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ABSTRACT: Super-resolution microscopy can capture spatiotemporal organizations of protein interactions with resolution 

down to 10 nm; however, the analyses of more than two proteins involving low-abundance protein are challenging because 

spectral crosstalk and heterogeneities of individual fluorescent labels result in molecular misidentification. Here we 

developed a deep learning-based imaging analysis method for spectroscopic single-molecule localization microscopy to 

minimize molecular misidentification in three-color super-resolution imaging. We characterized the 3-fold reduction of 

molecular misidentification in the new imaging method using pure samples of different photoswitchable fluorophores and 

visualized three distinct subcellular proteins in U2-OS cell lines. We further validated the protein counts and interactions of 

TOMM20, DRP1, and SUMO1 in a well-studied biological process - Staurosporine-induced apoptosis by comparing the 

imaging results with Western-blot analysis of different subcellular portions. 

INTRODUCTION 

Biological machinery often requires the interactions of more 

than two proteins at the nanoscale.1 In these multi-protein 

interactions (MPI), many proteins have an inherently low 

abundance. They are highly substoichiometric to their 

interaction counterparts either within the entire cell or in 

specific subcellular spaces with highly heterogeneous spatial 

distributions2, 3. Traditional bioanalytical, biochemical, and 

biophysical approaches study these MPI at the ensemble level, 

mainly using preprocessed protein samples, while the spatial 

patterns are often overlooked.4 Imaging-based analyses offer an 

opportunity to investigate the spatiotemporal organization of 

proteins at the cellular and subcellular levels. Using 

fluorescence microscopy, researchers have shown the close 

relationship between the spatial distribution and the function of 

protein-protein interactions.5 However, the spatial resolution of 

conventional fluorescence imaging-based techniques is 

constrained by the optical diffraction limit to about 200 nm6. 

Although in situ proximity ligation assay (PLA)7 can capture 

the co-localizations of two proteins, imaging MPI at the 

nanoscale remains inaccessible. 

Single-molecule localization microscopy (SMLM) overcomes 

the optical diffraction limit and offers a spatial resolution down 

to 10 nm.8-13 SMLM has been applied to study protein 

assemblies and interactions, including nuclear pore 

complexes14-16, centrioles17, and mitochondria-purinosomes 

interactions18. In addition, a few multiplexed SMLM 

experiments have been reported to study the distributions of 

multiple protein species using three photoswitchable 

fluorophores with minimal spectral overlaps.19 Traditional 

SMLM uses selected optical filter sets to collect emission 

signals from distinctive spectral channels (Figure 1a). 

However, it is challenging to study MPI involving low-

abundance proteins using traditional optical filter-based 

multiplexed SMLM. At the single-molecule level, spectral 

crosstalk between different fluorescent labels translates into a 

significant molecular misidentification rate (MMR) up to 8% 

between adjacent spectral channels.19 Here, the MMR is defined 

as the number of single-molecule localizations misidentified in 

other channels divided by the total number of single-molecule 

localizations detected in all channels. A high MMR will cause 

incorrect visualization of subcellular structures (Figure S1 and 

Supplementary Note 1), inaccurate detection of low-abundance 

proteins, and misinterpretation of MPI (Figure S2). 



 

Furthermore, despite sequential labeling strategies that can 

image different molecular targets,20,21 the complicated imaging 

procedures and unwashed labels leftover from the previous 

labeling cycles could also lead to elevated MMR. Therefore, it 

is crucial to minimize MMR in multiplexed SMLM for studying 

MPI involving low-abundance proteins. 

Two main sources can elevate MMR in multiplexed SMLM. 

First, different fluorophore species have varied photon budgets. 

19 The high-photon-budget fluorophores can cause increased 

single-molecule signal bleed-through to the adjacent channels 

that are used for detecting a relatively low-photon budget 

fluorophore (Figure 1b). Second, single-molecule fluorescence 

spectral heterogeneity from the same type of fluorophores 

causes spectral variations up to ~50 nm.22 This intrinsic 

property can also result in higher spectral crosstalk in SMLM 

(Figure 1c) and also conventional multi-color fluorescence 

microscopy by broadening the ensemble-averaged emission 

spectra.6 These two types of crossed-channel single-molecule 

signals will be treated as single-molecule emission events in the 

adjacent channels in SMLM, leading to false single-molecule 

localization and elevated MMR.  

