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ABSTRACT: Super-resolution microscopy can capture spatiotemporal organizations of protein interactions with resolution
down to 10 nm; however, the analyses of more than two proteins involving low-abundance protein are challenging because
spectral crosstalk and heterogeneities of individual fluorescent labels result in molecular misidentification. Here we
developed a deep learning-based imaging analysis method for spectroscopic single-molecule localization microscopy to
minimize molecular misidentification in three-color super-resolution imaging. We characterized the 3-fold reduction of
molecular misidentification in the new imaging method using pure samples of different photoswitchable fluorophores and
visualized three distinct subcellular proteins in U2-OS cell lines. We further validated the protein counts and interactions of
TOMM?20, DRP1, and SUMOI1 in a well-studied biological process - Staurosporine-induced apoptosis by comparing the
imaging results with Western-blot analysis of different subcellular portions.

INTRODUCTION

Biological machinery often requires the interactions of more
than two proteins at the nanoscale.! In these multi-protein
interactions (MPI), many proteins have an inherently low
abundance. They are highly substoichiometric to their
interaction counterparts either within the entire cell or in
specific subcellular spaces with highly heterogeneous spatial
distributions® 3. Traditional bioanalytical, biochemical, and
biophysical approaches study these MPI at the ensemble level,
mainly using preprocessed protein samples, while the spatial
patterns are often overlooked.* Imaging-based analyses offer an
opportunity to investigate the spatiotemporal organization of
proteins at the cellular and subcellular levels. Using
fluorescence microscopy, researchers have shown the close
relationship between the spatial distribution and the function of
protein-protein interactions.’ However, the spatial resolution of
conventional fluorescence imaging-based techniques is
constrained by the optical diffraction limit to about 200 nm®.
Although in situ proximity ligation assay (PLA)’ can capture
the co-localizations of two proteins, imaging MPI at the
nanoscale remains inaccessible.

Single-molecule localization microscopy (SMLM) overcomes
the optical diffraction limit and offers a spatial resolution down
to 10 nm.*"®> SMLM has been applied to study protein
assemblies and interactions, including nuclear pore
complexes'*!%, centrioles'’, and mitochondria-purinosomes
interactions'®, In addition, a few multiplexed SMLM
experiments have been reported to study the distributions of
multiple protein species using three photoswitchable
fluorophores with minimal spectral overlaps.!® Traditional
SMLM uses selected optical filter sets to collect emission
signals from distinctive spectral channels (Figure 1a).
However, it is challenging to study MPI involving low-
abundance proteins using traditional optical filter-based
multiplexed SMLM. At the single-molecule level, spectral
crosstalk between different fluorescent labels translates into a
significant molecular misidentification rate (MMR) up to 8%
between adjacent spectral channels.'” Here, the MMR is defined
as the number of single-molecule localizations misidentified in
other channels divided by the total number of single-molecule
localizations detected in all channels. A high MMR will cause
incorrect visualization of subcellular structures (Figure S1 and
Supplementary Note 1), inaccurate detection of low-abundance
proteins, and misinterpretation of MPI (Figure S2).
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Figure 1. (a) An illustration of three-color SMLM based on
multiple optical filter sets in the blue, green and red spectral
channels; (b) the photon budget of the green dye is significantly
higher than that of the red dye which further elevates MMR; (c)
single-molecule fluorescence spectral heterogeneity causes
spectral crosstalk; (d) concept of sSSMLM to capture the full single-
molecule emission spectra, thus allowing the extraction of single-
molecule spectral centroid (SC); (e) a simplified schematic of the
sSMLM optical setup: the collected single-molecule emission
signals passes through an a transmission grating and a relay lens
system (L1 and L2) to form the spatial and spectral images on an
electron-multiplying charge-coupled device (EMCCD); (f)
representative single-molecule emission spectra and SC of two
molecular species (green and blue); (g) An illustrative scatterplot
of photon vs. SC of single-molecules from two fluorophore species
with the misidentified single-molecules shown in the yellow-boxed
region.

