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Abstract

This paper is concerned with imaging of 3D scattering objects with experimental
data from the Fresnel database. The first goal of the paper is to investigate a mod-
ified version of the orthogonality sampling method (OSM) by Harris and Nguyen
[SIAM J. Sci. Comput., 42, B72–B737, 2020] for the imaging problem. The advan-
tage of the modified OSM over its original version lies in its applicability to more
types of polarization vectors associated with the electromagnetic scattering data.
We analyze the modified OSM using the factorization analysis for the far field op-
erator and the Funk-Hecke formula. The second goal is to verify the performance
of the modified OSM, the OSM, and the classical factorization method for the 3D
Fresnel database. The modified OSM we propose is able to invert the sparse and
limited-aperture real data in a fast, simple, and efficient way. It is also shown in
the real data verification that the modified OSM performs better than its original
version and the factorization method.

Keywords. orthogonality sampling method, 3D experimental data, inverse scatter-
ing, Maxwell’s equations

AMS subject classification. 35R30, 35R09, 65R20

1 Introduction

We consider the electromagnetic inverse scattering problem that aims to determine the
shape and location of 3D objects from far-field measurements. This inverse problem,
which is an important problem in inverse scattering theory, has applications in nonde-
structive testing, radar, and medical imaging. Sampling methods are a major approach for
numerically solving the inverse problem. These methods are non-iterative, fast, and use
little to no a priori information about the unknown targets. Thanks to these advantages,
sampling methods have been extensively studied in the inverse scattering community.
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The linear sampling method [9] can be considered as the first sampling method, which
quickly initiated the development of many other sampling methods including the point
source method [30], the factorization method [19], the enclosure method [16], etc. We
refer to [3,10,22] for more details about sampling methods and their recent developments.

We are interested in the orthogonality sampling method (OSM) which has been studied
more recently. It was proposed by Potthast in [31] and has recently received more attention
thanks to its efficiency and simplicity. The OSM has also been studied in other works
under the name of direct sampling method, see, e.g., [17, 28]. Comparing with classical
sampling methods the OSM does not need regularization, its implementation is simpler,
and it is more robust against noise in the data. However, its theoretical foundation is
far less developed compared with that of the classical sampling methods. The OSM has
been studied for the Helmholtz equation in [1, 2, 13]. A recent result for the Maxwell’s
equations can be found in [15].

The first goal of this paper is to investigate a modified version of the OSM studied
in [15]. The advantage of the modified OSM over its original version is that it can be
applied to more types of polarization vectors associated with the scattering data. We
analyze the modified OSM using the factorization analysis for the far field operator and
the Funk-Hecke formula. We investigate the modified OSM for both non-magnetic and
magnetic cases for the anisotropic Maxwell’s equations. The second goal is to apply
the modified OSM, the OSM in [15], and the factorization method to inversion of 3D
experimental data from the Fresnel Institute [12]. It is worth mentioning that there have
been results on experimental data verification for sampling methods, see, e.g., [2, 8, 18,
23, 29]. Most of these results are for 2D data. The 3D data for two spheres from the
Fresnel Institute was studied in [18] with a direct sampling method under a small volume
hypothesis of well-separated inhomogeneities. Note that the modified OSM studied in
this paper does not require this hypothesis. Some other results on inverting these 3D
experimental data can be found in [6, 7, 11, 24, 25] and references therein. Comparing
with these results, the modified OSM we study use only co-polarized (PP) datasets at a
single frequency. In addition the implementation of the orthogonality sampling methods
is simpler, faster, and less expensive than those of the iterative methods studied in the
cited papers. However, our methods can only recover geometrical information of the 3D
objects. One of the challenges in inverting these 3D real data is that these are sparse
data, only the third component of the electric field is measured, and it is measured on
a circle. It is shown in the experimental data verification that the modified OSM can
successfully invert the real data and performs better than its original version and the
classical factorization method.

