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Abstract We propose a Distributionally Robust Optimization (DRO) formulation with a Wasserstein-based

uncertainty set for selecting grouped variables under perturbations on the data for both linear regression

and classification problems. The resulting model offers robustness explanations for Grouped Least Absolute

Shrinkage and Selection Operator (GLASSO) algorithms and highlights the connection between robustness

and regularization. We prove probabilistic bounds on the out-of-sample loss and the estimation bias, and

establish the grouping effect of our estimator, showing that coefficients in the same group converge to the

same value as the sample correlation between covariates approaches 1. Based on this result, we propose to use

the spectral clustering algorithm with the Gaussian similarity function to perform grouping on the predictors,

which makes our approach applicable without knowing the grouping structure a priori. We compare our

approach to an array of alternatives and provide extensive numerical results on both synthetic data and a

real large dataset of surgery-related medical records, showing that our formulation produces an interpretable

and parsimonious model that encourages sparsity at a group level and is able to achieve better prediction

and estimation performance in the presence of outliers.
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1 Introduction

We consider the problem of finding a robust regression/classification plane under perturbations on the

training data, when there exists a predefined grouping structure for the predictors, e.g., encoding a categorical

predictor using a group of indicator variables. The goal is to jointly select/drop all variables in a group, i.e.,

induce group sparsity, and produce robust estimates that generalize well out of sample. Grouped variable

selection gives rise to more interpretable models. Moreover, group sparsity leads to an estimation error of

regression coefficients that scales with the number of groups and group sizes, instead of with the raw number

of features in the regression model [17,20].

To perform variable selection at a group level, the Grouped Least Absolute Shrinkage and Selection

Operator (GLASSO) was proposed by [1,33]. Several extensions have been explored in later works, see [34,

18,28,7]. The group sparsity in general regression/classification models has also been investigated, see, for

example, [21] for GLASSO in logistic regression, and [24] for GLASSO in generalized linear models. We note

that most of the existing works endeavor to generalize/modify the GLASSO formulation heuristically to

achieve various goals. However, few of those works were able to provide a rigorous explanation or theoretical

justification for the form of the penalty term.

In this work we attempt to fill this gap by casting the robust grouped variable selection problem into a

Distributionally Robust Optimization (DRO) framework, which induces robustness via minimizing a worst-case

expected loss function over a probabilistic ambiguity set that is constructed from the observed samples and

characterized by certain known properties of the true data-generating distribution. DRO has been an active

area of research in recent years, due to its probabilistic interpretation of the uncertain data, tractability when

assembled with certain metrics, and extraordinary performance observed on numerical examples, see, for

example, [14,13,26,12,8,9]. [11] demonstrated the advantage of DRO through providing its finite sample

and asymptotic convergence properties, showing that DRO often exhibits improved generalization and tail

performance. The uncertainty set in DRO can be constructed (i) through a moment ambiguity set [10,15,36],

or (ii) as a ball of distributions centered at some nominal distribution defined via some probabilistic distance

metric such as the φ-divergence, the Prokhorov metric, and the Wasserstein distance.
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We consider a DRO formulation with the uncertainty set being a ball of distributions defined via the

Wasserstein metric, motivated by the fact that (i) the Wasserstein metric takes into account the closeness

between support points while other metrics only consider the probabilities on these points, and (ii) the

Wasserstein ambiguity set is rich enough to contain both continuous and discrete relevant distributions,

while other metrics such as the Kullback-Leibler (KL) divergence, do not allow for probability mass outside

the support of the nominal distribution. We show that in Least Absolute Deviation (LAD) and logistic

regression (LG), for both non-overlapping and overlapping predictor groups, the Wasserstein DRO model can

be reformulated as a regularized empirical loss minimization problem, where the regularizer coincides with

the GLASSO penalty, and its magnitude is equal to the radius of the distributional ambiguity set. Through

such a reformulation we establish a connection between regularization and robustness and offer new insights

into the GLASSO penalty term.

