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Abstract

Predicting mutation-induced changes in protein thermodynamic stability (ΔΔG) is of great

interest in protein engineering, variant interpretation, and protein biophysics. We introduce

ThermoNet, a deep, 3D-convolutional neural network (3D-CNN) designed for structure-

based prediction of ΔΔGs upon point mutation. To leverage the image-processing power

inherent in CNNs, we treat protein structures as if they were multi-channel 3D images. In

particular, the inputs to ThermoNet are uniformly constructed as multi-channel voxel grids

based on biophysical properties derived from raw atom coordinates. We train and evaluate

ThermoNet with a curated data set that accounts for protein homology and is balanced

with direct and reverse mutations; this provides a framework for addressing biases that

have likely influenced many previous ΔΔG prediction methods. ThermoNet demonstrates

performance comparable to the best available methods on the widely used Ssym test set.

In addition, ThermoNet accurately predicts the effects of both stabilizing and destabilizing

mutations, while most other methods exhibit a strong bias towards predicting destabiliza-

tion. We further show that homology between Ssym and widely used training sets like

S2648 and VariBench has likely led to overestimated performance in previous studies.

Finally, we demonstrate the practical utility of ThermoNet in predicting the ΔΔGs for two

clinically relevant proteins, p53 and myoglobin, and for pathogenic and benign missense

variants from ClinVar. Overall, our results suggest that 3D-CNNs can model the complex,

non-linear interactions perturbed by mutations, directly from biophysical properties of

atoms.

Author summary

The thermodynamic stability of a protein, usually represented as the Gibbs free energy for
the biophysical process of protein folding (ΔG), is a fundamental thermodynamic quan-
tity. Predicting mutation-induced changes in protein thermodynamic stability (ΔΔG) is of
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great interest in protein engineering, variant interpretation, and protein biophysics. How-
ever, predicting ΔΔGs in an accurate and unbiased manner has been a long-standing chal-
lenge in the field of computational biology. In this work, we introduce ThermoNet, a
deep, 3D-convolutional neural network (3D-CNNs) designed for structure-based ΔΔG
prediction. To leverage the image-processing power inherent in CNNs, we treat protein
structures as if they were multi-channel 3D images. ThermoNet demonstrates perfor-
mance comparable to the best available methods. In addition, ThermoNet accurately pre-
dicts the effects of both stabilizing and destabilizing mutations, while most other methods
exhibit a strong bias towards predicting destabilization. We also demonstrate that the
presence of homologous proteins in commonly used training and testing sets for ΔΔG
prediction methods has likely influenced previous performance estimates. Finally, we
highlight the practical utility of ThermoNet by applying it to predicting the ΔΔGs for two
clinically relevant proteins, p53 and myoglobin, and for pathogenic and benign missense
variants from ClinVar.

This is a PLOS Computational Biology Methods paper.

Introduction

The thermodynamic stability of a protein, usually represented as the Gibbs free energy for the
biophysical process of protein folding (ΔG), is a fundamental thermodynamic quantity. The
magnitude of ΔG is collectively determined by the intramolecular interactions between amino
acid residues within the protein and the interactions between the protein and the biophysical
environment surrounding it [1]. When a mutation causes amino acid substitution in a protein,
it is likely that the stability of the mutant protein will be affected compared to the wild type.
(Note that the term “wild type” is not preferred because humans have substantial protein-cod-
ing genetic diversity [2]. A better term would be a “reference state”. However, as it will not
cause confusion in this work and for consistency with previous studies, we use “wild type”
throughout the text.) This change in protein thermodynamic stability (i.e. ΔΔG) caused by
mutation is of fundamental importance to medicine and biotechnology. Many disease-causing
mutations are single-point amino acid substitutions that lead to a substantial ΔΔG of the corre-
sponding protein, and such single-point mutations are a key mechanism underlying a wide
spectrum of molecular disorders [3–5]. Given the huge number of variants discovered by
large-scale population-level exome and genome sequencing studies and clinical genetic tests,
there is a tremendous interest in predicting whether these variants are likely to exert any
impact on protein function. In addition, in developing new biopharmaceuticals, one of the
early goals is usually to design proteins with the intended thermodynamic stability. However,
this task is often laborious, if not impossible, and usually involves experimentally screening an
enormous number of mutant proteins [6]. Thus, it is desirable to have an efficient and accurate
computational tool to prioritize the set of mutant proteins to be experimentally tested.

Toward these goals, several programs have been developed for estimating ΔΔGs. These
methods either rely on explicit biophysical modeling of amino acid interactions coupled with
conformational sampling of protein structures [7–11] or apply machine/statistical learning to
extract patterns from various types of amino acid sequence, evolutionary, and/or protein struc-
tural features [12–20]. While these methods have been useful in many applications [21,22],
they have substantial limitations. For example, physics-based methods are computationally
demanding and low-throughput; these challenges have largely prevented them from being
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applied to large-scale protein engineering and variant interpretation tasks. On the other hand,
several studies have highlighted significant bias in the predictions of machine learning-based
methods; they tend to predict mutations as destabilizing more often than stabilizing [19,23–
25]. The main source of this bias likely comes from the fact that the training sets are dominated
by experiment-derived destabilizing mutations and that machine learning methods are prone
to overfitting to training sets [24,26]. Thus, there is a need for new methods that can make
quantitative, unbiased prediction of ΔΔGs with high throughput.

Here, we describe ThermoNet, a computational framework based on deep 3D-CNNs for
predicting ΔΔGs upon single-point mutation. We model the structure of each mutation
assuming that single-point mutations introduce negligible perturbation to the overall archi-
tecture of protein structure. We treat protein structures as if they were 3D images with voxels
parameterized using atom biophysical properties [27,28]. We leverage the power of the archi-
tecture of CNNs in detecting spatially proximate features. These local biochemical interac-
tion detectors are then hierarchically composed into more intricate features with the
potential to describe the complex and nonlinear phenomenon of molecular interaction. We
address the bias in many previous methods towards predicting destabilization by training
ThermoNet on a balanced data set generated through anti-symmetry-based data augmenta-
tion, i.e. for each mutation, we consider both the direct and reverse versions. We further
demonstrate and address an unappreciated source of bias in previous performance estimates
due to homology between training and evaluation sets. We show that ThermoNet achieves
state-of-the-art performance comparable to previously developed methods on a widely used
test set with minimal prediction bias. We also demonstrate the applicability of ThermoNet
by showing that ThermoNet accurately predicts the ΔΔGs of the missense mutations in two
biologically important proteins, the p53 tumor suppressor protein and myoglobin, and that
ThermoNet-predicted ΔΔGs of ClinVar missense variants fall within the experimentally
observed range and are consistent with the expectations of a biophysical model of protein
evolution.