The paper is organized as follows. In Section 2, we formulate the inverse problem of
interest. Section 3 is dedicated to the factorization analysis and the analysis of the modi-
fied OSM for the non-magnetic case. The theoretical analysis in Section 3 is extended to
the magnetic case in Section 4. Section 5 is dedicated to the experimental data validation
and a conclusion is given in Section 6.
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2 Inverse electromagnetic scattering

Consider the scattering of time-harmonic electromagnetic waves at wave number k > 0
from a possibly anisotropic medium. Let Ω be a bounded Lipschitz domain occupied by
the medium. Let ε, µ be respectively the electric permittivity and the magnetic perme-
ability of the medium. Assume R3 \Ω is connected and that ε, µ and µ−1 are functions in
[L∞(R3)]3×3. The medium outside of Ω is assumed to be homogeneous. We hence assume
that ε = µ = I in R3 \ Ω, where I is the 3 × 3 identity matrix. Denote by Ein and E
the incident electric field and the total electric field, respectively. Let u = E−Ein be the
scattered electric field. We consider the following electromagnetic scattering problem

curl [µ−1(x)curl E]− k2ε(x)E = 0, in R3, (1)

curl u× x

|x|
− iku = O(|x|−2) as |x| → ∞, (2)

where the Silver-Müller radiation condition (2) is assumed to hold uniformly with respect
to x/|x|. We refer to [26] for the well-posedness of this scattering problem. To formulate
the inverse problem we introduce some notations. Denoting x̂ = x/|x|, we define

S2 = {x ∈ R3 : |x| = 1} and L2
t (S2) = {v ∈ [L2(S2)]3 : x̂ · v(x̂) = 0, x̂ ∈ S2}.

We consider the incident plane wave Ein(x,d,q) = qeikx·d, where d ∈ S2 indicates the
direction of the incident propagation and q ∈ R3 is the polarization vector such that
q · d = 0. It’s well-known that the corresponding scattered wave u(x,d,q) satisfies

u(x,d,q) =
eik|x|

|x|

(
u∞(x̂,d,q) +O

(
1

|x|2

))
as |x| → ∞, (3)

uniformly in all directions x̂ ∈ S2. The function u∞(x̂,d,q) belonging to L2
t (S2) for each

incident and observation direction is called the far field pattern. We are interested in the
following inverse problem.
Inverse problem. Given u∞(x̂,d,q) for all x̂,d ∈ S2 for a single wave number, deter-
mine the shape and location of the scatterer Ω.

3 Modified OSM: the non-magnetic case µ = I

3.1 Factorization analysis

It is more convenient for the presentation to rewrite (1) for the scattered field u as

curl curl u− k2ε(x)u = k2PEin in R3, (4)

where the contrast P is defined by

P := ε− I.
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We now define the far field operator F : L2
t (S2) → L2

t (S2) and Herglotz operator
H : L2

t (S2)→ [L2(Ω)]3 as

(Fg)(x̂) =

∫
S2

u∞(x̂,d,g(d))ds(d), (Hg)(x) =

∫
S2

g(d)eikx·dds(d).

It is well known that the Herglotz operator H is compact and injective. Its adjoint
operator H∗ : [L2(Ω)]3 → L2

t (S2) of H is given by

H∗f(d) = d×
(∫

Ω

f(x)e−ikx·d dx

)
× d, d ∈ S2.

The solution operator G : [L2(Ω)]3 → L2
t (S2) is defined by

Gf = v∞ (5)

where v ∈ Hloc(curl,R3) is the solution to (2)–(4) with Ein = f . It is easy to see that F
has the factorization

F = GH. (6)

We next define the operator T : [L2(Ω)]3 → [L2(Ω)]3 as

T f = k2P (f + v)

where again v ∈ Hloc(curl,R3) is the solution to (2)–(4) with Ein = f . The operators
defined above are all linear bounded operators, see [20]. It is also known from [20] that
the solution operator G can be factorized as G = H∗T . This leads to the following
factorization for F as

F = H∗T H. (7)

The following assumption on wave number k is necessary for the further results of the
factorization analysis in [20] that are needed for the modified OSM.

Assumption 1. We assume that the wave number k is not a transmission eigenvalue.
That means the only solution to the homogeneous system in [L2(Ω)]3 × [L2(Ω)]3

curl curl w − k2εw = 0 in Ω,

curl curl v− k2v = 0 in Ω,

ν ×w = ν × v on ∂Ω,

ν × curl w = ν × curlv on ∂Ω,

is the trivial solution.
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It is well known that the set of real transmission eigenvalues is at most discrete for
a real-valued permittivity, see [5] and the references therein for more details about the
transmission eigenvalue problems. The following coercivity result from [14] is important
for our theoretical analysis.

Lemma 2. If either Im (P ) is uniformly positive definite or there is a constant γ ≥ 0 such
that Re (P ) + γIm (P ) is uniformly positive definite and Im (P ) is positive semidefinite,
then T is coercive on Range(H).

We close this section with an important lemma for the analysis of the imaging func-
tional defined in the next section.