Furthermore, despite sequential labeling strategies that can
image different molecular targets,?*?! the complicated imaging
procedures and unwashed labels leftover from the previous
labeling cycles could also lead to elevated MMR. Therefore, it
is crucial to minimize MMR in multiplexed SMLM for studying
MPI involving low-abundance proteins.

Two main sources can elevate MMR in multiplexed SMLM.
First, different fluorophore species have varied photon budgets.
1 The high-photon-budget fluorophores can cause increased
single-molecule signal bleed-through to the adjacent channels
that are used for detecting a relatively low-photon budget
fluorophore (Figure 1b). Second, single-molecule fluorescence
spectral heterogeneity from the same type of fluorophores
causes spectral variations up to ~50 nm.?? This intrinsic
property can also result in higher spectral crosstalk in SMLM
(Figure 1c¢) and also conventional multi-color fluorescence
microscopy by broadening the ensemble-averaged emission
spectra.’ These two types of crossed-channel single-molecule
signals will be treated as single-molecule emission events in the
adjacent channels in SMLM, leading to false single-molecule
localization and elevated MMR.

Recently, we and other groups developed spectroscopic SMLM
or sSSMLM, which concurrently captures the emission spectra
and spatial locations of individual fluorescent molecules?*-2
(Figures 1d-e and S3). By discriminating single-molecule
spectral features (e.g., spectral centroids®’, Figure 1d), sSSMLM

permits simultaneous multiplexed SMLM regardless of spectral
overlap.®! In addition, sSMLM allows measuring single-
molecule fluorescence spectral heterogeneity in a high-
throughput manner and guides the selection of photoswitchable
fluorophores.? Nevertheless, existing molecular classification
methods in SSMLM analyze a few discrete spectral signatures
(e.g., spectral peaks or centroids) from one-dimensional (1D)
single-molecule spectra. These processed 1D spectral signals
are noisy because of the elevated imaging background and
limited single-molecule photon budget (Figure 1f).?’ As a
result, current sSSMLM exhibits an MMR of ~5% between
adjacent spectral centroid bands (Figure 1g) 232428,

We illustrate the impact of MMR on imaging the MPI (Figure
2) using the MPI involving small ubiquitin-like modifier 1
(SUMOV1), dynamin-related protein 1 (DRP1), and TOMM20
(mitochondria outer membrane marker) as a biologically
significant example. SUMOL is a classical post-translational
modifier that can attach to and modify the functions of their
interacting counterparts during transcriptional regulation,
nucleoplasmic transport, and apoptosis.*?>3* Increasing
evidence has shown their essential roles in the cytoplasmic
region where SUMO1 has relatively low expression levels®!*?
and is highly substoichiometric to the interacting counterparts.>
Specifically, SUMOI1 has been well-established for its role in
apoptosis while interacting with mitochondria and DRP1, a
protein essential for controlling mitochondria fission.!” During
apoptosis, the DRP1-mitochondria interaction pattern shifted
from rapid cycling to enhanced interaction and even permanent
contact before losing mitochondrial membrane potential
(Figures 2a-b). The stabilization of DRP1 to mitochondrial
outer membrane is stimulated by post-translational
modification of SUMO1 to DRP1 (illustrated as more co-
localization between SUMO and DRP1 on mitochondria Figure
2b).
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Figure 2. (a-b) A schematic illustration of MPI among TOMM20,
DRP1, and SUMOI (a) before and (b) after programmed apoptosis.
(¢) An illustrative three-color SMLM image of TOMM20, DRPI,
and SUMOI1 with 0% MMR (or ground truth), and (d) with 5%
MMR; (e-f) the number of detected TOMM20, DRP1, and SUMOI1
molecules (e) and the number of co-localization (f) between DRP1
and SUMOI and between DRP1 and TOMM20, in ¢ and d,
respectively



