)

where K and Φr are independent parameters. This theory can be solved exactly [79]. The
density of states as a function of energy and angular momentum J is given by

ρbos.(J,E) = eS0 sinh
(
2π

√
2Φr (E − Ebos.(J))

)
Θ(E− Ebos.(J)),

Ebos.(J) ≡
J(J + 1)

2K
. (3.52)

The bosonic sector of the supersymmetric theory is special in two ways. First of all it necessar-
ily hasK = Φr. Therefore, at least semiclassically one can compute the gap scale bymeasuring

27 Here T3 = T3
L + T3

R corresponding to the left and right SU(2) symmetries of the N = 4 super-Schwarzian.
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the following quantity(
∂J
∂Ω

)
T=0,Ω=0

= K = Φr, (3.53)

where Ω = iα/β is the potential conjugated to J (from 4D perspective, angular velocity). The
second, and more important, feature is the fact that for the bosonic theory (3.51), even if
K = Φr, there are states with J = 0 for any energy E > 0, namely ρ(J = 0,E > 0) �= 0 and
ρ(J = 0,E = 0) = 0. The N = 4 supersymmetric Schwarzian theory is completely different.
We find a delta function at E = 0 describing eS0 states. Moreover, even for J = 0, there are
no states in the range 0 < E < 1

8Φr
. This is the surprising feature we are emphasizing in this

paper.

4. Near-BPS black holes in flat space

As discussed in the introduction 1, extremal Reissner–Nordström black holes are a basic
object of study in supergravity and string theory because in many examples they preserve
supersymmetry and are exact solutions of the theory. The BPS nature of such gravitational
solutions allows one to identify them with a corresponding D-brane configuration; such
brane models allow for a precise microstate counting [6] which matches the result of the
Bekenstein–Hawking entropy.While AdS2 solutions of various supergravities are well studied,
we focus on a minimalistic choice of black hole and AdS2 × S2 solutions of pure, ungauged,
4D N = 2 supergravity. As we will review, such a 4D theory already has the right ingredi-
ents for 1

2 -BPS extremal black holes. Additionally, the pure N = 2 supergravity theory will
generically appear as a subsector of a more general matter coupledN = 2 supergravity [80].

In this section, we will first recall some facts about 4D supergravity, then analyze the
extremal AdS2 × S2 black hole solution. This solution has ordinary isometries correspond-
ing to the AdS and sphere factors, and additionally permits covariantly constant spinors
which are solutions of the Killing spinor equations. As is known in the literature [47–49] the
group of isometries for the near-horizon region enlarges, from the bosonic SL(2,R), to the
supergroup PSU(1, 1|2) and we will review this in some detail. The appearance of this super-
group corresponds to the symmetries of the N = 4 JT and Schwarzian theories utilized in
section 2.

In this section, we are really interested in black holes which parametrically approach their
BPS limits (i.e. that have temperature of the same order or smaller than the conjectured Egap).
In the effective AdS2 near horizon dilaton supergravity, we allow fluctuations of the dilaton as
well as Kaluza–Klein gauge fields and fermions. In the limit of a large black hole with small
near BPS fluctuations, we will derive the effective 2DN = 4 JT supergravity. This will allow
us to match the microscopic and thermodynamic properties of 4D black holes with the output
of theN = 4 Schwarzian from section 3.4.

4.1. 4D N = 2 supergravity

We begin with some notions and notations for gravity in 4D. Some of these conventionswill be
different than those used in section 2 since we will be working in four-dimensional notation. In
the end we will explain how to translate the results to be compatible with the two-dimensional
BF theory.

We use a mostly plus Lorentzian metric, and will eventually Wick rotate to Euclidean
signature in 2D. We denote 4D curved space indices M,N = 0, . . . , 3 and the tangent space
indices A,B = 0, . . . , 3. The 4D metricGMN = ηABEAME

B
N is expressed in terms of the vierbein
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EAM . In 2D, the curved and tangent space indices are respectively μ, ν = 0, 1 and a, b = 0, 1,
and we use the vielbein eaμ and dualized spin connection ωμ. We will occasionally use indices
for the internal S2 space, which will take values m, n = 2, 3 for the coordinate indices and
a′, b′ = 2, 3 for the frame indices. When we are working in the near-horizon region, with the
AdS2 × S2 product manifold, the vielbein will decompose as:

EAM = eaμ , e
a′
m . (4.1)

We will generally suppress spinor indices when possible, but our spinor conventions are given
in appendix B.

Pure, ungaugedN = 2 supergravity is a minimal theory containing only the graviton,GMN;
an SU(2)R doublet of gravitinos,ΨI

M , I = 1, 2; and a U(1) gauge field AM under which a black
hole solution is electrically or magnetically charged. Without the addition of extra vector or
hypermultiplets, this gravity theory does not have a precise embedding in string theory28. Nev-
ertheless, we argue that universal features of supersymmetric black holes are already present
in this model, through the relationship with 2D super-JT gravity.

We write the Lagrangian of pure 4DN = 2 supergravity, following the conventions of [80]:

E−1L = κ−2

(
1
2
R−ΨIMΓ

MNPDNΨ
I
P −

1
4
FMNF

MN

+
εIJ

2
√
2
ΨM
I (FMN + i � FMNΓ5)Ψ

N
J + 4 gravitino

)
, (4.2)

with the standard definitionsDM = ∂M + 1
4ω

AB
M ΓAB and F = dA. We also write the 4D Newton

constant as 8πGN = κ2. In the above action and throughout this subsection, we follow the
convention that a spinor εI with an upper SU(2)R index has positive chirality, while a lower
index has negative chirality:

Γ5ε
I = +εI , Γ5εI = −εI. (4.3)

In analyzing the supersymmetry and dimensional reduction later, we will often instead use
Dirac spinors where the chirality will be implicit.

While we have explicitly displayed the Pauli terms in equation (4.2) proportional to the
antisymmetric symbol εIJ , we have omitted the more complicated 4-gravitino term. The form
of this term is known in general29, but it is vanishing in the bosonic backgrounds correspond-
ing to extremal black hole solutions. In the dimensional reduction to 2D, we will use other
methods to fix the higher order fermion terms. With the understanding that some expressions
are augmented by these terms higher order in fermions, equation (4.2) is invariant under the
following local supersymmetry transformations:

δεE
A
M =

1
2
εIΓAΨMI + h.c., (4.4)

δεAM =
1√
2
εIJεIΨMJ + h.c., (4.5)

28 As explained in [81], compactification of either type II theory on a Calabi–Yau threefold will always produce at
least one N = 2 hypermultiplet along with the gravity multiplet discussed here. This follows from the reduction of
the 10D graviton, dilaton, and two-form.
29 A general matter coupled N = 2 supergravity theory including additional fermion terms is found, for instance, in
[82].
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δεΨ
I
M =

(
∂M +

1
4
ωAB
M ΓAB

)
εI − 1

4
√
2
ΓABFABΓMε

IJεJ. (4.6)

The Lagrangian and supersymmetry transformations above make manifest the SU(2)R
symmetry of N = 2 supergravity. In the application of this theory to nearly AdS2 × S2

black holes described in section 2, we considered a theory with PSU(1, 1|2) symmetry and
bosonic subgroup SL(2,R)× SU(2). This latter SU(2) is realized geometrically by the spatial
rotations of the black hole, and is independent of the SU(2)R symmetry present in 4D. This fea-
ture is characteristic of the small N = 4 superconformal algebra, which has the R-symmetry
SU(2)× SU(2)outer. In the context of this paper, it is possible to show that the outerR-symmetry
corresponds to the 4D SU(2) global symmetry30. Because the outer symmetry plays no
role in our analysis, it will be convenient to use a formulation of N = 2 supergravity with
Dirac rather than Majorana gravitinos. This will hide the outer SU(2) symmetry, but simplify
many formulas in what follows. This version of the theory is presented in [39, 83], and the
passage to this formalism involves introduction of the Dirac spinorsΨM = Ψ1

M + iΨ2
M .

4.2. The black hole and AdS2 × S2 solutions

The extremal black hole of N = 2 supergravity is a standard solution of Einstein–Maxwell
theory which preserves 4 real supercharges of the 8 total. This is in contrast to the near horizon
limit of this solution, AdS2 × S2, which preserves all supersymmetries. The supersymmetry
enhancement [47, 49] corresponds to the addition of conformal supercharges, and the AdS
background should have a full superconformal set of isometries. In this section, we briefly
review these two solutions, which are by now somewhat standard.

The bosonic part of our action using our normalization conventions from equation (4.2) is
the typical Einstein–Maxwell action:

S(bosonic)4D =
1
κ2

∫
d4x

√
−G

(
1
2
R− 1

4
FMNF

MN

)
. (4.7)

Solving the equations of motion, one can obtain the metric and gauge field of the celebrated
extremal Reissner–Nordström black hole solution, here given by:

ds2 = −
(r0
r
− 1

)2
dt2 +

( r0
r
− 1

)−2
dr2 + r2 dΩ2

2,

Ftr = − κQ√
4πr2

. (4.8)

We also have the relationships between the extremal radius, mass, and charge, r0 = GNM and
Q =

√
r0M. For simplicity, we have chosen an electrically charged black hole and set the mag-

netic chargeP = 0, but the results of this section can be easily generalized to this case. In terms
of the charge which we are keeping fixed, we have chosen units such that the extremal mass
and extremal Bekenstein–Hawking entropy are31:

M0 = Q/
√
GN , S0 =

πr20
GN

= πQ2. (4.9)

30We thank Witten for emphasizing to us that the 4D SU(2) global symmetry is only an approximate symmetry in
supergravity; it should not be an exact symmetry of the near extremal black holes. Only the SU(2) symmetry realized
as rotations of the S2 is a physical symmetry in a more complete model such as string theory.
31 This choice is slightly non-standard, but will simplify some formulas later.