Results

An overview of ThermoNet

To predict the ΔΔG of a point mutation, we take advantage of recent advances in deep learning
for computer vision [29] and the successes of deep CNNs in biophysical problems [27,28,30–
32]. We treat protein structures as if they were 3D images where voxels are parameterized
using atom biophysical properties [27,28] (Fig 1A and 1B, and Table 1). For a given single-
point mutation, ThermoNet requires that a 3D structure (either experimentally determined or
modeled via homology modeling) of one of the alleles is available. As a first step, ThermoNet
constructs a structural model for the mutant from the structure of the wild type using the
Rosetta macromolecular modeling suite (Methods) [9,33]. ThermoNet assumes that the ΔΔG
of a point mutation can be sufficiently captured by modeling the 3D biophysical environment
around the mutation site. It thus extracts predictive features by treating protein structures as if
they were 3D images and voxelizing the space around the mutation site of both the wild-type
structure and the corresponding mutant structural model (Fig 1C). Each voxel is parameter-
ized with seven predefined rules (Table 1) to characterize the biophysical nature of its neigh-
boring atoms. The feature maps are then stacked to create a tensor with size [16, 16, 16, 14] as
input to the trained ensemble of ten deep 3D-CNNs, which generate a prediction of the ΔΔG
the given mutation causes to the wild-type structure (Fig 1D and 1E, and Methods). Each of
the component 3D-CNN models consists of three 3D convolutional layers with 16, 24, and 32
neurons respectively and one densely connected layer of 24 neurons (Fig 1E). These
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Fig 1. An overview of the ThermoNet computational framework. (A) Protein structures are treated as if they were 3D images. A 16 Å × 16 Å × 16 Å cubic
neighborhood centered at the Cβ atom (red sphere) of the mutated residue (or Cα atom in the case of a glycine) of an example protein (PDB ID: 1L63) is discretized
into a 3D voxel grid at a resolution of 1 Å. Each voxel is represented by a gray dot. (B) Just as an RGB image has three color channels, the 3D voxel grid is
parameterized with seven biophysical property channels: hydrophobic, aromatic, hydrogen bonding donor, hydrogen bond acceptor, positive ionizable, negative
ionizable, and occupancy. The saturation level of each voxel ranges from 0.0 to 1.0 and is colored accordingly (Methods). (C) To predict the change in thermodynamic
stability caused by a given single-point mutation, ThermoNet calls Rosetta to refine the wild-type structure and to create a structural model of the mutant protein. (D)
ThermoNet voxelizes the space around the mutation site of both the Rosetta-refined wild-type structure and the corresponding mutant structural model. Both the 3D
voxel grid of the wild-type structure and that of the mutant model are parameterized accordingly to create two [16, 16, 16, 7] feature maps. (E) The feature maps are
then stacked to create a [16, 16, 16, 14] tensor as an input to the trained deep 3D convolutional neural network. The final output of the network is the predicted ΔΔG
the given mutation causes to the wild-type protein structure.

https://doi.org/10.1371/journal.pcbi.1008291.g001

Table 1. Biophysical property channels for protein structure voxels.

Property Rule

Hydrophobic Aliphatic or aromatic carbon atoms

Aromatic Aromatic carbon atoms

Hydrogen bond donor Nitrogen, oxygen, sulfur atoms with lone-pair electrons

Hydrogen bond acceptor Polar hydrogen atoms

Positive ionizable Atoms with positive charge

Negative ionizable Atoms with negative charge

Occupancy All atom types

https://doi.org/10.1371/journal.pcbi.1008291.t001
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architectural hyperparameters (i.e. number of neurons in convolutional and densely con-
nected layers and sizes of the input voxel grid) were tuned via five-fold cross-validation (Meth-
ods, S1 Fig).

Creating data sets for robust training and testing of ThermoNet

The ability of a machine-learning model to generalize can be overestimated when there is data
leakage between the training set and the test set. In structural bioinformatics problems such as
ΔΔG prediction, such data leakage can result when the training set contains proteins that are
homologous to proteins in the test set. This is because the effects of different mutations in the
same protein or homologous proteins are not necessarily independent. In most previous meth-
ods for ΔΔG prediction, this data leakage issue was not fully appreciated, and homologous
proteins were present between training and test sets. For example, a recent method used ran-
domly selected subsets of mutants from the widely used S2648 data set for training and testing
[34]. Not surprisingly, the training and test sets of shared 61 identical proteins (S1 Table).

The issue of having mutations from the same protein in both training and test sets was
addressed in developing the mCSM and INPS methods, where the cross-validation procedure
ensured that mutations of the same protein remained together in either the training or test set
[16,19]. While this was a step in the right direction, grouping mutations at the protein level is
not sufficient to remove the homology between training and test sets. For example, we found
substantial homology between 132 proteins within S2648 (S2A Fig). Thus, splitting the S2648
data set for training and testing at the protein level is likely to end up with shared homology
between the splits. In fact, using the PISCES server [35] to remove redundancy from the S2648
data set resulted in only 104 non-redundant proteins (out of 132) at the level of< 25%
sequence identity (S2 Table). Homology is common among data sets used in training ΔΔG
predictors; for example, many proteins in the VariBench [36] data set also share substantial
homology (S2B Fig).

We further highlight that the widely used S2648 data set includes fourteen proteins from
Ssym data set, which was previously used to evaluate a wide range of ΔΔG predictors [24,37],
and another eight proteins that are putative homologs to proteins in Ssym (Fig 2A, S3 Table). In
addition, a similar level of overlap also exists between the VariBench and Q3421 data sets and
Ssym (Fig 2A, S4 and S5 Tables). Thus, performance estimates on Ssym of methods trained
using S2648 or parameterized using VariBench are likely to be overly optimistic. For example,
in a recent publication, a version of INPS trained using a data set obtained by removing all
proteins with> 25% sequence identity to proteins in Ssym showed substantially reduced per-
formance [38].

Thus, to train and evaluate ThermoNet, we implemented a rigorous procedure to reduce
the sequence similarity between the training and test sets (Ssym, p53, myoglobin) by removing
duplicate data points and pruning protein-level homology (Fig 2B). Our rigorous pruning of
the starting Q3421 data set [15] resulted in a data set consisting of 1,744 distinct mutations.
This data set was then augmented by creating a reverse mutation data point for each of the
1,744 direct mutations according to the anti-symmetry property of ΔΔG (Methods), thus giv-
ing to a total of 3,488 data points for the training of ThermoNet (Fig 2B). While the pruning
nearly halved the size of available training data, as discussed in the following section, models
trained using the resulting augmented Q3488 data set will be less likely to have an overesti-
mated performance when evaluated on Ssym. Finally, to explore the influence of homology
between training and test sets on estimates of model performance, we also augmented Q3214,
the intermediate data set before the step of homology reduction, to train a different version of
ThermoNet, called ThermoNet⇤ (Fig 2B).
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ThermoNet achieves state-of-the-art performance on blind test set

We systematically compared ThermoNet and ThermoNet⇤ with seventeen ΔΔG predictors on
the Ssym balanced data set to evaluate their performance and degree of bias with respect to the
ΔΔG anti-symmetry between direct and reverse mutations (Methods). A brief summary of the
characteristics of these ΔΔG predictors and their references are given in S6 Table. In short, the
predictors are based on diverse features and strategies with some, like ThermoNet based only
on structural information, while others like DDGun3D [37] and STRUM [15], integrate struc-
tural information with sequence and evolutionary features. The Ssym data set, which was con-
structed previously for assessing the biases of ΔΔG predictors [24], consists of experimentally
measured ΔΔG values for 342 direct and the corresponding reverse mutations (a total of 684
mutations) from fifteen protein chains for which the structures of both the wild-type and
mutant proteins have been resolved by X-ray crystallography with a resolution of 2.5 Å or bet-
ter. This data set is by construction balanced with respect to stabilizing and destabilizing muta-
tions, thus enabling the evaluation of prediction bias. However, as noted in the previous
section, many proteins in Ssym overlap or are homologous to proteins in commonly used train-
ing sets (Fig 2A).

