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l. GLOSSARY

Network A network is a collection of nodes (also called vertices) and edges (also called links) linking pair
of nodes. Mathematically, it is represented by a graph G = (V, E) where V is the set of nodes and
E CV xV is the set of edges. Additional information can be attached to each node or edge, for
example edges can have different weights. Edges can be undirected or directed.

Adjacency matrix The adjacency matriz, A, of a network is a N x N matrix (N = |V|) with element A;; = 1 if
there is an edge from node 7 and to node j and A;; = 0 otherwise. If the network is weighted,
Aij = w;i; where w;; € R is the weight associated with the edge between nodes ¢ and j if it exists
and A;; = 0 otherwise. For undirected network, A;; = Aj;, i.e. A is symmetric.

Degree of a node The degree, k;, of node i in an undirected network is equal to its number of connections, i.e.
k; = Zj A;j. For directed network, we differentiate the in-degree, k" = > j Aj; and the out-
degree, k"t = > ; A;j, i.e. the number of edges in-coming to node ¢ and out-coming from node
1, respectively. In weighted undirected networks, the degree of a node is replaced by its strength,
si=>. j Wij or in-strength and out-strength for weighted directed networks.
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Walk A walk is an alternating sequence of vertices and edges in which every vertex is incident to both
the edges that come before and after it in the sequence.

Path A path on a graph is a walk in which all vertices and edges are distinct.

Connected components A connected component of an undirected graph G(V, E) is a subgraph of G, made of a subset of
V and all the edges connecting nodes of the subset toghether, where there exist a path between
each pair of nodes. In directed graphs, we differentiate strongly-connected components, where there
exist a path in both directions between all pairs of nodes, and weakly-connected components, where
there exist a path in at least one direction between all pairs of nodes.
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Il. WHY STUDY NETWORKS?

.
.

In network science complex systems are represented as a mathematical graphs consisting of a set of nodes rep-
resenting the components and a set of edges representing their interactions. The framework of networks has led to
significant advances in the understanding of the structure, formation and function of complex systems (Newman, 2003;
Barrat et al., 2008; Boccaletti et al., 2006; Albert and Barabdsi, 2002). Social and biological processes such as the
dynamics of epidemics (Pastor-Satorras et al., 2015), the diffusion of information in social media (Zhang et al., 2016),
the interactions between species in ecosystems (Montoya et al., 2006) or the communication between neurons in our
brains (Bullmore and Sporns, 2009) are all actively studied using dynamical models on complex networks. In all of
these systems, the patterns of connections at the individual level play a fundamental role on the global dynamics and
finding the most important nodes allows one to better understand and predict their behaviors.
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I1l. DEFINITION OF THE SUBJECT

Real-world complex networks are characterized by a number of structural features differentiating them from regular
networks, such as lattices, but also making them different than completely random graphs, such as Erddés-Rényi
graphs (Newman, 2003). The properties that can be found in complex networks include, for example, a modular
organization, also called community structure (Fortunato, 2010), or the so-called small-world effect, i.e. the fact that
most pairs of nodes are connected by a very short path compared to the sizes of the networks (Watts and Strogatz,
1998). A characteristic of real-world complex networks that interests us here and that has been intensively studied is
the fact that their degree distributions are usually very heterogeneous (Newman, 2003; Albert and Barabdsi, 2002),
indicating that there is usually large differences in the number of connections that nodes have. Many real world
networks have been found to have degree distributions resembling power laws and are sometimes referred to as scale-
free (Barabdsi, 2009). Whether these real-world systems are really scale-free and whether their degree distributions
are really power laws is still disputed (Holme, 2019). However, what is undeniable is the fact that many real world
networks have degree distributions that are heavy-tailed with a minority of the nodes concentrating the majority of
the connections.

