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System of radiative transfer equations for coupled surface and body waves

Maarten V. de Hoop, Josselin Garnier® and Knut Sglna

Abstract. We obtain and analyze a system of radiative transfer equations associated with surface and body waves. The
system accounts for a boundary along which surface waves propagate and for body waves that propagate in the bulk. The
system describing the wave mode coupling is parameterized by the range coordinate in the direction along the boundary.
We distinguish two layers beneath the boundary containing distinct random fluctuations, analyze the coupling of surface
and body modes and introduce proper scaling regimes which through diffusion approximation theory lead to the mentioned
equations. We present particular properties of the solutions and the qualitative behavior including equipartitioning in the
appropriate limit reflecting a conversion of energy from surface-to-body waves.
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1. Introduction

Radiative transfer [9] has been used for a long time to model wave propagation in heterogeneous media like
Earth’s crust [20,23,25,26], biological tissue [3], the atmosphere and the ocean [2,15]. The mathematical
theory of radiative transfer in open random media, which involves only body waves, is well established
[4-7,14,22]. However, the coupling between surface waves propagating along boundaries and body waves
propagating in the bulk medium remains a challenging problem [18,21,24,27]; this coupling is essential
in understanding, for example, seismic coda.
We consider the two-dimensional wave equation either in a half-space R x (0, +00) or in a finite width
section R x (0, D):
TLQ(;E,Z) 2
Tatquu:f(x,z;t), (z,2;t) € R x (0,D) x R, (1)
with Dirichlet boundary condition at z = 0, background wave speed ¢, and index of refraction n(z, z). The
index of refraction n is assumed to be randomly heterogeneous with a mean profile that supports guided
modes and where the random fluctuations are responsible for wave scattering. We consider in particular
the special case when the random fluctuations are supported only in a layer close to the surface z = 0.
Our goal is to derive from a multiscale analysis the radiative transfer equation (RTE) satisfied by the
Wigner transform of the normal derivative of the wave field observed at the surface z = 0. This Wigner
transform has discrete and continuous components due to the presence of surface- and body-wave modes.
A multiscale analysis makes it possible to derive a RTE that expresses the effective coupling between the
different wave modes. The inspection of this RTE reveals that in the case of a half-space the effective
coupling acts between surface waves and from surface waves to body waves, but there is no effective
coupling from the body waves to the surface waves. This was already noticed by Garnier [12] in the
context of coupled mode theory and comes from the fact that the latter form of coupling is too weak to
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Fic. 1. The figure illustrates the geometry of the wave propagation scenario considered in the paper. The surface modes
are essentially confined to the section z € (0,d) and the body modes to the section z € (0, D). We consider the case with
D = 400 in Sect. 2 and the case D < 400 in Sect. 3. The propagation is in the z direction and the source is on the left
(picture a). We observe the wave field at the surface z = 0. The pictures (b—c) show two examples of two randomly perturbed
profiles of the index of refraction. The index of refraction has a deterministic background profile that is decreasing in z and
is independent of the x coordinate and on top of this profile there are random fluctuations which vary with respect to both
z and z coordinates. In the picture (b), resp. (c), the random fluctuations are supported in the surface layer, resp., in the
full waveguide cross section

be captured by the standard multiscale analysis that has a limited range of validity for the propagation
distance.

In this paper, we propose to address the case of a domain of the form of a finite width section R x (0, D)
and to study the situation in which D becomes large. This approach makes it possible to capture the
leading-order terms of the effective coupling between all types of modes. We then get a novel form of
the RTE that fully couples surface and body waves and that describes the long-range dynamics toward
equipartition.

The energy transport in seismic coda has been studied for decades. Descriptions in terms of radiative
transfer date back to Wu [26]. For a comprehensive monograph, we refer to Sato, Fehler and Maeda [23].
Concerning the consideration of coupling surface and body waves, we mention a few key developments
that motivated our work.

In the case of a slab bounded by two free surfaces, Trégoures and Van Tiggelen [25] derived from
first principles a quasi-two-dimensional radiative transfer equation where the wave field is expanded in
a basis of Rayleigh, Love and Lamb eigenmodes. Through this normal-mode decomposition, this model
incorporates the boundary conditions exactly. The energy exchange between surface and body waves was
treated by normal-mode coupling in the Born approximation. This formulation enabled the prediction of
energy decay in the coda and its partitioning into different components. Zeng [27] introduced a system
of coupled integral equations to describe the exchange of energy between surface waves and body waves
in the seismic coda. However, the underlying arguments are purely phenomenological. Maeda, Sato and
Nishimura [18] presented a study of energy exchange between surface and body waves starting from the
elastodynamic equations in a half-space. Using the Born approximation, they evaluated the scattering
coefficients between all modes of propagation in a medium containing random inhomogeneities.

To describe the energy transport in the seismic coda, Margerin, Bajaras and Campillo [21] introduced
a system of radiative transfer equations for coupled surface and body waves in a scalar approximation.
They identified cross sections for surface-to-body and body-to-surface waves scattering. They followed a
phenomenological approach to obtain the specific energy density of surface and body waves in a medium
containing a homogeneous distribution of point scatterers.
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Evolution Toward Equipartition
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F1G. 2. Evolution of the mean mode powers of the body (black) and surface (red) modes predicted by the RTE when the
initial mode power distribution is uniform on the surface modes (see Sect. 5)

We consider the propagation of waves in a randomly heterogeneous half-space or thick waveguide that
has a thin layer beneath the surface that supports a finite number of guided modes, that we call surface
modes (see Fig. 1). We derive a RTE that governs the evolution of the Wigner transform of the normal
derivative of the wave field at the surface. A preliminary and reduced version of this approach was applied
in the context of coupled mode theory in Ref. [8]. Here, we address a general form of the index of refraction
and we give a complete description of the discrete and continuous components of the Wigner transform,
which represent the energy carried by the surface and body modes, respectively. We analyze the dynamics
revealed by this RTE that couples the surface modes and the body modes. This mode coupling induces
a non-trivial process that involves a slowly evolving metastable surface mode distribution and ultimately
leads to energy equipartition between all modes. This implies, for example, that initially excited surface
modes effectively loose energy as they propagate (see Fig. 2). These results pave the way to analyze the
associated inverse problem, addressing the outstanding claim that the background index of refraction can
be robustly determined from the mentioned Wigner transform or related albedo operator.

The paper is organized as follows. In Sect. 2, we address the case of a half-space R x (0, +00) with a
thin layer. In Sect. 3, we address the case of a thick waveguide of the form R x (0, D) with a thin layer
and we study the situation in which D becomes large. In Sect. 4, we consider a general form of the index
of refraction.

2. Propagation in a half-space containing a thin layer

Considering (1) and standardly taking the Fourier transform,

iz, z;w) = /u(x,z;t) exp(iwt)dt,
R

we obtain the two-dimensional Helmholtz equation
Al + En?(z,2)0 = —f(z, zw), (2,2) € R x (0,400), (2)

with wavenumber k& = w/c,. We introduce a thin layer through the index of refraction beneath the
boundary at z = 0 that supports surface modes without and with scattering.
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2.1. Non-scattering thin layer

When the thin layer is non-scattering, the index of refraction is z-independent and equal to ny(z). In
Sect. 2.2, we will consider the situation when the index of refraction additionally has a random component.
Here, we make the following assumption regarding this background or deterministic part of the index of
refraction:

Assumption 2.1. The function ny(z) is such that n4(0) = ng, ny(z) is smooth and non-increasing on [0, d]
from ny(0) = ng to np(d) = n1 < ng, and np(z) = ny for z > d.