To evaluate performance, we computed the root-mean-square error σ and the Pearson
correlation coefficient r separately for direct and reverse mutations. We measured prediction
bias by two statistics, the Pearson correlation coefficient rdir−rev between the predictions for

Fig 2. Data set curation and identification of shared homology. (A) Venn diagrams showing the amount of overlap at the protein level between three widely
used training sets S2648, VariBench, and Q3421 for ΔΔG predictors and the Ssym test set. Numbers in these diagrams indicate protein counts. Upper panel and
lower panel indicate that both S2648 and Q3421 share 14 identical proteins with Ssym; middle panel indicates that VariBench and Ssym share 11 identical
proteins. All three data sets share additional homology with Ssym, which is presented in S3, S4, and S5 Tables, respectively. (B) Creating data sets for robust
training and testing of ThermoNet. We started with the Q3421 set of 3421 mutations from 150 proteins. (Numbers in data set names indicate the number of
unique mutations the data set contains.) After homology reduction and anti-symmetry data augmentation (Methods), this data curation workflow gives a
training set of 3488 mutations with an equal representation of stabilizing and destabilizing changes and reduced homology to the Ssym test set. A separate data set
called Q6428 was also created by augmenting the Q3214 data set before homology reduction to train ThermoNet⇤.

https://doi.org/10.1371/journal.pcbi.1008291.g002
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direct and those for reverse mutations and the δ value, defined as: δ = ΔΔGrev + ΔΔGdir. A
perfectly unbiased predictor would give rdir−rev = −1 and hδi = 0 kcal/mol, where hδi is the
average of δ.

ThermoNet achieves strong prediction accuracy that is comparable for direct mutations
(rdir = 0.47 and σdir = 1.56 kcal/mol; Table 2, Fig 3A) and the corresponding set of reverse
mutations (rrev = 0.47 and σrev = 1.55 kcal/mol, Fig 3C). This suggests that ThermoNet did not
overfit to direct mutations. The fractions of mutations for which the prediction error is within
0.5 kcal/mol and 1.0 kcal/mol are 36.3% and 58.8% for direct mutations and 36.5% and 58.5%
for reverse mutations (Fig 3B and 3D). ThermoNet successfully reduces prediction bias with
a near-perfect rdir−rev (-0.96) and a negligible hδi (−0.01 kcal/mol) (Fig 3E). We also report
the distribution of δ, since hδi cannot distinguish large, but symmetric, bias from low bias
(Methods). As shown in Fig 3F, 40.9% and 96.2% of mutations have a prediction bias < 0.1
kcal/mol and< 0.5 kcal/mol, respectively.

We also report the performance of ThermoNet⇤, a different version of ThermoNet trained
using the Q6428 data set augmented from the intermediate data set Q3214 before the step of
homology reduction in our data set curation procedure (Fig 2B and Methods). ThermoNet⇤

was trained in the exact same way as ThermoNet except that the homology of its training set
Q3214 to Ssym was retained. Thus, the parameterization of ThermoNet⇤ is comparable to

Table 2. Comparative analysis using the balanced test set Ssym.

Method σdir rdir σrev rrev rdir−rev hδi
ThermoNet⇤ 1.42 0.58 1.38 0.59 -0.95 -0.05

DDGun3D 1.42 0.56 1.46 0.53 -0.99 -0.02

DDGun 1.47 0.48 1.50 0.48 -0.99 -0.01

ThermoNet 1.56 0.47 1.55 0.47 -0.96 -0.01

PoPMuSiCsym 1.58 0.48 1.62 0.48 -0.77 0.03

MAESTRO 1.36 0.52 2.09 0.32 -0.34 -0.58

FoldX 1.56 0.63 2.13 0.39 -0.38 -0.47

PoPMuSiC 2.1 1.21 0.63 2.18 0.25 -0.29 -0.71

SDM 1.74 0.51 2.28 0.32 -0.75 -0.32

iSTABLE 1.10 0.72 2.28 -0.08 -0.05 -0.60

I-Mutant 3.0 1.23 0.62 2.32 -0.04 0.02 -0.68

NeEMO 1.08 0.72 2.35 0.02 0.09 -0.60

DUET 1.20 0.63 2.38 0.13 -0.21 -0.84

mCSM 1.23 0.61 2.43 0.14 -0.26 -0.91

MUPRO 0.94 0.79 2.51 0.07 -0.02 -0.97

STRUM 1.05 0.75 2.51 -0.15 0.34 -0.87

Rosetta 2.31 0.69 2.61 0.43 -0.41 -0.69

AUTOMUTE 1.07 0.73 2.61 -0.01 -0.06 -0.99

CUPSAT 1.71 0.39 2.88 0.05 -0.54 -0.72

σdir and rdir are the root mean square deviation and the Pearson correlation coefficient between the predicted and experimental ΔΔG values for the direct mutations in

Ssym. Many of these mutations belong to the training set of the machine-learning-based methods tested [24], so their performances are likely to be overestimated. σrev

and rrev are the root mean square deviation and the Pearson correlation coefficient between the predicted and experimental ΔΔG values for the reverse mutations in

Ssym. These reverse mutations do not belong to the training data sets and thus constitute an independent test set. The parameter δ quantifies the prediction bias and is

defined as: δ = ΔΔGrev + ΔΔGdir. A perfectly non-biased tool should have δ = 0 for every mutation. We used here its average value hδi taken over all mutations that

belong to Ssym. Numbers for DDGun and DDGun3D were obtained from reference [37] and those for all other methods were obtained from [24]. The methods are

ranked according to their performance, σrev, on reverse mutations. Both ThermoNet⇤ and ThermoNet were trained using a data set balanced with direct and reverse

mutations, but the data set for training ThermoNet⇤ was not homology-reduced with respect to Ssym (Fig 2B).

