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Selecting simple, transferable models with the supremum principle
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We consider how mathematical models enable predictions for conditions that are qualitatively different from
the training data. We propose techniques based on information topology to find models that can apply their
learning in regimes for which there is no data. The first step is to use the manifold boundary approximation
method to construct simple, reduced models of target phenomena in a data-driven way. We consider the set of
all such reduced models and use the topological relationships among them to reason about model selection for
new, unobserved phenomena. Given minimal models for several target behaviors, we introduce the supremum
principle as a criterion for selecting a new, transferable model. The supremal model, i.e., the least upper bound,
is the simplest model that reduces to each of the target behaviors. We illustrate how to discover supremal models
with several examples; in each case, the supremal model unifies causal mechanisms to transfer successfully
to new target domains. We use these examples to motivate a general algorithm that has formal connections to
theories of analogical reasoning in cognitive psychology.
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One of the first important tasks in modeling data is se-
lecting the form for a mathematical model. The form of the
model defines the types of predictions a model can make
and therefore—accurately or not—creates a type of “hypoth-
esis space” called inductive bias [1]. In this Letter, we use
the geometric and topological relationships among candidate
models to reason about inductive bias and model selection.
Of particular interest are predictions for qualitatively different
conditions than those on which a model was trained, such as
predicting a time series outside of the range of sampled time
points, predicting under different experimental conditions, or
applying insights from two populations to a third. A model’s
ability to make such out-of-domain predictions is sometimes
known as transferability, which is stronger than generaliza-
tion, i.e., predicting data generated for inputs similar to those
on which it was trained [2]. We propose a general principle
of model selection, the supremum principle, that encodes a
preference for simplicity with respect to target quantities of
interest while enabling model transferability and whose con-
struction uses topological relationships formally equivalent to
models of human analogical reasoning.

One of the key struggles of model selection is balancing in-
ductive bias against model flexibility. Consider, for example,
explaining the change in a cell’s state (e.g., healthy to cancer-
ous) in terms of the proteome. A potential hypothesis space
could include all possible interactions between all ∼25 000
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known proteins. This has very little bias since the correct
explanation is somewhere in this space; however, it would
require an unreasonable amount of data to learn all the pa-
rameters of such a complex model. Furthermore, it would be
even more difficult to interpret the model afterwards as most
of the interactions are merely explanatory noise relative to
the phenomenon of interest [3]. Therefore, we seek to restrict
the hypothesis space to the one that minimally includes our
behavioral regimes of interest. Such a model does not fit both
states with one set of parameters, rather, it fits either set of data
independently, i.e., some parameters could be unidentifiable to
data from either state. In addition to describing cells in either
state, this model predicts a mechanism for switching between
them.

A minimal criterion for a useful predictive model is that
it reproduces the training data within statistical noise, that is,
a kind of coarse interpolation. Common statistical practices
such as holdout, jackknife, and cross-validation reinforce this
intuition. Sloppy models [4–7], a class of overparametrized
models, further formalize the relation between prediction and
interpolation using information geometry [8,9]. The predic-
tions of sloppy models are controlled by only a few stiff
parameter combinations and so are said to have a low effective
dimensionality [9,10]. Effective dimensionality is quantified
in terms of widths of a model manifold, rigorous bounds for
which are given by theorems from interpolation theory [9,11].
Indeed, it has been suggested that predictive models are gen-
eralized interpolation schemes [12].

However, there is a sense that more than simple inter-
polation ought to be possible [13,14]. Human cognition is
driven by understanding, rather than mere pattern mimicry.
When we reason about molecular bonds as if they were balls
and springs, we use analogical reasoning to identify abstract
relationships and transfer insights among superficially dif-
ferent systems. Can machines similarly analogize to make
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FIG. 1. (a) Infections vs time for a hypothetical epidemic. Data taken at different times—early (red), late (blue), and intermediate
(purple)—exhibit qualitatively different types of behaviors. These data carry information about different aspects of the generating process.
The “True” curve represents the model from which data was generated, without the corruption of Gaussian noise. (b) Information geometry
quantifies how data identify a model’s parameters. The full trajectory completely identifies an SIR model, manifest by a model manifold that is
not compressed along either direction. Restricting to data at early times compresses the directions related to a recovery rate so that the model is
well approximated by an effective SI model. Similarly, restricting to late times compresses information about infection, leading to an effective
IR model. (c) Candidate models of varying complexity can be arranged hierarchically in a directed graph. The SIR model is the supremum of
the SI and IR models, i.e., the simplest model that combines information from both early and late times. It can use the information from data
in two of the regimes to accurately predict a third.

predictions of a qualitatively different nature than those on
which they were trained?