Lemma 3. There exists a positive constant σ such that

|(Fg,g)| ≥ σ‖Hg‖2, for all g ∈ L2
t (S2).

Proof. Using the factorization of F in (21) and the coercive property of T we obtain

|(Fg,g)| = |(H∗T Hg,g)| = |(T Hg,Hg)| ≥ σ‖Hg‖2.

This completes the proof.

3.2 The imaging functional and its properties

Let ys be the sampling points in the imaging process and p ∈ R3 is a fixed nonzero vector.
We define the imaging functional IMOSM for the modified OSM as

IMOSM(ys) :=

∫
S2

∣∣∣∣∫
S2

u∞(x̂,d,h(d)) e−ikd·ysds(d)

∣∣∣∣2 ds(x̂), (8)

where
h(d) = α1d× p + α2(d× p)× d

with any α1, α2 ∈ C such that |α1|2 + |α2|2 > 0.
As for the study of the OSM in [15], to analyze the behavior of the imaging functional

IMOSM it is necessary to connect IMOSM with the far-field operator F . This can be seen
in Lemma 4. An advantage of the modified functional is that it allows us to connect to
F directly and naturally, and thus enables the use of polarization vectors h(d) instead of
only (d× p)× d as for the imaging functional of the OSM in [15].

Lemma 4. The imaging functional IMOSM satisfies

IMOSM(ys) = ‖Fϕys‖2, (9)

where
ϕys(d) = h(d)e−ikd·ys .
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Proof. Recall that h(d) = α1d× p + α2(d× p)× d. It implies that ϕys(d) · d = 0 for all
d ∈ S2, and hence ϕys ∈ L2

t (S2). Now since u∞(x̂,d,h(d)) is linear in h, we can rewrite
the imaging functional as

IMOSM(ys) =

∫
S2

∣∣∣∣∫
S2

u∞(x̂,d, ϕys(d))ds(d)

∣∣∣∣2 ds(x̂) = ‖Fϕys‖2, (10)

which completes the proof.

The following theorem is the main theorem for our analysis for the behavior of the
imaging functional IMOSM(ys).

Theorem 5. For all ys ∈ R3 the imaging functional satisfies

IMOSM(ys) ≤ ‖G‖2
(
|α1|2‖Wys‖2 + |α2|2‖Vys‖2

)
,

and

IMOSM(ys) ≥
σ2

‖h‖2

(
|α1|2‖Wys‖2 + |α2|2‖Vys‖2

)2
> 0,

where h is given in (8) and σ is the postive constant in Lemma 3,

Wys(x) := W̃ (ys − x), Vys(x) := Ṽ (ys − x), for x ∈ Ω,

with

W̃ (z) = 4πi(z× p)
cos(k|z|)− j0(k|z|)

k|z|2
,

Ṽ (z) = −4π
p|z|2 − (p · z)z

|z|2
j0(k|z|) + 12π

(p · z)z− 1
3
p|z|2

k2|z|4
(cos(k|z|)− j0(k|z|)).

Remark 6. The functions |W̃ (z)|2 and |Ṽ (z)|2 peak when |z| < r for small r and decay

rapidly when |z| > r, see Figure 1. This implies that ‖Wys‖2 =
∫

Ω
|W̃ (ys − ·)|2dx and

‖Vys‖2 =
∫

Ω
|Ṽ (ys− ·)|2dx should have large values for ys ∈ Ω and are significantly small

for ys /∈ Ω, see Figure 2 for an illustration when Ω is a ball. We can also derive the decay
rate as

IMOSM(ys) = O
(
dist(ys,Ω)−2

)
as dist(ys,Ω)→∞.

Theorem 5 shows that IMOSM(ys) should work as an imaging functional for scatterer Ω
and it works for all polarizations α1d× p + α2(d× p)× d with |α1|2 + |α2|2 > 0.