In these systems, a small set of essential nodes can shape the collective dynamics of the entire systems. For example,
during epidemic outbreaks of infectious diseases, some individuals, known as super-spreaders, infect disproportionately
more secondary contacts, as compared to most others (Kitsak et al., 2010; Stein, 2011), keystone species in ecology
are responsible for the integrity and stability of ecosystems (May, 1972; Scheffer et al., 2012; Mills et al., 1993;
Morone et al., 2019) and specific regions in brain networks are more important than others in the formation of
memory (Bullmore and Sporns, 2009; Del Ferraro et al., 2018; Reis et al., 2014; Zamora-Lépez et al., 2010). In social
networks, a small set of influencers can drive the global dynamics of the system (Bovet and Makse, 2019) and opinion
leaders are capable of influencing the public viewpoint on certain trending topics (Watts and Dodds, 2007). An
important research effort in network science has therefore been dedicated to the development of methods allowing to
find the most important nodes in networks. Intuitively, nodes with a large degree are likely to be more successful to
trigger large-scale propagations or to control a large number of nodes. The degree centrality ranks nodes in terms of
their degree and allows to identify highly connected hubs present in most real-world complex networks that play an
essential role in controlling their dynamics and maintaining their integrity (Barabéasi and Albert, 1999; Albert et al.,
2000; Cohen et al., 2001). While the degree centrality is arguably the simplest centrality measure, it only uses local
information about each node to rank its centrality and more complex centrality measures have been developed in
order to capture the collective network effects impacting the influence of a node. Most centrality measures are based
on a notion of distance between nodes or on a way to traverse the network that allows to compute how ”central” a
node is compared to other nodes while capturing the heterogeneous structural patterns of complex networks. In the
following, we describe centrality measures based on the notions of network traversal they rely on. This short entry
aims at being an introduction to this extremely vast topic, with many contributions from several fields, and is by
no means an exhaustive review of all the literature about network centralities (see, for example, (Freeman, 1978;
Borgatti, 2005; Perra and Fortunato, 2008; Landherr et al., 2010; Rodrigues, 2019) for more exhaustive reviews).

A. Centrality measures based on shortest paths

Closeness centrality (Bavelas, 1950; Beauchamp, 1965; Sabidussi, 1966; Dangalchev, 2006) and betweenness central-
ity (Freeman, 1978; Friedkin, 1991) are two dual measures of centrality initially developed in social sciences to assess
the importance in terms of ease of access to others nodes (closeness) and brokering power (betweenness) of individuals
in social networks. These centralities have since then been used in many other contexts. They are based on the
assumption that information, or influence, propagates between two nodes in the most efficient way, i.e. by following
the shortest path between them.

Considering an unweighted and undirected graph G = (V, E), a walk on the graph G is an alternating sequence of
vertices and edges in which every vertex is incident to both the edges that come before and after it in the sequence.
A path on a graph is a walk in which all vertices and edges are distinct. A graph is said to be connected if there
exists a path from any node node to any other node in the graph. Considering the distance dist(s,r) between two
nodes s and r in a connected undirected and unweighted graph G = (V, E) as the number of edges in the shortest
path between them, the total distance of vertex v is defined as the sum of its distance to all other vertices

dist(s) = Z dist(s, 1),
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which is larger for vertices that are the farther away from other vertices. Therefore, the closeness centrality of a
node s on a connected and undirected network is usually defined as (Bavelas, 1950; Beauchamp, 1965)

1 o
dist(s,7)  dist(s)’

co(s) = S (1)
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The betweenness centrality captures the brokering power of node as the opportunity it has to intercept or influence
the communications happening between pairs of other nodes. Let o(s, ) be the number of shortest paths between s
and 7 and let o(s,r|b) be the number of shortest paths between s and r passing by a brokering node b € V'\ {s,r}. We

consider o(s,s) =1 and o(s,r|b) = 01if b € {s,r}. We call the quantity d(s,b,r) = Ja(f:y;) the dependency of a sender

s and a receiver r on a broker b(Brandes et al., 2016). The betweenness centrality in a connected and undirected
graph G = (V| E) is defined as the sum of dependencies of all communicating pairs on a broker b (Freeman, 1980)

cp(b) = Z (s T‘b Z 8(s,b,7) (2)

s,reV s,reVv

and can be seen as the overall potential control of b on the communications in G.