https://doi.org/10.1371/journal.pcbi.1008291.t002
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Fig 3. Performance of ThermoNet on the blind test set. (A) Performance of ThermoNet on predicting ΔΔG for
direct mutations; The Pearson correlation coefficient (r) between predicted values and experimentally determined
values is 0.47, and the root-mean-square error (σ) of predicted values from experimentally determined values is 1.56
kcal/mol. The dots are colored in gradient from blue to red such that blue represents the most accurate prediction and
red indicates the least accurate prediction. (B) Cumulative distribution of ThermoNet prediction error on direct
mutations. (C) Performance of ThermoNet on predicting ΔΔG for the reverse mutations (r = 0.47, σ = 1.55 kcal/mol).
(D) Cumulative distribution of ThermoNet prediction error on reverse mutations. (E) Direct versus reverse ΔΔG
values of all the mutations in the blind test set predicted by ThermoNet. A perfectly unbiased predictor would give
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previous methods that did not consider homology. As expected, evaluation of ThermoNet⇤ on
Ssym shows even better performance in σrev (1.38 vs. 1.55 kcal/mol) and rrev (0.59 vs. 0.48) than
ThermoNet, which was trained using the data set obtained after homology reduction (Table 2,
Fig 2B, and Methods). Thus, the performance of many previously developed methods is likely
to be substantially lower if they had been trained using a data set that shared no homology
with Ssym. In contrast, ThermoNet’s strong performance, even after removing homology
reduction, suggests robust generalization in real-life applications.

Compared to other ΔΔG predictors, ThermoNet⇤ achieves the best performance on reverse
mutations, and the methods that outperform it on direct mutations all have substantial bias
against reverse mutations (σrev> 2.09 kcal/mol and hδi< -0.58). The seemingly good perfor-
mance of many machine learning-based methods on direct mutations, but poor performance
on reverse mutations suggests potential overfitting due to unbalanced training sets [24–26,39].
ThermoNet also performs well, but as a result of the reduction in performance due to remov-
ing homology between training and test sets, the DDGun and DDGun3D methods outperform
it on direct and reverse mutations. Unfortunately, it is not possible to retrain and evaluate all
the other methods on the homology pruned training set, so we cannot directly compare the
other methods to ThermoNet. Nonetheless, the fact that it still outperforms most suggests its
utility and robustness.

Structural models of reverse mutations are necessary for unbiased ΔΔG
predictions

To evaluate whether the inclusion of the reverse mutations is necessary for the reduction in
prediction bias, we trained a predictor following the same procedure for training ThermoNet
but using a data set consisting of only the 1,744 direct mutations and their associated experi-
mental ΔΔGs (i.e. the Q1744 data set in Fig 2B). We applied this predictor to predict the ΔΔGs
of the direct and reverse mutations of the Ssym test set. As shown in S3 Fig, ΔΔGs of direct
mutations predicted by these models correlate reasonably well (r = 0.47 and σ = 1.38 kcal/mol)
with the experimental values and are comparable to the performance of the ensemble of net-
works trained using the balanced data set Q3488. In contrast, these models perform poorly
(r = −0.06 and σ = 2.40 kcal/mol) in predicting the ΔΔGs of the corresponding set of reverse
mutations (S3 Fig). This suggests that the models were biased toward the training set which is
dominated by destabilizing mutations. This is confirmed by the strongly positive correlation
between the predictions for direct mutations and those for reverse mutations and the large pre-
diction bias (rdir−rev = 0.35 and hδi = 1.63 kcal/mol) (S3 Fig). Compared to the performance of
ThermoNet, which was trained using the balanced data set Q3488, the results highlight the
necessity of a balanced data set for correcting prediction bias.

Case studies: The p53 tumor suppressor protein and myoglobin

We further tested ThermoNet by predicting the ΔΔGs of single-point mutations in the p53
tumor suppressor protein and myoglobin whose thermodynamic effects have previously been
experimentally measured. The TP53 tumor suppressor gene encodes the p53 transcription fac-
tor that is mutated in ~45% of all human cancers. Unlike most tumor suppressor proteins that
are inactivated by deletion or truncation mutations, single amino acid substitutions in p53
often modify DNA binding or disrupt the conformation and stability of p53 [40]. Myoglobin

r = −1 and hδi = 0 kcal/mol. ThermoNet successfully reduces prediction bias with r = −0.96 and hδi = −0.01 kcal/mol.
(F) Distribution of ThermoNet prediction bias.

https://doi.org/10.1371/journal.pcbi.1008291.g003
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is a cytoplasmic globular protein that regulates cellular oxygen concentration in cardiac myo-
cytes and oxidative skeletal muscle fibers by reversible binding of oxygen through its heme
prosthetic group [41]. The p53 data set consists of 42 mutations within the DNA binding
domain of p53 [16]. The myoglobin data set consists of 134 mutations scattered throughout
the protein chain [42]. We note that none of the mutations in these two data sets were present
in the training set and that proteins that are likely to be homologous to p53 and myoglobin
were also removed from the training set of ThermoNet (Fig 2B, Methods). We used published
crystal structures of p53 (PDB ID: 2OCJ) and myoglobin (PDB ID: 1BZ6) to create one struc-
tural model for each of the mutations in these two data sets respectively using the FastRelax
protocol in Rosetta [43]. These predictions were compared directly with the experimentally
determined ΔΔGs (Fig 4).

For p53, ΔΔGs of both direct and reverse mutations predicted by ThermoNet correlate well
with the experimental measurements (r = 0.45 and 0.56) and have little bias (rdir−rev = −0.93

Fig 4. ThermoNet predicted well the ΔΔGs of mutations in the p53 tumor suppressor protein and myoglobin. (A) Performance of ThermoNet on predicting ΔΔG
for the direct mutations in p53 (r = 0.45, σ = 2.01 kcal/mol). (B) Performance of ThermoNet on predicting ΔΔG for the reverse mutations in p53 (r = 0.56, σ = 1.92
kcal/mol). (C) Direct versus reverse ΔΔG values of all p53 mutations predicted by ThermoNet (rdir−rev = −0.93 and hδi = −0.04 kcal/mol). (D) Performance of
ThermoNet on predicting ΔΔG for the direct mutations in myoglobin (r = 0.38, σ = 1.16 kcal/mol). (E) Performance of ThermoNet on predicting ΔΔG for the reverse
mutations in myoglobin (r = 0.37, σ = 1.18 kcal/mol). (F) Direct versus reverse ΔΔG values of all myoglobin mutations predicted by ThermoNet, with a Pearson
correlation of rdir−rev = −0.97 and hδi = −0.02 kcal/mol. The dots are colored in gradient from blue to red such that blue represents the most accurate prediction and red
indicates the least accurate prediction.

https://doi.org/10.1371/journal.pcbi.1008291.g004
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and hδi = −0.04 kcal/mol). However, the predicted ΔΔGs of myoglobin mutations correlate
less well (r = 0.38 and 0.37 for direct and reverse mutations respectively) compared to those of
p53, though the bias is also low (rdir−rev = −0.97 and hδi = −0.02 kcal/mol). The poorer correla-
tions for myoglobin are likely because the myoglobin data set consists of ΔΔG measurements
obtained under various experimental conditions which ThermoNet does not explicitly account
for. In fact, after excluding four data points (L29N, A130L, and two data points corresponding
to A130K) with the biggest prediction error (> 3 kcal / mol), the Pearson correlations increase
to 0.52 and 0.51 for direct and reverse mutations respectively. While the correlation between
predicted and experimentally measured ΔΔGs is not perfect, the predictions are generally con-
servative–no mutations with low measured ΔΔG are predicted to have a high ΔΔG. These
results demonstrate the utility of ThermoNet as rapid unbiased predictor of ΔΔG for muta-
tions in clinically relevant proteins.