We illustrate the influence of elevated MMR on mispresenting
MPI among SUMO1, DRPI, and the mitochondria membrane
marker TOMM?20. In the ground-truth SMLM image with 0%
MMR, only 2 low-abundance SUMO1 proteins are present and
randomly distributed in the imaging field-of-view (FOV)
(Figure 2¢). Suppose the SMLM system has a 5% MMR; in that
case, the detected number of SUMOI proteins and the co-
localization patterns among the three proteins can vary
drastically (Figure 2d). For instance, the number of SUMOL1 is
overestimated by 3 times (Figure 2e). Two co-localization
between DRP1 and SUMOL could be falsely detected (Figure
2f). Using numerical simulations, we further investigated that
MMR can significantly affect the accuracy of detecting single
molecules and visualizing MPI (Figure S4 and Supplementary
Note 2).

To minimize MMR, we rationalize that the raw two-
dimensional (2D) single-molecule spectral images captured in
sSMLM contain rich, high-dimensional information®* of
molecular signatures that are overlooked by the existing
classification algorithm in sSMLM. Particularly, the
preprocessed 1D spectral data only represent the correlation
between the adjacent wavelengths. In contrast, raw 2D spectral
images might contain fluorophore-dependent spectral and
spatial point spread functions as well as signal-to-noise ratios.
The implementations of deep learning convolutional neural
networks have demonstrated outstanding performance in
general imaging classification tasks® and reported to extract
invaluable information from individual raw frames and
reconstructed images in SMLM for molecular classification®*3¢,
background estimation’’, and imaging speed acceleration®. We
previously developed an artificial neural network-based
spectral classification method to classify two-color sSMLM
images.>® However, our attempts using this simple network to
classify three fluorescent labels failed with <85% accuracy. In
this work, we report an imaging workflow involving a deep
learning neural network to classify full single-molecule spectral
images of fluorescent labels obtained from sSMLM, referred to
as SpeNet. We demonstrated MMR reduction in three-color
sSMLM imaging of fixed cells. We further benchmarked
SpeNet’s performance in SSMLM imaging of complex MPIs
among TOMM20, DRP1, and SUMOI1 in apoptosis at the
single-cell level for the first time.

MATERIALS AND METHODS

Cell Preparation. HeLa and U2-OS cells (ATCC) were grown
in Dulbecco’s Modified Eagle Media (DMEM, ThermoFisher)
and McCoy’s 5A Medium (ATCC®@-30-2007™), respectively
supplemented with 2 mM L-glutamine (ThermoFisher), 10%
fetal bovine serum (FBS, ThermoFisher), and 1%
penicillin/streptomycin (100 U mL"!, ThermoFisher) at 37°C
with 5% CO,. The cells were seeded 8-well Chambered
Coverglass (Nunc™ Lab-Tek™) with 50-70% confluency. 24-
48 hours after plating, the cells were fixed in pre-warmed 3%
Paraformaldehyde and 0.1 % Glutaraldehyde in Phosphate
Buffer Saline (PBS,) for 10 min. The cells were washed with
PBS, quenched with freshly prepared 0.1 % NaBH, in PBS for
7 min, rinsed with PBS three times at 25 °C, and stored at 4°C
for imaging within a week.

To induce cell apoptosis in HeLa cells, we seeded HeLa cells
on 8-Well Chambered cover glass for 48 h and incubated them
with 10 uM Staurosporine (STS) (Abcam #120056) in DMSO
for 2 h at 37 °C. The volume of DMSO added to each well was

5 pL. For the control group, the equivalent amount of DMSO
was added to the cells without STS.

U2-OS or HeLa cells were then labeled using
immunofluorescence staining before sSMLM imaging.
Generally, the fixed cells were permeabilized with a blocking
buffer (3% Bovine Serum Albumin (BSA), 0.5% Triton X-100
in PBS) for 20 min at 25 °C and then incubated with the primary
antibodies at optimal dilutions overnight in blocking buffer
overnight at 4°C and rinsed with a washing buffer (0.2% BSA,
0.1% Triton X-100 in PBS) for three times. The cells were
further incubated with corresponding secondary antibody-dye
conjugates for 40 min, washed thoroughly with PBS three times
at 25 °C, and stored at 4 °C. Antibody concentrations and
sources are listed in Table S1.