Betweenness and closeness centrality can be seen as being dual to each other conceptually expressing either the
independence from the control of others (closeness) or the potential control over others (betweenness) (Brandes et al.,
2016; Freeman, 1980). Indeed, by noting that when considering shortest paths between s and r with different brokers
b at a fixed distance d from s (1 < d < dist(s,r)) each shortest path pass through exactly one broker and therefore

D v dist(s,b)=d Ja(f:l?) = 1. This implies that the sum of dependencies between a sender s and a receiver r taken over of
possible brokers b is proportional to the distance between s and r: Y, 6(s,b,r) = glbg(é " Zbev dist(s,5)=d ”;?:Jf;)

dist(s, ) — 1. This observation allows one to define the closeness centrality as cc(s)™' = (N = 1) + 2, .oy 0(s,b,7)
revealing its mathematical duality with betweenness centrality as a different partial sum, over b and r instead of s and
r, of the dependencies d(s,b,r) showing its interpretation as a measure of lack of independence on others (Brandes
et al., 2016). Figure 1 shows the kite graph introduced by Krackhardt in 1990 as an illustration of the different
ranking obtained by these centrality measures (Krackhardt, 1990).

In directed networks, closeness and betweenness centrality can be generalized by considering the notion of reach-
ability instead of distance. In weighted networks where edge weights typically represent a distance or a lag in the
connection between adjacent nodes, the length of a path is usually taken as being the sum of the weights of its
edges. We refer the reader to (Brandes et al., 2016) for a discussion about the generalizations of the closeness and
betweenness centrality to directed and weighted networks, and to their interpretations in these cases.

Many variants of closeness and betweenness have been developed (Brandes, 2008). The concept of betweenness
centrality has also been extended to edges by considering the number of shortest paths containing an edge instead
of a node in eq. (2)(Brandes, 2008) or, for example, by considering the fraction of minimum spanning trees of a
graph that contain a given edge (Teixeira et al., 2015). Versions of the closeness and betweenness centralities based
on random walks instead of shortest paths have also been developed (White and Smyth, 2003; Newman, 2005).

B. Centrality measures based on walks

Several widely used centrality measures can be seen as being based on the concept of graph walks. Walks, alternating
sequences of vertices and edges in which every vertex is incident to both the edges that come before and after it in
the sequence, are useful to count the number of possible ways there is to reach a given node starting from another
node. Centrality measures based on walks usually try to find the nodes from which there are the largest number of
walks reaching other nodes. For unweighted networks, the number of walks of length ¢ existing between two nodes 4
and j is given by the element (i,7) of the I*" power of the adjacency matrix: (Ae)ij. The number of walks of length

¢ starting from node i is then given by w(f); = 3, (Ae)ij or in matrix notation w(f) = A‘l, where 1 is the unit
vector. The degree centrality of a node ¢ can be expressed as the number of walks of length 1 starting from it:

Cdeg( Z Az] (3)



FIG. 1 Krackhardt kite graph showing the different ranking obtained using degree, closeness and betweenness centrali-
ties (Krackhardt, 1990). The closeness of a node is represented by its size and the betweenness of a node is indicated by
its color with nodes with larger betweenness being of a lighter shade. The node with largest degree centrality is 3. Nodes 5
and 6 have the largest closeness centrality and node 7 has the largest betweenness centrality.

In order to take into account information about the surrounding of a node in its centrality score, several researchers
have developed centrality measures that consider longer walks. The idea being that if a node is close to a node with
a high centrality, its centrality should also be high (Katz, 1953; Bonacich, 1972). Starting from an initial guess for
the centrality of each node given by the vector x(0) (e.g. x(0) = 1), we can propagate this initial centrality through
walks of a given length. The centrality vector for walks of length ¢ is given by

x(0) = A’x(0). (4)

Writing the initial centrality as a linear combination of the eigenvector of the adjacency matrix, one can see that as
¢ — oo the centrality will converge to a vector proportional to the leading eigenvector of A, the one corresponding to
its largest eigenvalue, and that takes into account global information about the network structure (Newman, 2010). As
A is non-negative and if G is connected, the Perron-Frobenius theorem ensures that the leading eigenvector is positive
and that the associated eigenvalue is positive and simple. The resulting vector is called the eigenvector centrality
whose element i is defined as