We now fix the wavenumber k. The spectral problem associated with the one-dimensional Schrodinger
operator [02 + k?n?(2)]¢(z) = v¢(z) with Dirichlet boundary condition at z = 0 (moreover, here defined
relative to the smooth background index of refraction component n;) has been studied in detail (see
Magnanini and Santosa [19] and Appendix A):

e The spectrum is of the form (—oco,n2k?) U {B% _,,..., 02}

e The N modal wavenumbers j3; are positive and n?k? < 3%_; < - < 33 < n3k?. We have N > 1
when w is large enough.

e The eigenfunctions ¢;, j = 0,..., N — 1, are the modes corresponding to the discrete spectrum.
They decay exponentially in z for z > d.

o The generalized eigenfunctions ¢, v € (—oo ,n2k?), are the modes corresponding to the continuous
spectrum. They are oscillatory and bounded at infinity.

e The set of modes is complete in L?(0, +00). Any function v € L?(0,400) can be expanded on this
complete set:

N-_1 nsz
oo = S o)+ [ oo, (3)
i=0 e

with v; = (¢;,v),. and vy = (¢4, v),.. We have an isometry from L?*(R) onto CV x L?(—o0,nik?)
with
ny 22

(00)2 = 3 | (65,0, / [ (6 0) 12 [P (4)

J

2

I\
=)

e We note that ¢, does not belong to L?(0,+00), but (¢, v),. can be defined for any test function
v e L*(0,4+0) as

(¢"/a 2 — DLHEOO/¢'Y (5)
where the limit holds (as a function of 7) in L?(—oo, n?k?).

Any function can be expanded on the complete set of eigenfunctions of the Schrédinger operator. In
particular, the solution of the Helmholtz equation (2) can be expanded as the superposition of modes:

N-1 nik®
15 (2)5(2) + / iy ()4 (2) . (6)
j=0 e

The modes for j = 0,..., N — 1 are guided, the modes for v € (0,n?k?) are radiating, and the modes for
v € (—00,0) are evanescent. Indeed, the complex mode amplitudes satisty,

Ji;+Bi0; =0, j=0,...,N—1, (7)
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85117 +v4,=0, vye€ (—oo,n%kQ), ()

for any x which is not in the support of f . Therefore, if the source is concentrated on the line x = 0 and
of the form f(x,z) = §(x)F(z), then we have for x > 0,

N_1 n1k2
Qj.s etBi Ay,s eV eV
ie,z) =) jb 0% 5 (2) + / e V(2 d7+/ % |1/4 "6, (2)dy, (9)
j=0 VBi

where the mode amplitudes are constant and determined by the source,

ajs\/ﬁj/qu dz, j=0,...,N—1, (10)

1/4
o= / 6,(2)F(2)dz, 7 € (—o0,n2k?). (1)
0

For z much larger than the wavelength and z € (0,d), the leading-order terms are the guided mode
amplitudes:

N—-1
i(z,2) = Y i g, +O(1). 12

2.2. Scattering thin layer

When the thin layer is scattering, u satisfies (1) with a randomly perturbed index of refraction:
n?(x,z) = ni(z) +ev(x, 2), z€ (0,+00), (13)
where

e The function ny(z) satisfies Assumption 2.1;
e The random process v(z, z) satisfies:

Assumption 2.2. v is a zero-mean, bounded, random process, stationary in x, compactly supported in z,
so that E[v(z+a’, z)v(a’, 2')] = 0 as soon as max(z, z’) > d’ for some d’ > 0. As a function of x, the process
v satisfies strong mixing properties (a sufficient condition is that the process v as a function of x is ¢-
mixing with ¢ € L'/2 [16, Sect. 4.6.2]). This implies that the covariance function E[v(x+2’, 2)v(z', 2')] =
E[v(z, 2)v(0,z")] decays fast at infinity and that diffusion-approximation theorems [11,16] can be used.
The covariance function is assumed to be smooth so that the forward-scattering approximation [13] is
satisfied.

A typical example of a covariance function that satisfies Assumption 2.2 is the Gaussian covariance
function E[v(x + 2/, 2)v(2',2")] = R(z,2") exp(—x?/¢%). A typical realization of the index of refraction
(13) can be seen in Fig. 1b.

The asymptotic analysis of the wave field and its moments follows an earlier analysis of one the authors
[12]. Tt is possible to write a radiative transfer equation for the incoherent wave fluctuations. The Wigner
transform of the normal derivative of the field at the surface is a distribution defined as a local Fourier
transform of the covariance function of the normal derivative of the field:

W3(z, ki t,w) = hm—//dwdx exp(—iw't — ikx)
/ 2

XE[@ u( Ow+?w>6 u(; %70;0},%0/)}
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= hm—Q//dtdsc exp(iwt’ —ikz")
e—0
x o a t x 2 t ot
xE[a ( oty )a ( ,o;f—f)] 14
et la N2 223 (14)
It represents the energy density at time ¢ and frequency w that arrives at  with the angle determined
by the longitudinal wavenumber «.

Proposition 2.1. The Wigner transform W# of the incoherent wave is of the form:

N(w)—1
We(x, Kk t,w) = Z W3 (xst,w)o(k — B (w)), (15)
7=0
for k € (n1k(w), nok(w)), k(w) = w/c,. The W;(z;t,w)’s satisfy
1 N(w)—1
Wi+ o 50W = ) T (@)W = A (@)W, (16)
v;(w) 1=01%
where
1
b =7 (w) (1)

() = o) / Rot(a: ) cos (Bu(w) — B;(w))z)da, (19)

25]@(‘*’
0
Riji(w;w) Gt (z;w)E[W(0, 2)v(z, 2")]pii (2 w)dzd?’, (20)
/]
N(w)—1 nik? (w) o0
)= 3 T + / N / R (z50)cos (V7 — By (@)e)dedy,  (21)
Rjﬁ,(a:;w)://qﬁjqbq,(z;w)E[V(O,z)y(m,z’)]¢j¢7(z’;w)dzdz’. (22)
00

This proposition (proved in Appendix B.1) shows conversion between surface modes and irreversible
leakage of surface wave power toward body waves. The complete form of the Wigner transform is actually
more complicated than the one described in the proposition, as it also contains coherent contributions
that decay exponentially with the propagation distance. The full expression of the Wigner transform is
given by (107) in Appendix B.1. In the RTE (16), v; is the group velocity of the j-th surface mode, I'}; is
the scattering cross-coefficient (energy converting from the [-th surface mode to the j-th surface mode),
and A7 is the extinction coefficient that takes into account leakage toward the body modes and scattering
to other surface modes. The scattering and extinction coefficients depend on the two-point statistics of
the fluctuations of the random medium.

3. Propagation in a waveguide with a thin layer

When we proceed from (2) with Assumptions 2.1 and 2.2, then the effective radiative transfer system
does not include conversion from the radiating (body) modes to the guided (surface) modes, and only
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conversion between surface modes and leakage from surface modes to body modes are present [12]. Here,
we aim to generate a RTE that contains coupling between all the different types of modes. To do so, we
need to modify the modeling in an essential way taking (1) as a starting point. For the analysis, we use
an approach that consists in considering a truncated problem with a domain of the form R x (0, D) with a
large D > 0. Such an approach with a sequence of truncated problems has been used in the homogeneous
case to prove the completeness of the set of modes in the half-space system, and to relate the eigenvalues
and eigenfunctions of the truncated problems to the ones of the half-space problem (employing the
Levitan-Levinson transform method, see Chapter 10 in Coddington and Levinson [10] or Appendix A).
It was also recently applied in Ref. [12] to study the evolution of the mean mode powers of the incoherent
wave field.

3.1. Scattering waveguide

Let D > d. We consider the truncated problem
Ad+ E*n® (2, 2)0 = —f(z, z;w), (x,2) € R x (0,D), (23)
with k& = w/c,, Dirichlet boundary condition at z = 0 and Neumann boundary condition at z = D and
n?(x,2) = ni(z) +ev(x, 2) if z € (0, D), (24)
where

e The function ny(z) satisfies Assumption 2.1,
e The random process v(z, z) satisfies Assumption 2.2.