Imaging acquisition and processing. The schematic of our
sSMLM optical system was described previously?’ and shown
in Figure S3. Prior to imaging, an imaging buffer (400 pL)
containing 50 mM Tris (pH = 8.0), 10 mM NaCl, 0.5 mg/mL
Glucose Oxidase (Sigma, G2133), 2000 U/mL Catalase (Sigma,
C30), 10% (w/v) D-Glucose, and 100 mM Cysteamine was
added to the cell sample. We respectively recorded 5,000,
10,000, and 30,000 frames for imaging IgG-dye conjugates
adsorbed on glass, the three-color imaging of HeLa cells, and
three-color imaging of U2-OS cells with a frame exposure time
of 20 ms.

The spatial localization of each single-molecule blinking event
was calculated using ThunderSTORM?!. To obtain the full
emission spectral images of single molecules, a spectral
collection range of 600 — 800 nm was selected, and a (16-19)
x7 pixel area on an imaging frame that corresponds to the
spectral image region was cropped with the spatial information
of the single-molecules as the reference using a pre-measured
calibration process.??. The variation of the pixel area is caused
by slightly different spectral dispersion values (5-7 nm) in
spectrometer alignment processes.”’ The 2D spectral images
were then interpolated to 201 x7 pixels and normalized to [0-1]
values for training and testing SpeNet.

Sample preparation for training and independent
validation datasets for SpeNet. The experimental training
dataset was collected by imaging three different samples, each
containing dye-IgG proteins of Alexa Fluor 647 (647), Biotium
CF660C (660), or Biotium 680 (680) adsorbed on glass
substrates. Briefly, 2 pg mL' of 647, 660, or 680 IgG
conjugates in PBS (200 pL) were added to Poly-L-Lysine
(PLL)-coated 8-well chambered cover glass for 5 min. The
glass was then rinsed thoroughly with PBS, and 200 pL of
fresh-prepared imaging buffer was used to replace PBS before
imaging acquisition. For each sample, we acquired 5-7 different
FOV at different regions of the glass substrate, which provided
~10° single-molecule blinking events as the ground truth for
each dye species.

SpeNet training, independent validation, and post-
classification processing. The SpeNet architecture consists of
13 layers described and is implemented using Matlab with a
graphic card (Nvidia GeForceGTX1070) and CUDA9.0. To
clean up the data, we rejected the molecules with the Pearson
correlation coefficient (C) < 0 between each single-molecule
spectrum and each of the three averaged emission spectra. We
randomly allocated 80% (~1.2x10° single-molecule spectral
images) of the clean data as a training dataset and kept the rest
20% as an initial testing dataset. The spectral images acquired
from pure dye samples prepared provided the ground truth for
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Figure 3. (a) Post-sSMLM-imaging for sSSMLM before and after
SpeNet processing; (b) The architecture of SpeNet; (¢) Confusion
matrix of SpeNet using independently acquired data.

single-molecule spectral images as we know the prerequisite
information of the origin of each spectral image.

For network training, 25 Epochs were tested for network
convergence. The neural network converged at 87% accuracy
on the initial testing data. After the neural network was trained,
we performed an independent validation using separately
acquired data. We further filtered out low-quality spectral
images after SpeNet analyzed the spectral images using the
prediction score parameter (<0.8) in the output. By applying a
different prediction score filter, the MMR can be reduced to 0.5%
at the expense of rejecting more localization events.