Ceig (1) o Z Aijceig()- (5)

In weighted networks, the eigenvector centrality is propagated along walks on the graph that are weighted by the
edge weights. The eigenvector centrality can be computed similarly on directed and undirected networks with the
difference that for directed networks, the adjacency matrix is in general asymmetric and has therefore two different
sets of left- and right-eigenvectors. Depending on the application, one may prefer to use the largest left-eigenvector or
the largest right-eigenvector if one is more interested in nodes having a large number of incoming walks or outgoing
walks, respectively. However, other types of centralities are usually preferred for directed networks as the eigenvector
centrality of nodes outside of a strongly connected component (a subgraph where there exist a path in both directions
between all pairs of nodes) may be equal to zero. In particular, in directed graphs without cycles (closed directed
paths), the eigenvector centrality is zero for all nodes. A comparison of the degree centrality with the eigenvector
centrality is shown in Fig. 2 for an undirected network of American football teams (Girvan and Newman, 2002; Evans,
2010).
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FIG. 2 Network of American football games between Division IA colleges during regular season Fall 2000 (Girvan and Newman,
2002; Evans, 2010). Degree centrality for this undirected graph is shown on the left and eigenvector centrality is shown on
the right. Lighter shades indicate a higher centrality. Several nodes have the same degree in this network making the degree
centrality unable to disantangle the importance of nodes with the same degree. Eigenvector centrality has a tendency of being
localized in regions where many high degree nodes are close to each other.

The subgraph centrality is based on the idea of counting the number of times that a node takes part in the
different connected subgraphs of a network, with smaller subgraphs having higher importance (Estrada and Rodriguez-
Veldzquez, 2005). The subgraphs are identified by counting closed walks of different lengths that start and end on a
given node. The subgraph centrality of node ¢ is defined as

< (AL
csub (i) = Z (a )“ (6)

2!
=0

By noticing that cgup (i) = (eA)u" where e® denotes the matrix exponential of A, the subgraph centrality can be
obtained from the spectrum of the adjacency matrix as (Estrada and Rodriguez-Veldzquez, 2005)

N
csun(i) = Y _(v5)%eM, (7)

i=1
where v, v2,...,vx form an orthonormal basis of RY and are eigenvectors of A associated with the eigenvalues
A1, A2, ..., An. This centrality is more discriminative than the degree, betweenness, closeness or eigenvector centralities

and gives a distinctly different ranking of nodes in real-world complex networks (Estrada and Rodriguez-Veldzquez,
2005).

Another centrality measures based on walks that tries to solve the issue of the eigenvector centrality in directed
networks is the Katz centrality (Katz, 1953). The Katz centrality of node i is the weighted sum of all walks emanating
from i, with the count for walks of length ¢ weighted by a factor a’ where 0 < o < 1. In this way the importance of
longer walks is diminished compared to shorter walks. The Katz centrality of node i can be written as (Katz, 1953)

CKatz (1) = 1+ Z Z o (Ae)ij , (8)

=1 j

where the unit shift does not alter the ranking of the nodes and may be seen as arising from a single walk of length
zero. In order for the centrality to converge, the factor a must be smaller than the reciprocal of the absolute value of
the largest eigenvalue of A (Katz, 1953; Bonacich, 1972, 1987). In this case, we can also note that I + aA + a?A? +
aBA3+ .= (I ozA)_l. Thus, the vector x giving the Katz centrality of each node is also solution of the matrix
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equation x = (I — ozA)f1 1 which can be rewritten as x = a«Ax + 1. The Katz centrality can therefore be computed
iteratively in a similar manner than the eigenvector centrality (with eq. (4)) using

x(t+1) = aAx(t) + 1. (9)

A unit value is added at each iteration guaranteeing that the Katz centrality will never be equal to zero, even in
directed networks. The factor a can also be seen as balancing the importance of the eigenvector term compared to the
constant term added at each iteration. In the limit as « approaches the reciprocal of the absolute value of the largest
eigenvalue of A, the Katz centrality approaches the eigenvector centrality on strongly connected graphs (Bonacich,
1972, 1987).

