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ABSTRACT 

Single-molecule localization-based super-resolution microscopy has enabled the imaging of microscopic objects beyond the diffraction 

limit. However, this technique is limited by the requirements of imaging an extremely large number of frames of biological samples to 

generate a super-resolution image, thus requires longer acquisition time. Additionally, processing of such a large image sequence leads to 

longer data processing time. Here, we present a computational algorithm to accelerate 3D single-molecule localization microscopy (SMLM) 

technique by using blind sparse inpainting. This technique reconstructs the high-density 3D images from low-density ones, without 

compromising the resolution. The low-density images are generated using much fewer frames than usually needed by the high-density 

images, thus requiring shorter acquisition and processing time. Thus, the algorithm will accelerate 3D SMLM without changing the existing 

SMLM hardware system. Superior reconstruction results of 3D SMLM images are presented using up to 10-fold fewer frames in simulation 

data and up to 50-fold fewer frames in experimental data. 

Introduction 

Single-molecule localization microscopy (SMLM) such as (direct) stochastic optical reconstruction microscopy 

((d)STORM)1,2, (fluorescence) photoactivated localization microscopy ((f)PALM)3,4, and other variants5–8 have extended the 

imaging resolution of conventional optical fluorescence microscopy beyond the diffraction limit (∼ 250 nm). In these methods, 

a sparse subset of fluorophores in the sample is imaged in each diffraction-limited image frame, whereas a large number of 

such frames are obtained sequentially. Then the detected individual fluorophores in each frame are precisely localized, and 

finally all the localization positions from these frames are assembled together to generate the super-resolution image. 3D 

SMLM9–12 requires additional axial (z-axis) information, which is obtained by using z-dependent point spread functions 

(PSFs)13. Optically engineered PSFs such as astigmatic9, double-helix14, bi-plane15, interferometric based16, and airy-beam 

based17 PSFs are commonly used in existing 3D SMLM imaging to encode the axial information of blinking fluorescent 

molecules. In both 2D and 3D SMLM imaging, to achieve sufficient dense localizations to reveal details of biological samples, 

a large number of sequential diffraction-limited frames (typically > 104) are needed, suggesting long acquisition time. This 

also makes potential live-cell and high-throughput imaging more challenging. Practically, the acquisition of such long frame 

sequences also results in the degradation of image quality due to photobleaching of the dyes. Furthermore, the processing of 

such a large number of frames requires considerable processing times18. Several approaches have been explored to accelerate 

imaging speed. One of them was to apply fast switching rates for fluorophores (probes), but such techniques of increasing 

switching rates may cause photobleaching of the probes and thus image quality degradation10. Another approach was to 

increase the number of active fluorophores per frames19,20. However, the high density causes fluorescent spots to overlap in 

the diffraction-limited images, making it more difficult to localize the fluorophores precisely20. Despite these challenges, most 

of the existing techniques21–23 use higher molecular density per frame to increase the imaging speed. 

Here, we present a computational approach to accelerate 3D SMLM imaging. The experimental setup and data acquisition 

procedure remain the same as those of standard 3D SMLM methods, except that very few diffraction-limited frames are 

acquired, which will reduce the acquisition time and ultimately accelerate imaging speed. Further, the data processing time 

will also be reduced accordingly. For the standard 3D SMLM methods, the final image rendered from very few frames is 

sparse and provides less information to extract the fine structures of the biological sample. Our method is capable of recovering 

those unresolved structures in the sparse image and reconstructing the high-quality 3D super-resolution image. The fast 2D 

SMLM imaging using the blind sparse inpainting has been previously reported in detail24. Here, we extended it to accelerate 

3D SMLM imaging by introducing a new sparsifying transform appropriate for the 3D structure. In our previous work, high-
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density 2D SMLM images were reconstructed by solving an l1 minimization problem using the alternating direction method 

of multipliers (ADMM)25 with curvelet transform26 as the sparsifying transform. Here, we also use ADMM but with combined 

curvelet transform and an additional total variation (TV) for the depth direction. We confirm the efficacy of the proposed 

algorithm using both simulated and experimental 3D SMLM data sets. The preliminary results of this paper were reported 

in27. This expanded report includes additional simulation and quantitative evaluation results, as well as experimental results. 