Recently, we and other groups developed spectroscopic SMLM 

or sSMLM, which concurrently captures the emission spectra 

and spatial locations of individual fluorescent molecules23-26 

(Figures 1d-e and S3). By discriminating single-molecule 

spectral features (e.g., spectral centroids37, Figure 1d), sSMLM 

permits simultaneous multiplexed SMLM regardless of spectral 

overlap.31 In addition, sSMLM allows measuring single-

molecule fluorescence spectral heterogeneity in a high-

throughput manner and guides the selection of photoswitchable 

fluorophores.22 Nevertheless, existing molecular classification 

methods in sSMLM analyze a few discrete spectral signatures 

(e.g., spectral peaks or centroids) from one-dimensional (1D) 

single-molecule spectra. These processed 1D spectral signals 

are noisy because of the elevated imaging background and 

limited single-molecule photon budget (Figure 1f).27 As a 

result, current sSMLM exhibits an MMR of ~5% between 

adjacent spectral centroid bands (Figure 1g) 23,24,28. 

We illustrate the impact of MMR on imaging the MPI (Figure 

2) using the MPI involving small ubiquitin-like modifier 1 

(SUMO1), dynamin-related protein 1 (DRP1), and TOMM20 

(mitochondria outer membrane marker) as a biologically 

significant example. SUMO1 is a classical post-translational 

modifier that can attach to and modify the functions of their 

interacting counterparts during transcriptional regulation, 

nucleoplasmic transport, and apoptosis.4,29,30 Increasing 

evidence has shown their essential roles in the cytoplasmic 

region where SUMO1 has relatively low expression levels31,32 

and is highly substoichiometric to the interacting counterparts.33 

Specifically, SUMO1 has been well-established for its role in 

apoptosis while interacting with mitochondria and DRP1, a 

protein essential for controlling mitochondria fission.10 During 

apoptosis, the DRP1-mitochondria interaction pattern shifted 

from rapid cycling to enhanced interaction and even permanent 

contact before losing mitochondrial membrane potential 

(Figures 2a-b). The stabilization of DRP1 to mitochondrial 

outer membrane is stimulated by post-translational 

modification of SUMO1 to DRP1 (illustrated as more co-

localization between SUMO and DRP1 on mitochondria Figure 

2b). 

 

Figure 1. (a) An illustration of three-color SMLM based on 

multiple optical filter sets in the blue, green and red spectral 

channels; (b) the photon budget of the green dye is significantly 

higher than that of the red dye which further elevates MMR; (c) 

single-molecule fluorescence spectral heterogeneity causes 

spectral crosstalk; (d) concept of sSMLM to capture the full single-

molecule emission spectra, thus allowing the extraction of single-

molecule spectral centroid (SC); (e) a simplified schematic of the 

sSMLM optical setup: the collected single-molecule emission 

signals passes through an a transmission grating and a relay lens 

system (L1 and L2) to form the spatial and spectral images on an 

electron-multiplying charge-coupled device (EMCCD); (f) 

representative single-molecule emission spectra and SC of two 

molecular species (green and blue); (g) An illustrative scatterplot 

of photon vs. SC of single-molecules from two fluorophore species 

with the misidentified single-molecules shown in the yellow-boxed 

region. 

 

Figure 2. (a-b) A schematic illustration of MPI among TOMM20, 

DRP1, and SUMO1 (a) before and (b) after programmed apoptosis. 