Walk-based centralities have been generalized to hypergraphs (e.g. (Bonacich et al., 2004; Benson, 2019)), multiplex
networks (e.g. (Sold et al., 2013; De Domenico et al., 2015)) and temporal networks (e.g. (Nicosia et al., 2013;
Praprotnik and Batagelj, 2015; Taylor et al., 2017)).

C. Centrality measures based on random walks

Random walks on graphs have been extensively studied and have many applications in the study of diffusive
processes on networks and for the characterization of the structure of complex networks (Rosvall and Bergstrom,
2008; Delvenne et al., 2010; Durrett, 2010; Masuda et al., 2017). A random walk on a graph is defined by the
trajectory of a walker that, at each time step, jumps to a neighbors of ¢ with equal probability. On an unweighted
and undirected network, the transition probability for a walker on node i to jump to node j is equal to

T, = =4 (10)

or in matrix notation T = D™'A, where D = diag(k) is the diagonal degree matrix. In directed networks, the
degree is replaced by the out-degree and in weighted networks with positive weights, the probability transition is
proportional to the weight of edge (¢,7). Centrality measures based on random walks exploit the fact that, if a
centrality value propagates as a random walk, at each iteration, its value is divided across all out-going edges of
a node. This is different than for eigenvector and Katz centralities, based on walks, where the centrality tends to
concentrate on a few hubs in the network, leaving other nodes almost indistinguishable with very low scores due to
the repeated reflection of influence along the mutual connections between hubs during iterations of eqs. (4) & (9) (see
Figs. 2 & 3).

The distribution probability of finding a walker at time step n on any node of the network can be written as a
row-vector p(n) with ). p; = 1. The evolution of the distribution probability is given by

p(n+1) = p(n)T. (11)

On connected undirected network, the random walk reaches a stationary distribution satisfying p* = p*T where
the probability at each node is proportional to its degree:

PSS g (12)

On undirected networks, the degree centrality can therefore also be seen as the stationary state of the random
walk process. On directed networks, random walks are not guaranteed to converge to a unique stationary state.
A stationary distribution only exists on strongly connected components of a directed network (Masuda et al., 2017;
Aldous and Fill, 2014).

To overcome this issue the PageRank centrality modifies the classical random walk by introducing a ”teleportation”
probability, i.e. at each step, the walkers have a given probability to teleport uniformly at random to any other nodes
of the network. The update equation for the PageRank probability density is given by (Masuda et al., 2017; Brin
and Page, 1998; Page et al., 1999)

11—«

p(n+1) =ap(n)S+ 17, (13)



where S is a transition matrix constructed from A such that S;; = A;;/kout(i) when koue(j) > 0. For ”dangling
nodes”, that have no out-going edges (i.e. kout(?) = 0), S;; = 1/N, meaning that a walker on such a node has a
uniform probability to jump to any other nodes in the network. On non-dangling nodes, at each step, walkers have
a probability a < 1 to follow an out-going edge and a probability 1 — a to teleport to any node in the network.
This modified random walks is now ergodic also on networks that are not strongly connected and converges to the
probability density vector giving the PageRank centrality of node ¢ as

cpr(i) = azj:CPR(j)Sji + 1—Ta (14)

which is equal to the normalized eigenvector corresponding to the largest positive eigenvalue of the so-called Google
matrix G = aS + 1_To‘llT (Ermann et al., 2015). PageRank was famously developed for ranking websites for the
search engine Google considering a "random surfer model” navigating through webpages by randomly clicking on
hyperlinks (Page et al., 1999). PageRank also found many applications in other aspects, such as ranking scientists
and academic papers (Ding et al., 2009), images (Jing and Baluja, 2008) and proteins (Ivdn and Grolmusz, 2010).
Figure 3 shows a comparison of the PageRank and Katz centralities on a directed network of hyperlinks between
weblogs (Adamic and Glance, 2005).

The similarities between equations (4) and (11) as well as equations (9) and (13) reveal that the degree and the
PageRank centralities can be seen as similar to the eigenvector and Katz centralities, but for random walks instead of
regular graph walks. In the case of random walk based centralities, one looks for eigenvectors of transition matrices
instead of adjacency matrices.