Proof. We recall a special form of the Funk-Hecke formula (see [10]) that is important for
the proof ∫

S2
e−ikd·z ds(d) = 4πj0(k|z|), (11)
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(a) |W̃ |2 (b) |Ṽ |2

(c) Top view of (a) (d) Top view of (b)

Figure 1: An illustration of |W̃ |2 and |Ṽ |2 for z ∈ [−2.5, 2.5]3, k = 10, p = (0, 0, 1)>.

where j0(t) = sin(t)/t is the first kind spherical Bessel function of order 0.
Using this integral formula we can calculate that∫

S2
d× p e−ikd·zds(d) =

4πi

k
curlz(pj0(k|z|)) = W̃ (z), (12)∫

S2
(d× p)× d e−ikd·zds(d) = −4π

k2
curl2z(pj0(k|z|)) = Ṽ (z),

where

W̃ (z) = 4πi(z× p)
cos(k|z|)− j0(k|z|)

k|z|2
, (13)

Ṽ (z) = −4π
p|z|2 − (p · z)z

|z|2
j0(k|z|) + 12π

(p · z)z− 1
3
p|z|2

k2|z|4
(cos(k|z|)− j0(k|z|)). (14)
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(a) ‖Wys
‖2 (b) ‖Vys

‖2 (c) ‖Hys
‖2

(d) Top view of (a) (e) Top view of (b) (f) Top view of (c)

Figure 2: An illustration of ‖Wys‖2, ‖Vys‖2, and ‖Hys‖2 for ys ∈ [−2.5, 2.5]3, Ω = {z ∈
R3 : |z| ≤ 0.5}, k = 10, α1 = α2 = 1, p = (0, 0, 1)>.

It can be checked that W̃ (z) = Ṽ (z) = O(1/|z|) as |z| → ∞. We define

Wys(x) = W̃ (ys − x), Vys(x) = Ṽ (ys − x). (15)

Recall that ϕys(d) = h(d)e−ikd·ys . It follows from the definition of the Herglotz operator
H that

Hϕys(x) = α1Wys(x) + α2Vys(x), x ∈ Ω.

Now rewriting

Ṽ (z) = z

(
4π

(p · z)

|z|2
j0(k|z|) + 12π

(p · z)

k2|z|4
(cos(k|z|)− j0(k|z|))

)
− p

(
4π + 4π

cos(k|z|)− j0(k|z|)
k2|z|2

)
,
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we can deduce that
Ṽ (z) · W̃ (z) = 0, for all z ∈ R3.

Therefore

‖Hϕys‖2 = |α1|2‖Wys‖2 + |α2|2‖Vys‖2. (16)

Now consider ys /∈ Ω. We have from Lemma 4 and the factorization (6) that

IMOSM(ys) = ‖Fϕys‖2 ≤ ‖G‖2‖Hϕys‖2,

which implies the first estimate of the theorem.
From Lemma 3 and the Cauchy-Schwartz inequality we have

‖Fϕys‖‖ϕys‖ ≥ |(Fϕys , ϕys)| ≥ σ‖Hϕys‖2.

Thus using (10) and (16) it follows

IMOSM(ys) ≥
σ2

‖h‖2
(|α1|2‖Wys‖2 + |α2|2‖Vys‖2)2, for all ys ∈ Ω.

This lower bound is strictly positive thanks to the injectivity of H and the relation (16).
This completes the proof of the theorem.

Now recall that the imaging functional of the OSM studied in [15] is defined by

IOSM(ys) =

∫
S2

∣∣∣∣∫
S2

u∞(x̂,d)((d× p)× d) · (x̂× p)× x̂ eikx̂·ysds(x̂)

∣∣∣∣2 ds(d),

where p ∈ R3 is some polarization vector. We provide a relation between the imaging
functionals IMOSM and IOSM in the case α1 = 0.

Corollary 7. When α1 = 0, the two imaging functionals satisfy

IOSM(ys) ≤
|p|2

|α2|2
IMOSM(ys), for all ys ∈ R3.

Proof. The proof follows from a combination of Lemma 4, Lemma 5 in [15], and the
Cauchy-Schwarz inequality.

This method is stable with respect to noise in the data. Indeed, assume that we only
know the far field data F up to a perturbation Fδ such that

‖F − Fδ‖ ≤ δ‖F‖

for some δ > 0. Denoting by IMOSM,δ the imaging functional corresponding to Fδ, we
can derive the following stability estimate as in Theorem 7 in [15]

Theorem 8. The imaging functionals IMOSM and IMOSM,δ satisfy

|IMOSM(ys)− IMOSM,δ(ys)| ≤ (δ2 + 2δ)‖F‖2‖h‖2, for all ys ∈ R3.
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4 Modified OSM: the magnetic case µ = µ(x)

As in the previous section, we first study the factorization analysis for the far field operator
and then analyze the imaging functional for the modified OSM.