31



J. Phys. A: Math. Theor. 55 (2022) 014004 M Heydeman et al

In addition to the familiar bosonic symmetries of the solution (4.8) corresponding to trans-
lations and rotation, there are additional supersymmetries represented by covariantly constant
spinors on the manifold. Since all fermions vanish on this background, we only need to ana-
lyze the gravitino supersymmetry transformation, equation (4.6), adapted to Dirac spinors.
Preserved Killing spinors are spacetime dependent ε which are annihilated by the gravitino
transformation rule32:

δεΨM = D̂Mε =

(
∂M +

1
4
ωAB
M ΓAB

)
ε+

i

4
√
2
ΓABFABΓMε = 0. (4.10)

We will typically use Dirac spinors and do not make use of the chiral components.
The extremal black hole of equation (4.8) can be thought of as a supergravity soliton which

interpolates between two maximally supersymmetric vacuua; Minkowski space in the asymp-
totic far region, and AdS2 × S2 in the near horizon region. Because we are interested in an
effective AdS2 theory approximated by supersymmetric JT gravity, we now turn our atten-
tion to the AdS2 × S2 metric with the purely electric Bertotti–Robinson ansatz. Starting with
equation (4.8), we perform standard manipulations to take the near horizon limit. We shift the
location of the event horizon then rescale the radial coordinate with to get the Poincare patch
metric:

ds2 =
r20
z2
(−dt2 + dz2)+ r20 dΩ

2
2, F =

1
2

κQ√
4π

1
z2
dt ∧ dz. (4.11)

To study this background, including the Killing spinors, we make the further change of
coordinates z = r0e−r/r0 :

ds2 = −e2r/r0dt2 + dr2 + r20 dΩ
2
2, F = −1

2
κQ√
4πr20

er/r0dt ∧ dr. (4.12)

At the risk of notational clutter, we denote frame indices with a hat, and in frame coordinates,
the bosonic fields are:

Êt = er/r0dt, Er̂ = dr, Em̂ = (r0 dθ, r0 sin θ dφ), F̂t r̂ = − κQ√
4πr20

= −
√
2
r0

.

ω t̂ r̂ =
1
r0
Êt =

1
r0
er/r0dt, ωφ̂ θ̂ = ωφθ

S2
= cos θ dφ. (4.13)

In the expression for the flux, we used the definitions for κ, Q, and r0 in the extremal limit.
The constant flux background is analogous to the Freund–Reubin ansatz [87] in that the spin
connection also has a 1/r0 behavior, and it is the cancellation between these two terms which
will permit a maximally supersymmetric vacuum.

Before plugging the explicit background into equation (4.10), it is useful to first examine
the integrability condition for the supercovariant derivative with a general background acting
on a Killing spinor. A necessary condition for the existence of Killing spinors is

[D̂M , D̂N]ε = 0. (4.14)

32 A discussion of the relationship between supersymmetry preserving black branes, Killing spinors, and Killing
vectors may be found in [40, 84–86].
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Computing this in the case of pure ungaugedN = 2 supergravity [83] gives((
R AB
MN ΓAB −

1
8
F/Γ[M F/ΓN]

)
+

i√
2
ΓABΓ[N(∇M]F

AB)

)
ε = 0. (4.15)

It is possible to further simplify the gamma matrix contractions for a general flux background,
but the case of AdS2 × S2 has further simplifications as the third term vanishes identically.
Allowing a, b = 0, 1; a′, b′ = 2, 3 as frame indices and μ, ν;m, n as coordinate indices for AdS
and the sphere respectively, we obtain the familiar conditions:(

R ab
μν γab +

1
r20
(eaμe

b
ν − eaνe

b
μ)γab

)
ε = 0,(

R a′b′
mn γa′b′ −

1
r20
(ea

′
me

b′
n − ea

′
n e

b′
m )γa′b′

)
ε = 0. (4.16)

These are identically satisfied by the Bertotti–Robinson metric as the AdS and sphere are
maximally symmetric. We do not obtain any new algebraic conditions on the Killing spinors.
These conditions, as well as the form of the spinors themselves, must be determined from the
first order equation, equation (4.10). Inserting Fab = −

√
2
r0
εab into this Killing spinor equation,

we find that it splits into a pair of equations for the AdS and sphere parts:(
∂μ +

1
4
ωab
μ γab −

i
2r0

γ3γμ

)
ε = 0, (4.17)(

∂m +
1
4
ωa′b′
m γa′b′ −

i
2r0

γm

)
ε = 0, (4.18)

where γ3 = −γ0γ1 = σ3 ⊗ 1 is the pseudo-chirality operator on the AdS space. These can be
obtained by applying the conventions of appendix B. We observe that these equations are of
the same form studied in [85], and we will give an explicit construction of the Killing spinors.

To find expressions for the Killing spinors, we make a slight abuse of notation in writing
ε4D = ε⊗ η. We will see that the complex 2 component ε and η are Killing spinors on the AdS2
and S2 factors. Inserting the expressions of equation (4.13), we find the four Killing spinor
equations, (

∂t −
1
2r0

er/r0γ3(1+ iγ0)

)
ε = 0,(

∂r +
i

2r0
γ0

)
ε = 0,(

∂θ −
i
2
σ1

)
η = 0,(

∂φ −
1
2
cos θσ13 −

i
2
sin θσ3

)
η = 0. (4.19)

To solve these, we first introduce constant anticommuting Dirac spinors ε0± and ηα. Here the
α, β = 1, 2 spinor indices are those for the internal SU(2) on the sphere; this contrasts with the
notation of section 2, where these indices were denoted by p, q.
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The ε0± are eigenstates under the supersymmetric projector:

ε0± = P±ε
0
± =

1
2
(1± iγ0)ε

0
±. (4.20)

A convenient basis for the ηα is the one of definite chirality on the S2. From appendix B,
we see that we may choose ηα = (η1, η2) with σ2η

1 = η1 and σ2η
2 = −η2. For clarity, this

explicit basis choice amounts to the familiar eigenstates: ε0+ = (1, i), ε0− = (1,−i), η1 = (1, i),
η2 = (1,−i).

With these projections, we find the AdS2 × S2 solutions to the Killing spinor equation (4.10)
are:

εα− ≡ e
r

2r0 e
iθ
2 σ1e

φ
2 σ13 (ε0− ⊗ ηα). (4.21)

εα+ ≡
(
1+

t er/r0

r0
γ3

)
e−

r
2r0 e

iθ
2 σ1e

φ
2 σ13 (ε0+ ⊗ ηα). (4.22)

Similar expressions hold for the Dirac conjugate εα±, which we will need to form Killing
vectors33.

The super-isometry algebra of Killing vectors and spinors is typically determined by form-
ing bilinears of spinors and checking that these correspond to the bosonic symmetries of
the metric. Knowledge of the Killing spinors may be used to construct spacetime super-
charges as integrals of the supercurrent [86]; for our purposes it is sufficient to check that all
bosonic isometries are generated by Killing spinor bilinears. This allows us to loosely interpret
εα− ∼ Gα

−1/2 and ε
α
+ ∼ Gα

1/2, andwewill compute the Killing spinor analog of {Gα
±,G

β
±′}which

were the anticommutators appearing in (3.24). Therefore, we consider objects of the form,

εα±Γ
Mεβ±′EM , (4.23)

which transforms as a vector field. In fact, if we form bilinears from Killing spinors, this result
will automatically be a Killing vector. A typical bilinear of the form equation (4.23) may vanish
depending on the commutation of P± with the various gamma matrices.

To simplify the formulas, we will choose a unit normalization for the ηα and ε0± which
solve equation (4.20), but in general one would find constant spinor contractions appearing
on the right-hand side of the formulas to follow. As shown in appendix C, the Killing vectors
determined by (4.23), (4.21), (4.22) are:

H = ∂t, D = t∂t + z∂z, K = (z2 + t2)∂t + 2tz∂z, (4.24)

T1 = sin φ∂θ + cot θ cos φ∂φ, T2 = cos φ∂θ − cot θ sin φ∂φ, T3 = ∂φ

(4.25)

which form the SL(2)× SU(2) algebra, i.e. the bosonic part of the supergroup PSU(1, 1|2).
This motivates the conclusion that the near horizon theory should have this symmetry.

4.3. Dimensional reduction

Our goal is to nowdemonstrate that the effective 2D gravity theory describing the near extremal
perturbations of equation (4.11) ultimately reduces to the supersymmetric completion of JT

33 Some of our conventions for Killing spinors may be different than elsewhere in the literature. For more, see
[33, 34, 85, 88].

34



J. Phys. A: Math. Theor. 55 (2022) 014004 M Heydeman et al

gravity described in section 2. We will start with a convenient Kaluza–Klein ansatz for 4D
black holes with a dilaton χ capturing the fluctuating horizon area [84, 89]. Without the inclu-
sion of extra massless fields, this ansatz does not generally satisfy all the higher dimensional
Einstein equations [90]. However, as in the non-supersymmetric case [7], for sufficiently small
masses and spins above extremality, the reduced effective 2D theory does capture the higher
dimensional near extremal black holes.

In our discussion of the Kaluza–Klein ansatz, distorted 4D quantities will be hatted. We
begin with the distorted metric, written in terms of coordinates xM = (xμ, ym):

d ŝ24D =
r0
χ1/2

gμν dxμ dxν + χ hmn(dym + Tmi B
i
μ dx

μ)(dyn + Tnj B
j
ν dx

ν), (4.26)

with an arbitrary 2D metric gμν and the unit S
2 metric:

hmn dym dyn = dθ2 + sin2 θ dφ2. (4.27)

We parametrize the angular fluctuations with an SU(2) gauge field Biμ, which transforms as a
3 of SO(3) and enters through the S2 Killing vectors (4.25).34

The vierbein associated with this decomposition is

EAM dXM → ê a =
r
1
2
0

χ
1
4
eaμ dx

μ, ê a
′
= χ

1
2 ea

′
m (dy

m + Tmi B
i
μ dx

μ), (4.28)

with the metrics for the arbitrary 2D theory and the explicit metric of S2:

gμν = ηabe
a
μe

b
ν , hmn = δa′b′e

a′
me

b′
n . (4.29)

The dimensional reduction of the Einstein–Hilbert term as well as the gravitino kinetic term
both require the spin connection compatible with the vierbeins above. Even though the torsion
tensor is not in general zero in supergravity due to fermions, for now we are free to use the
torsion free first Cartan structure equations35:

dÊA + ω̂AB ∧ ÊB = 0. (4.30)

We will ultimately pass to the first order formulation of gravity in the effective AdS2 theory.
This first order theory does not automatically enforce the torsion free constraint, so we will
only use the 4D distorted spin connection as an intermediate step. The expressions for the
distorted spin connection, Ricci tensors and Ricci scalar are given in appendix B.