FIG. 3 A directed network of hyperlinks between weblogs on US politics, recorded in 2005 by Adamic and Glance (Adamic and
Glance, 2005). PageRank centrality is shown on the left and Katz centrality is shown on the right. Lighter shades indicate a
higher centrality. The Katz centrality has a tendency of being ”localized” in regions with many close-by hubs.

D. Centrality measures based on non-backtracking walks

In order to address the issue of ”localization” of the eigenvector centrality mentioned above, i.e. when most of the
weight of centrality vector concentrates around one or a few nodes in the network, several authors have focused on
using non-backtracking walks instead of regular or random walks (Martin et al., 2014; Arrigo et al., 2018, 2020). Non-
backtracking walks are graph walks where backtracking steps, i.e. steps where the walk comes back to an immediately
preceding node, are not permitted. Using this type of walks can sometimes solve the problem of localization as they
decrease reflections between hubs during iterations of the centrality (Martin et al., 2014). Non-backtracking walks on
unweighted networks are usually described using the 2M x 2M matrix B where rows and columns correspond to the
directed edges of the network (M = |E|). If the network is undirected, an equivalent directed network is considered
by replacing each edge by a pair of directed edges in both directions. Element (i — j,¢ — h) of B is equal to one
only if j = ¢ and i # h, i.e. there is a non-backtracking path of length 2 i — j — h in the network. More succinctly,



Bisje—sh = 0j0(1 = 6in), (15)

where §;; is the Kronecker delta. The matrix B is referred to as the non-backtracking matriz or the Hashimoto
matriz (Hashimoto, 1989). Powers of B enumerate non-backtracking walks similarly to powers of the adjacency
enumerate walks (Arrigo et al., 2020). The non-backtracking matrix is in general asymmetric with eigenvalues that
are in general complex, however, since its entries are non-negatives, by the Perron-Frobenius theorem, its leading
eigenvalue, )\, is real and non-negative, and there exists a corresponding leading eigenvector, v, whose elements are
also non-negative real numbers. If G is connected and not a tree, i.e. it has at least one cycle, A is positive (Lin and
Zhang, 2019). They satisfy the eigenvector equation

Av = Bv (16)

and the non-backtracking eigenvector centrality of node j is defined by (Martin et al., 2014)

CNBeig(J) = ZAijUHj- (17)

Finding the leading eigenvector of B can however be computationally demanding for large graphs as the size of B
is usually much larger than the size of A. However, the computation can be made much faster by computing directly
CNBeig as the first V elements of a 2N x 2N matrix called the Ihara-Bass matrix (Krzakala et al., 2013).

Non-backtracking walks have also been used to modify other centrality measures, such as the Katz (Arrigo et al.,
2018), random walk (Lin and Zhang, 2019) or PageRank (Aleja et al., 2019) centralities. Research on centrality
measures based on non-backtracking walks is very active with recent results showing that they can also suffer from
localization issues on some networks (Barucca et al., 2016; Pastor-Satorras and Castellano, 2020).

Non-backtracking walks are also used in the problem of influence maximization: finding the minimal set of nodes,
the influencers, which, if activated, would cause the spread of information to the whole network, or, if immunized,
would prevent the diffusion of a large scale epidemic (Kempe et al., 2003). Influence maximization can be mapped
to the problem of optimal percolation of random networks (Morone and Makse, 2015) which consists in identifying
the minimal set of nodes whose removal would dismember the network in many disconnected and non-extensive
components. The fragmentation of the network is measured by the size of the largest connected component, called
the giant component of the network.