We should note that such a connection between robustification and regularization under norm-bounded

deterministic disturbances in the predictors has been discovered in [31,32,3]. Within the Wasserstein DRO

framework, such an equivalence has been established for LG in [25], and for LAD regression in [8]. More

recently, [26,13] have provided a unified framework for connecting the Wasserstein DRO with regularized

learning procedures. None of the aforementioned works, however, considered grouped variable selection; our

work sheds new light on the significance of exploring the group-wise DRO problem. It is worth noting that

[5] has studied the group-wise regularization estimator with the square root of the expected loss under the

Wasserstein DRO framework and recovered the Grouped Square Root LASSO (GSRL). Here, we present a

more general framework that includes both the LAD and the negative log-likelihood loss functions, under

both non-overlapping and overlapping group structures. Moreover, we point out the potential of generalizing

such results to a class of loss functions with a finite growth rate.

Another contribution of this work lies in adding a correlation-based pre-clustering step to GLASSO, as

a consequence of a grouping effect result derived specifically for our DRO GLASSO estimator. This has a

similar flavor to [6], where they considered a pre-clustering step based on either the canonical correlation

between groups or the sample correlation between covariates and validated their approach from the standpoint

of statistical consistency. Here, we justify the correlation-based clustering from the optimization point of
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view, by analyzing the optimality conditions satisfied by the DRO GLASSO estimator. We summarize our

contributions as follows.

– We propose a Wasserstein DRO formulation for inducing group sparsity under perturbations on the data

for linear regression and classification with both non-overlapping and overlapping predictor groups.

– We establish a connection between robustness and regularization under group sparsity, offering robustness

explanations for GLASSO algorithms.

– We show probabilistic bounds on the prediction and estimation errors of the DRO estimator, and establish

its grouping effect from an optimization perspective.

– We propose a purely data-driven, correlation-based pre-clustering step to DRO GLASSO, rendering our

model applicable when the group structure is not known a priori.

– We validate the superiority of our DRO GLASSO model through providing extensive numerical results on

both synthetic data and a large dataset of surgery-related medical records.

The remainder of the paper is organized as follows. Section 2 introduces the Wasserstein GLASSO

formulations for LAD and LG. Section 3 establishes a desirable grouping effect for the solutions, which leads

to a correlation-based pre-clustering step on the predictors. Section 4 presents numerical results on both

synthetic data and a real very large dataset with surgery-related medical records. Conclusions are in Section 5.

Proofs and additional numerical results are in the Appendix.

Notational conventions: We use boldfaced lowercase letters to denote vectors, ordinary lowercase

letters to denote scalars, boldfaced uppercase letters to denote matrices, and calligraphic capital letters to

denote sets. E denotes expectation and P the probability of an event. All vectors are column vectors. For

space saving reasons, we write x = (x1, . . . , xn) to denote the column vector x ∈ Rn. We use prime to denote

transpose, ‖ · ‖ for the general norm operator, and ‖x‖p , (
∑
i |xi|p)1/p for the `p norm, where p ≥ 1.

2 Problem Formulation

In this section we describe the model setup and derive what we call the Groupwise Wasserstein Grouped

LASSO (GWGL) formulation for a LAD regression model and an LG model.
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2.1 GWGL for Continuous Response Variables

Consider a linear regression model:

y = Xβ∗ + η, (1)

where y = (y1, . . . , yN ) is the response vector, X is an N × p design matrix, with i-th row x′i being the

predictor vector for the i-th sample, β∗ ∈ Rp is the vector of regression coefficients, and η ∈ RN is a random

noise vector. We assume that the predictors belong to L prescribed groups, with group size pl, l = 1, . . . , L,

and
∑L
l=1 pl = p (no overlap among groups). We use x,j ∈ RN to denote the j-th column of X, corresponding

to the j-th predictor. A pl-dimensional vector βl denotes the vector of regression coefficients for group l. For

a generic predictor vector x ∈ Rp, we decompose it into L groups x = (x1, . . . ,xL), each xl containing the pl

predictors of group l.