The configuration is illustrated in Fig. 1. The two right plots in the figure show examples of index of
refraction. On top of the smooth background component ny,(z), there are random fluctuations. The two
right plots illustrate cases where the random fluctuations are supported in the full interval 0 < z < D
(Fig. 1c) or only in the section 0 < z < d corresponding to the surface layer with larger values for the
index of refraction (Fig. 1b). As we will see below, even though the random fluctuations are supported
only in the surface layer, the random fluctuations give a coupling in between modes so that wave power
that initially may be carried only by a set of surface modes is transmitted to body modes supported in
the full interval 0 < z < D.

For any fixed D, the spectral problem associated with the one-dimensional Schrédinger operator
[02 + K?n(2)]6(z) = v¢(2) in L?*(0, D) with Dirichlet boundary condition at z = 0 and Neumann
boundary condition at z = D is fully understood. The spectrum is discrete. The eigenvalues are of the form
vj.p With -+ <410 < ¥j.p < -+ < Y00 < ngk%. We denote Np such that yn, p < n?k* < ynp—1.D
and Mp such that vy, p < 0 < yarp—1,p. For j < Mp, we write §; p(w) = V75,0 The eigenfunctions
are functions ¢; p € L?(0, D). These functions are exponentially decaying in (d,D) for j < Np and
oscillatory for j > Np. The set of eigenfunctions is complete in L?(0, D).

We can write a radiative transfer type equation for the truncated problem with a fixed D as ¢ — 0.
In this truncated problem, there are only discrete modes and the Wigner transform is discrete. We have

Proposition 3.1. In the regime ¢ — 0, the Wigner transform (14) has the form

MD(LU)—I

Wz, mit,w)= > Wiplait,w)d(k — Bjp(w)) (25)
j=0

for k€ (0,nok(w)), where the W (z;t,w)’s are of the form

azqu,D(O; (.4))2

]S,D(x;tvw) = 6j,D(w) Wj D(ﬂ?;t,(x)) (26)
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and the W; p(x;t,w)’s satisfy

Mp(w)—1
Oy W; b+ L — O W Z Fgl plw VVl D — Aj,D(w)Wj’D, (27)

vj.0(w) 1=0,1]

where
1

28
UJ D( ) .;D( )7 ( )
;lD(w) Q@DﬁlD/Rﬂ p(x;w) cos ((,BZD( ) — Bj’D(w)):C)da:, j#I, (29)

Rji,p(x;w) //¢g p¢1,p(z;W)E[(0, 2)v(x, 2)]¢; péi,p(z'; w)dzdz,

MD(cu) 1

Ajp(w) = Z Fle (30)

1=0,l#j

This is a standard RTE for a closed waveguide [11, Chapter 20].

3.2. A thick scattering waveguide containing a thin layer

We next analyze a configuration of the type considered in the previous subsection when kD becomes
large. We now assume that the index of refraction is of the form

ev/Dy
VD

n?(z,z) = ni(z) +ev(z,2) +

w(z, z) if z € (0, D), (31)

where
e The function ny(z) satisfies Assumption 2.1,

e The random process v(z, z) satisfies Assumption 2.2,
e The random process p(x, z) satisfies:

Assumption 3.1. p is a zero-mean, bounded, random process, stationary in z and z, independent from v,
with covariance function

Elu(z, (e, )] = R*(z — ', 2 — ).

The covariance function R* of the process p satisfies the same correlation and smoothness properties as
the ones of v.

We may have p = 0. Dy is a reference length that is added so that p is dimensionless in (31).

When kD > 1 (see Appendix A), the situation becomes similar to the half-space problem addressed
in Sects. 2.1-2.2: The discrete eigenvalues 6?7 p(w) and eigenfunctions ¢; p(z;w) for j < N converge
when kD — +o00 to the discrete eigenvalues BJZ (w) and eigenfunctions ¢;(z;w) of the half-space problem
discussed in Sect. 2.1.

The eigenvalues 5]2’ pw) for N < j < Mp become more numerous and denser as kD increases. We
have §; p ~ kB((j — N)/(kD)), where B(b) is the dimensionless function defined by:

B(b) := \/n? — 772621(0,711)(71'17),
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for j=N,...,Mp with Mp — N ~ n1kD/n. The eigenfunctions have the form

VEk
$5,0(%w) ¥ —m——ee——e 0y (23 W),
) (5i8) = s (25)
where v = ﬁJQ p> ¢ is a mode corresponding to the continuous spectrum of the half-space problem
discussed in Sect. 2.1, and N (g) is the normalized density of states (function of a normalized squared
longitudinal wavenumber g = v/k?):

1
N e — 1,
(g) 271_\/71%7_9 (0, 1)(9)

This means that the number of eigenvalues (37 ;, in (v, + d7) is (D/k)N (v/k?*)d~ for small §v. We now
present the main result of this paper in

Proposition 3.2. When kD > 1, the Wigner transform (14) of the normal derivative of the field at the
surface is of the form

N-1 (02 7002 ~
Wi(z, ki t,w) ~ Z az%($w)Wj(:zc;t,w)é(,‘<; - Bj(w)) + MN(&)Wg(x;t,w)‘

e (32
= P k& s=n/k )
and the Wigner transforms (W, Wg) satisfy the coupled radiative transfer equations
N-1 ‘X’N o
0. W + - atw =Y rewi+ / Py We N (€)dg" — ASW;, (33)
1=0,l#j 0
1 - 1 Oo~c TONT( ! / 1 ACTr
0 We + 8tW§ 5 Z TaWi+ o5 [ Tee WeN(€)dg' — -5 AW, (34)
0
forj=0,....,N —1 and £ € (0,n1), where the group velocities are
1 Cof
vi(w) = , Ve = , 35
the normalized density of states is
N €
N(€) = 26N (&) = ——=—=1(0 36
the differential scattering cross sections are
) =550 / Rip(ai) cos (31) — By ())z)d (1)
5ew) = @ e / W) cos ((kE — B;(w))z)da, (38)
0
me k* ». 210 /
cer (W) :E [Reer (23 w) + Reer (z;w)] cos (k(& — ¢)z)da, (39)
0
the total scattering cross sections are
N(w)—1 oo
K@= Y T+ [ B @A), (40)

1=0,1#] 0
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~ N(w)—1 ~ OON R
Rw)= 3 Tolw)+ [ Bea@iie)ae, (a)
1=0 A
and the correlation functions are defined by

Ryt ) / / 0561 (22 )E[(0, 2, )]y 1 (') (42)
Riclai) = [ [ 616600, 2w, )66/ )ded (43

00
Reer (1;w) ://qi;gd;g/(z;w)E[v(O,z)u(x,z’)]qzzgq?)gl(z’;w)dzdz', (44)

00

7@25, (z;w) =Dy /R“(m, z)cos (kzy/n? — €2) cos (kzy\/n? — €%)dz, (45)
0

where for & € (0,n1),
- Vk
be(23w) = ——==p2¢2(2;0), (46)
N(£?)
with ¢, v = k*¢%, a mode corresponding to the continuous spectrum of the half-space problem defined by

(93).