We also compared ThermoNet with four other biophysics-based methods: FoldX, Rosetta,
SDM, and CUPSAT (see S6 Table for a summary and references of these methods). We were
not able to include all methods because both p53 and myoglobin are already in the S2648 set
that was used for training most of the other machine learning-based ΔΔG predictors and they
are also in the VariBench [36] data set used to derive parameters of the DDGun model [37].
We recognize that there is also a possibility that mutation ΔΔG values from p53 and myoglobin
were used in the derivation of parameters of the biophysics-based methods tested here. Our
comparison indicates that both FoldX and Rosetta predictions have a better correlation than
ThermoNet while also reasonably anti-symmetric (S7 and S8 Tables). However, as shown in
Table 2 and demonstrated in previous studies [24,25], both FoldX and Rosetta are likely to
show bias toward predicting destabilization when tested on larger data sets.

ΔΔG landscape of ClinVar missense variants

Previous work has shown that variant deleteriousness can only be partially attributed to ΔΔG
[44] and that both stabilization and destabilization can cause disease [45]. We sought to use
ThermoNet to obtain a less biased picture of the impact of benign and pathogenic variants on
protein stability. We applied ThermoNet to predict the ΔΔG distributions of pathogenic and
benign missense variants in ClinVar, a widely used resource of medically important variants
[46]. For comparison, we also applied FoldX, a popular and freely available ΔΔG predictor
[13,22] to the ClinVar set. We first examined the overall predicted ΔΔG distribution of Clin-
Var variants. The ΔΔGs of ClinVar variants predicted by ThermoNet range from -2.75 kcal/
mol to +3.75 kca/mol (Fig 5A). Experimentally measured ΔΔGs generally fall within -5 kcal/
mol to +5 kcal/mol [13,47]; thus, ThermoNet’s predictions are consistent with the range of
observed values. In contrast, the ΔΔGs of the same set of variants predicted by FoldX range
from -6.64 kcal/mol to +57.2 kcal/mol (Fig 5A), and 15.2% of ΔΔGs predicted by FoldX are
outside the expected range of -5 kcal/mol to +5 kcal/mol.

ΔΔGs predicted by ThermoNet are also consistent with the expected ΔΔG distributions
according to a biophysical model of protein evolution [47]. This model hypothesizes that fit-
ness is a non-monotonic, concave function of protein stability, meaning that fitness decreases
with increasing deviation from an optimal stability. The model also suggests that there is a
“neutral zone” of 1.0 kcal/mol around the optimal stability in stability space, and mutations
whose impact on stability fall within the neutral zone will have little effect on fitness [47]. We
thus reasoned that the ΔΔGs of benign variants should fall within a narrow range from -0.5
kcal/mol to +0.5 kcal/mol and that pathogenic variants should be equally likely to be destabiliz-
ing or stabilizing [47]. To test this hypothesis, we examined the ΔΔG distributions of patho-
genic and benign variants separately. The ΔΔGs of 80.2% of benign variants predicted by

PLOS COMPUTATIONAL BIOLOGY Predicting protein stability with deep learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008291 November 30, 2020 11 / 24

https://doi.org/10.1371/journal.pcbi.1008291


ThermoNet fall within the neutral zone, whereas FoldX only predicted 39.7% of benign vari-
ants to be in the neutral zone (Fig 5B). Further, the ΔΔGs of pathogenic variants predicted by
ThermoNet suggest pathogenic variants are nearly equally likely to be destabilizing (52.7%) as
they are to be stabilizing (47.3%) (Fig 5C). In contrast, FoldX predicted that 83.2% of patho-
genic variants are destabilizing. As already demonstrated in previous studies, the bias is likely
because FoldX was parameterized on an experimental ΔΔG data set dominated by destabilizing
mutations [23–25].

ThermoNet’s predictions are also consistent with the fact that variant pathogenicity can
only be partially attributed to impacts on protein stability. ThermoNet predicts that 61.4% of
pathogenic variants that have ΔΔGs within the neutral zone and 19.8% of benign variants have
ΔΔGs outside the neutral zone (Fig 5B and 5C). This is expected based on previous biochemi-
cal characterizations of pathogenic mutations. For example, Bromberg et al. collected 66 muta-
tions with experimentally measured ΔΔG and functional annotations from the literature. The
ΔΔGs of this set of mutations range from -4.3 to 4.96 kcal/mol and the authors found that 31%
of mutations affecting function had ΔΔGs within the neutral zone while 19% functionally neu-
tral mutations had ΔΔGs outside the neutral zone [44].

Fig 5. Predicted ΔΔG distributions of ClinVar missense variants. (A) The overall ΔΔG distributions of ClinVar variants predicted by ThermoNet and FoldX.
ThermoNet’s predictions are consistent with the expected range based on experimentally determined ΔΔG values (-5 kcal/mol to +5 kcal/mol). In contrast, more than
15% of ΔΔGs predicted by FoldX are outside the expected range. (B) The ΔΔG distributions for ClinVar benign variants predicted by ThermoNet and FoldX. (C) The
ΔΔG distributions of ClinVar pathogenic variants predicted by ThermoNet and FoldX. The ΔΔGs of 80.2% of benign variants predicted by ThermoNet fall within the
neutral zone (-0.5 to +0.5 kcal/mol, region between dashed lines), in which variants are not expected to influence fitness. FoldX only predicted 39.7% of benign
variants to be in the neutral zone. Further, the ΔΔGs of pathogenic variants predicted by ThermoNet suggest pathogenic variants are nearly equally likely to be
stabilizing (47.3%) as destabilizing (52.7%). In contrast, FoldX predicted that 83.2% of pathogenic variants are destabilizing. Variants for which FoldX ΔΔG is> 20
kcal/mol are omitted for clarity. Percentages represent the fractions of variants whose ΔΔGs are predicted to be in the neutral zone.

https://doi.org/10.1371/journal.pcbi.1008291.g005
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Discussion

Accurate modeling of protein thermodynamic stability is a complex task due to the delicate
balance between the different thermodynamic state functions that contribute to protein stabil-
ity [1]. The primary goal of this paper is to present a novel application of deep 3D-CNNs to a
fundamental challenge in structural bioinformatics: predicting changes in thermodynamic sta-
bility upon point mutation. We formulated the problem of ΔΔG prediction from a computer
vision perspective and took full advantage of the power of the constrained architecture of
CNNs in detecting spatially proximate features [29]. We developed ThermoNet, a method
based on deep 3D-CNNs, to predict ΔΔG upon point mutation. We showed that ΔΔG can be
predicted from protein structure with reasonable accuracy using deep 3D-CNNs without man-
ual feature engineering. While ThermoNet achieved comparable performance to previous
methods on direct mutations, it performed better on reverse mutations than most methods by
a large margin, and remarkably, reduced the magnitude of prediction bias.