4.1 Factorization analysis

Recall that P = ε − I. Let Q = I − µ−1. We rewrite the scattering problem for the
scattered field u as

curl curl u− k2u = k2P (f + u) + curl [Q(g + curl u)], in R3, (17)

curl u× x

|x|
− iku = O(|x|−2) as |x| → ∞. (18)

Here the general (f ,g) ∈ [L2(Ω)]3 × [L2(Ω)]3 in the right hand side is convenient for our
presentation. If (f ,g) = (Ein, curl Ein), we have the original scattering problem. The
following assumption is important for the analysis in this section.

Assumption 9. Assume that there exist C1, C2 > 0 such that for all z ∈ C3

Im (Qz · z̄) ≥ C1|z|2, Im (Pz · z̄) ≥ C2|z|2

almost everywhere in Ω.

Note that unlike in the non-magnetic case this assumption excludes the transmission
eigenvalues in the scattering problem. We now define the far field operator F : L2

t (S2)→
L2
t (S2) and the solution operator G : [L2(Ω)]3 × [L2(Ω)]3 → L2

t (S2)

(Fp)(x̂) =

∫
S2

u∞(x̂,d,p(d))ds(d), G(f ,g) = u∞

where u∞ is the far field pattern of u satisfying (2) and∫
R2

curl u · curl v − k2u · v dx

=

∫
Ω

[k2P (u + f)] · v dx +

∫
Ω

Q(curl u + g) · curl v dx, (19)

for all v ∈ H(curl,R3) with compact support. It is known in [21] that equation (19) is
equivalent to the integro-differential equation

u(x) = (k2 +∇div)

∫
Ω

Φ(x,y)[P (u + f)](y)dy + curl

∫
Ω

Φ(x,y)[Q(curl u + g)](y)dy,
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where Φ(x,y) = exp(ik|x− y|)/(4π|x− y|) is the free-space Green function of the scalar
Helmholtz equation. Let H1,2 : L2

t (S2)→ [L2(Ω)]3 be defined by

(H1p)(y) =

∫
S2

p(d)eikd·yds(d) and H2p = curlH1p.

The Herglotz operator H : L2
t (S2) → [L2(Ω)]3 × [L2(Ω)]3 in the magnetic case is defined

by

Hp = (H1p,H2p)>. (20)

The adjoint operators H∗1,2 of H1,2 are given by H∗1,2 : [L2(Ω)]3 → L2
t (S2)

(H∗1g)(d) = d×
∫

Ω

g(y)e−ikd·ydy × d, (H∗2g)(d) = ikd×
∫

Ω

g(y)e−ikd·ydy.

Then the adjoint operator H∗ : [L2(Ω)]3 × [L2(Ω)]3 → L2
t (S2) of the Herglotz operator is

given by
H∗(f ,g) = H∗1f +H∗2g.

As in the non-magnetic case we can factorize the far field operator as

F = GH. (21)

For (f ,g)> ∈ [L2(Ω)]3×[L2(Ω)]3, the middle operator T : [L2(Ω)]3×[L2(Ω)]3 → [L2(Ω)]3×
[L2(Ω)]3 is defined by

T (f ,g) := (k2P (u + f), Q(curl u + g))> (22)

where u is the solution to (19) with (f ,g) on the right hand side.

Lemma 10. The operator T defined by (22) is a linear bounded operator on [L2(Ω)]3 ×
[L2(Ω)]3.

Proof. Consider (f̃ , g̃) ∈ [L2(Ω)]3× [L2(Ω)]3 and let ũ be the solution with this right hand
side in (19). Then

T (f̃ , g̃) = (k2P (ũ + f̃), Q(curl ũ + g̃))>.

Therefore for any a, b ∈ C we obtain

aT (f ,g) + bT (f̃ , g̃) = (k2P (bũ + au + bf̃ + af), Q(bcurl ũ + acurl u + bg̃ + ag))>

= T (a(f ,g) + b(f̃ , g̃)),

thanks to linearity of the problem (19).
For (f ,g) ∈ [L2(Ω)]3× [L2(Ω)]3, since (19) is well-posed, there exists a constant C > 0

such that
‖u‖H(curl,Ω) ≤ C‖(f ,g)‖.
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We can deduce the boundedness of T from the following additional estimates

‖P (u + f)‖ ≤ ‖|P |F‖L∞(‖u‖H(curl ,Ω) + ‖f‖),
‖Q(curl u + g)‖ ≤ ‖|Q|F‖L∞(‖u‖H(curl ,Ω) + ‖g‖),

where | · |F is the Frobenius matrix norm. This completes the proof.

Lemma 11. The far field operator F can be factorized as

F = H∗T H.