34 In components, these obey the following identities in terms of the scalar harmonics μi [89]:

μ1 = sin θ cos φ, μ2 = sin θ sin φ, μ3 = cos θ, Ta
′
i = εa

′b′∂b′μi, δa′b′T
a′
i T

b′
j = δi j − μiμ j.

35 Here, we use a hat notation to distinguish the modified vielbeins and connections from those corresponding to their
2D symmetric space versions, which satisfy:

dea + ωab ∧ eb = 0 , dea
′
+ ωa′b′ ∧ eb′ = 0.

35



J. Phys. A: Math. Theor. 55 (2022) 014004 M Heydeman et al

We may now write the reduced gravitational action explicitly after dropping a total
derivative on χ:36

S2D,metric =
2π
κ2

∫
d2 x

√
−g

(
χR+

2r0√
χ
− 1

6
χ

5
2

r0
Hi
abH

ab
i

)
. (4.31)

Our ansatz for F in the distorted case is a term which generalizes the constant flux
background by the inclusion of the dilaton; in local coordinates it is

F̂ab = −
√
2
r0
χ
εab. (4.32)

As we will explain shortly, fixing the field strength in the near-horizon region is well motivated
and we do not need to be concerned with quantum fluctuations of the U(1) gauge field around
this saddle. Thus, such a mode will not contribute to the Euclidean path integral when studying
black holes in the canonical ensemble.

Once we expand around the near extremal background, this will have the effect of introduc-
ing a cosmological constant term. Additionally, we will perform theWick rotation to Euclidean
time, which will give the gravitational path integral an interpretation as a statistical partition
function. In total, the reduction of the 4D bosonic Euclidean action becomes:

S(bosonic)2D = −2π
κ2

∫
d2x

√
g

(
χR+

2r0
χ1/2

− 2r30
χ3/2

− 1
3
χ5/2

r0
trSU(2)HabH

ab

)
.

(4.33)

This is the bosonic part of a more complicated 2D dilaton supergravity, see for example [91].
This model is difficult to quantize directly, so we must make use of the near extremal condition
in order to make contact with an extension of the JT model. To do this, we expand the dilaton
to first order around the extremal squared radius, with a multiple of GN to obtain a convenient
normalization:

χ(x)
GN

=
r20
GN

+ 2Φ(x)+O
(
GNΦ

2

r20

)
. (4.34)

To this order, the action becomes

S(bosonic)2D = −
∫
d2x

√
g

[
r20
4GN

R− 1
12

r40
GN

trSU(2)HabH
ab+

Φ

2

(
R+

2
r20

− 5
6
r20 trSU(2)HabH

ab

)]
.

(4.35)

The first term does not involve the dilaton, and is proportional to the Euler characteristic
once we restore the Gibbons–Hawking–York boundary term containing the extrinsic curva-
ture. This term thus sets the extremal entropy, and this will remain true independently of how
we supersymmetrize the model. Thus, we find:

S0 =
πr20
GN

= πQ2, (4.36)

36 Once we pass to the first order formalism in terms of the vielbein and spin connection, it is no longer generally true
that integration by parts is valid due to the presence of torsion. In this dimensional reduction, all derivative terms on
the dilaton χ are true total derivatives, independent of torsion.
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which is precisely the extremal entropy of equation (4.9).
To make contact with the bosonic part of the BF description presented in section 2.1, we

must introduce Lagrange multiplier fields for this gauge field. This is a scalar field bi trans-
forming in the adjoint of SU(2); we will additionally look for a form of the BF coupling ibiHi.
In a large r0 expansion, this part of the action becomes:

S(bosonic)2D ⊃ −i
∫

trSU(2)bH +

∫
d2x

√
g
3GN

2r40

(
1+O

(
GNΦ

r20

))
bib

i. (4.37)

We see the quadratic terms in bi are suppressed by large powers of the extremal radius, so in the
large mass near extremal limit (r0 � 1/G1/2

N ), the effective description is the unit normalized
BF theory for SU(2).37 Consequently, the dimensionally reduced bosonic part of the action is

S(bosonic)2D = S0 −
1
2

∫
d2x

√
gΦ

(
R+

2
r20

)
− i

∫
trSU(2)bH +O

(
GN

r20

)
.

(4.38)

This has the form of the standard JT bulk term plus a decoupled BF term. This matches the
fact that the extremal AdS2 × S2 metric possesses SL(2,R) × SU(2) as bosonic symmetries.
Of course, to the action (4.38), one in principle has to add the GHY term and the boundary
term for the SU(2) gauge field. Nevertheless, since the correct boundary term was derived in
directly in the first order formalism in section 2.1, we will solely discuss the matching of bulk
terms in this section.

Our next goal is to restore the appropriate fermionic terms to the 2D action. Kaluza–Klein
supergravity reductions on spheres are important for the AdS/CFT correspondence, but per-
forming this procedure for the full, consistent, nonlinear supergravity is somewhat more
involved than what we will attempt here38. Rather than performing a full Kaluza–Klein reduc-
tion, we will instead derive only the terms that are linear (or less than linear) in the dilaton Φ.
Higher powers ofΦwill come suppressed by factors ofGN/r20 (i.e. similar to the higher powers
in Φ in (4.38)) and can thus be neglected for sufficiently large black holes.

The basic fermion which must be included is the 2D gravitino. To ultimately match
PSU(1, 1|2) BF theory, which naturally uses complex fermions, we will use the Dirac for-
mulation of N = 2 supergravity as discussed above. After dimensional reduction on S2, the
Dirac gravitinos ψα

μ , ψμα will transform in the 2 and 2 representations of the SU(2) symmetry,
which in this section, is parametrized by the spinor index α = 1, 2. The form of the gravitinos
follows from the standard Kaluza Klein ansatz Ψμ ∼ ψα

μηα, where ηα is a Dirac spinor which
solves the angular equation (4.18), i.e. just the S2 Killing spinor equation.

The angular solution is given by taking only the angular part of (4.21) and (4.22) in terms
of constant ηα spinors. A similar relation holds for the dilatino λα, λα which come from the
S2 vector components of the gravitino39.

The standard gravitino kinetic term ψμαγ
μνρDνψ

α
ρ vanishes in two dimensions. This is

related to the Einstein–Hilbert term R being a topological invariant, and the supersymmet-
ric variation of this is automatically zero. The basic term arising from dimensional reduction

37 Onemay worry that in integrating out the gauge field, the dilaton coupling leads to a divergent one-loop determinant.
There are various ways of addressing this, we refer the reader to [16].
38 One typically needs extra massless fields in higher dimensions, transgression terms in the KK ansatz, and higher
order terms in fermions. For a review of some of the developments on this front, see [84, 90, 92, 93].
39 Some details of this are given for the asymptotically AdS4 case in [60].
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after choosing the correct normalization for fermions and dropping higher order terms in r0
and the dilaton fields is:

S2D ⊃ 2i
∫

d2x εμνλαDμψνα,+h.c. (4.39)

for Dμ a suitable gauge supercovariant derivative whose form we will address directly in
the first-order formalism40. The next fermionic term, arising from the dimensional reduction,
couples the dilaton Φ to the 2D gravitinos ψ and ψ. Such a term comes from the 4D terms
−ΨIMΓ

MNPDNΨ
I
P +

εIJ

2
√
2
ΨM
I (FMN + i �FMNΓ5)Ψ

N
J in the full supergravity Lagrangian (4.2).

After passing to the Dirac spinors ΨM = Ψ1
M + iΨ2

M , the resulting term in the 2D action is

S2D ⊃
∫

2
r0
Φ (ψα ∧ ψα), (4.40)

with all higher powers in Φ suppressed by factors of G1/2
N /r0. The final term that involves

quadratic fermionic terms couples ψ and ψ to the SU(2) field strength H arising from the KK
reduction. Such a term arises from the dimensional reduction of−ΨIMΓ

MNPDNΨ
I
P by using the

dependence of the 4D spin connection on the field strengthH (see appendix B), again dropping
higher order terms. After integrating-in the zero form field b, the 2D gravitinos then couple to
b instead of to the field strength H, resulting in the term

S2D ⊃ i
∫

bi

r0
ψα(γ ′

3)(σ
i)αβ ∧ ψβ. (4.41)

In principle integrating-out b generates a four gravitino term, which is suppressed in r0 and can
be absorbed in a shift of the four gravitino termwhichwe have only schematicallywritten in the
action (4.2). Because such higher power fermionic terms are suppressed by factors of G1/2

N /r0
we will not be concerned with them when computing the linearized gravitational action.

We can now put together the bosonic and fermionic terms discussed above. In passing to
the first order formulation, ωab

μ will be promoted to a dynamical variable. Additionally, we
will introduce standard one-form notation for all fields, ea = eaμ dx

μ, etc. We can now also now
move to working in Euclidean signature, for whichwewill use the appropriate gammamatrices
γ ′a, as outlined in appendix B. In terms of these, the first order bulk action (which will soon
need to be modified) is:

S2D ⊃ −
∫

Φ

(
dω +

1
2r20

εabe
a ∧ eb − 2

r0
ψα ∧ ψα

)
+

i
2
bi

(
Hi − 2

r 0
ψα(γ ′

3)(σ
i)αβ ∧ ψβ

)
− 2iλDψ + h.c., (4.42)

up to orders of O(GN/r20) which we have neglected. Here, the supercovariant gauge exterior
derivative is

Dψα = dψα +
1
2
ωγ ′

3 ∧ ψα − 1
2r0

γ ′
3γ

′
ae
a ∧ ψα + iBi(σi)αβ ∧ ψβ. (4.43)

The problem with the action (4.42) is that there is nothing to ensure the vanishing of the tor-
sion tensor which has bosonic part τ a = dea + εabω ∧ eb. In deriving equation (B.15), this was

40 Such a term is natural in the generalization of JT theory to include a supercurvature [66, 94, 95].
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implicitly assumed. Additionally, in supergravity, it is only the supertorsion which vanishes.
This will be remedied by introducing extra Lagrange multipliers to fix the supertorsion con-
straint explicitly. Therefore, we can add to the action an additional term

∫
φaτ

a, where φa are
new scalars.