Results 

Reconstruction approach 

In standard 3D SMLM, a large number of diffraction-limited frames (suppose N frames) are imaged with a total acquisition 

time of 𝑁∆𝑡, where ∆𝑡 is the time to acquire a single frame (typically 10-30 ms), and processed to produce a high-density 3D 

super-resolution image. A smaller number of frames (suppose Q frames and Q << N) with a shorter acquisition time of 𝑄∆𝑡  

render a low-density 3D image (Fig. 1). Our goal is to reconstruct the high-density 3D image using a low-density 3D image 

acquired using fewer frames, which is sparse and incomplete. To reconstruct the high-density 3D image, we need to restore 

the unknown fluorophore localization points based on the available fluorophore localization points on the low-density 3D 

image. Thus, the restoration problem can be formulated as an image inpainting task, which aims to restore the missing regions 

of the corrupted image and reconstruct the original image24. Mathematically, the relationship between the low-density 3D 

image xQ composed of the localized points acquired in Q frames and the desired high-density 3D image x can be modeled as 

 xQ = PQ x, (1) 

where PQ is a diagonal matrix with either element 1 for the acquired location or 0 for the missing location. To solve (1), we 

first estimate the unknown measurement matrix PQ (called “blind”) based on the low-density 3D image and then reconstruct 

x from xQ. The estimation of PQ is challenging in the sense that zero-valued pixel in xQ can be background without any 

fluorophore or those with fluorophore but not detected in the acquired Q frames. By performing hard-thresholding on the 

low-density image, the locations of fluorescence molecules captured in Q frames are determined. 

After PQ is obtained, x can be estimated from xQ, which is still non-trivial because of infinite possible solutions. Here, we 

reconstruct the desired high-density 3D image by enforcing sparseness. Specifically, the high-density 3D image is 

reconstructed by solving the following unconstrained minimization problem: 

    𝜆1‖𝐏𝑄𝐱 − 𝐱𝑄‖
2

2
+ ‖𝚽𝐱‖1 + 𝜆2TV(𝐱) 𝑥   

min ,                                                         (2) 

where ‖. ‖1 and ‖. ‖2 represent the 𝑙1 and 𝑙2  norm respectively, 𝜆1 and  𝜆2  are weight parameter and regularization parameter, 

respectively, Φ represents a sparsifying transform, and TV(·) is a total variation regularization. The first term enforces data 

consistency, the second term enforces the sparsity in the transform domain, and the third term promotes the piecewise 

smoothness of the image. Many biological structures, such  

 

Figure 1. Comparison of blind sparse inpainting method with the existing 3D SMLM method. 3D super-resolution image in 

existing SMLM is obtained by imaging and processing a large number of diffraction-limited single-molecule frames 

(suppose N frames). The proposed method uses very few diffraction-limited frames (suppose Q frames and Q << N). The 

high-density 3D image is reconstructed using blind sparse inpainting from the low-density 3D image obtained from Q 

frames. 
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as microtubules, are of anisotropic curve-like nature. Therefore, we use the curvelet transform as a sparsifying transform in 

the lateral plane. It provides sparsity as well as excellent directional sensitivity and anisotropy. Thus, it can efficiently 

characterize anisotropic features such as edges, arcs, and curves28. The discrete curvelet transform (DCT) was implemented 

using CurveLab29 with curvelets via the wrapping approach. It includes four steps: 2D FFT (fast Fourier transform), 

windowing, frequency wrapping, and 2D inverse FFT26. TV regularization is used in the depth direction only, where TV is 

defined as TV(x)=‖𝐆𝐱‖1, where G is the first-order finite-difference operator along the depth direction, and ‖∙‖1 denotes the 

L1 norm. More detail about the optimization algorithm is in the Methods section. All the parameters in our implementation 

were tuned heuristically, and the best results obtained from the quantitative evaluations are presented. 

