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We compare the “patterns of mutation” in biological and technological networks. Negative selection at
central nodes in biological networks has been widely reported; however, we show technological networks
have an opposite trend. This suggests a potential contrast: biological evolution involves random tinkering,
whereas man-made systems change according to rational planning.

The remarkable resemblance between the
development of technology and the evolu-
tion of biological systems has fascinated
generations of engineers, biologists, histo-
rians, and philosophers (Basalla, 1989;
Arthur, 2011; Wagner and Rosen, 2014).
Indeed, there are many apparent analo-
gies. For instance, both biological and
technological systems are adaptive,
meaning their evolution is driven by some
form of selection. While natural selection
shapes the diversity of species, selection
takes place in technological evolution in
the form of the market, which combines
various elements like physical constraints
and customer requirements. Apart from
such analogies, biological and technolog-
ical evolutions share deeper commonality.
For example, the “bursty” nature of biolog-
ical evolution, punctuated equilibrium
(Gould, 2002), has been reported in the
evolution of various technological sys-
tems, such as software systems and
programming languages (Gorshenev and
Pis’mak, 2004; Valverde and Solé, 2015).

Perhaps, the most intriguing question is
as follows: what is the reason behind the
resemblance, given that random tinkering
drives biological evolution while technolog-
ical evolution involves, to a great extent, the
plan of rational human designers? Is it
conceivable to develop a unified frame-
work or even discover overarching laws
governing these two evolutionary pro-
cesses? To compare and contrast the
two systems, it is worthwhile to look in
detail at their underlying connectivity
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networks. This is because the networks
are a common framework that can be
used to describe both biological and
technological systems. By capturing the in-
teractions between heterogeneous com-
ponents in the corresponding systems,
the underlying structure of the complex
networks determines the function of the
systems. A decade ago, Uri Alon and
collaborators observed several common
features in the organization of biological
and engineering circuitry, such as modular
organization and the existence of recurring
elements called network motifs (Alon,
2003). He argued that the common archi-
tectures result from common design princi-
ples adopted by nature and human design.
For instance, certain network motifs make
a system tolerant to noise (Alon, 2007);
such motifs are, therefore, widely found in
biological and engineering networks for
the sake of robustness. Despite a biological
system and a man-made system present-
ing two similar solutions to an engineering
problem, the routes to these solutions, or
mechanisms, remains in question. To
answer this question, instead of merely
focusing on the convergent trends, it may
be useful to re-examine certain differences.

Case Study: Evolutionary Patterns of
Protein Interaction Network versus
Package Dependency Network
Mapping the evolutionary patterns of
components onto the underlying
networks may shed light on the construc-
tion of similar solutions. As a case study,

we focus on a piece of software, the sta-
tistical computing language R, a techno-
logical system built through the collabora-
tive efforts of many statisticians and
programmers. The evolution of R is
captured by the so-called package
dependency network, which specifies
how the proper installation of a package
depends on the installation of another
package (A — B meaning package A
depends on B) (Burns et al., 2019). Such
a dependency exists because most pro-
grammers tend to reuse existing code
rather than developing everything from
scratch. While the topology of package
networks by itself has interesting biolog-
ical analogies (Yan et al., 2010; Pang
and Maslov, 2013), here, we compare
the evolution of package networks with
its biological counterpart. A software
package evolves through software up-
date. Because most, if not all, updates
are not cosmetic but aim to maintain or
improve the function of a package, a
higher rate of updates suggests that a
package’s function tend to change
frequently. The tendency of a protein’s
function to change can be measured by
dN/dS, i.e., the ratio of non-synonymous
substitutions per site to synonymous
substitutions per site, where dN/dS < 1
means a protein tends to reject mutations
that can change its function and dN/dS >
1 means natural selection promotes func-
tional changes in protein. While the rate of
update is not compatible with dN/dS, the
ways the two quantities vary within their
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Protein-protein interaction network
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R-package dependency network
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Figure 1. Different Evolutionary Patterns in a Biological Network versus in a Technological Network

The left panel shows the human protein-protein interaction (PPI) network based on Kim et al. (2007) for a direct comparison with the R package dependency
network on the right. The bottom left shows the human PPI network (red for dN/dS > 1, yellow for dN/dS < 1, and white for lacking a measurement of dN/dS), and
the top left shows the degree centrality (x axis) versus the dN/dS (y axis) of each protein in the network. The bottom right shows the R package dependency
network generated by an in-house script (red for update rate > 0.01 and yellow for update rate < 0.002), and the top right shows the degree centrality (x axis)
versus the rate of update of each R package (y axis). The rate of update is obtained by parsing the log files in CRAN (https://cran.r-project.org/) with our in-house
script. Central nodes in the human PPI network are under strong selective constraints (tend to reject changes in function), whereas central nodes in the R package
network change more often. In other words, network centrality and rate of evolution are negatively correlated in biological networks, such as the human PPI
network, but positively correlated in technological networks, such as the R package network. Degree centrality of a node is the number of its interacting
neighboring nodes in the network. The igraph package (https://igraph.org) was used to construct the R package dependency network and calculate the cen-
tralities. We also normalized the update of a package by the size of the package and found a positive correlation between the normalized update and the raw
update values. This shows that the update rate of a package is not greatly determined by the size of the package. All of the data and scripts associated with this
figure are available from archive2.gersteinlab.org/proj/netessaypkg.