The various one-forms and scalars can now be collected into super-multiplets as:

(ω, ea,Bi,ψα,ψα), (Φ,φa, bi,λα,λα), (4.44)

which we recognize as the matter content of equations (2.3) and (2.4), respectively.
Thus, after adding the super-torsion terms, the total linearized (in the dilaton) action arising

from the dimensional reduction is41:

S2D = −
∫
Φ

(
dω +

1
2r20

εabe
a ∧ eb − 2

r0
ψ̄α ∧ ψα

)
+ i

φa
r0

(
dea + εabω ∧ eb − 2 ψ̄αγ

′a ∧ ψα
)

+
i
2
bi

(
Hi − 2

r0
ψ̄α(γ

′
3)(σ

i)αβ ∧ ψβ

)
−

[
2iλαDψ̄α + h.c.

]
, (4.45)

where the indexα is an SU(2) index and the fermionic indices are contractedwith the Euclidean
gamma matrices γ ′

a defined in appendix B.
Comparing (4.45) to the N = 4 JT gravity action (2.5) with Λ = 2/r20, one finds an exact

match after some simple field redefinitions having to do with the reality of dilaton and the
choice of basis for the gammamatrices42. Before proceeding to obtain the full partition function
of such black holes by using the results from section 3, we first address two subtleties about
the dimensional reduction: how to obtain the boundary conditions presented in section 2.1,
and why other KK modes (besides the massless KK modes we have included thus far) do not
contribute to the partition function in a significant way.

4.4. Subtleties about the dimensional reduction

Before presenting the final results regarding the near-extremal spectrum of black holes in these
supergravity theories, we will mention some subtleties and clarifications about the dimensional
reduction.
Boundary conditions
This paper aims to perform the path integral in the 4D geometry by separately analyzing the
near-horizon contribution and the far away (asymptotically flat) region. The far away contri-
bution is trivial, but importantly propagating the boundary conditions from infinity to the edge
of the throat, we can derive the boundary conditions we should impose on the fields living in
AdS2 [22, 27]. We will argue that the boundary conditions derived in this way are the same as
the one used in section 2 to analyzeN = 4 super-JT.

This exercise has been done for the metric appearing in JT gravity and for the dilaton. We
will follow the presentation of [7]. The throat and far-away regions are separated by an arbitrary
curvewith fixed dilaton valueχb, fixed intrinsic boundarymetric hττ = 1/ε2 and proper length
� =

∫ √
h = βL2/ε, where L2 is the AdS2 radius. Curves of constant dilaton are fixed at some

41 Alternatively, one can obtain (4.45) by restoring the N = 4 supersymmetry for the 2D bosonic action obtained in
(4.38).
42 In order to impose that the PSU(1, 1|2) connection is flat the fieldΦ should be integrated along an imaginary contour,
thus identifying Φ = iφ0.
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radial distance r0 + δrbdy, with rbdy = L22/ε. Looking at the extremal solution in the far-away
region we can derive the boundary condition for the dilaton Φb = Φr/ε with

Φr =
r0L22
GN

.

In our case the AdS2 radius is L2 = r0. The definition of Φr through the dilaton boundary
condition agrees with the one used in section 2, and this calculation relates it to 4D quantities.

Next, we can analyze the SU(2) gauge field boundary condition. We will derive this indi-
rectly in the following way, ignoring for now its coupling to other fields. In [7] we integrated
out the 2D gauge field everywhere.We can see from the exact solution which boundary condi-
tion should be chosen in the throat in order to reproduce the angular-momentum dependence
of the partition function. This gives the mixed boundary condition between the zero-form bi

and the field strength Bi: δ(2iΦrBτ − b)|NHR bdy = 0. To prove this, we can consider the clas-
sical solution for the SU(2) gauge field, in the region far-away from the horizon. We fix the
holonomy of the gauge field h = P exp

(∮
r→∞B

)
= exp(i2πασ3) at the asymptotic boundary,

with α ∼ α+ 1. Following appendixA in [7], we will work in a gaugewhere Br = 0, to obtain
the general solution for the zero-form field b and the gauge field B:

B = i
2παT3

β

(
1+

C
r3

)
dτ , Hrτ = −i6παT

3

β

C
r4
, b =

4πC α T3

β
,

(4.46)

where C is an undetermined constant. Solving for C, at the boundary that separates the near-
horizon region from the asymptotic region we find that Bτ and b are related as

Bτ =
2πiαT3

β
+
ib �2Pl
r3

=
2πiαT3

β
+

ib
2Φr

. (4.47)

Thus, the boundary condition which we want to choose for the SU(2) field is

δ (2ΦriBτ − b) = 0, (4.48)

which is consistent with the boundary condition in N = 4 super-JT gravity discussed in
section 2.2, given that τ ∼ τ + β in both the diffeomorphism gauges of (2.6) and for the
Euclidean black hole metric. From a 4D perspective, the boundary holonomy of the SU(2)
gauge field is proportional to the boundary angular velocity Ω ∼ iα/β.

Next, we mention why we could fix the flux of the U(1) gauge field in the near-horizon
region when working in the canonical ensemble. In such a case, the field strength (and not
the gauge field itself ) is fixed as r→∞. Once again, we can study how this happens by solv-
ing the equations of motion in the far-away region. The general solution takes the same form
as (4.47) for non-abelian SU(2) gauge fields; however, since we now fix the field strength at
r→∞ the constant C in (4.47) is also fixed. Therefore, the field strength is completely fixed at
r = r|NHR bdy, instead of fixing the linear combination (4.48) as in the case of the SU(2) gauge
field. Since no massless field in the gravity, sector is charged under the U(1) gauge field, one
can integrate-out the 2D gauge field exactly and work in a sector of fixed charge. Since there is
no temperature-dependent one-loop determinant when integrating out this field, the computa-
tion simply amounts to replacing the field strength in the near-horizon region with its classical
values. Thus, this motivates our dimensional reduction in section (4.3), where the U(1) gauge
field was absent from all supermultiplets.
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Finally, we will choose boundary conditions in the asymptotically flat space region for
the fermions to vanish. Then it is reasonable to impose the same boundary condition in the
boundary of the throat. This is also consistent with the choice made in section 2.2.

Massive KK modes
Performing the reduction in the previous sections, we have identified the massless
Kaluza–Klein modes in the spectrum when reducing the supergravity sector of the 4D the-
ory to 2D. We have ignored so far the contribution from towers of massive KK modes or other
matter fields present in 4D. The reason is that they do not affect the temperature dependence
of the partition function to leading order [7].

The first step to see this is to realize that in the throat, all interactions are suppressed by
factors of S0. This means that in AdS2 besides having the JT mode, we have a tower of free
fields to integrate out. Let us begin with the case of massless fields in 2D, which arise from
an s-wave reduction of a massless field in 4D. We can couple it to JT and integrate it out. The
answer has the following form

log Zm=0 = δE0β + δS0 +O(ε, β−2), (4.49)

where δE0 ∼ 1/ε and δS0 ∼ log L2. The shift in energy is divergent and can be removed by
a counterterm. The parameter δS0 simply shifts the overall prefactor of the partition function
eS0 → eS0+δS0 . Since L2 ∼ r0 this correction is logarithmic in the extremal area. The terms
of order ε include couplings between matter and gravity, through the Schwarzian mode [96].
They are multiplied by a factor of the cut-off ε and therefore suppressed. Any other correc-
tion is further suppressed at low temperatures. The same conclusions are true for massive
fields, and their contributions have the same structure as (4.49), producing only a shift of S0.
Finally, we can ask what happens when we integrate out a tower of massive KK modes com-
ing from dimensionally reducing an individual field in 4D. This has been studied extensively
by Sen and collaborators [33–36]. The answer always has the form (4.49) and, in general,
δS0 ∼ log S0 with a prefactor depending on the 4D matter spectrum.

The only exception to this rule are dimensional reductions of extra gauge fields in 4D.
They reduce to gauge fields in 2D that can affect the temperature dependence in general.
Nevertheless, one can focus on boundary condition of fixed charge for all these fields. This
choice makes their contribution trivial, and temperature independent43.

4.5. The black hole spectrum

We can now put all results together. We argued the temperature dependence of the partition
function of the near-extremal black hole is captured by N = 4 super-JT gravity, and in the
previous sections, we precisely solved this theory. By matching boundary conditions, we have
found the parameters of the JT theory in terms of their 4D origin

S0 = πQ2, Φr =
√
GN Q

3. (4.50)

We are looking at the spectrum at fixed U(1) charge and, therefore, these are fixed param-
eters. To extract the near-extremal black hole spectrum, we can use this identification in
equations (3.45) and (3.46). In these expressions, the parameter J is interpreted as the black
hole angular momentum in 4D.

Since this spectrum was already analyzed in the introduction, so we will not repeat it here.
The main features we want to point out are the following. If we look at states with zero angular

43 An explanation of this is given in [7].
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momentum, we find a large extremal degeneracy and the presence of a mass gap in the black
hole spectrum, given by

Degeneracyof extremalBH = eπQ
2
, Egap =

1
8
√
GN Q3

. (4.51)

Moreover, our analysis in section 3.4 shows that all extremal states are bosonic, and therefore
a calculation of the index would match with the black hole degeneracy.

We can also look at other angular momentum sectors. The correction to the extremal energy
we find when we turn on rotation is given by

Eext(J) =
J2

2Φr
=

J2

2
√
GN Q3

,

which is measured with respect to the J = 0 extremal mass M0 = Q/
√
GN . This expression

matches the expectation from 4D gravity: if we start with the Kerr–Newman metric, take the
extremal limit withQ �= 0 J �= 0, we obtain precisely this correctionwhen expanded to leading
order in small J. Interestingly, we find the delta function giving the large extremal degener-
acy at J = 0 disappears at J �= 0. This makes sense since extremal black holes with J �= 0 do
not preserve any supersymmetry, and they resemble the results in non-supersymmetry gravity
in [7].