RESULTS AND DISCUSSION

SpeNet for high-accuracy single-molecule spectral
classification. In our previous studies, we showed that our
grating-based sSMLM could achieve simultaneous three-color
super-resolution imaging using 647, 660, and 680 dyes with 5%
MMR.*® Such MMR is sufficient to distinguish different protein
markers of subcellular organelles highly abundant in cells but
can be challenging to distinguish any low-abundance proteins
(Figures S1-S2). Using numerical simulation, we simulate two
randomly distributed proteins with varying expression levels
(Supplementary Note 2 and Figure S4). We found that a 5%
MMR resulted in a 2-fold reduction of the degree of co-
localization (DoC) in coordinate-based co-localization
analysis®® when one protein expression level is 10-fold lower
than the interacting counterpart. To measure the DoC of
substoichiometric  interacting protein pairs with an
accuracy >90% in such conditions, the MMR needs to be less
than 2% (Figure S4).

To minimize MMR, we develop a post-imaging workflow
(Figure 3a) by creating a SpeNet deep neural network to
classify the full single-molecule fluorescence spectral images of
647, 660, and 680, which are routinely used for three-color
sSMLM. We did not use photoswitchable fluorescent proteins
because of their relatively large single-molecule spectral
diffusion over time and single-molecule spectral heterogeneity,
and relatively lower photon budget.?® The workflow has two
main steps: (1) data preprocessing as inputs for SpeNet,
including single-molecule localization as previously
described?”’, extracting raw spectral images and imaging
interpolation, and (2) SpeNet classification and post-SpeNet
processing to filter out data with low prediction scores. The
architecture of SpeNet consists of 13 layers, including a
convolutional layer with a filter size of 5x5 and 8 features (8,
5x5), a normalization layer, a Rectified Linear Unit (ReLu)
layer to solve the vanishing gradient problem*’, a max-pooling
layer (3x3) to enhance the features, a convolutional layer (8,

3x3), a normalization layer, a ReLu layer, a flattening layer, a
sequential fully connected layer, a softmax layer, and an output
layer (Figure 3b).

We first trained the SpeNet using experimentally acquired data
by imaging pure 647, 660, and 680 dye-IgG conjugates
adsorbed on PLL-coated glass substrates. We used PLL-coated
substrates other than single-color labeled cells because of their
lower background autofluorescence signals than cell samples,
where the background autofluorescence might contaminate the
training dataset. Moreover, using PLL-coated substrates lead to
relatively easy sample preparation to provide controllable,
sparse, and non-overlapping single-molecule spectral image
density to ensure the quality of the training data. We also
compared the statistical distribution of spectral centroids of the
three dyes on the PLL-coated substrates with those labeled
directly in cells (Figure S5), and we found that the histograms
closely resemble each other. Using separately prepared samples,
we characterized the classification performance of SpeNet
using a confusion matrix (Figure 3¢). As the spectral overlaps
between 660 and 647 and between 660 and 680 were relatively
high (Figure S6A), SpeNet gave relatively high MMRs of 1.6%
and 1.7%, while the MMR between 647 and 680 was <0.1%.
Compared with the original SC method, SpeNet reduced the
MMR by 3-11 times among adjacent channels.

Validating SpeNet in three-color sSSMLM imaging of U2-OS
cell. We tested SpeNet’s performance in classifying three-color
sSMLM data of immunofluorescence-labeled U2-OS cells. We
respectively stained three intracellular proteins, including
TOM?20, Tubulin, and Peroxisome membrane marker PMP70,
with 647, 660, and 680. As shown in Figures 4a-4d, the sSSMLM
images classified by SpeNet showed exclusive morphologies of
tubulovesicular structures (Figure 4b), linear filaments (Figure
4¢), and worm-like cluster patterns (Figure 4d) in the separately
displayed sSMLM images that show exclusively identified the
molecules belonging to 647, 660, and 680 classes. These
visualized distinct morphologies agree with the typical
morphologies of mitochondria, tubulin, and peroxisomes.?* The
average localization precision and Fourier ring correlation