In addition to introducing ThermoNet, we also address two methodological challenges in the
development and evaluation of computational methods for ΔΔG prediction: lack of anti-symme-
try and data leaks due to homology between proteins in the training and test sets. Previously, it
was shown that the lack of anti-symmetry in ΔΔG prediction can be effectively addressed either
by using input features that are anti-symmetric by construction [19,37,38,48,49] or by training
the predictor using both direct and reverse mutations [19,24]. In addition, when the statistical
model is parametric, one may identify the terms that are responsible for breaking the symmetry
and make correction accordingly [49]. However, when the predictor is nonparametric, meaning
that the terms of the statistical learning model are not established a priori, the only way is to
train the model with data set balanced with direct and reverse mutations so that it learns the
anti-symmetry [24]. For structure-based ΔΔG predictors, this approach requires knowing the
3D structures of both the wild type and mutant protein. While mutant structures determined
via experimental techniques are scarce, in this work, we demonstrated that mutant protein
structures obtained through molecular modeling-based data augmentation can also be effec-
tively used as substitutes for experimental structures to remedy the lack of anti-symmetry in
ΔΔG prediction.

Recently, the potential for data leak between training and testing due to the inclusion of
mutations from the same proteins has been appreciated [16,19]; however, the effects of
including mutations from homologous proteins in training and test sets are less appreciated
and understood. For example, while the Ssym data set was reasonably constructed and has
been used practically to evaluate ΔΔG predictors, comparison of predictor performance is
complicated by the presence of homology. Our results suggest that that such homology can
influence performance estimates. The ThermoNet⇤ model, which was trained before homol-
ogy reduction, achieved stronger performance than the ThermoNet model trained after
homology reduction (Fig 2B). In real-world applications, there will be homology between
proteins used to train prediction models and the proteins to which they are applied. How-
ever, given the relatively small number of proteins included in commonly used training sets
and the fact that they are not representative of the full diversity of protein folds and func-
tions, we believe that the inclusion of mutations from proteins with shared evolutionary his-
tories is likely to bias performance estimates. In the future, it will be valuable to explore this
issue further and construct training sets that reflect the evolutionary relationships expected
in various applications.

ThermoNet treats protein structures as if they were 3D images, and it takes as input a
3D grid of voxels parameterized with seven biophysical property channels. As such, this
approach bypasses the tedious processes of manual feature engineering and feature selection
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that, if not done correctly, can often lead to over-optimistic estimation of model perfor-
mance. The locally constrained deep convolutional architecture likely allows the system to
model the complex, non-linear nature of molecular interactions. Recently, a spherical con-
volutional architecture in which concentric voxel grids parameterized by atom masses and
charges were used as input to predict the ΔΔGs of direct mutations with good accuracy [50].
Thus, together with the current work, these results demonstrate the potential of deep CNNs
for predicting biophysically meaningful information from protein structures and hold
promise for protein engineering.

The fact that our approach relies on the availability of experimental structures or homol-
ogy models and the 3D nature of the CNN create two limitations. First, while protein struc-
tures are being determined at an unprecedented pace, the fraction of the human proteome
with available experimental structure is estimated to be around 20% [51]. Even when all the
proteins whose structures can be modeled reliably are considered, only ~70% of the human
proteome will have structural coverage [51]. As the structures of many proteins can only be
partially modeled, the space of the human proteome that one can apply ThermoNet to will
be less than 70%. Second, compared to the 2D version with the same architecture, Thermo-
Net has four times more parameters: three convolutional layers of 16, 24, and 32 neurons
respectively, and one dense layer with 24 neurons that takes an input tensor of the shape [16,
16, 16, 14] has 133,273 parameters. Training deep 3D-CNNs is very demanding, requiring
more GPU memory and more training data to avoid overfitting. While we demonstrated the
potential of deep 3D-CNNs in modeling ΔΔG of proteins, the relatively little training data
available raises the question of whether deep 3D-CNNs can model ΔΔGs and related thermo-
dynamic properties at experimental accuracy. Nonetheless, the increasing adoption of deep
mutational scanning techniques for systematic study of the molecular effects of mutations is
generating an unprecedented amount of data [52]. Furthermore, given rapid increases in
GPU power and the number of structures of proteins and their complexes determined, we
expect that deep 3D-CNNs will be successfully applied to provide solutions to many biophys-
ical problems such as modeling the impact of mutation on protein-protein, protein-DNA as
well as protein-RNA interactions.

Methods

Protein thermodynamic stability

The thermodynamic stability ΔG of the folded form of a two-state protein, which is its Gibbs
free energy of folding, is defined in relation to the concentration of folded [folded] and the con-
centration of unfolded [unfolded] forms:

DG à � RTln
âfoldedä
âunfoldedä

where T is the temperature, and R is the gas constant. More stable proteins, meaning that a
higher fraction of the protein is in the folded form, have more negative values of ΔG. The
impact of mutations on protein stability, ΔΔG, is defined in terms of the change in ΔG between
the wild-type and mutant proteins:

DDG à DGmutant � DGwild�type à � RTln
âfoldedämutant=âunfoldedämutant

âfoldedäwild�type=âunfoldedäwild�type

such that a destabilizing mutation has a positive ΔΔG, whereas a stabilizing mutation has a
negative ΔΔG. The values of ΔΔG resulting from single-point mutations usually range from -5
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to 5 kcal/mol [13]. A mutation that destabilizes a protein with a typical stability (ΔG = -5 kcal/
mol) by 1 kcal/mol will reduce the equilibrium constant for the folding reaction of this protein
by a factor of 5.1 at physiological temperature (310 K).

Thermodynamics of direct and reverse mutations

Consider a pair of proteins whose sequences differ only at a single position where the amino
acid is X in one protein and Y in the other. Let the Gibbs free energies of folding of this pair of
proteins be ΔGX and ΔGY respectively. For such a pair of proteins, one can think of the protein
Y as being generated by a “direct” mutation at the sequence location from amino acid X to Y
and the change in the Gibbs free energy of folding caused by X to Y mutation is ΔΔGX!Y =
ΔGY − ΔGX. One may also think of the protein X as being generated by a “reverse” mutation
from amino acid Y to X and the change in the Gibbs free energy of folding caused by this
reverse mutation is ΔΔGY!X = ΔGX − ΔGY = ΔΔGX!Y. A well-performing, “self-consistent”
method for predicting ΔΔGs would not only give accurate ΔΔG predictions for the direct
mutations, but also for the reverse mutations. This self-consistency requirement has been
largely ignored by previously developed ΔΔG predictors [23–25].