Proof. The proof consists in carrying out an asymptotic analysis as D — 4oo of the statement of
Proposition 3.1. The technical details are presented in Appendix B.2. 0

3.3. The properties of solutions of the coupled radiative transfer equations (33)—(34)

In this subsection, we analyze the properties of the Wigner transform as described by Proposition 3.2.
First, we note that the mean mode powers,

Pj(z;w) = /Wj(m;w,t)dt, Pe(z;w) = /Wg(m;w,t)dt, (47)
satisfy

N—-1 o0
0. Pj = re,p T%, PN (€)de — ASP; 48
xt g — Z gl l+ jerte (5)5 ViRl ( )

1=0,l#j 4

_ 1 Nzl

0. P =15 > TaPi+ o5 /I‘&,Pfx (€')de’ — —Agpg. (49)

Second, the total power,
N(w)—1

P(r;w) = Z Pj(z;w —&-k‘D/Pg z;w)N(€)dE, (50)

=0

is a conserved quantity, that is, 0,P = 0.
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Third, the parameters ' and I'¢ are of order k2020,, where o and /. are the standard deviation and
the correlation length of the random fluctuations, respectively. If the source only generates surface waves,
then the radiative transfer equation can be reduced to

N—-1
0 W + — 8tW = > T5W - AW,
1=0,l#j
for propagation distances of the order of 1/(k%*0(,), which is the equation determined in the half-space
case discussed in Sect. 2.2. Indeed, we can check that
N_1 n%k2
Z [ (w) + / 2\F/8 /Rﬂ z;w) cos ((v7 — B(w))z)dzdy.
1=0,1#] !
The power is initially carried by the surface modes. Coupling induces changes in the distribution amongst
the surface modes and a decay, which gives for x of the order of 1/(k?02(,),

N-1 N-1
(@), = exp(—Ma) (P,(0) ), (51)
where M is the positive matrix with entries
My = A555 — T5(1 = d51). (52)
The decay is in fact a transfer of power from the surface modes to the body modes, expressed by
N 1 =
= %D Z Tal, Pe(0)=0,
1=0
which gives for x of the order of 1/ (k2 2¢,),
Z Ig,(M™(I - exp(—Mz)),, P (0). (53)

l =
Fourth, for propagation distances z of the order of D/(ko?(.) the mean powers of the surface modes
and body modes become of the order of P(0)/(kD) with P(0) = Z;V:*Ol P;(0), and the full equations (48)—

(49) should be considered. These equations show that the surface mode powers are in a quasi-equilibrium
state that is determined by the body mode power distribution. We have

. N-1
(P =Mt | [T Po@ R | (54)
0 j=0

The mean body mode powers ]35 slowly evolve at the scale D/(ko?(.) and satisfy the equation
D 1 OOA D NT7(¢! / 1 e D
. Pe :@ Pee PoN(€)dE — 5 AP, (55)
starting from (for 1/(k%02%(.) < w9 < D/(kJUQE )
_ 1 Nz
Pe(x0) = Phuie i= =D Z Lg (M) P (0),
with the effective scattering cross section

Lee = Z PaM™ulhe + e (56)
L=
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The second term in the right-hand side describes the direct coupling between body modes, and the first
term describes the coupling mediated by the surface waves. As we will see below (Fig. 5), there are
configurations where one of the two mechanisms dominate the other one. By (55), we obtain

Pe(w) = (exp (0015 Eni)g, (57)

with the positive kernel

Meer = Ago(€' —€) — E:Ql M) TN (E) = TN (€). (58)

LU=

Fifth, the equipartition principle takes the following form: As  — +o0, P;(x) and ]55 (z) converge to

Ow)

Poo(w) = (59)
kD / N(e
which is here equal to
_ mP(0;w)
Poe(@) = = %D

by (36). This means that most of the power is carried by body modes. (The fraction of power carried by
the surface modes is of the order of d/D.) However, since the spatial profiles of the body waves extend
throughout (0, D), while those of the surface waves are concentrated on (0, d), the contribution of the
body waves and that of the surface waves to the Wigner transform (14) of the normal derivative of the
field at the surface are of the same order, and we have

+oo N(w)—1 o )
/WB(x,H;t,w)dt ~Po (W) Z Wé(ﬁ
j

Jj=0

0.0¢(0;w)? I

_/Bj(w)) +Poo(w) kf (£)|£=m/k’ (60)

— 00

for propagation distances x much larger than D/(ko?(.).
Sizth, if we assume a delta-correlated model,

Elv(x, 2)v(2’,2")] = 021[0,(1/] (2)8(x — 2')5(z — 27), (61)

for some d’ larger than d, then the differential scattering cross sections take the simplified forms,

c 2 2 2
sz( w) = 453@ U /¢j¢z
0

) =g / (=)

Te (w) = 455, /¢€¢£, zw)dz + Do
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4. Propagation in a thick scattering waveguide with a complex background

Let D > d. We consider the problem
At + kP (2, 2)i = —f(z,zw),  (2,2) € Rx (0,D), (62)
with k = w/c¢,, Dirichlet boundary condition at z = 0 and Neumann boundary condition at z = D, and

VDo
vD

n%(m, z) = nﬁ’D(z) +ev(z,z)+¢€ w(z, z) if z € (0, D), (63)

where
e The function ny, p(z) is such that

1 (2) if z €0, d],
np,p(z) = {ﬁz((z_d)/(D—d)) if z € (d, D], oy

where ny(z) is non-increasing on [0, d] from ng to ny, with ny,(d) = ny, and 1,(¢) is non-increasing
on [0, 1] from ny to ng. Furthermore, ng > nqy > no,

e The random process v satisfies Assumption 2.2,
e The random process p satisfies Assumption 3.1.

4.1. Piecewise constant background

In this subsection, we consider the case where the function ny,(¢) is piecewise constant and of the form

o= {71 e "

which means that
np(z) if z € [0,d],
np p(z) =< n if z € (d,d+ a(D —d)]

; (66)
N9 if z € (d+ a(D —d), D].

We have

Proposition 4.1. Proposition 3.2 holds true with model (66) proyided that the expressions for the density
of states N, the group velocities ve and the correlation function R* are updated as follows. The normalized
density of states is

N = 50 @)+ 5 L0 (67
and
R€) = 26N (€)= — 210, (O) + =1, (68)
m\/ng — &2 1 my/n3 — &2 :
The group velocities are
ve = cogl(m,m)(f) + ot — o ( ) n% (69)

an? -2+ n3\/n §2 Lonn (€

For &,& € (0,ny), the correlation function 7@’55, s given by
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Rl 1) = G T =gy | (o) oo (o = ) con b =)
+ (1 — a)Geder cos (kz\/@) cos (kz\/rﬁ)]dz, (70)

. 1(n?+nd)—2¢
Qg = c——5 %5

with

2 nQ _ §2 1(0,%2)(5) (71)
2
The other quantities are unchanged.

Proof. We essentially need to revisit the calculations of the density of states and the normalizing constants.
See Appendix B.3. O

The discussion following Proposition 3.2 is still valid. The only difference is that the equipartitioned
power (59) is here equal to

by (68).

4.2. Smooth background

In this subsection, we consider the case where the function i, (¢) is smooth and non-increasing on [0, 1]
from ny to no. We have

Proposition 4.2. Proposition 3.2 holds true with model (65) proyided that the expressions for the density
of states N, the group velocities ve and the correlation function R* are updated as follows. The normalized
density of states is

d¢ (72)

1 h 1
N@g) = | 1z
(9) 2ﬂ_g/ TR
and
N(€) = 26N (€3). (73)

The group velocities are

L1 M@
s (f 25N<£2>> 7 )

with

Mig) =+ [ RO - Lomion(o)de. (75)
0

For &,& € (0,n1), the correlation function 7@’55, s given by
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ﬁggl(x;w) =D0/’R”(x,z)05§/(z;w)dz,

0

1
/ Pe(C)er (O) cos (kzy [ (C) — €2) cos (kay/R2(C) — £7)dc
0

O/Iﬁg(é)dCo/lﬁe(C)dC

Cfg/(z;w) = ’ (76)

with

~ 1
pe(C) = Wl(o,ﬁb(c))(ﬁ)- (77)

We note that when the process p is delta-correlated as in (61), we simply have

Proof. We essentially need to revisit the calculations of the density of states and the normalizing constants.
We present the details in Appendix B.4. O

The discussion following Proposition 3.2 is still valid. The only difference is that the equipartitioned
power (59) here is equal to

by (59) and (72)—(73).