The main assumption we make regarding β∗ is that it is group sparse, i.e., βl = 0 for l in some subset

of {1, . . . , L}. Our goal is to obtain an accurate estimate of β∗ under perturbations on (X,y). Suppose we

have N i.i.d. samples (xi, yi), i = 1, . . . , N . We model stochastic disturbances on the data via distributional

uncertainty, and apply a Wasserstein DRO framework to inject robustness into the solution. Our learning

problem is formulated as:

inf
β

sup
Q∈Ω

EQ[|y − x′β|
]
, (2)

where (x, y) ∈ Rp+1 denotes a generic predictor-response pair; and Q is the probability distribution of (x, y).

The inner optimization problem is over Q in some set Ω defined as:

Ω , {Q ∈ P(Z) : W1(Q, P̂N ) ≤ ε}, (3)

where ε > 0 specifies the size of the ambiguity set Ω, Z is the set of possible values for (x, y), P(Z) is

the space of all probability distributions supported on Z, P̂N is the empirical probability distribution that

assigns equal probability on each training sample point (xi, yi), i = 1, . . . , N , and W1(Q, P̂N ) is the order-one

Wasserstein distance between Q and P̂N defined on the metric space (Z, s) by:

W1(Q, P̂N ) , min
Π∈P(Z×Z)

{∫
Z×Z

s((x1, y1), (x2, y2)) Π
(
d(x1, y1), d(x2, y2)

)}
, (4)

where we use the metric s((x1, y1), (x2, y2)) = ‖(x1, y1)− (x2, y2)‖ for the regression setting; and Π is the

joint distribution of (x1, y1) and (x2, y2) with marginals Q and P̂N , respectively.
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We assume that all the N training samples (xi, yi), i = 1, . . . , N , are independent and identical realizations

of (x, y), which comes from a mixture of two distributions, with probability q from an “outlying” distribution

Pout and with probability 1 − q from the true distribution P. Our goal is to generate estimators that are

consistent with the true distribution P. We next show that if q < 0.5, and ε chosen judiciously, this is possible.

Theorem 2.1 Suppose we are given two probability distributions P and Pout, and the mixture distribution

Pmix is a convex combination of the two: Pmix = qPout + (1− q)P. Then,

W1(Pout,Pmix)

W1(P,Pmix)
=

1− q
q

.

Theorem 2.1 implies that when q < 0.5, and W1(P,Pmix) ≤ ε < W1(Pout,Pmix), for a large enough sample

size (so that P̂N is a good approximation of Pmix), the probabilistic ambiguity set Ω will include the true

distribution and exclude the outlying one, thus providing protection against the disturbances.

The formulation in (2) is robust since it minimizes over the regression coefficients the worst case expected

loss; the latter being the expected loss maximized over all probability distributions in the ambiguity set Ω.

Formulation (2) injects additional robustness by adopting the LAD loss, rendering it more robust to large

residuals and yielding a smaller estimation bias [8].

It has been shown in [8] that (2) could be relaxed to:

inf
β

1

N

N∑
i=1

|yi − x′iβ|+ ε‖(−β, 1)‖∗, (5)

where ‖·‖∗ is the dual norm of ‖·‖, which is the norm used to define the distance function s in the Wasserstein

metric (4). The dual norm is defined as ‖θ‖∗ , sup‖z‖≤1 θ
′z. Our GWGL formulation will be derived as a

special case of (5), using a specific notion of norm on the (x, y) space that reflects the group structure of the

predictors and takes into account the group sparsity requirement. Specifically, for a vector z with a group

structure z = (z1, . . . , zL), define its (q, t)-norm, with q, t ≥ 1, as:

‖z‖q,t =
( L∑
l=1

(
‖zl‖q

)t)1/t
.

The (q, t)-norm of z is actually the `t-norm of the vector (‖z1‖q, . . . , ‖zL‖q), which represents each group

vector zl in a concise way via the `q-norm.