Another interesting aspect of the theory is that the supersymmetry in the throat relates the
heat capacityΦr of the black hole to a very different quantity

(
∂J
∂Ω

)
T=0,Ω=0

= Φr, whereΩ is the
black hole angular velocity. In non-supersymmetric theories, these are independent quantities.
Moreover, by measuring the dependence of the angular momentum with the angular velocity
at zero temperature, we can also determine the gap in the spectrum (since it is controlled by
the heat capacity Φr). We comment on this in section 3.5 as well.

Finally, if we decide to fix the metric in the asymptotically flat region and fix the angu-
lar velocity to vanish, it is equivalent to fixing the SU(2) chemical potential to zero. With
this choice we can use the exact results (3.45) and (3.46) for the black hole spectrum to
analyze how quantum corrections affect S(T ) and E(T ) when α = 0. The results are shown
in figure 4. At large temperatures, the results above match the semiclassical result. At low
temperatures, both the energy and the entropy behave exponentially as E(T) ∼ e−1/(8TΦr) and
S(T) ∼ S0 + e−1/(8TΦr). This behavior is dictated by the fact that there is an actual gap in the
spectrum.

5. Near-BPS black holes in AdS3

In this section, we will describe near-extremal near-BPS black holes in theories of supergravity
in AdS3. We show, in some cases, the theory again reduces toN = 4 super-JT near the horizon.
In those cases, gravity predicts a large extremal entropy and a gap. We will mention concrete
examples in string theory where this is relevant, and both the extremal states and the gap can
be accounted for using D-brane techniques.

5.1. (4, 4) supergravity in AdS3

We will summarize features of supergravity in AdS3 and compute the partition function with a
torus boundary.We will focus on the case withN = (4, 4) supersymmetry. These cases appear
in string theory constructions that we will describe in the next section. We will also mention
some features of theories withN = (4, 0) in the end.
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Figure 4. Plot of the entropy and energy dependence on temperature for near-BPS black
holes in N = 2 ungauged supergravity. The black curves represent results obtained
from the naive semiclassical computation while the red curves account for quantum cor-
rections. The inset figures zoom in on the temperature range smaller than Egap where
quantum corrections become important. Both the entropy and energy approach zero
temperature as #+#e−Egap/T while in the semiclassical analysis, they approach zero
temperature as #T and #T2, respectively.

When these theories are obtained from a dimensional reduction of six-dimensional super-
gravity on AdS3 × S3 we have a specific spectrum of matter and gauge fields coupled to gravity.
In the near extremal limit, we already saw that as long as we pick boundary conditions with
fixed charges for gauge fields, both them and the matter fields do not affect the partition
function’s temperature dependence [7]. Therefore, in this section, we will focus on the pure
supergravity sector on AdS3. We will also give an argument for this fact near the end combining
AdS3/CFT2 with the modular bootstrap (which is a supersymmetric version of [37]).

Theories of supergravity in AdS3 appearing in dimensional reductions of string theory can
be written as a difference between two Chern–Simons theories [97]. We will follow the pre-
sentation in [98]. Generally for a set of left and right moving symmetry groups GL × GR we
can define a gravity theory through the following action

IGL×GR =
k
4π

∫ (
A∧ dA+

2
3
A ∧A ∧A

)
− k

4π

∫ (
Ā ∧ dĀ+

2
3
Ā ∧ Ā ∧ Ā

)
, ,

(5.1)

where A is a connection for GL and A a connection for GR. We will begin studying the
N = (4, 4) case, which corresponds to GL × GR = PSU(1, 1|2)L × PSU(1, 1|2)R. Expanding
the gauge connection essentially involves two copies of the expansion performed in section 2.1
for BF theory.

The field content is a three-dimensional metric, a set of gravitini, and a SU(2)L × SU(2)R
Chern–Simons gauge field with level k. The action in terms of these fields can be found adapt-
ing the analysis of [99], for example. The metric part of the action in second-order formalism
can be written as

IGL×GR ⊃ 1
16πG3

∫
d3x

√
g

(
R+

2
�2

)
, (5.2)

where � is the AdS3 radius andG3 the three-dimensional Newton constant. The Chern–Simons
level is given by k = �/(4G3). The fact that this is also a level of SU(2) implies k is quantized.
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To study this theory in asymptotically AdS3 we consider a supersymmetric generalization
of the Brown–Henneaux boundary conditions [100]. The asymptotic symmetries in the (4, 4)
case are given by two copies, left and right moving, of the small N = 4 Virasoro algebra.
The generators of the bosonic Virasoro algebra are Ln, with integer n. The generators of the
fermionic symmetries are Ga

r where a = 1, 2 transforms in a double of SU(2) and r can be
an integer (R-sector) or half-integer (NS-sector). Finally there is an SU(2) current algebra at
level k generated by Tin, with integer n and i = 1, 2, 3 in the adjoint of SU(2). The commutation
relations were already written down above in equations (3.21)–(3.24) and we will not repeat
them here. The central charge of the algebra is c, and it is related through supersymmetry to
the level k of the SU(2) algebra by c = 6k.

We will be interested in computing the partition function on three dimensional surfaces with
torus boundaries

ds2 = dτ 2 + dϕ2, (τ ,ϕ) ∼ (τ ,ϕ+ 2π) ∼ (τ + β,ϕ+ θ). (5.3)

We take the moduli of the torus to be q = e2πiτ and q = e−2πiτ , where

τ =
θ + iβ
2π

=
iβL

2π
and τ =

θ − iβ
2π

= − iβR

2π
, (5.4)

and it will be useful to think in terms of left and right moving temperatures. We also con-
sider fixing the boundary chemical potential for the SU(2) Chern–Simons field. We denote
its fugacity by z associated to the left-moving charge T3

0 and z for the right-moving charge T3
0.

Finally, we can pick the left- and right-moving fermions to be in the NS or R sector. In terms of
AdS/CFT, the partition function with these boundary conditions can be interpreted as a trace
over a CFT2 Hilbert space as

ZNS/R–NS/R = TrNS/R–NS/R

[
qL0−

c
24 qL0−

c
24 zT

3
0 zT

3
0

]
, (5.5)

and we have four possible partition functions.
Pure AdS3: to begin, we start with considering the pure AdS3 solution of this theory, and

the fermions in the NS sector. In the bosonic case, the path integral of pure gravity including
quantum fluctuations around this geometry can be exactly computed and it is one-loop exact
[101]. An analogous argument applies for the supersymmetric generalizations considered here.
The answer for the path integral around AdS3 is given by the product of left- and right-moving
vacuum super-Virasoro characters

ZNS–NS = χN=4
id,NS(q, z)χ

N=4
id,NS(q, z). (5.6)

These characters were computed by Eguchi and Taormina [76] and are given by the following
expression in the NS sector

χN=4
id,NS(q, z) = q−

k−1
4
iθ3(q,−z)θ3(q,−z−1)

η(q)3θ1(q, z2)

[
μ(z, q)− μ(z−1, q)

]
, (5.7)

where θ3(q, z) is the Jacobi theta function and we defined the function

μ(z, q) ≡
∑
n∈Z

q(k+1)n2+nz2(k+1)n+1(
1− zqn+

1
2

)(
1− zqn+

1
2

) . (5.8)

The characters in the Ramond sector can be obtained by a simple replacement z→ zq1/2. A
similar expression applies for the right-mover sector.
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BTZ: now we can consider quantum fluctuations around the BTZ solution. Classically, the
metric is parametrized by an energy E and angular momentum P (for simplicity we turn off
the SU(2) fields now whose generators are denoted above by Ti). The metric is given by

ds2 = f dτ 2 +
�2 dr2

f
+ r2

(
dϕ− i

r+r−
r2

dτ
)2
, f =

(r2 − r2+)(r
2 − r2−)

r2
,

(5.9)

where some useful thermodynamics quantities given in terms of the inner and outer horizon
radii rpm are given by

E =
r2+ + r2−
8G3�

, P =
r+r−
4G3�

, T =
r2+ − r2−
2π�r+

, S =
2πr+
4G3

. (5.10)

The chemical potential for the momentum along the circle is θ = i 1T
r−
r+
. For simplicity we will

work with a boundary torus with all chemical potentials fixed (both for rotation and SU(2)
charges). The partition function including quantum effects around the BTZ solution with these
boundary conditions can be obtained from the pure AdS result (5.6) by a modular transforma-
tion. We will be interested in the R–R sector since the fermion becomes periodic in spatial S1

and supersymmetry is preserved in the throat. The final answer is

ZR–R = e2πik
z2
τ −2πik z

2
τ χN=4

id,NS(q
′, z′)χN=4

id,NS(q
′, z′), (5.11)

where we take into account that the modular transformation exchanges sectors and

q′ = e−2πi/τ , z′ = e2πiα/τ , q′ = e2πi/τ , z′ = e2πiα/τ , (5.12)

where α is the chemical potential for the SU(2). In the next section we will use these expres-
sions in the near extremal near-BPS limit. The origin of the first two factors is explained in
section 5 of [77]. We can rewrite this answer as follows in a more transparent way

ZR–R =
∑
n,̄n∈Z

Zn,̄none-loope
iπk
2τ (1−4(α+n)2)− iπk

2τ̄ (1−4(ᾱ+n̄)2), (5.13)

where the one-loop determinant is

Zn,none-loop =

∣∣∣∣∣∣∣∣
(1− q′)
η(q′)

z′2n
(
q
′
(

1
2+n

)2

z′ − q
′
(

1
2−n

)2

z′−1
)

θ1(q,−z′2)

× θ23(q
′,−z′)

η(q′)2
(
1− z′q′n+

1
2

)2(
1− z′−1q′−n+

1
2

)2

∣∣∣∣∣∣∣
2

. (5.14)

This way of rewritten the product of vacuum characters shows that the answer is given by a
sum over saddles labeled by integers n and n, with each contribution having a classical action
written in (5.13) and a one-loop determinant (5.14) given by the product of the graviton, SU(2)
Chern–Simons and gravitino contributions.
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Preserving only (4, 0) SUSY: this theory is also given by a combination of Chern–Simons
actions with group GL × GR = PSU(1, 1|2)L × (SL(2,R)× SU(2))R. In the (4, 0) case, we
have as asymptotic a small N = 4 Virasoro algebra for left-movers and a bosonic Virasoro
and an SU(2) Kac–Moody algebra for the right-mover. The expressions for the partition func-
tions look similar to the cases above, but the right-moving character has to be replaced by the
bosonic ones.