(c) An illustrative three-color SMLM image of TOMM20, DRP1, 

and SUMO1 with 0% MMR (or ground truth), and (d) with 5% 

MMR; (e-f) the number of detected TOMM20, DRP1, and SUMO1 

molecules (e) and the number of co-localization (f) between DRP1 

and SUMO1 and between DRP1 and TOMM20, in c and d, 

respectively 



 

We illustrate the influence of elevated MMR on mispresenting 

MPI among SUMO1, DRP1, and the mitochondria membrane 

marker TOMM20. In the ground-truth SMLM image with 0% 

MMR, only 2 low-abundance SUMO1 proteins are present and 

randomly distributed in the imaging field-of-view (FOV) 

(Figure 2c). Suppose the SMLM system has a 5% MMR; in that 

case, the detected number of SUMO1 proteins and the co-

localization patterns among the three proteins can vary 

drastically (Figure 2d). For instance, the number of SUMO1 is 

overestimated by 3 times (Figure 2e). Two co-localization 

between DRP1 and SUMO1 could be falsely detected (Figure 

2f). Using numerical simulations, we further investigated that 

MMR can significantly affect the accuracy of detecting single 

molecules and visualizing MPI (Figure S4 and Supplementary 

Note 2). 

To minimize MMR, we rationalize that the raw two-

dimensional (2D) single-molecule spectral images captured in 

sSMLM contain rich, high-dimensional information34 of 

molecular signatures that are overlooked by the existing 

classification algorithm in sSMLM. Particularly, the 

preprocessed 1D spectral data only represent the correlation 

between the adjacent wavelengths. In contrast, raw 2D spectral 

images might contain fluorophore-dependent spectral and 

spatial point spread functions as well as signal-to-noise ratios. 

The implementations of deep learning convolutional neural 

networks have demonstrated outstanding performance in 

general imaging classification tasks35 and reported to extract 

invaluable information from individual raw frames and 

reconstructed images in SMLM for molecular classification34,36, 

background estimation37, and imaging speed acceleration38. We 

previously developed an artificial neural network-based 

spectral classification method to classify two-color sSMLM 

images.36 However, our attempts using this simple network to 

classify three fluorescent labels failed with <85% accuracy. In 

this work, we report an imaging workflow involving a deep 

learning neural network to classify full single-molecule spectral 

images of fluorescent labels obtained from sSMLM, referred to 

as SpeNet. We demonstrated MMR reduction in three-color 

sSMLM imaging of fixed cells. We further benchmarked 

SpeNet’s performance in sSMLM imaging of complex MPIs 

among TOMM20, DRP1, and SUMO1 in apoptosis at the 

single-cell level for the first time. 

MATERIALS AND METHODS 

Cell Preparation. HeLa and U2-OS cells (ATCC) were grown 

in Dulbecco’s Modified Eagle Media (DMEM, ThermoFisher) 

and McCoy’s 5A Medium (ATCC@-30-2007TM), respectively 

supplemented with 2 mM L-glutamine (ThermoFisher), 10% 

fetal bovine serum (FBS, ThermoFisher), and 1% 

penicillin/streptomycin (100 U mL-1, ThermoFisher) at 37°C 

with 5% CO2. The cells were seeded 8-well Chambered 

Coverglass (NuncTM Lab-TekTM) with 50-70% confluency. 24-

48 hours after plating, the cells were fixed in pre-warmed 3% 

Paraformaldehyde and 0.1 % Glutaraldehyde in Phosphate 

Buffer Saline (PBS,) for 10 min. The cells were washed with 

PBS, quenched with freshly prepared 0.1 % NaBH4 in PBS for 

7 min, rinsed with PBS three times at 25 °C, and stored at 4°C 

for imaging within a week.  

To induce cell apoptosis in HeLa cells, we seeded HeLa cells 

on 8-Well Chambered cover glass for 48 h and incubated them 

with 10 M Staurosporine (STS) (Abcam #120056) in DMSO 

for 2 h at 37 °C. The volume of DMSO added to each well was 

5 L. For the control group, the equivalent amount of DMSO 

was added to the cells without STS. 

U2-OS or HeLa cells were then labeled using 

immunofluorescence staining before sSMLM imaging. 

Generally, the fixed cells were permeabilized with a blocking 

buffer (3% Bovine Serum Albumin (BSA), 0.5% Triton X-100 

in PBS) for 20 min at 25 °C and then incubated with the primary 

antibodies at optimal dilutions overnight in blocking buffer 

overnight at 4°C and rinsed with a washing buffer (0.2% BSA, 

0.1% Triton X-100 in PBS) for three times. The cells were 

further incubated with corresponding secondary antibody-dye 

conjugates for 40 min, washed thoroughly with PBS three times 

at 25 °C, and stored at 4 °C. Antibody concentrations and 

sources are listed in Table S1.  