5. Numerical illustrations

In this section, we illustrate some of the above results with numerical simulations. The model that we
present corresponds to the one set forth in Sect. 3.1 with a finite value for the waveguide thickness
parameter D. In particular, we illustrate how the smooth background profile for the index of refraction
affects the spectrum associated with body and surface modes and explore how the coupling via the term
involving the kernel coefficients I'}; in Proposition 3.1 affects the power distribution over the waveguide
modes.

In Fig. 1, we show the configuration that we consider: The left plot gives the geometry of the waveguide
and the two right plots give two realizations of the randomly perturbed index of refraction. The index
of refraction is larger for z < d than for z > d, which implies the existence of a set of surface modes.
The index of refraction comprises a smooth, and decreasing in z, background component and a random
component as exemplified by the two right plots. In Fig. 3, we depict the modes and the associated set
of eigenvalues evaluated in the background profile. The red stars correspond to the surface modes. These
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are indeed concentrated in 0 < z < d. The bottom left plot shows that the body modes are oscillatory
across the entire composite waveguide as expected.

In Fig. 4, left, we plot the phase and group velocities for the modes associated with the background
profile for the index of refraction. We note how these reflect the presence of the section supporting the
surface modes. The random medium fluctuations imply the coupling of the modes, which is illustrated in
Fig. 4, right. Here, we show the coupling coefficients to the other modes. The top plot shows the coupling
to surface mode as function of mode number (for both surface and body modes), while the bottom plot
shows the coupling to body modes. That is, in the top plot, we depict

G- Y

€T3, I1#£]

for Z° denoting the set of surface modes, and in the bottom plot

e Yo

leTb, I£]

for ZP denoting the set of body modes.

In Fig. 5, the top left plot shows the coupling coefficients IS, as function of mode pair (j,1) with
blue color corresponding to small values and red to large values. The top right plot in the figure shows
the evolution of mean mode powers toward equipartition. Initially, at £ = 0, the power is carried by the
surface modes and then there is an evolution where power is transferred to body modes due to the random
medium fluctuations and such that the configuration approaches equipartition. The top plots correspond
to the random medium fluctuations being supported in the section z < d as in Fig. 1b. As a consequence
of these localized fluctuations, there is strong coupling between surface modes (whose spatial supports
coincide with the support of the medium fluctuations), moderate coupling between surface and body
modes and very weak coupling between body modes (whose spatial supports are very different from the
support of the medium fluctuations). As a result, the effective coupling between body modes is dominated
by the first term in (56), that is to say, the coupling mechanism mediated by surface waves. The two
bottom plots in Fig. 5 correspond to the top plots except that here the random medium is supported in
the full section z < D as in Fig. 1c. As a consequence of these non-localized fluctuations, there is strong
coupling between surface modes, between surface and body modes and between body modes. As a result,
the effective coupling between body modes is dominated by the second term in (56).

In Fig. 6, we depict the mean intensity carried by the modes in the case with random fluctuations.
The top plot pertains to the intensity carried by the body modes, the middle plot to the intensity carried
by the surface modes and the bottom plot to the total intensity. Again, we observe how the random
fluctuations induce power (or intensity) transfer, here, from surface-to-body modes and an evolution
toward equipartition. In the case with many more body than surface modes, induced by the value of
D, most of the power transfers from the surface-to-body modes. This happens even though the random
medium fluctuations are supported only in the section z < d.

6. Conclusion

In this paper, we have considered propagation and scattering of waves in a randomly heterogeneous
half-space that has a thin layer beneath the surface which supports a finite number of surface modes.
We derived a novel system of radiative transfer equations that governs the evolution of the Wigner
transform of the normal derivative of the wave field on the boundary. This system captures the effect of
the coupling between the fluctuations in the medium parameters and the propagating wave. We analyzed
the dynamics revealed by this system that couples the surface modes corresponding to the discrete
spectrum and the body modes corresponding to the continuous spectrum which are determined by the
smooth deterministic background. This mode coupling induces a non-trivial process that involves a slowly
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Fi1a. 3. Left: The figure illustrates the spectrum of the one-dimensional Schréodinger operator associated with the background
index of refraction profile when D is finite and d/D = .2. The top plot shows the normalized eigenvalues v; /(nok)2. There are
5 surface modes indicated by the red stars. The bottom plot shows eigenfunctions 1, 4 and 20. The modes 1 and 4 correspond
to surface modes and are supported essentially in the surface layer, while the mode 20 corresponds to a body mode and
is oscillatory and is supported in the full waveguide. Right: The top plot shows the first 5 eigenfunctions corresponding to
the background profile shown in Fig. 1 when d/D = .2. The bottom plot shows the corresponding eigenfunctions when the
width of the surface layer is tripled till d/D ~ .6, and we see that the support of the eigenfunctions has been correspondingly
extended
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FIG. 4. Left: The crosses in the figure show the relative mode group velocities v, p (no/co), with the red crosses corresponding
to surface modes and the black crosses to body modes. The stars give the corresponding phase velocities U?,D(no/co) =
nok/B;,p. Right: The figure shows the coupling coefficients A;,D decomposed into coupling to, respectively, surface and
body modes. The top plot shows the components attributable to loss to surface modes, as function of mode (with red stars
corresponding to surface modes), and the bottom plot shows the components attributable to loss to body modes, again as
function of mode. In this and the next figures, we use a delta-correlated model for the medium fluctuations

evolving metastable surface mode distribution and ultimately leads to energy equipartition between all
modes. This implies, for example, that initially excited surface modes effectively loose energy as they
propagate. We also exhibit a non-trivial effective coupling mechanism between body modes mediated by
surface modes that may dominate for large propagation distances. These results pave the way to analyze
the associated inverse problem, addressing the outstanding claim that the background index of refraction
can be robustly determined from the above-mentioned Wigner transform or related albedo operator.
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Fia. 5. Top left plot: The figure plots the matrix of the cross-mode coupling coefficients ch-l indexed by the mode indices
(4,0). The first 5 modes are the surface modes, and their coupling coefficients form the left bottom block of the matrix.
Here, the random medium fluctuations are supported in the section z < d (as in Fig. 1b). Top right plot: The figure shows
the evolution toward equipartition for the mean mode powers. The red dashed lines correspond to surface modes and the
black dashed lines to body modes. The mode coupling gives an exchange of power in between the modes and evolution
toward equipartition. The two bottom plots correspond to the top plots except that the random medium fluctuations are
now supported in the section z < D. The left plots are shown on the same relative scale with red corresponding to strong
coupling and blue to weak

Scalar (acoustic) waves were considered in this paper. Elastic waves in a stratified plate were analyzed
by Kuznetsov [17]. Kuznetsov finds that the dispersion curves differ qualitatively in a stratified plate
with many deterministic layers as compared to a homogeneous plate so that, as herein, homogenization
theory does not apply. A two-layer stratified plate and the associated Lamb wave dispersion were consid-
ered by Anh et al. in [1]. They identify the dispersion equation characterizing a deterministic two-layer
composite plate and explore numerically the sensitivity of the dispersion curves to the background mate-
rial parameters defining the two strata. Here, we considered scalar waves with a stratified deterministic
background and on top of this small rapidly fluctuating isotropic random medium variations leading to a
set of radiative transfer equations characterizing the randomization and coupling of the dispersive modes
associated with the deterministic background. The generalization of our results to the case with elastic
waves and their role in the analysis of the associated inverse problem is left for future work.