To explore this question, we use information geometry to
assess parameter identifiability and predictive performance for
models fit to data from different regimes and reason about
the hypotheses they encode. The Fisher information matrix
(FIM) is information geometry’s fundamental object, a Rie-
mannian metric on a manifold of models using parameters
as coordinates [9,15]. Model manifolds are often thin, and
boundaries correspond to simplified models, i.e., having fewer
parameters [16]. Distances measured by the FIM typically
compress the model manifold into a few relevant directions [7]
so that the manifold is thin and well approximated by a low-
dimensional, simplified model that resides on the boundary.
Given training data, the manifold boundary approximation
method (MBAM) explicitly finds limiting approximations to
give a minimal, reduced model that encodes the information in
the data. MBAM is an enabling technology for our approach
and is described in detail elsewhere [16,17].

Given several reduced models for target quantities of inter-
est, we next seek a single model that unifies their simplified
explanations. To choose an appropriate model, we introduce
the supremum principle: Select the simplest model that is
reducible to each of the target behaviors. One of the pri-
mary contributions of this Letter is to show that this intuitive
idea can be given a rigorous definition using the formalism
of information topology. We call this model the supremal
model and give an algorithm below for constructing it. The
supremum principle formally encapsulates a preference for
simplicity akin to Occam’s razor, motivated by the assumption
that abstract models that explain multiple behaviors are more
likely to transfer accurately to novel behaviors than models
developed for a single phenomenon.

As a motivating example, consider modeling infection
trajectories during an epidemic. Figure 1(a) shows data

generated from an MSEIR (Maternally-derived immunity,
Susceptible, Exposed, Infectious, Recovered) model with
birth and death rates (six parameters, fifth-order dynamics)
and corrupted by Gaussian noise. We partition the data into
three qualitatively distinct regimes—early (red), intermediate
(purple), and late (blue)—and ask the following: Which sub-
sets of the data are informative for predicting data in another
regime?

To illustrate the key principles, consider fitting the data
with a simple SIR (Susceptible, Infectious, Recovered) model
(two parameters, second-order dynamics),

dS

dt
= −βI

S

N
,

dI

dt
= −γ I + βI

S

N
,

dR

dt
= γ I. (1)

When fitting to qualitatively different data, the two-
dimensional SIR model manifold is compressed depending
on the informativity of the available data. The compression
determines which parameters are identifiable from data and
leads to an appropriate reduced model.

We focus on two reduced models on the boundary of
the SIR model, shown in Fig. 1(b). The first boundary seg-
ment, corresponding to γ → 0, is the model with no recovery
compartment, i.e., an “SI” (Susceptible, Infectious) model.
Similarly, the “IR” (Infectious, Recovered) model with β →
∞ has a very fast infection rate. Consider only data from early
times (red in Fig. 1). The FIM compresses the model manifold
along the SI boundary segment, rendering the recovery rate
γ irrelevant. The approximate SI model (red dashed line in
Fig. 1) has an effective infection rate that fits the early ex-
ponential growth [18]. However, recovery data at later stages
(blue) render β irrelevant and are well approximated by the IR
model.

The SI and IR models interpolate in their respective do-
mains, but fail to transfer beyond those domains. The SIR
model is the simplest that can interpolate all three regimes.
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FIG. 2. (a) A network diagram showing the “full” model of the Wnt pathway. The red indicates mechanisms that are unique to the
accumulation model, and blue indicates mechanisms unique to the oscillation model. (b) Three possible behaviors of β-catenin in response to
Wnt. The accumulation [19] and oscillation [20] behaviors are known to occur naturally, while behaviors similar to the interrupted behavior
have been reported in Refs. [21–25], but not previously expressed mathematically.