Figure 4. (a) sSMLM images of a fixed U2-OS cell processed
using SpeNet (a-d) and SC Method (e-h). The mitochondria
(magenta), tubulin (cyan), and peroxisome (yellow) of the cell are
immunofluorescence-labeled with 647, 660, and 680, respectively.
The overlaid three-color sSMLM images show significantly
reduced misidentifications in the SpeNet (a) compared to the SC
Method (e). The separately displayed three-color images (b-d and
f-h) are magnified views of the dashed rectangular region in panels
a and e, respectively. Panels b-d show distinct tubulovesicular,
linear and worm-like morphologies of mitochondria, tubulin, and
peroxisomes, respectively, with SpeNet classification. The arrow-
pointed linear features in mitochondria (f) and worm-like features
in tubulin (g) indicated the misidentified molecules using SC
Method.
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Figure 5. Representative overlaid three-color sSSMLM images (a-
d) and single-cell analyses (e-g) of HeLa cells before (a-b) and
after (c-d) STS treatment for 2 hours; TOM20 (cyan), DRP1
(magenta), and SUMO1 (yellow) were respectively labeled with
647, 660, and 680; (b and d) are the magnified view of the square
box in a and ¢ respectively. (e) The comparisons of total counts of
647, 660, and 680 single-molecule localizations between CTL and
STS groups in mitochondrial fractions. (f) Western blots result
from HeLa cells treated with DMSO or STS; (g) The number of co-
localization between DRP1 and SUMOI1 from sSMLM data in the
entire imaging field of view and associated with mitochondria. (N
= 15 for each group)

(FRC) resolution are ~25 nm and ~75 nm, respectively (Figure
S7).

We also processed the same sSMLM image using the SC
method (Figures 4e-4h). The overlaid three-color sSMLM
image (Figure 4e) showed significant color overlapping in the
highlighted region. In addition, the separately displayed
sSMLM images revealed unexpected linear (Figure 4f) and
worm-like patterns (Figure 4g) in the arrow-pointed regions in
647 and 660 windows, respectively. Similarly, we also
observed more molecular misidentifications in the CF680
channel but different contrast visualization (Figures S6C, D).
Based on the reported biological characteristics of TOMM20
and Tubulin proteins, the assemblies of TOMM?20 and tubulin
should not form linear and worm-like patterns. Instead, these
unexpected patterns were falsely created due to a higher MMR
in the SC method. In short, these imaging results of cell samples
validated that SpeNet can reduce MMR in sSSMLM images.
Three-color sSMLM imaging of MPI among SUMOI,
DRP1, and TOMM20 in healthy and early apoptotic HeLa
cells. We further tested SpeNet in classifying sSSMLM images
of MPT among SUMO1, DRP1, and TOMM?20 during apoptosis
by treating HeLa cells with 10-uM STS for 2 hours.3! We

respectively immunolabeled the TOMM20, DRP1, and
SUMOL1 proteins with 647, 660, and 680 dyes. We also
prepared a control group (CTL) without STS treatment under
identical conditions. In CTL, the sSSMLM image of TOM20
(pseudo-colored in cyan in Figures Sa-5b) revealed consistent
tubulovesicular structures compared with the ones shown in
Figure 4 as well as other reported mitochondria SMLM
images.*! DRP1 and SUMOI (respectively pseudocolored as
magenta and yellow in Figure 5b) are distributed throughout the
FOV, while the number of cytosolic SUMO1 localizations is
significantly lower than the number of DRP1 localizations. In
STS, we observed mitochondria fission to more discontinued
and circular patterns (Figures 5c¢-5d), consistent with the
literature report.>!