ZAMP System of radiative transfer equations Page 19 of 31 177

0

Source
0 T

F1c. 6. This figure illustrates the evolution of mode powers and intensities in the case with random medium fluctuations
as in Fig. 1b. Thus, we incorporate random medium fluctuations on top of the smooth background profile with the random
fluctuations being supported in the section z < d only. Note that we use a nonlinear color scaling to enhance the transition
zones. The top plot shows the mean intensity of the body mode components which are supported in the full section z < D.
It approaches a steady-state configuration for large propagation, x, distances. The middle plot shows the mean intensity of
the surface mode components, supported essentially for z < d. For large propagation distance, x, it is seen that most of
the initial power has been transferred to the body modes. The bottom plot shows the total intensity distribution, the sum
of the surface and body mode intensities shown in the top and middle plots, and illustrates the evolution to a steady-state
equipartition regime
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Appendix A. The spectral problems

Here, the function z € [0, +00) + ny,(2) is such that ny,(0) = ng, np(z) is non-increasing on [0, d] from ng
to ny < ng, and np(z) = ny for z > d (see Fig. 1).
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We first introduce the unnormalized functions 1., which appear in the expressions of the eigenfunctions
in the next subsections. For any v € R, we denote by 1, the unique solution of the second-order differential
equation

[02 + K0} (2)]1h, (2) = 14y (2), 2 € (0, +00), (78)

starting from ¢, (z = 0) = 0 and 9,9, (z = 0) = 1. The solution has the following form below the thin
layer (np(z) = nq for z > d):
o If v < n2k?, we have for z > d:

0 (2) = ) os (/02 =2 ) ) +

and v, is bounded.
o If v = n2k? we have for z > d:

¥y(2) = ¥y (d) + 0:94(d) (2 — d),

and 1), is bounded if and only if 0.1, (d) = 0.
o If v > n?k?, we have for z > d:

P (2) = ¢ (d) cosh <\/7 —n2k2(z — d)) + 5%/)77% sinh (\/'y —n3k2(z — d)> , (80)

R

01y (d)
ﬁ sin ( nik? —y(z — d)) , (79)

and 1, is bounded if and only if

8Z¢’Y(d) — 0
Vo —nik?
and then it belongs to L?(0, +0c0). There is a finite number N of values of v for which this equation
is satisfied, and they are denoted by ~vg > -+ > vn_1.

y(d) + (81)

A.1. A finite waveguide containing a thin layer

Let D > d. We consider the spectral problem associated with the one-dimensional Schrédinger operator
[02 + k0% (2)]¢(2) = v¢(z) with Dirichlet boundary condition at z = 0 and Neumann boundary condition
at z = D. The spectrum is discrete. The eigenvalues are simple and denoted by vo.p > --- > y;p > ---.
Since ny(z) = ny for z € (d, D) and the eigenfunctions satisfy the Neumann boundary condition at z = D,

we have
0. ,(d
¥y, p(d) tanh <\/ vj.p —n3k?(D — d)> + 77%1’ ( 2)k2 =0 (82)

Vi, D — N

if v; p > nik? or
... - (d
@ tan (a2 = (D - 0)) - —Epel (53)
’I’le — ’Yj,D

if v;p < n?k?. The normalized eigenfunctions have the form

¢5.0(2) = /1]y, p (2), (84)

with
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By the Sturm-Liouville theory, if v € L?(0, +00), we have
o0
v(z) =Y v;p¢;,p(2) in (0,D),
Jj=0

where

D
vjp = /v(z)qﬁj,p(z)dz.
0
This can also be written as

o(2) = / Vo ()t (2)pp(dy) in (0, D),
R
where

Vb(7) = [ v(2)¢y(2)dz

S~

and
pp(dy) = Z rj7D(S’Yj,D (d).
=0

By Chapter 9 in Ref. [10], we have Vp — V and pp — p in appropriate topologies, where

oo

Viy) = / o)y (2)d (36)
0

and p is the measure described in the following proposition. We have for any v € L?(0, +00):
o2) = [V () in (0,+50) (87)
R

and the Parseval relation is satisfied:

+/Oov<z>2olz ~ [verraan. (38)

Proposition A.1. 1. For any j < N, v;p — v; as D — 400, where the v;’s are the solutions in
(n3k?, 4+00) of (81). Furthermore,

D—+oco 2\/’Yj — n%k‘z

rip — Tji= y . (89)
2v/7j — nik? [ by, (2)2dz + 1y, (d)?
0

2. The measure pp — p as D — 400 with

N—1
p(dy) =D 150, (A7) + 741 (oo 22y (7)dy (90)

j=0

and

1 Vnik? —~ (91)

T T (2R = )y (d)2 + 029 ()
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Proof. 1. The eigenvalues ~; p that belong to (nk?, +00) satisfy (82). The left-hand side of (82) converges
uniformly in v as D — 400 to the left-hand side of (81), so the v; p converge to the zeroes of (81), here
denoted by ;. Moreover, r; p is defined by (85) and it converges to r; defined by (89) as D — 400 by
(80). This completes the proof of the first statement.

2. If g is a test function supported in (n?k?, +00), we have for D large enough

/ pD d’V ZT]DQ PY]D

R J<N

where N is the number of discrete eigenvalues of the half-space problem (see Sect. 2.1). The first statement
of the proposition then gives

/g( )on(dy) =523 rig(vy).

R J<N

From (83), for j > N we find that \/n3ik? —v; p(D —d) — (j — N + 1)m as D — +oo. Therefore
vjp ~nik* — (j — N +1)27%/(D — d)? and

2m
VLD = VD ¥ T d\/n%kQ — Y5,D-

This shows that the density of eigenvalues at v € (0,n2k?) is

D
om\/n2k2 —~’

that is, the number of eigenvalues ; p in (v, y+97) is Np(y)dy+0(d7). This result can also be established
by using the Weyl law for the Schrodinger operator: When D — o0, the number Mp(7) of eigenvalues
v;,p larger than v is

Mp(y) = % / dr(1 + o(kD)) = ?W(l +o(kD)),

n?k2—k2>y

Np(v) =

and hence, the density of eigenvalues is Np(y) = |05 Mp(7)|.
Moreover, if jp is such that v;, p — v as D — 400, then by (79):

D
1 1 2 D—+4o0 1 2 16z1/}'y(d)2
== [y, dz P25~y (@)? 4+ 2 29
Drjp,.p DO/%]D’D(Z) ’ e

By combining these results, if g is a test function supported in (—oo,n$k?), we have for large D

/g Mep(dy) =" r509(3;.0)

R j>N

2,2
nik

Dot [ Ly e 10471

which completes the proof of the second statement. O

— 00
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A.2. A half-space with a thin layer

We consider the spectral problem associated with the one-dimensional Schrédinger operator [02 +
k*n2(2)]¢(2) = v¢(z) in (0,+00) with Dirichlet boundary condition at z = 0. This problem can be
studied as the limit as D — +o0 of the problem addressed in the previous subsection. The spectrum has
a discrete and a continuous part.

Discrete spectrum. The eigenvalues are vy > --- > yy_1 that are the solutions in (n2k?, +00) of (81).
The associated eigenfunctions ¢; are defined by

9§ (2) = Vi, (2), (92)

where r; is defined by (89) and v is defined by (78).
Continuous spectrum. The spectrum has a continuous part v € (—oo,n?k?). The generalized eigen-
functions are

D1(2) = /Ty (2), (93)

where 7 is defined by (91) and v is defined by (78).
By (87), for any v € L?(0, +00) we have

N-1 nik?
o2 = S vose) 4 [ vén(ady in (0,400) (94)
=0 e
with
+00 +oo
v; = / v(2)¢;(z)dz, vy = / v(2)py(2)dz, (95)
0 0
and we have the following Parseval relation
+oo N-1 nik?
/ v(2)?dz = v? + / v2dy (96)
0 J=0 —o0

Appendix B. Proofs of propositions
B.1. Proof of Proposition 2.1

We consider a medium that is randomly perturbed for = € (0,L()), with L&) = L/, For a fixed
frequency w, we expand the wave field as in (6):

N-1 nik?
i(e,5) = - t5@5(2) + [ @)yl
§=0 e

The complex mode amplitudes satisfy the coupled equations for x € (0, L(E)),
N-1 nik?
Oty + iy = —ek® Y Cj()iu —ek? / Ciy (@)l dy (97)