Imaging acquisition and processing. The schematic of our 

sSMLM optical system was described previously27 and shown 

in Figure S3. Prior to imaging, an imaging buffer (400 µL) 

containing 50 mM Tris (pH = 8.0), 10 mM NaCl, 0.5 mg/mL 

Glucose Oxidase (Sigma, G2133), 2000 U/mL Catalase (Sigma, 

C30), 10% (w/v) D-Glucose, and 100 mM Cysteamine was 

added to the cell sample. We respectively recorded 5,000, 

10,000, and 30,000 frames for imaging IgG-dye conjugates 

adsorbed on glass, the three-color imaging of HeLa cells, and 

three-color imaging of U2-OS cells with a frame exposure time 

of 20 ms. 

The spatial localization of each single-molecule blinking event 

was calculated using ThunderSTORM51. To obtain the full 

emission spectral images of single molecules, a spectral 

collection range of 600 – 800 nm was selected, and a (16-19) 

×7 pixel area on an imaging frame that corresponds to the 

spectral image region was cropped with the spatial information 

of the single-molecules as the reference using a pre-measured 

calibration process.22. The variation of the pixel area is caused 

by slightly different spectral dispersion values (5-7 nm) in 

spectrometer alignment processes.27 The 2D spectral images 

were then interpolated to 201 ×7 pixels and normalized to [0-1] 

values for training and testing SpeNet. 

Sample preparation for training and independent 

validation datasets for SpeNet. The experimental training 

dataset was collected by imaging three different samples, each 

containing dye-IgG proteins of Alexa Fluor 647 (647), Biotium 

CF660C (660), or Biotium 680 (680) adsorbed on glass 

substrates. Briefly, 2 g mL-1 of 647, 660, or 680 IgG 

conjugates in PBS (200 L) were added to Poly-L-Lysine 

(PLL)-coated 8-well chambered cover glass for 5 min. The 

glass was then rinsed thoroughly with PBS, and 200 L of 

fresh-prepared imaging buffer was used to replace PBS before 

imaging acquisition. For each sample, we acquired 5-7 different 

FOV at different regions of the glass substrate, which provided 

~106 single-molecule blinking events as the ground truth for 

each dye species.  

SpeNet training, independent validation, and post-

classification processing. The SpeNet architecture consists of 

13 layers described and is implemented using Matlab with a 

graphic card (Nvidia GeForceGTX1070) and CUDA9.0. To 

clean up the data, we rejected the molecules with the Pearson 

correlation coefficient (C) < 0 between each single-molecule 

spectrum and each of the three averaged emission spectra. We 

randomly allocated 80% (~1.2×105 single-molecule spectral 

images) of the clean data as a training dataset and kept the rest 

20% as an initial testing dataset. The spectral images acquired 

from pure dye samples prepared provided the ground truth for 



 

single-molecule spectral images as we know the prerequisite 

information of the origin of each spectral image. 

For network training, 25 Epochs were tested for network 

convergence. The neural network converged at 87% accuracy 

on the initial testing data. After the neural network was trained, 

we performed an independent validation using separately 

acquired data. We further filtered out low-quality spectral 

images after SpeNet analyzed the spectral images using the 

prediction score parameter (<0.8) in the output. By applying a 

different prediction score filter, the MMR can be reduced to 0.5% 

at the expense of rejecting more localization events.  