Simulation results 

To evaluate the performance of our method, we generated a simulated 3D SMLM image in the shape of a knot as the  “ground-

truth” specimen (Supplementary movie 1). The phantom knot had a volume of dimension 4.02 µm × 4.02 µm × 0.18 µm with 

the lateral and axial resolution of ∼ 20 nm and ∼ 17 nm, respectively (Fig. 2(e,i)). The localization list was simulated by  

 

 

 (a) (b) (c) 

 

 (d) (f) (h) 

 

 (e) (g) (i) 

Figure 2. Blind sparse inpainting reconstruction of simulated 3D SMLM image. (a-c) Low-density image using 1000 

frames, blind inpainting reconstruction, and high-density ground-truth image using 10,000 frames, respectively. The right 

panel in each image show (y,z) slice at the position indicated by the white dashed line. The color-bar shows the depth of z. 

Scale bars: 0.5 μm. Pixel Size: 8 nm. (d,e) Intensity profile and FWHM at the white line segment shown in the reconstructed 

image (b) and the reference image (c), respectively. (f) Zoomed in view of red rectangular box in (y,z) slice of (b). (g) 

Intensity profile and FWHM along the red dotted line segment in (f). (h) Zoomed in view of yellow rectangular box in (y,z) 

slice of (c). (i) Intensity profile and FWHM of the red dotted line segment in (h). 
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randomly selecting some locations in the knot as the activated fluorophores molecules with an activation density of 

approximately 10 molecules per frame12 (3.44 molecules/µm3 per frame). The localized coordinates (x,y,z) and intensities of 

the activated molecules were then recorded for each camera frame. Since the localization points were directly obtained from 

the true image (assuming obtained from localization algorithms), there were no localization errors or background noise. Each 

location in the list, which describes the fluorescent molecule at that point, was then used to obtain the 3D image. The increasing 

density of the generated images can be synthesized by combining the localization points from more frames. We used fewer 

frames to generate the low-density 3D image and then apply our blind sparse inpainting algorithm to reconstruct the high-

density 3D image. 

To reconstruct the 3D high-density image from the low-density image, we constructed 22 z-slices of the low-density 3D 

image by grouping the localization data in z-axis with a thickness of 8 nm, i.e., ∆z= 8 nm. ThunderSTORM30, an open-source 

SMLM data analysis plugin for Fiji31, was used to computationally render these z-slices using average shifted histogram 

method32 as a method of visualization, with the simulated localization list as an input. The result in Fig. 2b shows that the blind 

sparse inpainting reconstruction of the low-density image rendered with Q=1000 frames and 15,910 localization points 

significantly improves the localization density, and is visually equivalent to the ground-truth image rendered with N=10,000 

camera frames and 96,203 fluorophore localization points (Fig. 2c). The 3D projection of Fig. 2(a-c) is shown in supplementary 

movie 2. Additionally, the volume visualization of the simulated low-density, blind-inpainting reconstruction, and ground-

truth 3D images using the Volume Viewer33 plugin in Fiji is shown in Fig. 3. Most of the incomplete and rough curvilinear 

structures due to reduced localization points in the low-density image are reconstructed almost perfectly, giving complete and 

continuous filament structures with an excellent agreement with the ground-truth image. At some positions, where the input 

low-density image has very little information available, the reconstruction still deviates from the ground truth (red arrows in 

Figs. 2b & 3b). Such errors can be reduced by increasing the frame numbers (thereby the number of localization points) but 

at the cost of reduced acceleration. 