1=0 e
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forj=0,...,N—1,

N_1 nik?
2y + Yy = —ek? Z Cyy1(z)ty — ek? / Cy ()t dy, (98)
1=0

for v € (—oo,n?k?), where
CjJ(I) = (¢ja ¢ll/(l‘, '))LZ ; Cj,’v’(x) = (¢ja ¢7’V(x7 '))LZ
C%l(‘r) = (¢77 ¢lV('T7 .))LQ ) C%V/ (SIJ) = (qs'y» ¢'y’l/(x7 '))L2

and (-, )2 stands for the standard scalar product in L?(0, 400).
We introduce the generalized forward-going and backward-going mode amplitudes,

{a;(x), bj(x), j=0,...,N =1} and {a,(x), by(2), 7 € (0,n7k)}, (99)
which are defined such that

- 1 iB;x —iBx
. - . it 4 b.: J ,
(@) = = (@@ + b))
Ouiy(2) =iy/By (a3 (@)% = by (@)e™7), j =0, N =1, (100)
and
U = i /T b —i/yx
() = 375 (0 (2T 4 by (@) V),
Opliy () = jyl/* (av(m)ei\ﬁ’” — bw(as)e_iﬁx), v € (0,n%k?). (101)

We then substitute (100)—(101) into (97)—(98) in order to obtain the coupled system of random differential
equations satisfied by the mode amplitudes in (99),

k / i i
Py a] Z5 Z j l |: )ez(ﬂllfﬂj)m 4 bl/(x)el(iﬁlliﬁj)z}

=0 V ﬁl’ﬁ]

nka
ika C]'Y (x) P T_(3. i(— T_ 3.
(x Ye! VY =BT g (z)ell VA =B3)x | Q!
2 NaE /gj[ K }
0
. ,ZCQ )
152 < ’Y/*( % (@)%, (102)
iek? "\~ Cy (@) A A
O.a e ap (x el(ﬁz'*\ﬁ)l’ + by (x el(*ﬁz'*\ﬁ)m
) =5 2 o @) () ]
n2k?
iek? [ Cyy (@) Ty iAoy
e [y (@)e + by (@)e Jay
0
1.2
ek [ Oy @)y yemivisdy. (103)
2 ) T

We have similar equations for b; and b,. This system is supplemented by the boundary conditions at
r=0and z = LE):

a;j(0) = ajs, bj(L(E)) =0, ay(0) =ays, b'y(L(E)) =0,
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where a;¢ and a. ¢ are defined by (10)-(11). The evanescent mode amplitudes ., v € (—00,0), satisfy
(98). By following the usual steps of the diffusion approximation theory set forth in [11, Chapter 20], we
can prove the following

Proposition B.1. Assume that, for all j,l =0,...,N —1,

1 _ e2h e2h -0
%/ Mg (w0t 5 Jars(w = 57 )b =R w)

which is equal to a;s(w)ars(w)d(t) if the source does not depend on . Then,

1 —iht x e2h x e2h =0 11re —Quwe
ool I Elaj<€27w+2>al<€2,w 5 ) dh — W5 (t,w)e . J#FL (104)
R
1 it x e2h x e2h 0 ey
e E[aj<82,w+2)aj(€2,w— . ) dh SO WE (a5t + 2 fv;,w), (105)
R
where
As( )+Azs(w) FL‘(”) +Flll(w) _21—‘311(“’)
(Q]l( )) 2 + 2 ]
k(w)

F;l(w) IE[CJ i (0;w)Cha(z; w)] + E[Cl,l(o;w)C’j j(@; w)]d:}:7

T 4B3;8(w)

A%(w) is defined by (21), and the Wi (x;t,w) satisfy

1
0 WE + —O, W = Z TSWE — ASWE,
Y 1=0,1#]

starting from Wi(z = 0;t,w) = W¢, (t,w).

77,8

Proof. As shown in [11, Chapter 20], the forward-scattering approximation is valid in our scaling regime;
that is to say, we can make the approximation b; ~ 0 and b, ~ 0, and the coupling with the evanescent
modes only gives rise to an effective deterministic phase modulation that we will not take into account
here. The wave mode amplitudes then satisfy the simplified system

nkz

zek /\F ﬁ]v

Oya; ap ()P =P 1 (@) Ty (106)

) N—1
(x) _ick? 3 Cjv(x)
2 =0 V /Bllﬁj
and a similar equation holds for a,. We denote

. x e?h x e2h
Uj,l(x;wah):aj(?anr 5 )m( ,w *7)7

etc. By expanding 3;(w + £2h/2) at w, we get that U, satisfies

and similarly for U5,

€ .0 N—1 z
Uz, Z J,zf Ug. ei(gl/_gj)ﬁei(g;ﬁg;)% B L Z a, ;(;)U-E e Bi=Bi) 5 Li(By =B %
1l

ox

27,2
nik
ik? MU VT =B Z (/=185 %
4/,}// 7
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2,2
nik

1.2
_E [ G G e 0 5 g
2 ) AV

and we get similar equations for US

5 €te. We introduce

1 ; ’ / xz
7/e—lh(t—(ﬁj(w)Jrﬂl(w))a)U;l(x;w7h)dh’

Vs, t) = o

and similarly for V7., etc. It satisfies

Vs ) L Oy 2 (Cuu(a) @)y, S ClE) e s
ox 2 ot 2e B; B 2e v=or+j V B B;
B E If ClJ’(e%)V'sl/ei(ﬁz—ﬁz/)fz
S vlora VBB "
nsz
ik2 CJ,’Y’(;)VE Z(W—ﬂj)a%d,y’
4 7’\/,37] R
? 2
ik [ Cy(E) e IV % gy
% N BT ’
0
The completion of the proof follows the reasoning in Ref. [12]. g

Using Proposition B.1, we then get the following expression for the Wigner transform (14):

N(w)—1

Wz, mit,w) = > W%Wf(x;t,w)a(n@(w))
j=0 /
N(w)—1
Mg we _ # ;
+3l%7ﬁl B, 61 (w) T jl’s<t (2vj(w)+2vl(w))x7w)
o e*QjL(w)z(S(H _ Bi(w) ;Bl(w)>ei(ﬁj(w)fﬁl(w))f2. (107)

The second term decays exponentially with the propagation distance (with a decay rate that is related
to the scattering mean free paths 1/ A7 of the guided modes). If we neglect it, then we get the statement
of Proposition 2.1.

B.2. Proof of Proposition 3.2

We consider the results of Proposition 2.1 and study the asymptotic regime kD > 1. We have

* Bjp = /nik? —2(j — N)2/D? and ] p ~ nik/[co\/nik? — 72(j — N)?/D?] = nik/(c.fjp), s
that 1/v;, p = B, p converges to nl/(cof) when (3;, p converges to \/y = k.

e The expression (45) of R&/( x) comes from the explicit calculation of

D—+o0co

lim ) // (z;w)RM(x, 2 — 2 ) peper (23 w)dzdz’.
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e The function qz~5§ (z;w) has the following explicit form:

~ ka?g? (w)

de(z3w) = N(E) Pr2e2(23w),

if z € (0,d), and

~ krizee 8z 2¢2 d; .
be(z;w) :W{wkzgz (d;w) cos [ky/n? — &2(z — d)] + ]m\/%;;) sin [ky/n? — €2(z — d)] },
if z € (d,+00), where 1), is defined in (78) and

1 nik? — v
ry(w) = — L )
! T (n3k? — )iy (dsw)? + 059y (ds w)?

For instance, if n,(z) = ng for z € (0,d), then
be(z;w) = V2 Vn? — & sin [kzy/n? — & |
\/n% — €2 4 (n2 — n?) cos?(kd/nZ — €2)

if z € (0,d), and
_ Y/ Esin [k~ €] cos [K(= — d) /o €]
\/”% — €2 4 (n2 — n?) cos?(kd\/nZ — €2)
4 /8= € cos [kdy/n — €] sn [k(z — ) /nd €]
\/n? — €2 4 (n2 — n?) cos?(kdy/nZ — €2)

e (2;w)

if z € (d, +00).