The intuition behind the usage of non-backtracking walks in the optimal percolation problem comes from the fact
that the giant component is held together by long paths and that powers of the non-backtracking matrix allows to
quickly find them. The removal of nodes is represented with the vector n = (ny,...,nyx) where n; = 0 if 4 is removed
(influencer) or n; = 1 otherwise. Considering undirected locally tree-like random graphs, a modified 2M x 2M non-
backtracking matrix M is then defined as M;_,; o—» = n¢B;; ¢—r. Given an initial arbitrary positive vector w(0),
repeated iterations with M,

w(n)i—m’ = Z Mi—)i,k—ﬂw(n - 1)k—>l7 (18)
kl

increase the norm of the vector as the influence of nodes on non-backtracking walks of larger and larger length are
included. The growth rate of the vector’s norm is determined by the value of the largest eigenvalue, A(n) of the modified
non-backtracking matrix. As the influencer nodes are removed, the value of A(n) decreases until the giant component
is reduced to a tree (a graph without cycles) plus only one cycle when A(n)=1. The removal of supplementary nodes
quickly destroys the giant component and A(n) falls to zero (Morone and Makse, 2015). The optimal influence problem
can therefore be rephrased as finding the optimal configuration n that minimizes the largest eigenvalue of M (Morone
and Makse, 2015), which consists in removing the nodes that are on the most non-backtracking walks in the network
and that are keeping the giant component connected. The collective influence (Morone and Makse, 2015) of a node,
defined as

CL(i)=(ki—1) > (ki —1), (19)

jEOBall(i,0)



where 0Ball(7, £) is the set of the nodes at a distance ¢ from i, is a measure of which node to remove in order to
produce the largest diminution of the largest eigenvalue of non-backtracking matrix. The ranking of the nodes in term
of collective influence is produced by removing the node with the largest CI value, recomputing the CI values of its
neighbors and repeating the operation until the giant component of the network disappears. An advantage of CI is
that it gives a high rank to seemingly ”weak nodes” with a small number of connections that are in fact surrounded
by highly connected nodes and therefore on the path of many non-backtracking walks. The problem of influence
maximization in networks is actively researched using many different approaches (see, for example, (Braunstein et al.,
2016; Mugisha and Zhou, 2016; Zdeborova et al., 2016; Radicchi and Castellano, 2016; Pan et al., 2016; Pei et al.,
2020)).

CONCLUSION AND FUTURE DIRECTIONS

We have seen that there is not a single measure of centrality in networks and that one should carefully choose an
appropriate measure depending on the subject of investigation. In practice, centrality measures should be chosen
depending on whether the network is directed or not and whether, for example, one is looking for highly connected
nodes, nodes with the most brokering power, nodes that share the most influence with each others or the minimal
set of nodes that can spread information to the whole network. The differences in ranking obtained from different
centrality measures should also be examined in order to better understand the signification of each ranking in a given
context.

The research landscape on centrality measures for complex networks is much vaster than what has been presented
in this short entry. Research is very active with recent and future directions including, for example, the properties of
centrality measures based on non-backtracking walks (Pastor-Satorras and Castellano, 2020), centralities in signed net-
works (networks where weights can be positive or negative) (Liu et al., 2020) and multilayer networks (Sol4 et al., 2013;
De Domenico et al., 2015; Wang and Zou, 2018; Wu et al., 2019). Research is also active on the development of cen-
tralities for specific applications based on network dynamics not necessarily captured by network traversals. Examples
include centralities for social networks based on game theoretical concepts (Shapley, 1953; Gémez et al., 2003; Micha-
lak et al., 2013), centralities for detecting vulnerabilities in power-grids based on networks of oscillators (Gutierrez
et al., 2013; Tyloo et al., 2018, 2019) or centralities for identifying key genes in gene regulatory networks based on
the propagation of biological signals (Zotenko et al., 2008; Missiuro et al., 2009; Kim et al., 2011; Cowen et al., 2017).

Research is also ongoing about the development of centralities in network models that extend the concept of network
as an ensemble of static pairwise relations, namely, centralities in temporal networks, i.e. time-evolving networks,
(Nicosia et al., 2013; Praprotnik and Batagelj, 2015; Taylor et al., 2017; Flores and Romance, 2018; Lv et al., 2019)
and in hypergraphs or simplicial complexes, i.e. generalizations of graphs where an edge can join more than two
nodes (Bonacich et al., 2004; Benson, 2019; Estrada and Ross, 2018; Aksoy et al., 2020; Serrano and Gémez, 2020).
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