RESULTS AND DISCUSSION 

SpeNet for high-accuracy single-molecule spectral 

classification. In our previous studies, we showed that our 

grating-based sSMLM could achieve simultaneous three-color 

super-resolution imaging using 647, 660, and 680 dyes with 5% 

MMR.36 Such MMR is sufficient to distinguish different protein 

markers of subcellular organelles highly abundant in cells but 

can be challenging to distinguish any low-abundance proteins 

(Figures S1-S2). Using numerical simulation, we simulate two 

randomly distributed proteins with varying expression levels 

(Supplementary Note 2 and Figure S4). We found that a 5% 

MMR resulted in a 2-fold reduction of the degree of co-

localization (DoC) in coordinate-based co-localization 

analysis39 when one protein expression level is 10-fold lower 

than the interacting counterpart. To measure the DoC of 

substoichiometric interacting protein pairs with an 

accuracy >90% in such conditions, the MMR needs to be less 

than 2% (Figure S4). 

To minimize MMR, we develop a post-imaging workflow 

(Figure 3a) by creating a SpeNet deep neural network to 

classify the full single-molecule fluorescence spectral images of 

647, 660, and 680, which are routinely used for three-color 

sSMLM. We did not use photoswitchable fluorescent proteins 

because of their relatively large single-molecule spectral 

diffusion over time and single-molecule spectral heterogeneity, 

and relatively lower photon budget.26 The workflow has two 

main steps: (1) data preprocessing as inputs for SpeNet, 

including single-molecule localization as previously 

described27, extracting raw spectral images and imaging 

interpolation, and (2) SpeNet classification and post-SpeNet 

processing to filter out data with low prediction scores. The 

architecture of SpeNet consists of 13 layers, including a 

convolutional layer with a filter size of 5×5 and 8 features (8, 

5×5), a normalization layer, a Rectified Linear Unit (ReLu) 

layer to solve the vanishing gradient problem40, a max-pooling 

layer (3×3) to enhance the features, a convolutional layer (8, 

3×3), a normalization layer, a ReLu layer, a flattening layer, a 

sequential fully connected layer, a softmax layer, and an output 

layer (Figure 3b). 

We first trained the SpeNet using experimentally acquired data 

by imaging pure 647, 660, and 680 dye-IgG conjugates 

adsorbed on PLL-coated glass substrates. We used PLL-coated 

substrates other than single-color labeled cells because of their 

lower background autofluorescence signals than cell samples, 

where the background autofluorescence might contaminate the 

training dataset. Moreover, using PLL-coated substrates lead to 

relatively easy sample preparation to provide controllable, 

sparse, and non-overlapping single-molecule spectral image 

density to ensure the quality of the training data. We also 

compared the statistical distribution of spectral centroids of the 

three dyes on the PLL-coated substrates with those labeled 

directly in cells (Figure S5), and we found that the histograms 

closely resemble each other. Using separately prepared samples, 

we characterized the classification performance of SpeNet 

using a confusion matrix (Figure 3c). As the spectral overlaps 

between 660 and 647 and between 660 and 680 were relatively 

high (Figure S6A), SpeNet gave relatively high MMRs of 1.6% 

and 1.7%, while the MMR between 647 and 680 was <0.1%. 

Compared with the original SC method, SpeNet reduced the 

MMR by 3-11 times among adjacent channels.  

Validating SpeNet in three-color sSMLM imaging of U2-OS 

cell. We tested SpeNet’s performance in classifying three-color 

sSMLM data of immunofluorescence-labeled U2-OS cells. We 

respectively stained three intracellular proteins, including 

TOM20, Tubulin, and Peroxisome membrane marker PMP70, 

with 647, 660, and 680. As shown in Figures 4a-4d, the sSMLM 

images classified by SpeNet showed exclusive morphologies of 

tubulovesicular structures (Figure 4b), linear filaments (Figure 

4c), and worm-like cluster patterns (Figure 4d) in the separately 

displayed sSMLM images that show exclusively identified the 

molecules belonging to 647, 660, and 680 classes. These 

visualized distinct morphologies agree with the typical 

morphologies of mitochondria, tubulin, and peroxisomes.24 The 

average localization precision and Fourier ring correlation 

 

Figure 4. (a) sSMLM images of a fixed U2-OS cell processed 

using SpeNet (a-d) and SC Method (e-h). The mitochondria 

(magenta), tubulin (cyan), and peroxisome (yellow) of the cell are 

immunofluorescence-labeled with 647, 660, and 680, respectively. 