5.2. Near-BPS near-extremal limit

In this section, we will consider a near-extremal rotating black hole state, for the theory
considered in the previous section, at fixed SU(2) charges.

We will take the limit directly for the exact pure gravity result. If matter is present, we need
to be more careful, divide the geometry into the throat and far-away region, and dimensionally
reduce in the throat to N = 4 super-JT. To simplify, we also assume we pick fixed charge
boundary conditions for any other gauge field that is not in the gravity sector. Then for the
same reasons as in 4D [7] the temperature dependence of the partition function is given by the
N = 4 super-Schwarzian.

Using AdS3/CFT2, we can give another perspective of this universality using the modular
bootstrap: in the near-extremal limit, the vacuum block in the modular-dual channel dominates
up to corrections suppressed by the twist gap [37].44 This is a special case of the extended
Cardy regime studied for example in [103].

We will be interested in the following limit. First, we take large βR → 0. The ensemble is
then dominated by black holes with a very large spin P > 0.45 Second, we take large k � 1 so
that the gravity description in the bulk is accurate. Finally, we take βL ∼ k � 1, which implies
that we are looking at very low temperatures or states with E ∼ P. Since the state without
left-moving excitations preserves supersymmetry, this is also a near-BPS limit [104].

We will follow the calculation first in the fixed βL, βR ensemble. As explained in [37] when
taking this near-extremal limit we can inverse Fourier transform to obtain fixed P ensem-
ble by basically replacing βR → 2π

√
c/(24P) and βL → 2β at the end of the calculation.

We also keep the left-moving SU(2) chemical potential α fixed in this limit, and consider
zero right-moving charge. Either taking the limit of the character or doing the reduction, the
near-extremal near-BPS limit of the partition function is

ZR–R(β,α) ∼ e2π
√
kP
∑
n∈Z

β

k
cot(πα)(α+ n)
(1− 4(n+ α)2)2

e
π2k
2β (1−4(n+α)2). (5.15)

We will not repeat the calculation here since it is completely analogous to section 3.2.2. The
first term e2π

√
kP comes from the right-moving identity character which is basically evaluated

in the usual Cardy limit, since q′ → 0. The rest comes from the evaluation of the left-moving
identity character, in the limit q′ → 1.

The parameters describing the near-extremal near-BPS effective theory analyzed in
section 3 are given in terms of the level k and the angular momentum P, by

S0 = 2π
√
kP, Φr =

k
4
. (5.16)

44 If extra currents are present, they are easy to take into account and in the near-extremal limit looking at states where
their charge is fixed, their fluctuations are frozen (this can be derived using results in [102]).
45 For the opposite orientation, we can take βL → 0 then we have large P < 0.
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Taking the inverse Laplace transform of this, we obtain the same density of states as theN = 4
super-Schwarzian theory with these parameters. In particular, we find a large degeneracy of
BPS states given by e2π

√
kP, we find a gap to the first excited black hole state Egap = 1/(2k),

and this predicts the index matches with the black hole degeneracy.
This can be easily generalized to cases with non-zero SU(2)R charge T3

0 = JR. In this cases
states with T3

0 = 0 are still BPS and the contribution from the right-moving sector replaces
S0 → 2π

√
kP− J2R. With this modification, the spectrum as a function of temperature and

SU(2)L chemical potential is still given by (5.15), controlled by theN = 4 super-Schwarzian.

Alternative construction—preserving (4, 0) SUSY: in this case we obtain a similar con-
clusion for βR → 0 and large βL. The difference now is that we can take instead βL → 0 and βR

large. This extremal limit breaks supersymmetry since the right-moving sector of the theory is
purely bosonic. Therefore, we expect that in this case, the black hole spectrum has, to leading
order, no extremal states and no gap, similar to [37] (or [7]).

5.3. Comparison to string theory constructions

In this section, we will very briefly mention some string theory constructions using D-branes
that can be dimensionally reduced to the AdS3 supergravity theories studied above.

For example, take type IIB string theory compactified on M4, being either T4 or K3.
We consider the D1–D5 system, which at low energies can be described by either a (4, 4)
2D superconformal field theory or supergravity on AdS3 × S3. Compactifying down to AdS3
gives the (4, 4) supergravity theory we studied above. The bosonic part of the spectrum
is a 3D metric on AdS3, and a gauge symmetry coming from the S3 factor in the metric
SO(4) ∼ SU(2)L × SU(2)R separated into left- and right-movers. For the reasons explained
in the previous section, we expect the presence of other fields to leave the conclusions below
unchanged. For this theory, we can derive the level of the SU(2) current algebra by matching
the chiral anomaly

k = Q1Q5 for T4, k = Q1Q5 + 1 for K3. (5.17)

For concreteness, we look at the T4 case below.
So far we have vacuum AdS3. We can add some momentum P along the D1-string direc-

tion, which is identified in the BTZ gravitational description with the angular momentum P
defined above [105]. The BPS extremal states correspond to no left-moving excitations of the
string. Looking at low temperatures we have a near-extremal near-BPS black hole string with
AdS2 × S1 × S3 horizon. The parameters of the effective low-energy AdS2 theory from the
microscopic model is

S0 = 2π
√
Q1Q5P, Φr =

Q1Q5

4
. (5.18)

Using our solution we see we have eS0 states at extremality, consistent with [6]. Our analysis
also explains why the index matches with the black hole degeneracy. This can be easily gener-
alized to near BPS states with non-zero SU(2)R charges corresponding at zero temperature to
BPS black holes with angular momentum in S3 [51].

From our gravitational analysis giving the low-temperature dependence of the partition
function, we have also derived the gap to the first excited black hole, and it is Egap = 1/(8Φr).
In terms of the microscopic model parameters, it is

Egap =
1

2Q1Q5
. (5.19)
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This answer matches with the string theory approach from [4]. From this perspective, the
extremal black hole states come from counting string configurations at the brane system with
only left movers. The lowest energy excitation comes from the first excitation of long strings
wound Q1Q5 times along the branes.

Alternative construction—black holes in type I string theory:we can also analyze a sim-
ilar model in type I string theory instead of type II.We consider a D1–D5 brane system but now
the supergravity theory emerging in AdS3 has (4, 0) supersymmetry [106, 107]. When we have
an extremal black hole made out of right-movers, we expect the spectrum near-extremality
to be analogous to the N = 4 super-Schwarzian. On the other hand, when the extremal
black hole is made out of left-movers, supersymmetry is broken, and the near-extremal
spectrum will look like the non-supersymmetric cases studied in [37] or [7].

Finally, there are other interesting compactifications which we do not analyze in this paper,
but whose role we briefly mention in the discussion section.

6. Discussion

In this paper, we have defined and solved N = 4 super-JT gravity. We show it reduces to a
N = 4 generalization of the Schwarzian theory, which can be exactly solved. We argue that
this theory captures the temperature-dependence of the gravitational path integral evaluated
around near-extremal black holes in higher dimensions.We showed that bothN = 2 ungauged
supergravity in 4D flat space and (4, 4) supergravity in AdS3 reduce to N = 4 super-JT in
the near-horizon region of near-extremal black hole backgrounds. We found a gravitational
explanation of the large extremal black hole degeneracy and for the presence of a gap in the
spectrum. Thus our work addresses the strong tension between the non-supersymmetric results
of [7] and past micro-state countings in string theory [6].

We finish here with some open questions and future directions:

Generalization to other black holes in AdS
While in this paper, we have focused on near-BPS black holes in 4D N = 2 supergravity in
flatspace or in (4, 4) supergravity in AdS3, there are numerous other near-extremal black hole
solutions which are of interest in the AdS/CFT correspondence46.

The first near-BPS solutions which we have not fully analyzed are those on AdS3 × S3 ×
S3 × S1 [109]. The special feature about this compactification is that the extremal solution
exhibits a largeN = 4 symmetry, with SU(2)k × SU(2)k′ × U(1) current algebra. It would be
interesting to analyze the 2D theory emerging in the throat for near-extremal near-BPS black
holes. In this case, the symmetry of the boundary mode is now D(2, 1,α). We do not yet know
how to study this version of the N = 4 Schwarzian theory, and we hope to address such a
construction in future work.

We would also like to briefly mention the existence of near-BPS solutions in higher dimen-
sional AdS. Extremal black holes in such theories typically preserve a smaller amount of
supersymmetry; for instance, in AdS4, such black holes exhibit an OSp(2|2) isometry in the
near-horizon region. The effective theory capturing the breaking of OSp(2|2) was found to be
N = 2 super-JT gravity [60] and the boundary dynamics is analogously given by the N = 2
super-Schwarzian (whose properties we have reviewed in appendix A). As we explain in
appendix A, theN = 2 super-Schwarzian has a gap depending on the value of q̂ (which gives

46 Similar considerations are also useful in computing quantum corrections to the Hartle–Hawking wavefunction in
dS [108].
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the periodicity of the identification of theU(1) field σ) and onwhether or not the theory exhibits
an anomaly (related to how we weigh the different saddles in the path integral). Thus, to con-
clude whether near-BPS black holes in such a theory exhibit a mass gap, we need to perform a
rigorous analysis to account for all possible massless Kaluza–Klein modes that can appear in
the near-horizon region, determine the analog of q̂ in supergravity and understand the situations
in which the action of the boundary mode can exhibit an anomaly.