 

 (a) (b) (c) 

Figure 3. Volume visualization of the simulated 3D image. (a-c) Low-density, reconstructed, and ground-truth 3D images, 

respectively. Green arrows in (b) show proper reconstructions. At some positions, the blind sparse inpainting failed to give 

superior reconstruction, as shown by red arrows. The low-density image was rendered using 1000 frames, and the ground-

truth image was obtained using 10,000 frames. 

The resolution of the reconstructed image was evaluated using the full width at half maximum (FWHM) of the intensity 

profile along the lateral and axial directions, as shown in Figs. 2(d) and 2(g), respectively. The black dots are measured 

intensities, and the blue curves are fitted Gaussian functions, with standard deviation σ and FWHM (double orange arrow) as 

indicated. The FWHM values were calculated using FWHM = 2√2𝑙𝑛2 σ ≈ 2.355σ. The FWHM values of the reconstructed 

image in both lateral and axial directions are similar (≈ 2.5 nm higher) to those of the ground-truth image (Fig. 2(e,i)), 

indicating the inpainted reconstruction is able to preserve the resolution of 3D structure. 

For the quantitative evaluation of the reconstruction, we calculated the true positive rate (TPR), false-positive rate (FPR), 

and root mean squared error (RMSE) of the reconstructed image by comparing it with the ground-truth. TPR was defined as 

a ratio of the number of correctly recovered non-zero pixels in the foreground region of the reconstructed image versus the 

total number of those present in the ground-truth. A higher value of TPR indicates fewer missed non-zero pixels in the 

foreground region. FPR was defined as a ratio between the falsely recovered non-zero pixels that belong to the background 

region, and the total number of those present in the ground-truth. A higher value of FPR indicates more incorrect locations, 

whereas a lower FPR ensures proper reconstructions. Since the generation of the localization list is random, we conducted ten 

simulations and calculated the average TPR and FPR for different numbers of frames, as shown in Fig. 4(a,b). The TPR 

improves with the increasing number of frames, while the FPR is lower than 0.5% over the entire range in the simulation. The 

reconstructed image of Fig. 2 using 1000 frames had a TPR of about 80% and a FPR of 0.10%. Furthermore, we calculated 
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the RMSE between the reconstruction images and the ground truth image (Fig. 4c). The RMSE result is also an average of ten 

simulations. The curve shows significant improvements in the reconstruction with greater than 800 frames. The RMSE value 

for blind sparse inpainting reconstruction of Fig. 2 using 1000 frames was 0.0748. 

 

 

 (a) (b) (c) 

Figure 4. Quantitative evaluation of simulation results. (a-c) True positive rates, False positive rates, and RMSE, respectively, 

for the different number of frames. 

Experimental results 

To demonstrate the performance of blind sparse inpainting reconstruction for real 3D SMLM image, we used two sets of 

localization list of experimental microtubules data that are publicly available. 

The first data set was from the Ecole Polytechnique Fédérale de Lausanne (EPFL) 3D SMLM software challenge 34. The 

details about sample preparation and microscopy setup can be found in35. In brief, microtubules in U-2 OS cells were labeled 

with anti-alpha tubulin primary and Alexa Fluor 647-coupled secondary antibodies. The diffraction-limited frames were 

imaged using the optical setup of dSTORM1 with a cylindrical lens. We used the wobble and drift corrected “Tubulin-A647-

3D”  localization list results obtained from 112,683 frames processed using ThunderSTORM. When all 112,683 frames with 

about 7.4 million of localization points were used, we obtained a high-density super-resolution 3D image, which was used as 

a reference image (Fig. 5c). The low-density image was synthesized using 2,254 frames, i.e., 50 fold fewer frames, with about 

0.1 million of localization points from the same localization list data (Fig. 5a). To reconstruct the 3D high-density image from 

the low-density image, we constructed 23 z-slices of the low-density 3D image with FoV of 37.1 µm × 33.44 µm by grouping 

the localization list data in z-axis with a size of 50 nm, i.e., ∆z= 50 nm. The overall axial range was 1,150 nm. The microtubule 

filaments can already be seen in the low-density image, but structural details were hard to discern. To reconstruct the high-

density 3D image, our blind sparse inpainting algorithm was applied to the low-density 3D image. The colorized low-density, 

reconstructed, and reference 3D images with color indicating the depth in the z-direction are shown in Fig. 5(a-c), respectively. 