Proof. Since F = GH, it is sufficient to show that G = H∗T . We have

H∗T (f ,g) = x̂×
∫

Ω

k2[P (u + f)](y)e−ikx̂·ydy × x̂ + ikx̂×
∫

Ω

[Q(curl u + g)](y)e−ikx̂·ydy.

It is known that (see, e.g., [27]) the right hand side of the above equation is the far field
pattern of the scattered field u given by

u(x) = (k2 +∇div)

∫
Ω

Φ(x,y)[P (u + f)](y)dy + curl

∫
Ω

Φ(x,y)[Q(curl u + g)](y)dy.

This implies that H∗T (f ,g) = u∞ = G(f ,g). Therefore, G = H∗T .

For the convenience of the presentation of the proof of the following theorem we
will use (·, ·) and ‖ · ‖ indistinctively for the inner product and norm of [L2(Ω)]3 and
[L2(Ω)]3 × [L2(Ω)]3.

Lemma 12. There exists γ > 0 such that

(Im T (f ,g), (f ,g)) ≥ γ‖(f ,g)‖2 (23)

for all (f ,g) ∈ Range(H).

Proof. Denote h1 = g + curl u, h2 = f + u. We have

(T (f ,g), (f ,g)) =

∫
Ω

Qh1 · (h1 − curl u) dx +

∫
Ω

k2Ph2 · (h2 − u) dx

= (Qh1,h1) + k2(Ph2,h2)− (Qh1, curl u)− k2(Ph2,u). (24)

From Assumption 9 we obtain that

Im (Qh1,h1)) + k2Im (Ph2,h2) ≥ C1‖h1‖2 + k2C2‖h2‖2.

We now estimate the imaginary parts of the last two terms in the right hand side of (24).
Since u is the radiating solution to (19) we have∫

R3

(curl u · curl v − k2u · v) dx =

∫
Ω

(Qh1 · curl v + k2Ph2 · v) dx. (25)
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for all v ∈ H(curl,R3) with compact support.
Let ρ be a positive constant such that Ω is contained in the ball {x ∈ R3 : |x| < ρ}.

Now we take v = φu in (25) where φ ∈ C∞(R3) is a cut-off function with φ = 1 for
|x| < ρ and φ = 0 for |x| ≥ 2ρ, then∫

Ω

Qh1 · curl u dx + k2Ph2 · u dx =

∫
|x|<ρ
|curl u|2 − k2|u|2dx

+

∫
ρ<|x|<2ρ

curl u · curl (φu)− k2|u|2φdx.

Using Stokes’ theorem and taking the imaginary part of the right hand side of the above
equation we obtain

Im

∫
Ω

Qh1 · curl u dx + k2Ph2 · u dx = Im

∫
|x|=ρ

(x̂× curl u) · u ds(x).

Using the radiation condition (2) and the asymptotic behavior (3) we obtain

lim
ρ→∞

∫
|x|=ρ

(x̂× curl u) · u ds(x) = − ik

(4π)2

∫
S2
|u∞|2 ds(x).

Therefore, we can now estimate the imaginary part of the left hand side of (24) as

Im (T (f ,g), (f ,g)) ≥ C1‖h1‖2 + k2C2‖h2‖2 +
k

(4π)2

∫
S2
|u∞|2ds(x).

From the fact that (Im T (f ,g), (f ,g)) = Im (T (f ,g), (f ,g)) we imply

(Im T (f ,g), (f ,g)) ≥ C1‖h1‖2 + k2C2‖h2‖2.

Now assume that there is no γ > 0 such that (23) holds. Then there exists a sequence
{(fj,gj)}j ⊂ [L2(Ω)]3 × [L2(Ω)]3 such that ‖(fj,gj)‖ = 1 and

(Im T (fj,gj), (fj,gj))
j→∞−−−→ 0.

Then it follows hj1 = fj + curl uj
j→∞−−−→ 0 and hj2 = gj + uj

j→∞−−−→ 0 in [L2(Ω)]3 where uj is
the solution to

uj(x) = (k2 +∇div)

∫
Ω

[P (uj + fj)]Φ(x,y)dy + curl

∫
Ω

[Q(curl uj + gj)]Φ(x,y)dy.

By the boundedness of the integro-differential operators (see [21]) we obtain

‖uj‖H(curl,Ω) ≤ C3 (‖|P |F‖L∞‖gj + uj‖) + C4 (‖|Q|F‖L∞‖fj + curl uj‖) ,

where C3 and C4 are positive constants. Thus uj
j→∞−−−→ 0 in H(curl,Ω) and therefore

(fj,gj)
j→∞−−−→ 0 in [L2(Ω)]3×[L2(Ω)]3. The latter is a contradiction with ‖(fj,gj)‖ = 1.
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From this coercivity property and the factorization (11), the following lemma, which
is similar to Lemma 3, is satisfied in the magnetic case.