One purpose for studying the partition function of near-BPS black holes from the bulk
perspective is to understand the gap in scaling dimensions between BPS and the near-BPS
states in the dual CFT. If we find that the effective theory which captures the near-horizon
dynamics exhibits a gap (as it did for the black holes in flatspace studied in this paper), then
this translates to a scaling dimension gap,Δgap ∼ 1/N2. It would be interesting to understand
whether this gap in scaling dimensions is consistent with predictions from the large charge
bootstrap [110] in SCFTs. Finally, in comparing the partition function on the CFT side to the
black hole partition function within a fixed large charge sector, there may be a mismatch com-
ing from configurations with multiple black holes. Thus, it would be interesting to understand
such corrections coming from multi-centered black hole solutions [46, 111–113].47

On a possible N = 4 SYK model
Another interesting possibility is whether there is a UV completion of the N = 4 super-
Schwarzian theory in some quantum mechanical models, along the lines of [59] forN = 1, 2.
To be more specific, we would like a random quantummechanical model, with a stable unitary
nearly conformal fixed point at low energies, with unbrokenN = 4 supersymmetry. A model
involving dynamical bosons typically causes instability and exhibits supersymmetry breaking
in the infrared (shown either as an operator with complex scaling dimension in the spectrum
as in [114, 115], or the absence of supersymmetric Dyson–Schwinger solutions as in [116,
117]), and is rather inconvenient to study at finite N. In fact, in such a theory with a supermul-
tiplet with (b,ψ, . . .), and in a supersymmetric nearly conformal fixed point, Δψ = Δb +

1
2 .

The Dyson–Schwinger equation of the dominant interaction in the infrared would constrain
the dimensions of various fields so that the sum of scaling dimensions of the fields in the inter-
action is one, i.e. nΔb + 2mΔψ + · · · = 1, with n,m ∈ Z�0. For the nearly conformal fixed
point to be unitary, we requireΔb,Δψ � 0. Together with the supersymmetric constraint, we
conclude the only non-trivial solutions possible is that

Δb = 0, Δψ =
1
2
. (6.1)

However, such a solution indicates that the two-point function of bmust be logarithmic and typ-
ically causes a divergence in the Dyson–Schwinger equations (or (6.1) ceases to be a solution
as in [118]).

On the other hand, we may consider a theory with a fermionic super-multiplet. This sce-
nario brings about yet another complication. Unlike the case of N = 1, 2, there is no relevant
deformation of the N = 4 that exists in the UV free theory. To see this, we can work in the
N = 4 superspace48, and the allowed action is

L ∼
∫

d2θW(Ψ)+ h.c.+
∫

d4θK(Ψ,Ψ), (6.2)

47We thank Moore for pointing out past works on this issue.
48 Here, we note that this argument does not rule out possible theories without any kind of superspace realization.
In particular, in one dimension one can consider a first derivative action in bosons as in [119], and this modifies the
supersymmetry constraint to Δb = Δψ . Thus it allows a greater number of relevant interactions.
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where schematically

Ψ = ψ + θb+ · · · , (6.3)

whereΨ can sit in any representation of SU(2) with half-integer J, and ψ is the lowest compo-
nent. As a result, any local interactionmust have dimension at least one due to

∫
d2θ . . . , which

implies that it cannot be relevant. This contrasts with the constructions ofN = 1, 2 SYK-like
models, where

∫
dθW(Ψ) is allowed and can produce relevant interactions. We can still ask

if it is possible to have a marginally relevant deformation. Even if this were the case, in the
infrared, a similar argument to (6.1) would suggest

Δψ = 0, Δb =
1
2
, . . . , (6.4)

which coincideswith the dimensions of the free theory. This analysis suggests that constructing
an interacting IR fixed point is difficult when starting from a UV theory with the same amount
of supersymmetry. Therefore, onemight be tempted to consider a scenario in which theN = 4
supersymmetry solely emerges in the IR and is not present in the UV.We leave amore thorough
investigation into these issues for future work.

Higher genus corrections to super-JT
Motivated by the existence of the gap in the leading density of states for the N = 2 and
N = 4 super-Schwarzian, it would be interesting to understandwhether the gap survives when
accounting for corrections coming from higher genus geometries contributing to the 2D theory.
Relatedly, due to the existence of the gap, it is interesting to note that the contribution from
disk topologies to the spectral form factor 〈Z(β − it)Z(β + it)〉 dominates even at very late
times. This result contrasts with non-supersymmetric orN = 1 JT gravity, where at late times,
the cylindrical topology starts dominating, leading to a ‘ramp’ in the spectral form factor,
followed by a plateau at even later times. It would also be interesting to understandwhether the
genus expansion of the N = 2 and N = 4 super-JT gravity has an interpretation in terms of
a matrix integral; this interpretation needs to go beyond the three Dyson ensembles [120] and
the seven Altland–Zirnbauer ensembles [121], whose gravitational interpretation was studied
in [71].

These non-perturbative corrections are relevant from the perspective of solving
2D N = 4 gravity exactly. It is not clear whether these corrections could be reliable from
the higher dimensional picture, but it would be interesting if the presence of supersymmetry
could help better understand issues of factorization in the D1/D5 system, as one example. We
leave this for future work.
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Appendix A. N = 2 super-Schwarzian spectrum

In this appendix, we analyze theN = 2 super-Schwarzian theory [59]. We review the solution
given by [72] using localization and the exact spectrum derived in [69]. Even though we will
not work out the reduction in detail, we expect these results to be relevant to the spectrum of
near-extremal near-BPS black holes in gauged supergravity in higher dimensional AdS.

A.1. The action

We follow the definition of theN = 2 super-Schwarzian theory given in [59]. The theory can
be described by superspace coordinates (τ , θ, θ). We will consider super-reparametrization
(τ , θ, θ)→ (τ ′, θ′, θ′), which satisfy the constrains Dθ′ = Dθ′ = 0, Dτ ′ = θ′Dθ′ and
Dτ ′ = θ′Dθ′. Here we used the super-derivative D ≡ ∂θ + θ∂τ and D ≡ ∂θ + θ∂τ . We
will parametrize the solutions by

τ ′ = f (τ )+ · · · , (A.1)

θ′ = eiσ(τ )
√
f ′(τ )θ + η(τ )+ · · · (A.2)

θ′ = e−iσ(τ )
√
f ′(τ )θ + η(τ )+ · · · , (A.3)

where the dots denote higher order terms necessary to solve the super-reparametrization con-
strains. We introduce with this the time-dependent fields f (τ ), eiσ(τ ) ∈ U(1) (or more precisely
the loop group) and fermions η(τ ) and η(τ ). These will become the degrees of freedom of the
Schwarzian theory. The Schwarzian derivative is defined as

S( f, σ, η, η) =
∂τDθ′

Dθ′
− ∂τDθ′

Dθ′
− 2

∂τθ
′∂τθ

′

(Dθ′)(Dθ′)
= · · ·+ θθSb( f, σ, η, η). (A.4)

Finally, the N = 2 super-Schwarzian action is given by IN=2 = −Φr

∫
dτ dθ dθS =

−Φr

∫
dτ Sb. The explicit expression is complicated but the bosonic part is naturally

given by

IN=2 = Φr

∫
Sch( f , τ )+ 2(∂τσ)

2 + (fermions), (A.5)

and the terms we omit involve the fermions η and η. Finally the action is invariant under a
global SU(1, 1|1) acting on the fields f , σ, η, η which can be found explicitly in [59]. In this
section, we will review the calculation of

Z(β,α) =
∫ D fDσDηDη

SU(1, 1|1) eΦr
∫
dτSb( f,σ,η,η). (A.6)

The partition function depends on the inverse temperature β and the U(1) chemical potential
α. They appear in the path integral as boundary conditions for the fields f (τ + β) = f (τ ),
eiσ(τ+β) = e2πiαeiσ(τ ), η(τ + β) = −e−2πiαη(τ ) and similarly for η. The partition also depends
on the parameter q̂, which is the periodicity of the U(1) field σ ∼ σ + 2πq̂.
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A.2. The partition function

The partition function can be computed either from localization [72] or quantizing the (sym-
plectic) integration space [69]. The answer depends on whether there is an anomaly or not.

Z(β,α) = eS0
∑
n∈Z

(−1)nν
2q̂ cos

(
π(α+ q̂n)

)
π
(
1− 4(α+ q̂n)2

) e 2π2Φr
β (1−4(α+q̂n)2). (A.7)

From a localization perspective this is a sum over saddles labeled by an integer n and the
difference between both theories is whether they are weighted by 1 or (−1)n. Therefore, we
introduced the parameter ν which take the values

ν = 0 : no anomaly, (A.8)

ν = 1 : anomaly. (A.9)

This will simplify some expressions below. For the theory ν = 1 we will see the spectrum
of charges is half-integer and the partition function is not periodic under α→ α+ q̂.

A.3. The spectrum

Now we will extract the spectrum from the partition function above. This was done in
section 6.2 of [69]. The goal is to rewrite the partition function as a sum over supermulti-
plets49, which for N = 2 are (Q)⊕ (Q− 1) for states with E �= 0 and just Q for states with
E = 0. Then we aim at an expansion

Z(β,α) =
∑
Q

e2πiαQρext(Q)

+
∑
Q

∫
dEe−βE

(
ei2παQ + ei2πα(Q−1)

)
ρcont(Q,E). (A.10)

We will write down the range of Q below determined from the exact partition function. We
will also find states at exact E = 0 which are in shorter representations.

We can start by doing an inverse Laplace transform of the partition function with respect to
inverse temperature

Z =

∫
dEe−βE (Dext(α)δ(E)+ Dcont(α,E)) . (A.11)

The continuous can be given by two different expressions depending on the theory

Dcont(E,α) = eS0
∑
n∈Z

(−1)nν
2q̂
√
2Φr cos

(
π(α+ nq̂)

)√
E(1− 4(α+ nq̂)2)

I1
(
2
√
2π2ΦrE(1− 4(α+ nq̂)2)

)
.

(A.12)

49We thank Witten for this suggestion.
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To get an efficient description of the spectrum we can rewrite the density of states derived in
[69] in the following way

Dcont(E,α) = eS0
∑

Q∈ Z

q̂+
ν
2̂q

(
e2πiαQ + e2πiα(Q−1)

) sinh
(
2π

√
2Φr(E − E0(Q))

)
2πE

Θ(E − E0(Q)).