respective networks should reflect how
each type of network evolves. As shown

packages. However, in the protein-
protein interaction (PPI) network of

ripheral proteins (Figure 1). In other
words, node centrality and the tendency

in Figure 1, the central nodes in the pack-
age dependency network, i.e., the pack-
ages that are prerequisite to many others,
have higher update rates than peripheral
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human, central proteins have smaller
dN/dS than peripheral proteins, suggest-
ing that the central proteins tend to reject
functional changes more often than pe-

of a node’s function to change are nega-
tively correlated in the PPI network, but
positively correlated in the R package
dependency network.
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More Insights on Biological
Evolution versus Technological
Evolution

What are the reasons and implications
for this observation? Andreas Wagner
formalized the idea of a genotype network
in both biological and technological sys-
tems (Samal et al., 2010; Raman and
Wagner, 2011). The term is used to
describe the connections among all geno-
types of a system in which two genotypes
are connected if one is able to become
another via a certain evolutionary step
(e.g., a mutation). Because a genotype
can be a network of constituents by itself,
the genotype network could be pictured
as a network of networks. Network evolu-
tion is essentially described by a trajec-
tory on the genotype network. In this
setting, biological and technological evo-
lution results in different trajectories. Their
outcomes are respectively natural and the
human-driven ways for innovation. Medi-
ated by random mutations, innovation is
possible in biological systems only if
they exhibit a certain level of mutational
robustness, i.e., the effects of certain mu-
tations are neutral rather than lethal. The
outcomes of innovation are also subject
to biases in mutation and natural con-
straints (Smith et al., 1985; Carroll 2008).
In PPI networks, the hubs are negatively
selected because they have many under-
lying constraints (Fraser et al., 2002; Hahn
and Kern, 2005); in contrast, the periph-
eral nodes provide room for innovation,
and they are in general “hotspots” under
positive selection (Kim et al., 2007).
Nevertheless, whether the number of in-
teracting partners can fully explain the
high selective pressure is debatable
due to other underlying cofactors such
as protein expression (Bloom and Adami,
2003).

Intuitively, it could also be difficult to
update a central node for technological
evolution. When a component becomes
the prerequisite of others, the compo-
nent should resist changes because any
change can disrupt the function of other
components. This kind of “lock-in” phe-
nomenon is quite common in technical
systems—e.g., the wide use of QWERTY
keyboard—and it is generally referred to
generative entrenchment (Schank and
Wimsatt, 1986). Nevertheless, what we
observed in the package network is
different. Instead of a lock-in, the intense
use of a package exposes weak spots

that hamper performance, forcing soft-
ware engineers to innovate the package.
The situation is analogous to highway
networks: the road planner takes mea-
sures to ensure construction in Manhat-
tan does not paralyze the city, and one
sees comparatively more construction
on highly used bottlenecks (e.g., the
George Washington Bridge in New York
City) compared with out-of-the-way
thoroughfares. The absence of lock-in is
probably because it is more effective to
perform the update, as nowadays
disruption could be reduced by using
tools such as a version control system.
To a certain extent, the existence of cen-
tral nodes in the package network results
from some code being frequently used
by many disparate processes; thus, it is
cost effective for software engineers to
recycle existing code, though it may
lower the innovability of the system. It is
ironic that extra effort has to be spent
for constant updates and alternative
innovations. Of course, the possibility of
frequently updating a software system
owes to the flexible nature of soft-
ware—technological systems closely
tied to particular physical or cultural con-
straints may present another set of
challenges.

We could picture the biological
(tinkerer) and technological (designer)
evolution as an optimization problem.
Despite designers sometimes employing
a “trial and error” method, both tinkerer
and designer explore the corresponding
genotype networks with similar underly-
ing objectives but employ different criteria
when balancing constraints. The differ-
ence between tinkerer and designer sug-
gests that, as an optimization process,
no approach optimizes all objectives
(cost effectiveness and mutational
robustness in this case), and thus trade-
offs are unavoidable in both biological
and technological systems. This is essen-
tially the conventional wisdom—there’s
no free lunch (Lander, 2011).

Conclusion

In short, we have presented a side-by-side
comparison on the evolution of a techno-
logical network and a biological network.
We observed a contrast in the correlation
between centrality and the tendency for
functional changes that could be explained
in terms of the trade-offs between cost
effectiveness and mutational robustness.

Stepping out of the biological domain
thus provides a new perspective on biolog-
ical evolution. The formal theory of evolu-
tion was originated from biology, but since
then, the ideas of Darwin have penetrated
and transformed many disciplines. Our
findings in the R systems is not a singular
case; a positive correlation between pack-
age centrality and package update rate
has been observed in other software sys-
tems (Yan et al., 2010; Myers, 2003). It
will be instructive to check whether other
technical systems show similar behavior,
even for engineered biological systems.
For example, the idea of tracking updates
of R packages can also be further applied
to help design engineered systems in
such fields as synthetic biology. For
instance, a version control system has
been developed to track the engineering
history of synthetic cells (Luzardo et al.,
2019). Finally, contemporary sequencing
technology enables biologists to poten-
tially investigate genome evolution in every
extant species. Similarly, in the technolog-
ical domain, via documentation and code
that can be readily parsed by computers,
engineers have an unprecedented oppor-
tunity to study the evolution of designed
systems. Given the resources, perhaps
studying the evolution of systems in
different domains will, in return, benefit
both disciplines jointly.
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