The overlaid three-color sSMLM images show significantly 

reduced misidentifications in the SpeNet (a) compared to the SC 

Method (e). The separately displayed three-color images (b-d and 

f-h) are magnified views of the dashed rectangular region in panels 

a and e, respectively. Panels b-d show distinct tubulovesicular, 

linear and worm-like morphologies of mitochondria, tubulin, and 

peroxisomes, respectively, with SpeNet classification. The arrow-

pointed linear features in mitochondria (f) and worm-like features 

in tubulin (g) indicated the misidentified molecules using SC 

Method.  

 

Figure 3. (a) Post-sSMLM-imaging for sSMLM before and after 

SpeNet processing; (b) The architecture of SpeNet; (c) Confusion 

matrix of SpeNet using independently acquired data.  



 

(FRC) resolution are ~25 nm and ~75 nm, respectively (Figure 

S7). 

We also processed the same sSMLM image using the SC 

method (Figures 4e-4h). The overlaid three-color sSMLM 

image (Figure 4e) showed significant color overlapping in the 

highlighted region. In addition, the separately displayed 

sSMLM images revealed unexpected linear (Figure 4f) and 

worm-like patterns (Figure 4g) in the arrow-pointed regions in 

647 and 660 windows, respectively. Similarly, we also 

observed more molecular misidentifications in the CF680 

channel but different contrast visualization (Figures S6C, D). 

Based on the reported biological characteristics of TOMM20 

and Tubulin proteins, the assemblies of TOMM20 and tubulin 

should not form linear and worm-like patterns. Instead, these 

unexpected patterns were falsely created due to a higher MMR 

in the SC method. In short, these imaging results of cell samples 

validated that SpeNet can reduce MMR in sSMLM images. 

Three-color sSMLM imaging of MPI among SUMO1, 

DRP1, and TOMM20 in healthy and early apoptotic HeLa 

cells. We further tested SpeNet in classifying sSMLM images 

of MPI among SUMO1, DRP1, and TOMM20 during apoptosis 

by treating HeLa cells with 10-M STS for 2 hours.31 We 

respectively immunolabeled the TOMM20, DRP1, and 

SUMO1 proteins with 647, 660, and 680 dyes. We also 

prepared a control group (CTL) without STS treatment under 

identical conditions. In CTL, the sSMLM image of TOM20 

(pseudo-colored in cyan in Figures 5a-5b) revealed consistent 

tubulovesicular structures compared with the ones shown in 

Figure 4 as well as other reported mitochondria SMLM 

images.41 DRP1 and SUMO1 (respectively pseudocolored as 

magenta and yellow in Figure 5b) are distributed throughout the 

FOV, while the number of cytosolic SUMO1 localizations is 

significantly lower than the number of DRP1 localizations. In 

STS, we observed mitochondria fission to more discontinued 

and circular patterns (Figures 5c-5d), consistent with the 

literature report.31 

We quantified the total number of detected fluorescent 

localizations as a measure of the number of targeted proteins in 

CTL and STS. It has been well-known that the number of 

detected localizations from the fluorescent label is proportional 

to the expression level of the target protein. 42,43 We assumed 

that the primary and secondary antibody labeling efficiency did 

not change in CTL and STS groups and further examined the 

spatial interactions among DRP1, SUMO1, and TOM20 at 

different subcellular locations. Specifically, the average total 

numbers of detected localizations per cell associated with the 

mitochondria for TOMM20, DRP1, and SUMO1 were 8603, 

577, and 14 in the CTL group and 9445, 1083, and 36 in the STS 

group, respectively (Figures 5e). Applying the student’s t-test, 

we found that the TOMM20 expressions had no statistical 

difference between the STS and CTL groups. The DRP1 and 

SUMO1 expressions respectively increased by 1.9-fold and 2.5-

fold in the STS group compared with the CTL group with the 

statistical powers greater than 0.95 using the G*Power 

software.44 These values agree well with reported biochemical 

studies.31 For independent validation using Western blot, the 

count of TOMM20 did not alter in the CTL and STS groups, 

but DRP1 showed higher expression levels in the mitochondrial 

fraction (Figure 5f). Meanwhile, the cytosol showed a minimal 

amount of TOMM20 signal in the Western blot assay, 

suggesting the successful separation of mitochondrial fraction 

from the cytosol.  