Inspired by the LASSO where the `1-regularizer is used to induce sparsity on the individual level, we wish

to deduce an `1-norm penalty from (5) on the group level to induce group sparsity on β∗. This motivates the
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use of the (2,∞)-norm on the weighted predictor-response vector zw , ( 1√
p1

x1, . . . , 1√
pL

xL,My), where the

weight vector is w = ( 1√
p1
, . . . , 1√

pL
,M), and M is a positive weight assigned to the response. Specifically,

‖zw‖2,∞ = max

{
1
√
p1
‖x1‖2, . . . ,

1
√
pL
‖xL‖2,M |y|

}
. (6)

In (6) we normalize each group by the number of predictors, to prevent large groups from having a large

impact on the distance metric. The ‖ · ‖2,∞ operator computes the maximum of the `2 norms of the (weighted)

grouped predictors and the response. It essentially selects the most influential group when determining the

closeness between two points in the predictor-response space, which is consistent with our group sparsity

assumption in that not all groups of predictors contribute to the determination of y, and thus a metric that

ignores the unimportant groups (e.g., ‖ · ‖2,∞) is desired.

To obtain the GWGL formulation, we need to derive the dual norm of ‖ · ‖2,∞. A general result that

applies to any (q, t)-norm is presented in the following theorem.

Theorem 2.2 Consider a vector x = (x1, . . . ,xL), where each xl ∈ Rpl , and
∑
l pl = p. Define the weighted

(r, s)-norm of x with the weight vector w = (w1, . . . , wL) to be:

‖xw‖r,s =
( L∑
l=1

(
‖wlxl‖r

)s)1/s
,

where xw = (w1x
1, . . . , wLxL), wl > 0, ∀l, and r, s ≥ 1. Then, the dual norm of the weighted (r, s)-norm with

weight w is the (q, t)-norm with weight w−1, where 1/r+1/q = 1, 1/s+1/t = 1, and w−1 = (1/w1, . . . , 1/wL).

Now, let us go back to (6), which is the weighted (2,∞)-norm of z = (x1, . . . ,xL, y) with the weight

w = ( 1√
p1
, . . . , 1√

pL
,M). According to Theorem 2.2, the dual norm of the weighted (2,∞)-norm with weight

w evaluated at some β̃ = (−β1, . . . ,−βL, 1) is:

‖β̃w−1‖2,1 =
L∑
l=1

√
pl‖βl‖2 +

1

M
,

where w−1 = (
√
p1, . . . ,

√
pL, 1/M). Therefore, the GWGL formulation for Linear Regression (GWGL-LR)

takes the following form:

inf
β

1

N

N∑
i=1

|yi − x′iβ|+ ε
L∑
l=1

√
pl‖βl‖2, (7)

where the constant term 1/M has been removed. We see that by using the weighted (2,∞)-norm in the

predictor-response space, we are able to recover the commonly used penalty term for GLASSO [1,33]. Our
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Wasserstein DRO framework offers new interpretations for the GLASSO penalty from the standpoint of the

distance metric on the predictor-response space and establishes the connection between group sparsity and

distributional robustness.

2.2 GWGL for Binary Categorical Response Variables

In this subsection we will explore the GWGL formulation for binary classification problems. Let x ∈ Rp

denote the predictor and y ∈ {−1,+1} the associated binary label to be predicted. In LG, the conditional

distribution of y given x is modeled as

P(y|x) =
(
1 + exp(−yβ′x)

)−1
,

where β ∈ Rp is the unknown coefficient vector (classifier) to be estimated. The Maximum Likelihood

Estimator (MLE) of β is found by minimizing the negative log-likelihood (logloss):

lβ(x, y) = log(1 + exp(−yβ′x)).

To apply the Wasserstein DRO framework, we define the following distance metric:

s((x1, y1), (x2, y2)) ,


‖x1 − x2‖, if y1 = y2,

∞, otherwise.