Visual observation shows that blind sparse inpainting reconstruction significantly improves the localization density as 

compared to the low-density image. A slice of the 3D images is also presented in Fig. 5(d-f). The microtubule’s filament 

structures are more clearly revealed in the reconstruction slice (Fig. 5e) with much denser localization points compared to the 

low-density slice (Fig. 5d). 

For the quantitative evaluation of the reconstructed images of experimental data, we used multiscale structural similarity 

index (MS-SSIM)36, a perceptually motivated metric, between the reference high-density image and the reconstructed image. 

Since the ground truth is not available for the experimental data, the high-density 3D images rendered with all available frames 

were used as reference images. Also, it is worth noting that this reference high-density image still might deviate from the 

ground truth. So, the RMSE with reference image is not a proper metric for quantitative evaluation of reconstruction as the 

pixel value difference can be large even for perfect reconstruction24. Thus, we used MS-SSIM to evaluate the capability of 

reconstruction to capture the structural information in the reference image of experimental data sets. The MS-SSIM index has 

a scale between 0 and 1, with 1 being a perfect match with the reference image. The higher MS-SSIM value indicates a better 

match of structural information. Fig. 6 shows the improvement in the MS-SSIM index of the reconstructed 3D image slices 

compared to that of the input low-density 3D image slices. It demonstrates that our method is capable of recovering the 

structures of microtubules with high similarities with the reference high-density image. The MS-SSIM index of the edge slices 

(slices 1, 22, and 23) are still low because of having very low localization densities with a wide gap between the fluorophore 

localization in those slices. 

To further evaluate the blind sparse inpainting reconstruction for 3D SMLM experimental data, we used another publicly 

available microtubule localization list result obtained from ZOLA-3D (Zernike Optimized Localization Approach in 3D)37. 

Details about sample preparation, imaging setup, and processing steps can be found in11. In brief, microtubules in a U-373 MG 

cell was labeled with anti-alpha tubulin primary and Alexa-647 conjugated secondary antibodies. The 3D image was then 
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acquired with the saddle point PSF using water immersion optics and using a total of 87,949 frames. High-density 3D super-

resolution image was generated using all 87,949 frames with around 957,000 localization points, visualizing the whole cell 

with an axial range of 2.2 µm (Fig. 7c). The low-density 3D image was generated using 1,750 frames, i.e., 50 fold fewer 

frames, with approximately 22,800 localization points from the same localization data (Fig. 7a). For reconstruction, we 

constructed 22 z-slices of the low-density image by grouping the localization data in z-axis with a size of 100 nm, i.e., ∆z= 

100 nm with an FoV of 51.2 µm × 42.4 µm.   

 

 (a) (b) (c) 

 

 (d) (e) (f) 

Figure 5. Blind sparse inpainting reconstruction results of “Tubulin-A647-3D” data. (a-c) The low-density, reconstructed, 

and high-density super-resolution 3D image with color indicating the depth of z. The low-density image was rendered using 

2,254 frames, and the high-density image was obtained using 112,680 frames. (d-f) The low-density, blind sparse inpainting 

reconstruction and high-density images of a slice of images (a-c), respectively, in the depth direction. Pixel Size: 80 nm. 

 

Figure 6. The plot of MS-SSIM index vs. z-slices for comparing the reconstruction of microtubules structures for 

“Tubulin-A647-3D” image. Blind sparse inpainting reconstruction showed the improved MS-SSIM for all z-slices. 
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Then, the low-density image was given as an input to our blind sparse inpainting algorithm. Colorized 3D images, with color 

indicating the z-axis, for low-density, reconstructed, and high-density images are shown in Figs. 7 (a-c), respectively. One z-

slice of the corresponding images are also presented respectively in Figs. 7 (d-f). Microtubule structures are more clearly 

revealed in reconstruction with much higher localization densities, which are comparable to the reference high-density image. 