Lemma 13. There exists a positive constant γ such that

|(Fg,g)| ≥ γ‖Hg‖2, for all g ∈ L2
t (S2),

where H is defined by (20).

This lemma is again important for the analysis of the imaging functional in the next
section.

4.2 The imaging functional and its properties

We consider the same imaging functional IMOSM(ys) as in (8) and this functional also
satisfies Lemma 4. We now prove the main theorem for the analysis of the imaging
functional in the magnetic case.

Theorem 14. For all ys ∈ R3 the imaging functional satisfies

IMOSM(ys) ≤ ‖G‖2
[
(|α1|2 + k2|α2|2)‖Wys‖2 + (k2|α1|2 + |α2|2)‖Vys‖2

]
,

and

IMOSM(ys) ≥
γ2

‖h‖2

[
(|α1|2 + k2|α2|2)‖Wys‖2 + (k2|α1|2 + |α2|2)‖Vys‖2

]2
> 0,

where h is given in (8), γ is the postive constant in Lemma 13, and Wys , Vys are given
by (15).

Proof. Due to the presence of H2 in the Herglotz operator H in (20) we need to calculate
curl

∫
S2 d × p e−ikd·zds(d) and curl

∫
S2(d × p) × d e−ikd·zds(d). Using the formula (11)

again we derive

curl

∫
S2

d× p e−ikd·zds(d) =
4πi

k
curl 2

z(pj0(k|z|)) = −ikṼ (z),

where Ṽ (z) is given by (14). Using (11) and the facts curl 2 = −∆ +∇div, ∆j0(k|z|) +
k2j0(k|z|) = 0 we can compute

curl

∫
S2

(d× p)× d e−ikd·zds(d) = −4π

k2
curl3z(pj0(k|z|)) =

4π

k2
curl z(p∆j0(k|z|))

= −4πcurl z(pj0(k|z|)) = ikW̃ (z),

where W̃ (z) is given by (13).
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Recall Wys and Vys from (15) and H1ϕys = α1Wys + α2Vys . Thanks to the above
calculations, we derive that

Hϕys = (α1Wys + α2Vys , α1ikVys − α2ikWys)
>.

As proven in the proof of Theorem 5, Wys and Vys are orthogonal. Therefore, we have

‖Hϕys‖2 = ‖α1Wys + α2Vys‖2 + ‖α1ikVys − α2ikWys‖2

= (|α1|2 + k2|α2|2)‖Wys‖2 + (k2|α1|2 + |α2|2)‖Vys‖2.

Recall from Lemma 4 that IMOSM(ys) = ‖Fϕys‖2. As in the proof of Theorem 5 we
complete proof of this theorem using the following inequalities

σ2

‖h‖2
‖Hϕys‖4 ≤ ‖Fϕys‖2 ≤ ‖G‖2‖Hϕys‖2.

Here the first inequality follows from the Cauchy-Schwarz inequality and Lemma (13),
and the second inequality follows from (21).

We also have similar properties of the imaging functional as in Corollary 7 and Theo-
rem 8.

5 Experimental data verification

We apply the classical factorization method (FM) [22], the OSM in [15] and the mod-
ified OSM to invert the 3D experimental database provided by the Fresnel Institute,
France [12]. More precisely, we invert the calibrated co-polarized datasets (TwoSpheres-
PP, TwoCubes-PP, Cylinder-PP, CubeSpheres-PP, IsocaSphere-PP) for all the examples
in this section. The sampling methods are implemented using the computing software
Matlab. We rescale 40 millimeters to be 1 unit of length in our Matlab simulations. From
now on we will use scaled lengths in the presentation instead of actual lengths, for exam-
ple 2 instead of 80 millimeters. The sampling domain is the cube [−2.5, 2.5]3 uniformly
divided into 32 × 32 × 32 sampling points. The far-field pattern is computed from the
measured scattered field via (3). The distance from the origin to the receivers (and the
sources) is 44.9, which is large enough to guarantee a good approximation in (3).