We quantified the total number of detected fluorescent
localizations as a measure of the number of targeted proteins in
CTL and STS. It has been well-known that the number of
detected localizations from the fluorescent label is proportional
to the expression level of the target protein. *** We assumed
that the primary and secondary antibody labeling efficiency did
not change in CTL and STS groups and further examined the
spatial interactions among DRP1, SUMOI1, and TOM20 at
different subcellular locations. Specifically, the average total
numbers of detected localizations per cell associated with the
mitochondria for TOMM20, DRP1, and SUMO1 were 8603,
577,and 14 in the CTL group and 9445, 1083, and 36 in the STS
group, respectively (Figures 5e). Applying the student’s t-test,
we found that the TOMM20 expressions had no statistical
difference between the STS and CTL groups. The DRP1 and
SUMOL1 expressions respectively increased by 1.9-fold and 2.5-
fold in the STS group compared with the CTL group with the
statistical powers greater than 0.95 using the G*Power
software.* These values agree well with reported biochemical
studies.?! For independent validation using Western blot, the
count of TOMM?20 did not alter in the CTL and STS groups,
but DRP1 showed higher expression levels in the mitochondrial
fraction (Figure 5f). Meanwhile, the cytosol showed a minimal
amount of TOMM20 signal in the Western blot assay,
suggesting the successful separation of mitochondrial fraction
from the cytosol.

Lastly, we quantified the co-localization between DRP1 and
SUMOL associated with mitochondria and in the entire FOV.
The numbers of co-localization between DRP1 and SUMOI1 in
the FOV increased by 2.1-fold in the STS group than in the CTL
group (Figure 5g). The numbers of DRP1-SUMOI1 co-
localization associated with mitochondria also increased by 2.3-
fold in the STS group than in the CTL group. In addition, since
DRP1 is reported to form aggregates, we performed a density-
based spatial clustering analysis of applications with noise
(DBSCAN%®) on the 660 channel to investigate DRP1’s
oligomerization statuses in CTL and STS (Figure S8). A
representative two-color sSSMLM image (Figure S8B) of
mitochondria and DRP1-Oligomers indicated that the majority
of DRP1-Oligomers (18 out of 22 detected oligomers) were
associated with mitochondria. Furthermore, some of the DRP1-
Oligomers are located at the constriction sites of mitochondria,
which implicates a unique function of DRPI1-Oligomers in
mitochondria fission (Arrow-pointed regions in Figure S8B).4¢
These results indicate the capability of sSSMLM and SpeNet in
analyzing spatially-resolved MPI involving low-abundance
proteins at the single-molecule level.



The above results showed that SpeNet could classify 647, 660,
and 680 labels with an MMR of <= 1.7%. To achieve this,
SpeNet rejected a large portion of the detected localizations,
which might affect the reconstructed image quality associated
with the Nyquist sampling theorem. 7 To assess this effect, we
first calculated the localization utilization ratio (LUR)“®, which
is defined as the total number of remaining localizations after
classification divided by the total number of identified spatial
localizations from the spatial images. For all the processed
sSMLM cell imaging datasets, the LURs are ~15-25%, which
is reduced from ~40-60% in sSSMLM classification based on the
SC method. ?” We also compared the classification accuracies
of SpeNet at various photon count levels and found that photon
count thresholds of > 2000 and of <1000 provide 98.5% and 84%
accuracies, respectively (Figure S9). The dimmer localizations
are mostly filtered out in SpeNet to reach the >98.3%
classification accuracy. However, as we mentioned previously,
simple photon thresholding in the SC method does not yield
similar classification accuracies.’*?’ Presumably, the photon
count is a highly weighted parameter in SpeNet, while
additional high-dimensional features also contribute to the
improved classification performance.’’** We further measured
the Fourier ring correlation (FRC) resolution of the
reconstructed sSMLM images using the SpeNet. It shows a
similar FRC resolution of ~80 nm compared to the original
image (Figure S6B). Presumably, more than 2 million detected
single-molecules in the original image sequence provide a large
pool of redundant single-molecule localizations to reconstruct
the final image. It also implies that the sSSMLM imaging
acquisition speed could potentially be increased by acquiring a
smaller number of frames with a sufficient but non-redundant
number of single-molecule localization.