Lastly, we quantified the co-localization between DRP1 and 

SUMO1 associated with mitochondria and in the entire FOV. 

The numbers of co-localization between DRP1 and SUMO1 in 

the FOV increased by 2.1-fold in the STS group than in the CTL 

group (Figure 5g). The numbers of DRP1-SUMO1 co-

localization associated with mitochondria also increased by 2.3-

fold in the STS group than in the CTL group. In addition, since 

DRP1 is reported to form aggregates, we performed a density-

based spatial clustering analysis of applications with noise 

(DBSCAN45) on the 660 channel to investigate DRP1’s 

oligomerization statuses in CTL and STS (Figure S8). A 

representative two-color sSMLM image (Figure S8B) of 

mitochondria and DRP1-Oligomers indicated that the majority 

of DRP1-Oligomers (18 out of 22 detected oligomers) were 

associated with mitochondria. Furthermore, some of the DRP1-

Oligomers are located at the constriction sites of mitochondria, 

which implicates a unique function of DRP1-Oligomers in 

mitochondria fission (Arrow-pointed regions in Figure S8B).46 

These results indicate the capability of sSMLM and SpeNet in 

analyzing spatially-resolved MPI involving low-abundance 

proteins at the single-molecule level. 

 

Figure 5. Representative overlaid three-color sSMLM images (a-

d) and single-cell analyses (e-g) of HeLa cells before (a-b) and 

after (c-d) STS treatment for 2 hours; TOM20 (cyan), DRP1 

(magenta), and SUMO1 (yellow) were respectively labeled with 

647, 660, and 680; (b and d) are the magnified view of the square 

box in a and c respectively. (e) The comparisons of total counts of 

647, 660, and 680 single-molecule localizations between CTL and 

STS groups in mitochondrial fractions. (f) Western blots result 

from HeLa cells treated with DMSO or STS; (g) The number of co-

localization between DRP1 and SUMO1 from sSMLM data in the 

entire imaging field of view and associated with mitochondria. (N 

= 15 for each group) 



 

The above results showed that SpeNet could classify 647, 660, 

and 680 labels with an MMR of <= 1.7%. To achieve this, 

SpeNet rejected a large portion of the detected localizations, 

which might affect the reconstructed image quality associated 

with the Nyquist sampling theorem. 47 To assess this effect, we 

first calculated the localization utilization ratio (LUR) 48, which 

is defined as the total number of remaining localizations after 

classification divided by the total number of identified spatial 

localizations from the spatial images. For all the processed 

sSMLM cell imaging datasets, the LURs are ~15-25%, which 

is reduced from ~40-60% in sSMLM classification based on the 

SC method. 27 We also compared the classification accuracies 

of SpeNet at various photon count levels and found that photon 

count thresholds of > 2000 and of <1000 provide 98.5% and 84% 

accuracies, respectively (Figure S9). The dimmer localizations 

are mostly filtered out in SpeNet to reach the >98.3% 

classification accuracy. However, as we mentioned previously, 

simple photon thresholding in the SC method does not yield 

similar classification accuracies.24,27 Presumably, the photon 

count is a highly weighted parameter in SpeNet, while 

additional high-dimensional features also contribute to the 

improved classification performance.37,40 We further measured 

the Fourier ring correlation (FRC) resolution of the 

reconstructed sSMLM images using the SpeNet. It shows a 

similar FRC resolution of ~80 nm compared to the original 

image (Figure S6B). Presumably, more than 2 million detected 

single-molecules in the original image sequence provide a large 

pool of redundant single-molecule localizations to reconstruct 

the final image. It also implies that the sSMLM imaging 

acquisition speed could potentially be increased by acquiring a 

smaller number of frames with a sufficient but non-redundant 

number of single-molecule localization. 