Data sets and symmetry-based data augmentation

The data set used to train ThermoNet was derived from the Q3421 data set compiled in a pre-
vious study [15]. The Q3421 data set contains 3,421 distinct single-point mutations in 150
proteins collected from the ProTherm database [53]. The effects of these mutations on the sta-
bility of protein structure have been measured experimentally and expressed quantitatively as
ΔΔG values. We first excluded those mutations from the Q3421 data set that were also in the
Ssym test set (see following). To reduce the sequence similarity between proteins in the training
set of ThermoNet and the proteins it was tested on, we also removed all proteins that are likely
homologous (BLAST e-value< 0.001) to p53, myoglobin, and proteins in Ssym from Q3421.
Estimation of homology was accomplished by running the blastp program [54] using protein
sequences in the Ssym data set and the sequences of p53 and myoglobin as queries against pro-
tein sequences in Q3421. Our rigorous pruning of the Q3421 data set resulted in a final data
set consisting of 1,744 distinct mutations in 127 proteins. This data set was augmented by cre-
ating a reverse mutation data point for each of the 1,744 direct mutations, thus giving to a total
of 3,488 data points for training ThermoNet. The data set was randomly divided into ten
equally sized, mutually exclusive subsets each consisting of 10% of the direct mutations and
the corresponding 10% of reverse mutations. In the training of each component model of
ThermoNet, nine subsets were combined to form a training set and the remaining one subset
was used as a validation set. The data set used to test ThermoNet and to compare it with fifteen
previously developed ΔΔG predictors was a common, balanced data set called Ssym consisting
of 342 pairs of proteins with known crystal structures [24]. The members forming each pair
differ at only a single position in the protein sequence. The ΔΔG values of the 342 direct muta-
tions have been experimentally measured and the ΔΔG values of the corresponding 342 reverse
mutations were assigned using anti-symmetry.

Modeling mutant structures

We treat each mutation as a pair of proteins whose sequences differ only at a single sequence
position. For each pair of proteins, we designate the one whose structure has been experimen-
tally resolved as protein X and the other as protein Y. Structures of the X proteins were col-
lected from the Protein Data Bank (PDB) [55] and were relaxed in the Rosetta all-atom energy
function ref2015 [56] using the Rosetta FastRelax protocol [43]. To prevent large-scale
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conformational shift from the input PDB structure, atoms were constrained to their starting
locations with a harmonic penalty potential during relaxation. The same Rosetta FastRelax
protocol was also employed to create structural models for each of the Y proteins from the cor-
responding relaxed structure of the X protein by supplying a Rosetta resfile specifying the
mutation X! Y to make. The structures of both proteins of each protein pair in the Ssym test
set were collected from the PDB [55] and were also relaxed using the same Rosetta FastRelax
protocol.

Voxelization of the neighborhood of mutation site

We treated each protein structure as a collection of volume elements (voxels) in 3D space. Just
as pixels element in an image have color channels, we parameterized voxels in a protein struc-
ture by a set of k biophysical property channels: [v1, v2, . . ., vk] where the value vi of each prop-
erty channel indicates the level of saturation of property i at this voxel (Fig 1A and 1B). For
each mutation (a pair of proteins), we superimposed the mutant structure onto the wild-type
structure such that the root-mean-squared distance between them is minimized and collected
a grid of 16 × 16 × 16 voxels from both structures. We parameterized each voxel with seven
property channels each of a distinct chemical nature according to AutoDock4 atom types [57]
as in the work of Jimenez et al. [28] (Table 1). This resulted in a tensor of the shape [16, 16, 16,
7] for a single structure and a tensor of the shape [16, 16, 16, 14] when the two tensors from
both structures are concatenated to represent the mutation. The grid was centered at the Cβ

atom of the mutation site amino acid (or Cα atom if it’s a glycine) where each voxel is a unit
cube whose sides are 1 Å long. The level of saturation f(d) of each property channel at each
voxel is determined by the van der Waals radius rvdw of the atom designated to have that prop-
erty and its distance d to the center of the voxel through the following formula:

f dÖ Ü à 1� exp � rvdw
d

⇣ ⌘12
 �

The computation of tensors from protein structures was performed using routines imple-
mented in the HTMD Python library (version 1.17) for molecular simulations [58]. A Python
program for creating input tensors from a list of mutations is provided in GitHub repository
at https://github.com/gersteinlab/ThermoNet. The orientations of protein structures were
taken directly from the retrieved PDB files without further adjustment, although our Python
program does provide an option for rotating input structures about all three Cartesian axes.

Model architecture

CNNs are a type of deep-learning model commonly used in computer vision applications.
They have recently proven to perform well in residue contact prediction [59–62] and protein
tertiary structure prediction [63–66]. We selected CNNs for protein structure-based ΔΔG pre-
diction because we formulated this problem as a computer vision problem by treating protein
structures as if they were 3D images. Each of the component models of ThermoNet features a
sequential organization of three 3D convolutional layers (Conv3D), one 3D max pooling layer
(MaxPool3D), followed by one fully connected layer (Dense) (S1 Fig). Convolutions operate
over 4D tensors, called feature maps, with three spatial axes (length, width, and height) as well
as a depth axis. The convolution operation extracts 3D patches of shape [3, 3, 3] with stride 1
from its input feature map and applies the same transformation to all patches, producing an
output feature map. This output feature map is still a 4D tensor: it has a length, height, and a
width whose values are determined by the shape of convolution patches and size of the stride,
but its depth, which is also called number of filters, is a hyperparameter of the layer (see the
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section on hyperparameter search below). The number of filters in the three Conv3D layers
were 16, 24, and 32 respectively. All convolution operation outputs from each Conv3D layer
are transformed by the rectified linear activation function (ReLU). The transformed outputs
from the last Conv3D layer are pooled by taking the maximum activation of each 2 × 2 × 2
grid. The max-pooled activations are then flattened into a 1D vector of features which are fully
connected with a dense layer of 24 ReLU units. This model architecture was implemented
using Keras [67] with TensorFlow [68] as the backend.

Training ThermoNet

ThermoNet is an ensemble of ten deep 3D-CNNs, each trained to perform the best on a vali-
dation set. Each of the component models was trained on nine subsets (collectively known as
the training set), and its generalization performance was monitored on the remaining one
subset (validation set). This process was iterated ten times each using a different one of the
ten subsets as the validation set and the remaining nine subsets as the training set. We
employed this procedure to obtain an ensemble of ten models because model ensembling
has been suggested to produce better predictions [69]. Evaluation of this ensemble was per-
formed on a separate test set (see below). All component models of ThermoNet were trained
using the Adam optimizer [70] for 200 epochs with default hyperparameters (maximum
learning rate = 0.001, β1 = 0.9, β2 = 0.999). Kernel weights of the model were initialized using
the Glorot uniform initializer and updated after processing each batch of eight training
examples. The mean squared error (MSE) of the predicted ΔΔG values from the experimental
measurements was used as the loss function during training. When training a deep neural
network, one often cannot predict how many epochs will be needed to get to an optimal vali-
dation loss. We monitored the MSE of the predictions on a separate validation set consisting
of 10% variants randomly selected from the training set during training. Training was
stopped when the MSE on the validation set stopped decreasing for ten consecutive epochs.
To regularize the model, the dense layer was placed between two dropout layers with a drop-
out rate of 0.5 in each layer (S1 Fig). Each of the final component models was the one that
produced the lowest MSE on the validation set. The final predicted ΔΔG value is the average
of predictions from the ten models.