B.3. Proof of Proposition 4.1
We consider the spectral problem associated with the one-dimensional Schrédinger operator [02 +
k‘2n§ p(2)]¢ = v¢ in (0, D) with Dirichlet boundary condition at z = 0 and Neumann boundary condition

at z = D. Here ny, p is defined by (66). We denote by v; p and ¢; p the eigenvalues and eigenfunctions
as defined in Appendix A.1. Weyl’s formula states that the number Mp(7) of eigenvalues larger than ~

1S
D
Mp(vy) = o // drd¢(1 + o(kD))
™ k2(n31(0,a)(C)+n31(a,1)(C))—r2>Y

= kDM (75 ) (1+0(kD)),

«Q 11—«
M(g) = —V nf — gl .n2)(9) + —V n5 — g1(0.3)(9);

which gives (67)-(68), and also

with

with
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We have

1
ﬂ;)D ~ C—[B(r) — 10 B(r)],_i-n,

0 kD

so that 1/v;, p converges to =[B(r) — rd,B(r)],—p-1(¢) when (3;, p converges to k&; that is to say,
1/vj,,p converges to

Lo L ﬂ)
ve € 0eB~1(&) /)’
which gives (69).

The computation of the normalizing constants can be carried out as follows. For v € (0,k?n?),
we denote by 1. p the solution of 9%¢., p + kQHE plz )wﬂ, p = Y, p starting from ¢, p(0) = 0 and

0:v~,p(0) = 1. We have ¢; p = /75, DV, p,p With TS D f¢77 ».0(2)*dz.
If v € (k?n3, k?n?), then we have 1., p(z) = v, (2) for any z < d, where 1., has been defined by (78),

() = (@ cos (\ k= (- ) ) + ﬁ% sin (/ud#e =z - )

it z€ (d,d+ a(D —d)), and

¥y, p(2) =1y p(d+ a(D — d)) cosh <\/’y —n3k2(z —d— a(D — d)))
zw’y D<d+a(D d)) in —-n 2 - a
V= n2k? sinh (/7 —n3k*(z —d — o(D — d)))

if z € (d+ a(D — d), D). We then obtain that if 7;,, p converges to -, then r;, p has the asymptotic
form

1 D—>+oo O[ |:

zwv(d)2:|
D’I“jD7 '

ZZJ’Y( ) %k_g_,y

If v € (0,k?n3), then we have

r0(2) = o) o5 (/132 (- @) + % sin (y/uf#e = (2 - )

if z€ (d,d+ a(D —d)) and

. p(2) =1y, p(d+ (D — d)) cos <\/’I’L§/€2 —y(z—d—a(D - d)))
8z¢7,1:\>/(:§-];704£11— 4)) sin (\/nng —y(z—d—a(D - d)))

it z € (d+ a(D — d), D). We find that, if v;, p converges to v, then r;, p has the asymptotic form

I poieefa  1—a(nd+ndk?—2y 2 | 0ty (d)?
D’I"jD D _) |:2 + 4 n%k‘z - :| |:¢»Y(d) n2k2 — ’}/:| '

The expression (70) for R’&, (x) is obtained from the explicit calculation of

D D
ol 55 [ [ i85, p(00R w2~ £)05,.06, 0 10)dad
0 0

when v,, p — k*¢? and Yjp,D = k2,
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B.4. Proof of Proposition 4.2

We here consider the spectral problem associated with the one-dimensional Schrédinger operator [02 +
k:2nb p(2)]¢ = v¢ in (0, D) with Dirichlet boundary condition at z = 0 and Neumann boundary condition
at z = D. Here, ny, p is defined by (64) and 1i;, is smooth and non-increasing. We denote by «; p and ¢; p
the eigenvalues and eigenfunctions as defined in Appendix A.1. Weyl’s formula states that the number
Mp(y) of eigenvalues larger than + is

Mp(y) = % //WQ(O_KZ>7 drd¢ (1 + o(kD))
= kDM (75 ) (1+ o(kD)),

with M(g) defined by (75). This gives the expression (72) of the density of states. We also have §; p ~

EB(L50), with B71(&) = M(£?). Consequently, B , ~ (1/c,)[B(r) — r0;B(r)],_izy, so that 1/vj, p

converges to (1/¢c,)[B(r) — r0.B(r)],—g-1(¢) when 3;, p converges to k&; that is to say, 1/v; p converges
to
1 1 B¢
Lo gy
Ve Co 0:B=1(¢)
which gives (74).
The normalizing constants can be computed as follows. For v € (0,k?n?), we denote by 1, p the
solution of 921, p + kQH%A’D(Z)’L/J,Y D = 74, p starting from 1/)%,3( ) = 0 and 0,¢,,p(0) = 1. We have

¢j.0 = \JT5,.DV~; p,p With r;D f ¥y, p,p(z)?dz. The goal is to study the asymptotic form of the

normalizing constant r; p as D — +oo
The idea is to discretize the smooth function ny,(¢). We fix an integer M and consider the following
discretized version of ny:

M—-1

iy (¢) = Z i, (&) L/, 1)) (€),

and the associated n{’,, defined as in (64) in terms of 7. We study the function w,fy\/fD defined as the

bolutlon of 82¢MD+k2nb n(2)? f\fD = ), starting from ¢M (0) = 0 and 9.2, (0) = 1. We introduce

=d+ (j/M)(D —d) for j=0,..., M. If7 € (K¢ ((j+ 1)/M) k*n(j/M)) for some j, then we have
MD (2) = ¢ (2) for any 2z < 2} = d, where 1., has been defined by (78), we have

014 (d)

ZORE sin < 02 (0)k? — y(z — d))
b

Mo (2) = ,(d) cos ( 02 (0)k? — y(z — d)> +

if 2z € (201, 2M), and we have

() =63ip ety cos (/A= D/ADIRE (41

z¢7D(Zl 1)
\/nb I=1)/M)k> -~

if z € (zl 11 zl ) for | < j. The function z/J decays exponentially in z for z > z . We then obtain that

sin (/3= D/A0R <2 - 4
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n l _
1 o 1 LR (B2((1 — 1)/M) — 52 (' /M)
D /ﬁ}%(’z)de T | ;lli[l (1+5 ER ) )
0

< onta? + ]

nik?
If fiy, is smooth and if v € (0, k%n3), then we get for large M
M-1 iif (0) 2 2
1 1 [ k 0, (d)
lim /w e~ — |1+ exp f/ ——ds )| |1 (d)? + L.
D—>+OOD v.D 2M|: l:zl (2 ﬁﬁ(l/M) k257’}/ )i||: ’Y( ) n%sz'y}
If v € (k?n3, k?n?), then
j(v)—1 72 (0
1 ’ 1m0 g2 9.4p(d)?
lim / 1/1 dz_—[l—i- exp(—/ 7ds>Hw d2+L]
D=+oc D 2M ; 2 Jazaymy KP*s — 7(d) n3k? — v

where j(v) is the unique j such that v € (k*02((j + 1)/M), k*0?(j/M)). This gives

Jim ;/ODwyD(Zydz_ 2{/0% o W ][ @7 + zww(d?}

M,D—+o0 k202 (¢) — k2 —

where ¢ = i, '(¢) is the smallest ¢ € (0,1) such that fi,(¢) = &. Finally, we get that r;, p has the
asymptotic form

1 Do 1 [ © 1 2 2 024 (d)?
o sl Teema [V e @t g

when v;, p — k*¢?. The expression (76) of Rgﬁ,( x) then comes from the explicit calculation of

. 1 D D
im 5/ / Gin. 0051 p(2 W) R (2,2 = 2" )¢, pbjy, D (25 w)d2d?,
0o Jo

D—+oo

when 7;, p — k*¢* and v;, p — k2,
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