Second, the statistical analyses suggest the expression level of 

TOMM20 remains unchanged after the treatment with STS 

while DRP1 and SUMO were respectively upregulated by 1.5-

fold and 2.5-fold during the STS-induced apoptosis process in 

mitochondrial fractions. We note that each fluorescent label has 

distinct blinking photophysics, which could cause variations 

when converting the localization counts to protein counts. 49 

However, for the same fluorescent labels illuminated under 

identical imaging conditions, each fluorescent label’s blinking 

dynamics remain unchanged.19 We also assumed that the 

antibody labeling efficiency remained unchanged in the CTL 

and the STS groups under identical conditions. With these 

considerations, we believe that the ratio of the blinking counts 

can indicate the relative changes in protein counts. Indeed, from 

our single-cell imaging analysis, both DRP1 and SUMO1 were 

upregulated during apoptosis, consistent with literature 

precedents using western blots and confocal microscopy.31,50 In 

short, sSMLM allows the relative quantification of TOM20, 

DRP1, and SUMO1 expression levels during the apoptosis 

process at the single-cell level. 

Third, when studying spatial interactions among the three 

proteins, the 3D coordinate of every single molecule should be 

ideally captured to unambiguously reveal the spatial co-

localizations. However, it is practically challenging to 

implement 3D, three-color sSMLM for present studies because 

of relatively low throughput, degraded lateral resolution, 

potential inaccurate spatial localization, spectral calibration 

errors, and elevated MMR in current 3D sSMLM modalities. 

24,48 To circumvent these issues, we performed a 2D three-color 

sSMLM imaging, which provides a projection of a 3D object to 

capture a slice of ~300 nm by rejecting defocused PSF to 

capture the co-localizations. We used a control sample made 

from fluorescent nanospheres to determine the relationship 

between the standard deviation () of single-molecule point-

spread function and relative z-position to the sample focal plane 

(Figure S10). By rejecting localizations whose  is larger than 

150  nm, we confined the axial range of the 2D sSMLM image 

to a 300-nm slice. We also performed numerical simulations to 

assess the influence of the 2D projection of a 3D slice in 

realistic localization densities detected in the experiment 

(Figures S11-S12 and Supplementary Note 3). These simulation 

results validated that the 2D-sSMLM projection of a 300-nm 

slice can be sufficient to analyze protein interactions of DRP1, 

SUMO1, and TOM20 under our experimental condition. 

CONCLUSION 

We developed a deep-learning neural network-based single-

molecule spectral classification method (SpeNet) for 

identifying three fluorescent labels (647, 660, and 680) used in 

sSMLM with an MMR <=1.7%. We demonstrated the 

classification performance by sSMLM imaging of three 

subcellular structures (mitochondria, tubulin, and peroxisomes) 

of immunofluorescence-labeled U2-OS cells. Furthermore, we 

used SpeNet to classify sSMLM data of three-protein co-

localization among DRP1, SUMO1, and TOMM20 under 

healthy and STS-induced apoptotic conditions. SpeNet allowed 

the identification of low-abundance SUMO1 and the analyses 

of coordinate-based co-localization. The changes in protein 

expression and co-localization levels agreed well with the 

reported biochemical results. Using sSMLM and SpeNet, we 

revealed ~1.5-fold increases in mitochondria-associated DRP1 

and 2.5-fold SUMO1 signals. 

Developing deep-learning neural networks in sSMLM 

correlating the spatial and spectral images at pre-and post- 

imaging-reconstruction levels may provide invaluable 

information for high-fidelity molecular discrimination beyond 

existing capabilities. In fact, we anticipate that SpeNet should, 

in principle, perform better for classifying more dye molecules 

(or more than 3 color channels) because of its ability to 

discriminate the high-dimension features of dye molecules. The 

existing challenge is the identification of more dyes that can 

work simultaneously under identical sSMLM imaging 

conditions and have low single-molecule fluorescence spectral 

heterogeneity. Furthermore, the synergistic interplay of brighter 

and multiplexed fluorescent labels, efficient optical systems to 

utilize the precious photon budget, and sophisticated post-

imaging-processing method would fully unleash the power of 

sSMLM for high-throughput, 3D, highly multiplexed super-

resolution mapping of complex protein interactions. 
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