Second, the statistical analyses suggest the expression level of
TOMM20 remains unchanged after the treatment with STS
while DRP1 and SUMO were respectively upregulated by 1.5-
fold and 2.5-fold during the STS-induced apoptosis process in
mitochondrial fractions. We note that each fluorescent label has
distinct blinking photophysics, which could cause variations
when converting the localization counts to protein counts. %
However, for the same fluorescent labels illuminated under
identical imaging conditions, each fluorescent label’s blinking
dynamics remain unchanged.'” We also assumed that the
antibody labeling efficiency remained unchanged in the CTL
and the STS groups under identical conditions. With these
considerations, we believe that the ratio of the blinking counts
can indicate the relative changes in protein counts. Indeed, from
our single-cell imaging analysis, both DRP1 and SUMO1 were
upregulated during apoptosis, consistent with literature
precedents using western blots and confocal microscopy.3* In
short, SSMLM allows the relative quantification of TOM?20,
DRPI1, and SUMOI expression levels during the apoptosis
process at the single-cell level.

Third, when studying spatial interactions among the three
proteins, the 3D coordinate of every single molecule should be
ideally captured to unambiguously reveal the spatial co-
localizations. However, it is practically challenging to
implement 3D, three-color sSSMLM for present studies because
of relatively low throughput, degraded lateral resolution,
potential inaccurate spatial localization, spectral calibration
errors, and elevated MMR in current 3D sSMLM modalities.
2448 To circumvent these issues, we performed a 2D three-color
sSMLM imaging, which provides a projection of a 3D object to
capture a slice of ~300 nm by rejecting defocused PSF to

capture the co-localizations. We used a control sample made
from fluorescent nanospheres to determine the relationship
between the standard deviation (o) of single-molecule point-
spread function and relative z-position to the sample focal plane
(Figure S10). By rejecting localizations whose o is larger than
150 nm, we confined the axial range of the 2D sSSMLM image
to a 300-nm slice. We also performed numerical simulations to
assess the influence of the 2D projection of a 3D slice in
realistic localization densities detected in the experiment
(Figures S11-S12 and Supplementary Note 3). These simulation
results validated that the 2D-sSMLM projection of a 300-nm
slice can be sufficient to analyze protein interactions of DRP1,
SUMOL1, and TOM20 under our experimental condition.

CONCLUSION

We developed a deep-learning neural network-based single-
molecule spectral classification method (SpeNet) for
identifying three fluorescent labels (647, 660, and 680) used in
sSMLM with an MMR <=1.7%. We demonstrated the
classification performance by sSMLM imaging of three
subcellular structures (mitochondria, tubulin, and peroxisomes)
of immunofluorescence-labeled U2-OS cells. Furthermore, we
used SpeNet to classify sSSMLM data of three-protein co-
localization among DRPI1, SUMOI1, and TOMM20 under
healthy and STS-induced apoptotic conditions. SpeNet allowed
the identification of low-abundance SUMOI1 and the analyses
of coordinate-based co-localization. The changes in protein
expression and co-localization levels agreed well with the
reported biochemical results. Using sSSMLM and SpeNet, we
revealed ~1.5-fold increases in mitochondria-associated DRP1
and 2.5-fold SUMOL1 signals.

Developing deep-learning neural networks in sSMLM
correlating the spatial and spectral images at pre-and post-
imaging-reconstruction levels may provide invaluable
information for high-fidelity molecular discrimination beyond
existing capabilities. In fact, we anticipate that SpeNet should,
in principle, perform better for classifying more dye molecules
(or more than 3 color channels) because of its ability to
discriminate the high-dimension features of dye molecules. The
existing challenge is the identification of more dyes that can
work simultaneously under identical sSMLM imaging
conditions and have low single-molecule fluorescence spectral
heterogeneity. Furthermore, the synergistic interplay of brighter
and multiplexed fluorescent labels, efficient optical systems to
utilize the precious photon budget, and sophisticated post-
imaging-processing method would fully unleash the power of
sSMLM for high-throughput, 3D, highly multiplexed super-
resolution mapping of complex protein interactions.
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