Hyperparameter search

The design of deep CNNs entails many architectural choices to account for number of hid-
den convolutional layers and fully connected layers, number of filters, filter size, strides, pad-
ding, dropout rate among many other hyperparameters. We initially created a voxel grid
with size 16 × 16 × 16 at a resolution of 1 Å for each chemical property channel following the
procedure described in [27] to cross-validate our network architectures. Considering the
limited training data set available in our study, we tried some smaller architectures with
cross-validation to decide the optimal one, rather than simply adapting the widely used,
much larger, network architectures in computer vision applications. We restricted our deep
CNNs to have three convolutional layers and one fully connected while considering several
hidden layer sizes. Our results from five-fold cross-validation suggest that the architecture
of the 16 × 24 × 32 convolutional configuration combined with a fully connected layer of
size 24 achieved the best performance (S1 Fig). An additional consideration for our deep
3D-CNN architecture is the dimension of the local box. The size of the local box specifies the
structural information accessible by the network and therefore is a hyperparameter of our
method. We cross-validated the voxelization scheme with grid of sizes 8 × 8 × 8, 12 × 12 ×
12, 16 × 16 × 16, and 20 × 20 × 20 at a resolution of 1 Å. All voxelization schemes draw a
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cubic box around the mutation site with lateral length of l Å where l equals 8, 12, 16, or 20 Å.
Our results from five-fold cross-validation indicate that the voxel grid with size 16 × 16 × 16
gives the best prediction performance (S1 Fig).

Performance evaluation

The following measures were adopted to evaluate the performance of ThermoNet and to facili-
tate comparison with previously developed methods. The primary measures for evaluating
prediction accuracy were the Pearson correlation coefficient (r) between experimental and
predicted ΔΔGs and the root-mean-squared error (σ) of predictions. For a set of n data points
(xi, yi), the formula for calculating r and σ are defined as follows:

r à n
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where the (xi, yi) tuple denotes the experimental and predicted ΔΔG values of mutation i,
respectively, and n denotes the number of mutations in the data set. The measures for evaluat-
ing prediction bias were the Pearson correlation coefficient between the predictions for direct
mutations and those for reverse mutations and the parameter δ which is defined as:δ = ΔΔGrev

+ ΔΔGdir and was previously used to quantify prediction bias [23]. An unbiased predictor
should have δ = 0 for every mutation. The average of δ, hδi, taken over all mutations in the
Ssym data set was used in two previously studies to quantify prediction bias [24,37]. While we
report hδi in this work, we note that hδi is flawed because biases toward opposite directions
will be washed out when summed. To give a more transparent presentation of prediction bias,
we also plot the distribution of δ.

ClinVar variants

We retrieved the ClinVar database [47] in VCF format on August 15, 2019 and ran the VCF
file through the Variant Effect Predictor (version 97) [71] to annotate the consequences of all
ClinVar variants. We created a set of missense variants that can be mapped to protein struc-
tures to demonstrate the applicability of ThermoNet to clinically relevant variants. Our evalua-
tion set consists of solely ClinVar missense variants that are labeled as "pathogenic" or "likely
pathogenic" for the pathogenic group and "benign" or "likely benign" for the benign group. All
variants were required to have a review status of at least one star and no conflicting interpreta-
tion. All ClinVar variants designated as “no assertion criteria provided”, “no assertion pro-
vided”, “no interpretation for the single variant”, or not covered by protein structure were
excluded from the evaluation set. Due to the dependency of ThermoNet on 3D structures, we
also require variants in the evaluation set to be mappable to available protein structures. The
residue-level mapping of ClinVar variants onto protein structures was based on the SIFTS
resource that provides residue-level mapping between UniProt and PDB entries [72]. Collec-
tively, these restrictions resulted in 3,510 pathogenic variants and 950 benign variants that
can be mapped to experimental structures deposited in the PDB [55]. The mapped variants
along with PDB IDs can be found in our GitHub repository at https://github.com/gersteinlab/
ThermoNet.
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Supporting information

S1 Fig. Architecture of the deep 3D convolutional neural network model and hyperpara-
meter search. (A) The overall organization of the model begins with the input tensor and ends
with a final layer that outputs ΔΔG prediction. The numbers in parentheses before the Flatten
layer represent the dimensionality of the output from each layer in the format (width, height,
depth, property channels). The number in parentheses starting from the Flatten layer represent
the number of output features from each of the densely connected layers. This optimized
architecture was determined through cross-validation. (B) Results from cross validating the
sizes of the convolutional layers while keeping the size of the densely connected layer at 32
neurons. (C) Results from cross validating the size of the densely connected layer while keep-
ing the sizes of the convolutional layers at (16, 24, 32). (D) Results from cross validating the
dimensions of the input grid.
(PDF)

S2 Fig. Pairwise percent sequence identity of the proteins in the S2648 and VariBench data
sets. (A) A heatmap representation of the pairwise percent sequence identity matrix of the pro-
teins in the S2648 data set. (B) A heatmap representation of the pairwise percent sequence
identity matrix of the proteins in the VariBench data set. It is obvious from these two heatmaps
that there is substantial pairwise homology (percent identity > 25%) in both S2648 and Vari-
Bench. The pairwise identity matrices were obtained using the Clustal Omega multiple
sequence alignment program [73].
(PDF)

S3 Fig. CNNs trained using only direct mutations show a large prediction bias. (A) Perfor-
mance of an ensemble of ten networks trained using only the set of 1,744 direct mutations on
predicting the ΔΔGs of the direct mutations in the blind test set; The Pearson correlation coef-
ficient (r) between predicted values and experimentally determined values is 0.47, and the
root-mean-square deviation (σ) of predicted values from experimentally determined values is
1.38 kcal/mol. (B) Performance of the same ensemble of ten networks on predicting the ΔΔGs
of the reverse mutations in the blind test set; The Pearson correlation coefficient (r) between
predicted values and experimentally determined values is -0.06, and the root-mean-square
deviation (σ) of predicted values from experimentally determined values is 2.40 kcal/mol. (C)
Direct versus reverse ΔΔG values of all the mutations in the blind test set predicted by the
same ensemble of networks. (B) and (C) highlight that the models trained with only direct
mutations have a large bias and, when compared to the models trained using the balanced data
set, the necessity of adding reverse mutations to correct the bias. The dots are colored in gradi-
ent from blue to red such that blue represents the most accurate prediction and red represents
the least accurate.
(PDF)
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S2 Table. PDB IDs of non-redundant proteins returned by submitting proteins in the
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