Formally, the hierarchy of potential models forms a graded
partially ordered set (POSet). A POSet generalizes the con-
cept of order within a set. Real numbers are completely
ordered, that is ∀a, b ∈ R, with a �= b, either a > b or a< b.
POSets additionally allow for elements to be incomparable,
i.e., neither a > b nor a < b. Discrete POSets can be repre-
sented by a directed graph known as a Hasse diagram [26]
as in Fig. 1(c). In this formalism, the SI and IR models are
incomparable; there is no path in the directed graph con-
necting them. The SIR model is the supremum (i.e., least
upper bound) of the SI and IR models as it is the simplest
model connected to both the SI and IR models within the
Hasse diagram. The topological relationships (the adjacency
relationships summarized in the Hasse diagram) among can-
didate models enable reasoning about the mechanisms at
play in diverse contexts and inform the construction of the
supremal model which minimally merges model elements.
The resulting supremal model is more expressive than either
of its children, and so enables predictions under qualita-
tively different conditions than either training set. This is
because the supremal model’s additional parameters have
been identified by the reduction steps as meaningful, and
so by definition must create at least one novel behavior in
combination.

This simple example suggests the possibility of an algo-
rithm for finding supremal models. The next example will
introduce mathematical concepts necessary for a general algo-
rithm, but the conceptual steps in the process are already clear.
First, select a hypothesis space, i.e., pick a function form for
a model that describes the behaviors of interest, the MSEIR
model in this case. Second, reduce the model via MBAM to
find minimal models that described each behavior of interest,

the IR and SI models. Finally, find the reductions that are
common to each of the child models and apply them to the
full model. In this case, the SI model removed all parameters
except β while the IR model removed all parameters except γ

so the supremal model is the SIR model, the simplest model
to include both parameters. In generic scenarios, some of the
reductions may combine parameters in the reduced models
in ways that obscure which are the common approximations.
The example below illustrates this possibility and introduces
a formalism to deal with it.

The supremum principle is applicable to any hierarchical
family of models. In this Letter, we focus specifically on
hierarchies generated by MBAM, which includes things as
diverse as power systems [27–30], systems biology [17,31–
33], materials science [34], biogeochemistry [35], nuclear
physics [36], neuroscience [37], and others [38–41]. To better
illustrate the general algorithm, we demonstrate the construc-
tion of supremal models in the Supplemental Material [42]
with a simple network spin model, and in a more complex
biological system below.

The Wnt signaling pathway induces cell division in ani-
mals, and is one of the best studied in all of biology [43–45]
[see Fig. 2(a) and the Supplemental Material [42]]. Via a mul-
tistep process, an extracellular Wnt molecule causes a change
in intracellular levels of the transcription factor β-catenin. In
vivo, β-catenin either “accumulates” to a new, higher equi-
librium [19,46], or “oscillates” between a low baseline and
periodic spikes of high concentration [20], as illustrated in
Fig. 2(b).

The hypothesis space, i.e., functional form, we chose to
model these two phenomena is a slight adaptation of that
proposed by Jensen et al. [20], summarized in Fig. 2(a). We
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FIG. 3. (a) The Hasse diagram of key reduced models for the
Wnt system. The nodes (models) are labeled by “A” for accumula-
tion, “O” for oscillation, “C” for combined, as well as the number
of parameters each model contains. The black line represents the
original sequence of reduced accumulation models and the blue
line represents the new sequence with parameter limits reordered
to match those in the oscillation models. The central, blue arrow
shows that the original model can be reduced to the supremal model
using the same set of limits used to arrive at A9 and O9. Details
about the model equations and sequence of limits can be found
in the Supplemental Material [42]. (b) A general example of the
diamond property. Consider a model with N parameters containing
two parameters ε1 and ε2. The diamond property states that the order
in which parameters can be removed commutes. The same model
with N − 2 parameters can be reached by first taking either ε1 or
ε2 to zero, and then taking the other to zero. The diamond property
is used to reorder the limits of a sequence, to build a supremal
model.

adapt this model to the accumulation phase by removing the
negative feedback loop and replacing it with a controllable
activation of Axin2 [as in vivo by ubiquitin-specific protease
7 (USP7) [47] among others] denoted by u(t ) in Fig. 2.
Figure 2(b) presents a characteristic time series for each of
these two models. In each case, the system begins in steady
state and a Wnt stimulus is introduced at 200 min. In the
first case, β-catenin accumulates and equilibrates at a new
steady state [19,46]. In the second case, the negative feedback
loop triggers a Hopf bifurcation leading to sustained oscilla-
tions [20].