(A.13)

We define the function E0(Q) giving the edge of the spectrum of each supermultiplet

E0(Q) =
1

8Φr

(
Q− 1

2

)2

. (A.14)

From the expressions above a very simple picture emerges. The continuous component of the
Q supermultiplet density of states as a function of Q and E is given by

ρcont(Q,E) = eS0
sinh

(
2π

√
2Φr(E − E0(Q))

)
2πE

Θ(E − E0(Q)). (A.15)

First of all this is completely independent on q̂ which only appears through the unit of charge.
Second, this expression is valid for both type of theories with or without anomaly, the only
difference being whether Q ∈ 1

q̂ · Z (no anomaly) or Q ∈ 1
q̂ · Z+ 1

2q̂ (anomaly).
The presence of a gap in the spectrum depends on both whether q̂ is even or odd andwhether

we have an anomaly or not. If q̂ is odd, then the non-anomalous theory has a gap controlled
by the supermultiplets labeled by Q0 =

1
2 ±

1
2q̂ with Egap ≡ E0(Q0) = 1/(32Φrq̂2). This is the

actual gap of the theory since any other supermultiplet Q has E0(Q) > Egap. If the theory
with odd q̂ is anomalous then the spectrum of Q is half-integers and there is no gap since for
Q = 1/2, E0(1/2) = 0. Similarly, for the case with q̂ even, the non-anomalous theory has no
gap, while this time the anomalous theory has a gap of the same scale as before.

We can check the same with the ‘extremal’ states with support at E = 0. From the partition
function we get

Dext(α)δ(E) = eS0δ(E)
∑
n∈Z

(−1)nν
2q̂ cos

(
π(α+ nq̂)

)
π
(
1− 4(α+ nq̂)2

) . (A.16)

This expression can be rewritten as a sum over charges in the following way

Dext(α) =
∑

Q∈ 1
q̂Z+

ν
2̂q ,|Q|<

1
2

e2πiαQ eS0 cos (πQ) (A.17)

which was found in [69] using the modular transform of the character. Finally, the density of
states of extremal states per charge is given by

ρext(Q,E) = eS0 cos (πQ)Θ
(
2|Q| − 1

)
. (A.18)

This is always positive since the cosine is always evaluated between (−π/2, π/2). This
formula, like before, is valid for either theory as long as Q is taken over the correct set.

As a summary, we show the density of supermultiplets for the anomalous and non-
anomalous cases in figure 5. These results for the spectrum of the N = 2 super-Schwarzian
theory have been also obtained analytically from double-scaledN = 2 SYK in [122].
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Figure 5. Density of supermultiplets as a function of energy E and charge Q. Left: odd
q̂ and no anomaly. The delta function at E = 0 involves charges in the range |Q| < 1/2.
The supermultiplet with the lowest gap has Q0 = 1/2 ± 1/(2q̂) with Egap = E0(Q0).
Other supermultiplets labeled by Q start at higher energies as shown. Right: odd q̂ and
anomaly. The delta function at E = 0 involves charges in the range |Q| < 1/2. The
supermultiplet with Q = 1/2 has no gap. Other supermultiplets have a gap, as shown.

Appendix B. Conventions and useful relations in supergravity

In this appendix, we briefly summarize our conventions for supergravity. In two dimensions,
we will use the flat space gamma matrices γa, which may be written in terms of the standard
Pauli matrices σi as:

γ0 = iσ2 =

(
0 1
−1 0

)
, γ1 = σ1 =

(
0 1
1 0

)
, γ3 = −γ0γ1 = σ3 =

(
1 0
0 −1

)
.

(B.1)

Our convention for the 4D gamma matrices ΓA is:

Γ0 = iσ2 ⊗ 1, Γ1 = σ1 ⊗ 1, Γ2 = σ3 ⊗ σ1, Γ3 = σ3 ⊗ σ3.

(B.2)

Note that these choices mean the gamma matrices are purely real. The curved space Dirac
matrices satisfy ΓM = EAMΓA, where ΓA satisfy {ΓA,ΓB} = 2ηAB. Additionally, we will some-
times make use of the 4D parity Clifford element:

Γ5 = iΓ0Γ1Γ2Γ3 = γ3 ⊗ (−σ2). (B.3)

Our choice is convenient for the product manifold AdS2 × S2 because the 4D gamma matrices
may be written as

(Γa,Γbc) = (γa, εbcγ3)⊗ 1, (Γa
′
,−Γ5) = γ3 ⊗ σi, (B.4)

where we introduced the i = 1, 2, 3 label for the SU(2) Pauli matrices of the sphere. This
gamma matrix decomposition manifests the SU(1, 1)⊗ SU(2) subgroup of PSU(1, 1|2) in
terms of the higher dimensional gamma matrices.
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In the gravitational theories with 2 or 4 component fermions, we also define the various
conjugate fermions. The Dirac complex conjugate is

ψ = iψ†Γ0. (B.5)

The Majorana conjugate is

ψ = ψTC. (B.6)

The necessary charge conjugation matrix is

C = −σ2 ⊗ 1 = iΓ0. (B.7)

For the two-dimensional action of section 4, we Wick rotate to Euclidean signature. In
addition to t→−it, we must also change the gamma matrices to

γ ′0 = σ2 =

(
0 −i
i 0

)
, γ ′1 = σ1 =

(
0 1
1 0

)
, γ ′

3 = −γ ′
0γ

′
1 =

(
−i 0
0 i

)
.

(B.8)

These are also Pauli matrices for SU(1, 1), and various other expressions followby continuation
γ ′
0 = −iγ0. In comparing to the BF formulation, we will also use the different set of Euclidean

gamma-matrices γ1 = σ1, γ2 = −σ3, and γ3 = γ1γ2 = iσ2.
In the Kaluza–Klein dimensional reduction of section 4.3, we made use of a number of

results from [89]. To simplify calculations, we introduce e2ρ = r0χ−1/2. In terms of the metric
ansatz, the torsion free spin connection is found to be:

ω̂ab = ωab + (ea∂b − eb∂a)ρ− 1
2
r20e

−6ρeimT
m
i H

iab(ea
′
+ ea

′
n T

n
j B

j), (B.9)

ω̂aa′ = −1
2
r0e

−3ρea
′
mT

m
i H

ia
b e

b + 2r0e−3ρ∂aρ(ea
′
+ ea

′
n T

n
j B

j), (B.10)

ω̂a′b′ = ωa′b −∇a′eb
′
mT

m
i B

i, (B.11)

where Hi = dBi + εijkB
j ∧ Bk is the field strength corresponding to the SO(3) Kaluza–Klein

gauge field. From the spin connections, one finds the components of the Ricci tensors to be

R̂ab = e−2ρ
(
Rab − ηab�ρ+ 4(∇a∇bρ+ ηab(∇ρ)2)− 16∇aρ∇bρ

)
− 1

2
e−8ρr20H

ia
cH

jbcTa
′
i T ja′ , (B.12)

R̂aa
′
=

1
2
e−5ρ

(
DbHia

bT
a′
i − 10Hia

b T
a′
i ∇bρ

)
, (B.13)

R̂a
′b′ =

e4ρ

r20
Ra

′b′ + 2e−2ρδa
′b′ (�ρ− 4(∇ρ)2

)
+

1
4
e−8ρr20H

i
abH

jabTa
′
i T

b′
j .

(B.14)

These expressions are symmetric, and we recall that the unhatted Ra
′b′ is the ordinary Ricci

tensor for the unit S2, in our case Ra
′b′ = δa

′b′ . Finally, using the expressions above
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R̂ = e−2ρR+ 2r20e
4ρ + 6e−2ρ(�ρ− 4(∇ρ)2)− 1

4
e−8ρr20H

i
abH

jab(δi j − μiμ j).

(B.15)

We recognize the dilaton coupled to the 2D Ricci scalar, a dilaton potential, a total derivative,
and a term quadratic in the field strengths Hi = dBi + εijkB

j ∧ Bk. We may use this expression

for the Ricci scalar directly in the 4D action (4.7); the integrals over the S2 require the identity:∫
dθ dφ sin θ (δi j − μiμ j)H

i
abH

jab =
8π
3
Hi
abH

ab
i .

Appendix C. PSU(1, 1|2) symmetry of the extremal black hole

Here we will further comment on the PSU(1, 1|2) symmetry appearing in the near-horizon
region of extremal black holes. The main goal in this appendix is to check that the Killing
vectors and Killing spinors discussed in section 4.1 indeed satisfy the psu(1, 1|2) superalgebra.

Using the explicit expressions (4.21) and (4.22) in which we have picked a unit normaliza-
tion for the constant spinors, the only non-vanishing bilinear built from εα− is

(εα−Γ
Mεβ−)EM = (εα−Γ

tεβ−)Et = δαβ∂t, (C.1)

which we recognize as proportional to H = ∂t, the generator of time translations of the metric
equation (4.11) [85]. The bilinear built from a pair of εα+ is

(εα+Γ
Mεβ+)EM = δαβ

(
(z2 + t2)∂t + 2tz∂z

)
, (C.2)

which is identified with K = (z2 + t2)∂t + 2tz∂z, the generator of special conformal isometries
of the AdS2 Poincare patch. The final set of bilinears involves both εα+ and εα−, and is interpreted
as the {Q, S} commutator in a superconformal algebra; the nonvanishing terms are:

(εα−Γ
tεβ+)Et = δαβ t∂t, (C.3)

(εα−Γ
rεβ+)Er = δαβz∂z, (C.4)

(εα−Γ
θεβ+)Eθ = (σ2)

αβ cos φ∂θ + (σ1)
αβ sin φ∂θ , (C.5)

(εα−Γ
φεβ+)Eφ = (σ2)αβ cot θ sin φ∂φ − (σ1)αβ cot θ cos φ∂φ + (σ3)αβ∂φ.

(C.6)

In the first two lines, we identify the generator of AdS2 scale transformations, D = t∂t + z∂z.
The second two lines may be combined and simplified if we introduce

T1 = sin φ∂θ + cot θ cos φ∂φ, T2 = cos φ∂θ − cot θ sin φ∂φ, T3 = ∂φ.

(C.7)

These satisfy the SU(2) algebra [Ti, T j] = εi jkTk. This leads to the relatively simple expression:
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(εα−Γ
Mεβ+)EM = δαβD+ (σi)αβTi. (C.8)

In total, we have then

[D,H] = H, [D,K] = −K, [H,K] = D, [Ti, Tj] = εi jkTk, (C.9)

which is isomorphic to the bosonic part, SL(2)× SU(2) of the supergroup PSU(1, 1|2) with
superalgebra (2.1).
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