The improvement in the MS-SSIM index, as shown in Fig. 8, also verifies higher similarities with the high-density reference 

image after the reconstruction. However, some fine features in the high-density image with the dense or close-by structure 

were not resolved properly due to the error in the blind estimation of PQ. 

 

 

 (a) (b) (c) 

 

 (d) (e) (f) 

Figure 7. Blind sparse inpainting reconstruction of microtubules data from ZOLA-3D. (a-c) The low-density, reconstructed, 

and high-density 3D super-resolution image with color indicating the depth of z. The low-density image was obtained using 

1,750 frames, and the high-density image was obtained using 87,949 frames. (d-f) The low-density, blind sparse inpainting 

reconstruction and high-density images of a slice of images (a-c), respectively, in the depth direction. Pixel Size: 100 nm. 

 

Figure 8. The plot of MS-SSIM index vs. z-slices for the ZOLA-3D data. Blind sparse inpainting reconstruction showed the 

improved MS-SSIM for all z-slices. 
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Discussion 

We present a computational method based on blind sparse inpainting to reconstruct the high-density 3D super-resolution 

images using the low-density 3D images synthesized using very few camera frames obtained from the standard SMLM data. 

We showed superior reconstruction using a 10-fold reduction in the number of frames in the simulated 3D SMLM image and 

a 50-fold reduction in the number of frames for experimental microtubules 3D SMLM images. Thus, the acquisition time is 

reduced considerably by using much lower camera frames, thus accelerating the imaging speed of 3D SMLM. Also, blind 

inpainting reconstruction preserves the resolutions of the 3D images. Further, to accelerate the 3D SMLM imaging, no change 

in existing optical setup and labeling protocol is needed. We expect that by integrating with the existing higher molecular 

density labeling methods21–23, our method can offer further improvement in the acquisition time. However, since missing 

localization points are estimated blindly, there may be some errors in predicting the PQ, which may give some artifacts or loss 

of resolutions. Such limitations can be alleviated by using more frames at the cost of reduced accelerations. We anticipate that 

combining super-resolution optical microscopy and our blind inpainting method enables future real-time live-cell and high-

throughput imaging to investigate the complex nanoscopic biological structures and their functions. 

Methods 

Optimization algorithm 

The convex optimization problem of (2) is a standard minimization problem. It can be solved using efficient approaches 

such as variable splitting and augmented Lagrangian method (ALM). In this paper, we are using a specific variation of ALM 

called ADMM. We first introduce the auxiliary variable d = Φx and e = Gx in (2) to decouple the 𝑙1 term from other parts 

and obtain the following equivalent form 

                                                       𝜆1‖𝑃𝑄𝑥 − 𝑥𝑄‖
2

2
+ ‖𝑑‖1 + 𝜆2‖𝑒‖1 𝑥   

𝑚𝑖𝑛                                                                     (3)   

                                                        s.t.    Φx = d    and   Gx = e. 

The scaled form of the augmented Lagrangian function of (3) can be written as 

 𝐿(𝑥, 𝑑, 𝑒, 𝑢, 𝑣) =  
𝜆1

2
‖𝑃𝑄𝑥 − 𝑥𝑄‖

2

2
+ ‖𝑑‖1 + 𝜆2‖𝑒‖1 +

𝜌

2
‖𝛷𝑥 − 𝑑 + 𝑢‖2

2 +
µ

2
‖𝐺𝑥 − 𝑒 + 𝑣‖2

2 (4) 

where u and v are Lagrangian multipliers representing scaled dual variables. Similarly, ρ and µ are the penalty parameters. 