Each model has 14 parameters. A sloppy model analy-
sis [12,48] reveals many small eigenvalues [right panel in
Fig. 2(b)] in the respective FIM, indicating that many parame-
ters are unidentifiable. We remove irrelevant parameters using
the manifold boundary approximation method (MBAM) [16],
as summarized in Fig. 3(a). The accumulation behavior is
minimally described by three parameters while the oscillation
phenomenon requires nine.

The MBAM reductions are not black boxes. Although the
reduced models do abstract away many specific details, they
retain vestiges of the full mechanisms, analogous to the SI
and IR models in our epidemiology example. To relate these
behaviors, we now seek the supremum of these two minimal
representations. However, unlike the simple example, the min-

imal Wnt models contain partially overlapping combinations
of parameters, so the construction is nontrivial.

Each reduction can be rewritten as a single parameter taken
to zero. For example, consider an equilibrium approximation,
i.e., c f , cb → ∞. This can be rewritten as a time constant
going to zero τ f = 1/c f → 0 and a nonzero equilibrium con-
stant KD = cb/c f . This form, however, is not unique as we
could also have chosen τb = 1/cb → 0. For all equilibrium
approximations we adopt the first as a standard form.

Next, we observe that the same reduced models could
be derived by applying the same approximations in different
orders. Commuting the order of reductions creates a diamond
motif in the Hasse diagram, as in Fig. 3(b). Because of the
ambiguity in how reductions are labeled, consecutive limits
including the same parameters can obscure this commuta-
tion relation. For example, consider the consecutive limits of
an equilibrium approximation (cbGA → ∞, c fGA → ∞ with
cbGA/c fGA constant and finite) followed by an irreversible ap-
proximation (cbGA/c fGA → 0, c f AL → ∞). Reparametrizing
as ε1 = 1/c fGA, ε2 = 1/c f AL , and φ = c f ALcbGA/c fGA makes
the diamond property apparent. The two limits of the diamond
property can now be written as ε1 → 0 and ε2 → 0.

Writing all of the reductions in a standard form allows us
to identify the approximations common to both reduced mod-
els. Applying these common approximations to the original
full model constructs the supremal model, as illustrated by
the blue line connecting C15 to C10 in Fig. 3. This process
motivates a general algorithm for finding supremal models,
and is given below.

(1) Define the hypothesis space by selecting a complex,
multiparameter model to describe all desired behaviors.

(2) Perform MBAM to find reduced models that minimally
describe each behavior.

(3) Reparametrize the models to detangle any conflated
limits and find the approximations common to the both re-
duced models.

(4) Apply those common approximations to the original,
full model to obtain the supremal model.

Each of these steps is illustrated in Fig. 3. The original
hypothesis space is represented by C15 [step (1)]. Models
A3 and O9 minimally describe the accumulation and oscil-
lation behaviors, respectively [step (2)]. Using the diamond
property, illustrated in Fig. 3(b), we reparametrize and find
the approximations common to each reduced model, repre-
sented by the blue arrows [step (3)]. Applying these common
approximations to C15 gives the supremal model, C10 [step
(4)]. This process is described in more detail in the Supple-
mental Material [42], including a discussion on fitting the
supremal model parameters and application to the Wnt model.
Additionally, the supplemental material presents a second al-
gorithm that exploits a general duality inherent in POSets.