In the experiments the targets are illuminated by 81 incident sources that are located
far away, see Figure 3(a) for the distribution of the sources. However, due to technical
reasons, the scattered electric field was collected at only 36 points on S2 ∩ {z = 0}, see
Figure 3(b), and only the third component of the scattered field was measured. This
is certainly the main challenge for the sampling methods which typically require full
aperture data. When computing the integrals to evaluate the imaging functionals, the
points where no data is present are treated as 0. Note that the measured data can be
enhanced using the reciprocity property of the far field pattern but here we would like to
test the performance of the sampling methods for the original limited-aperture data.
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To help the readers understand better our reconstruction results we use the information
provided by the Fresnel Institute in [12] to create 3D objects mimicking the true 3D
targets used in the experiments. The isovalue used in the 3D isosurface plotting for the
case of IsocaSphere is 0.78 (78% of the maximal value of the imaging functionals that are
normalized). This isovalue is 0.5 in all of the other cases.

The real data should correspond to the non-magnetic case (µ = I). The analysis of the
MOSM in this case requires Assumption 1 about the transmission eigenvalues. Finding
these eigenvalues is by far a nontrivial task, see [4]. Thus we can’t verify whether the
wave numbers used in the real data validation are transmission eigenvalues. However, the
chance of having these transmission eigenvalues could be small since it is known that the
set of such eigenvalues is at most a discrete set. Furthermore, Assumption 9 may not
hold for the real data since the imaginary part of the permittivity ε is probably small and
negligible according to [12].

(a) Sources (b) Receivers

Figure 3: The experimental setup for incident sources and data receivers.

TwoSpheres-PP dataset (Figure 4) and Cylinder-PP dataset (Figure 5). For
the first two datasets we can see that the OSM seems to be able to reconstruct only
information in the (x, y)-plane of the targets. This can be due to the lack of measured data
in the z-direction. However, the FM and the MOSM are able to provide more reasonable
reconstructions. The FM is able to locate the targets but fails to provide reasonable
shapes while the MOSM can not only locate targets but also provide a pretty good shape
reconstruction in the case of TwoSpheres-PP dataset. Its result for the Cylinder-PP
dataset also looks more reasonable than that of the FM. The cylinder object has the
largest volume among all the targets and is challenging to reconstruct, see notice in [12].
Only the data set at 3 GHz gives a reasonable result for this target.
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(a) Target (b) FM (c) OSM

(d) MOSM (e) IMOSM on {y = 0} (f) IMOSM on {z = 0}

Figure 4: Reconstruction with TwoSpheres-PP dataset at 4 GHz.

TwoCubes-PP dataset (Figure 6), CubeSpheres-PP dataset (Figure 7). For
these datasets the OSM provides similar performance as in the first two cases. It fails
to reconstruct the z-direction of the targets. The reconstruction results of the FM again
can provide the location of the targets. Moreover, the FM can even resolve and provide
reasonable size of the two cubes for the TwoCubes-PP dataset, see Figure 3(b). From the
reconstruction results of the MOSM we can see that the MOSM are again slightly better
than those of the FM. The MOSM can locate the targets and provide more accurate
information about the shape of the targets.

IsocaSphere-PP dataset (Figure 8) This is also known as the Myster object and is
the most complex in the database. It consists of twelve small spheres but not as evenly
distributed as those of CubeSpheres-PP dataset. Comparing with the OSM and FM, the
MOSM again performs better. The OSM again fails to image the z-direction of the target
while the FM can’t reconstruct any information for this case. The MOSM can recover
the location of the target and provide a rough estimate of the shape of the target in the
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(a) Target (b) FM (c) OSM

(d) MOSM (e) IMOSM on {x = 0} (f) IMOSM on {z = 0}

Figure 5: Reconstruction with Cylinder-PP dataset at 3 GHz.

(x, y)-plane.

6 Conclusion

We analyze a modified version of the orthogonality sampling method studied in [15] for
both non-magnetic and magnetic cases for anisotropic Maxwell’s equations. Comparing
with its original version the modified OSM is proved to be applicable to more types of po-
larizations associated with the electromagnetic scattering data. We provide a validation
of the modified OSM, its original version, and the factorization method for 3D exper-
imental data from the Fresnel database. The results indicate that the modified OSM
performs better than the other two methods and is a promising imaging approach in
inverse scattering.

Acknowledgement. This work is partially supported by NSF grant DMS-1812693.
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(a) Target (b) FM (c) OSM

(d) MOSM (e) IMOSM on {z = 0.9375} (f) IMOSM on {z = 1.5625}

Figure 6: Reconstruction with TwoCubes-PP dataset at 7.5 GHz.
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