The ADMM iteration scheme will be 

𝑥𝑘+1 =    
𝜆1

2
‖𝑃𝑄𝑥 − 𝑥𝑄‖

2

2
+

𝜌

2
‖𝛷𝑥 − 𝑑𝑘 + 𝑢𝑘‖2

2 +
µ

2
‖𝐺𝑥 − 𝑒𝑘 + 𝑣𝑘‖2

2 𝑥        
arg min

                                     (5)  

𝑑𝑘+1 =    ‖𝑑‖1 +
𝜌

2
‖𝛷𝑥𝑘+1 − 𝑑 + 𝑢𝑘‖2

2 𝑑        
arg min

                                                              (6) 

𝑒𝑘+1 =    𝜆2‖𝑒‖1 +
µ

2
‖𝐺𝑥𝑘+1 − 𝑒 + 𝑣𝑘‖2

2 𝑒        
arg min

                                                           (7) 

𝒖𝒌+𝟏 = 𝒖𝒌 + 𝜱𝒙𝒌+𝟏 − 𝒅𝒌+𝟏                                                                                     (𝟖) 

𝑣𝑘+1 = 𝑣𝑘 + 𝐺𝑥𝑘+1 − 𝑒𝑘+1                                                                                     (9) 

The 𝑥- subproblem has a closed-form solution  

𝒙𝒌+𝟏 = 𝑩(𝝀𝟏𝑷𝑸
𝑻 𝒙𝑸 +  𝝆 𝜱𝑯(𝒅𝒌 − 𝒖𝒌) +  µ𝑮𝑯(𝒆𝒌 − 𝒗𝒌)                                                  (10) 

where B =(𝜆1𝑃𝑄
𝑇𝑃𝑄 +  𝜌 𝐼 + µ𝐼)−1. The superscripts H and T denote the Hermitian transform and the transpose of a matrix, 

respectively. The optimum values of d-subproblem and e-subproblem are obtained through element-wise shrinkage operator 

𝒅𝒌+𝟏 = 𝒔𝒉𝒓𝒊𝒏𝒌 (𝜱𝒙𝒌+𝟏 + 𝒖𝒌,
𝟏

𝝆
)                                                                    (11) 

𝒆𝒌+𝟏 = 𝒔𝒉𝒓𝒊𝒏𝒌 (𝑮𝒙𝒌+𝟏 − 𝒗𝒌,
𝝀𝟐

µ
)                                                                   (12) 

where 

𝑠ℎ𝑟𝑖𝑛𝑘(𝑥, 𝛾) =
𝑥

|𝑥|
 𝑚𝑎𝑥(|𝑥| − 𝛾, 0).                                                                  (13) 

The algorithm terminates when the predefined maximum number of iteration is reached. The proposed ADMM 

optimization algorithm for blind sparse inpainting is summarized in Algorithm 1. The algorithm and analysis were 

implemented in MATLAB R2018a. 
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Algorithm 1 

Input: xQ−low density 3D image. 

λ1, λ2, β−weight, TV regularization parameters and scalar constant.  

ρ, µ−penalty parameters.  

Φ− sparsifying transform operator. 

n− maximum number of iterations (stopping criteria). 

Output: x−high density 3D image. 

Initialization: d0= 0, e0= 0, u0= 0, v0= 0, count= 1.  

for count = 1 : n do 

Solve x−subproblem using (10). 

Solve d−subproblem using (11).  

Solve e−subproblem using (12). 

Update u using (8). 

Update v using (9). 

End for. 
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Description of Additional Supplementary Files 

File Name: Supplementary Movie 1 

Description: This movie shows an animated view of the simulated 3D super-resolution image shown in 

Figure 2 (c) using 10,000 frames of simulated localization data. The ViSP software was used to create 

the animated 3D visualization1. 

File Name: Supplementary Movie 2 

Description: This movie shows an animated 3D projection of the super-resolution image shown in Figure 

2 (a-c) along the y-axis using 1,000 frames, blind sparse inpainting reconstruction, and 10,000 frames of 

the simulated 3D image. 
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