Since the supremum has more parameters than either of
the reduced models, the original data sets cannot individually
constrain all of the supremal parameters. However, since each
parameter is constrained by one data set of the other (e.g.,
SA is constrained by the accumulation data but not the os-
cillation data), fitting the supremal model to both data sets
simultaneously does identify each parameter. By including
both the feedback loop and external control, and their asso-
ciated parameters, the supremum enables the accumulation
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and oscillation phenomena, as well as additional behaviors
neither A14 nor O14 can produce. Figure 2(b) demonstrates
one such example, the “interrupted” behavior, in which the
external control modulates the phase of the oscillation. Reg-
ular oscillatory behavior in the Wnt pathway is well known
in vivo from the segmentation clock in vertebrate embryos
along the anterior-posterior axis to establish, for example, the
repeating pattern of vertebrae and ribs [49]. These regular
oscillations can have their period and phase modified, stopped,
or restarted through manipulation of “dorsalizing” or “ventral-
izing” molecular regulators, much as the interrupted behavior
we see in the supremal model [21–25]. To validate our model,
we apply MBAM to the full model using data for the in-
terrupted regime. This reduction gives the supremal model
constructed by our algorithm, indicating that the supremum
is the model that would have been selected had observations
been available for this behavior.

The supremum principle shows promise for transferring
predictability to truly new domains. For example, the SI and
IR models fail in the intermediate regime, and the accumula-
tion and oscillation models fail in the interrupted regime, but
the supremal models in each case are able to embrace all three
behaviors. It does this by including key modeling elements
(e.g., feedback and external control) that are missing from the
reduced models. Since the supremal model combines distinct
modeling elements, it enables new behaviors in regimes in
which those modeling elements are all necessary. With a dif-
ferent starting model, couched in a different hypothesis space,
the supremal model will be different, but it will still trans-
fer according to the given hypothesis. This is more than the
simple generalization of, e.g., multitask learning (MTL) [50].
Supremal models apply in a more global way; they aim
to improve the transferability to data in a completely new
regime.

Classical psychological theories use geometric construc-
tions to represent analogical relationships. Most notably,
in the parallelogram model [51], an analogy such as
man:king::woman:queen is represented as four corners of a
parallelogram with analogical relationships forming parallel
sides [52]. Such constructions are widespread in artificial
intelligence (AI) applications ranging from recommender
systems [53] to natural language processing [54]. The key
property, however, is the topological relationship between
analogous elements [55] that for parallelograms form the
same diamond motif as in Fig. 3. The analogical relationships
among words are the same as those between reduced models.
Kings are subsets of men just as reduced models are restricted
cases of more general models, and classifications based on
royalty analogize across genders just as approximations trans-

fer across models. Thus, the supremum construction identifies
the mathematical “analogies” between models by teasing out
the common mechanisms or analogous reductions (see the
colored arrows in Fig. 3). The approximations in linking
model C15 to model C10 are the same as those connecting
model A14 to model A9, i.e., C15:C10::A14:A9. The colored
arrows indicate the many other possible analogies that could
be drawn among the models.

The supremum principle is applicable to any hierarchical
family of models, and so there are some inherent limitations
and potential extensions. First, the algorithm we present here
is specific to hierarchies generated by MBAM, but future work
could consider other families. Next, the result depends on
the hierarchy one uses, for example, our Wnt study used the
hierarchy generated by the model of Jensen et al. [20]. Given
different hierarchies, supremal models are a principled way of
reasoning about the implications of those hypothesis. Future
work may use supremal models to guide experimental design
for hypothesis testing or parameter estimation. Finally, one
could consider models that are derived independently of a
hierarchical family. Future work could explore how to most
naturally embed such models within a hierarchy to enable
transferability.

Beyond the appeal of elegant, simplified models, we expect
supremal models to be of broad practical use, for exam-
ple, in systems that need a controller to move between two
behavioral states, but is difficult to fully model and a re-
duced model is needed. Such systems include shifting from
diseased to healthy states in medical contexts, failing to sta-
ble power grids in electrical engineering, ductile to brittle
structures in material science, and collapsed to restored re-
sources in ecosystem-based management. Supremal models
are also designed for maximal simplicity while retaining
some transferability, i.e., attempting to predict in regimes
not yet examined, such as in climate modeling, prosperous
non-growth-based economics, and human behavior during a
pandemic. Practitioners from a wide variety of fields will find
supremal modeling a powerful addition to their toolboxes.
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[28] A. T. Sarić, A. A. Sarić, M. K. Transtrum, and A. M. Stanković,
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