

1 Letter to the Editor

2 Stem cell-derived Müller glia have potential to enrich *in vitro* models of the blood-retinal barrier

3

4 Natalia G. Castro¹, Rick Cohen¹, and Maribel Vazquez¹

5

6 ¹Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ,
7 USA

8

9 Correspondence to: Maribel Vazquez

10 Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd,
11 Piscataway, NJ 08854, USA

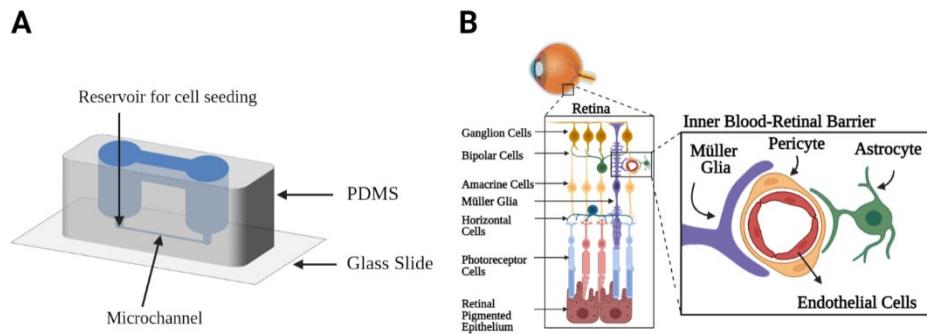
12 Tel: 848-445-6568, Fax: 732-445-3753, E-mail: maribel.vazquez@rutgers.edu

13

14

15 **Keywords:** iPSC cells, Müller glia, blood-retinal barrier, *In vitro* model, microfluidics

16 We have read with great interest the article by Ragelle et al. entitled “Organ-on-a-chip
17 technologies for advanced blood-retinal barrier models.” The authors highlighted the advancements of
18 in vitro technologies and organ-on-a-chip modeling for the blood-retinal barrier (BRB). However, we
19 write to stress the need and advantages of incorporating induced pluripotent stem cells (iPSC)-derived
20 Müller glia (MG) for more appropriate BRB models to advance regenerative therapies.


21 As highlighted in the article, significant advancement needed for in vitro BRB studies are the
22 application of human induced pluripotent stem cells (hiPSCs), rather than primary cultures or
23 immortalized cell lines. hiPSCs reduce ethical concerns of animal modeling as well as provide superior
24 physiological relevance and smoother translation to human clinical needs. hiPSCs have been recently
25 used to model retinal neurons, and endothelial cells (EC) of the inner blood-retinal barrier (iBRB)¹,
26 suggesting that hiPSC differentiation into other retinal cell lineages will improve cellular models of the
27 iBRB. Moreover, the combination of microfluidics with hiPSC-based technology holds great promise
28 for the development of comprehensive BRB models, because the system microscale facilitates cell
29 study at physiological spacing and scale. Contemporary microfluidic devices and lab-on-a-chip
30 technology have produced controlled systems to examine neurodegenerative diseases and the study of
31 multiple cell types in an integrated system¹. Our own laboratory has recently developed a glial line
32 (gLL) microfluidic system (Fig.1B) on the retinal scale to examine changes in hypertrophy, adhesion,
33 and migration of Muller glia (MG) that are hallmarks of gliosis² and significant to iBRB integrity. The
34 gLL is fabricated with commercial polydimethylsiloxane (PDMS) and bonded to a microscope slide. It
35 provides a controlled microenvironment where iPSC-derived MG and EC can be seeded for
36 co-culture to examine collective cell behaviors and responses to extracellular stimuli (e.g. hypoxia,
37 glucose).

38 The iBRB is most commonly modeled with a focus on EC, although this neurovascular barrier
39 tissue is also intricately regulated by MG that span retinal laminae to maintain homeostasis and initiate
40 repair (Figure 1A). While EC are vital for the transport of oxygen and nutrients from blood flow across

41 the iBRB, MG are equally essential to vision via regulation of neurotransmitters and redox signaling
42 that meet the extreme metabolic demands of phototransduction³. Retinal degenerative diseases, such as
43 diabetic retinopathy (DR), are largely characterized by iBRB dysfunction. DR, one of the most
44 prevalent diseases affecting eye health, impairs patient vision, as elevated and fluctuating blood
45 glucose levels are associated with leakage via tight junctions of the EC that form the iBRB⁴. The
46 altered tight junctions allow blood-borne elements to penetrate the retina, which can stimulate gliosis,
47 where MG release growth factors and cytokines as neuroprotective responses. Over time, this creates a
48 destructive inflammatory environment for the retina that can result in glial scarring and ultimately
49 vision loss. Because of the overprotective response of MG and their potential to further damage retinal
50 function, MG are essential when studying diseases and for developing therapies that do not elicit
51 prolonged gliotic activity³. Despite the significance of MG response to retinal degeneration, few
52 biomedical projects have incorporated the behaviors of MG into studies of the BRB. The combination
53 of microfluidics with hiPSC-based MG hold great promise for the development of comprehensive
54 BRB models to examine the progression of diabetic retinopathy and target MG native responses for the
55 development of treatments against retinal disease.

56 **FIG 1:** (A) Schematic of the inner blood-retinal barrier depicting the connection between the retinal
57 capillaries and the retinal network via the Müller glia processes. (B) Schematic of the glia-line
58 microfluidic system developed by our group to examine gliotic behaviors of Müller glia in retinopathies⁴.

59

62 Acknowledgment: This work was supported by the US National Science Foundation (NSF CBET 180441)
63 and the US National Institutes of Health (NEI 1R21 EY031439-01).

64 Author Disclosure Statement: The authors have no conflicting financial interest.

65 Funding Information: This work was supported by the US National Science Foundation (NSF CBET
66 180441) and the US National Institutes of Health (NEI 1R21 EY031439-01).

67 References

68 1. Sharma, A., Sances, S., Workman, MJ., Svendsen, C.N. Multi-lineage human iPSC-derived
69 platforms for disease modeling and drug discovery. *Cell Stem Cell.* 2020;26(3):309-329.

70 2. Peña, J.S., Robles, D., Zhang, S., Vazquez, M. A milled microdevice to advance glia-
71 mediated therapies in the adult nervous system. *Micromachines.* 2019;10(8):513.

72 3. Coughlin, B.A., Feenstra, D.J., Mohr, S. Müller cells and diabetic retinopathy. *Vision Res.*
73 2017;139:93–100.

74 4. Ragelle, H., Goncalves, A., Kustermann, S., Antonetti, D.A., Jayagopal, A. Organ-on-a-chip
75 technologies for advanced blood-retinal barrier models. *J Ocul Pharmacol Ther.*
76 2020;36(1):30–41.