(8)

Through (8) we emphasize the role of y in determining the distance between data points, i.e., samples from

different classes are considered to be infinitely far away from each other. Our robust LG problem is modeled

as:

inf
β

sup
Q∈Ω

EQ[ log(1 + exp(−yβ′x))
]
, (9)

where Q is the probability distribution of (x, y), belonging to some set Ω that includes all probability

distributions whose order-one Wasserstein distance (on the metric space (Z, s) where Z = Rp × {−1,+1}) to

the empirical distribution P̂N is no more than ε. In the following theorem, we reformulate (9).

Theorem 2.3 Suppose we observe N realizations of the data, denoted by (xi, yi), i = 1, . . . , N . When the

Wasserstein metric is induced by (8), the DRO problem (9) can be reformulated as:

inf
β

EP̂N
[
lβ(x, y)

]
+ ε‖β‖∗ = inf

β

1

N

N∑
i=1

log
(
1 + exp(−yiβ′xi)

)
+ ε‖β‖∗. (10)
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We note that [25,26,13] arrive at a similar formulation to (10) by other means of derivation. Different

from these existing works, we will consider specifically the application of (10) to grouped predictors where

the goal is to induce group level sparsity on the coefficients/classifier. As in Section 2.1, we assume that the

predictor vector x can be decomposed into L groups, i.e., x = (x1, . . . ,xL), each xl containing pl predictors

of group l, and
∑L
l=1 pl = p (no overlap among groups). To reflect the group sparse structure, we consider

the (2,∞)-norm of the weighted predictor vector xw , ( 1√
p1

x1, . . . , 1√
pL

xL), where the weight vector is

w = ( 1√
p1
, . . . , 1√

pL
). According to Theorem 2.2, the dual norm of the weighted (2,∞)-norm with weight

w = ( 1√
p1
, . . . , 1√

pL
) evaluated at β is:

‖βw−1‖2,1 =
L∑
l=1

√
pl‖βl‖2,

where w−1 = (
√
p1, . . . ,

√
pL), and βl denotes the vector of coefficients corresponding to group l. Therefore,

the GWGL formulation for LG (GWGL-LG) takes the form:

inf
β

1

N

N∑
i=1

log
(
1 + exp(−yiβ′xi)

)
+ ε

L∑
l=1

√
pl‖βl‖2. (11)

The above derivation techniques also apply to other loss functions whose growth rate is finite, e.g., the

hinge loss used by the Support Vector Machine (SVM), and therefore, the GWGL SVM model can be

developed in a similar fashion. It is also worth noting that the regularizer in our tractable reformulation (10)

is related to the growth rate of the loss function, with the magnitude of the penalty being the radius of the

Wasserstein ball [8,13]. This enables new perspectives of the regularization term and provides guidance on

the selection/tuning of the regularization coefficient.

2.3 GLASSO with Overlapping Groups

In this subsection we will explore the GLASSO formulation with overlapping groups, and show that our

Wasserstein DRO framework recovers a latent GLASSO approach that was first proposed in [23].

When the groups overlap with each other, the penalty term
∑L
l=1

√
pl‖βl‖2 leads to a solution whose

support is almost surely the complement of a union of groups [19]. In other words, setting one group to

zero shrinks its covariates to zero even if they belong to other groups, in which case these other groups

will not be entirely selected. [23] proposed a latent GLASSO approach where they introduce a set of latent
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variables that induce a solution vector whose support is a union of groups, so that the estimator would

select entire groups of covariates. Specifically, define the latent variables vl ∈ Rp, l = 1, . . . , L, such that

supp(vl) ⊂ Gl, l = 1, . . . , L, where supp(vl) ⊂ {1, . . . , p} denotes the support of vl, i.e., the set of predictors

i ∈ {1, . . . , p} such that vli 6= 0, and Gl denotes the set of predictors that are in group l. Our assumption is

that ∃ l1, l2 such that Gl1 ∩ Gl2 6= ∅. The latent GLASSO formulation has the form:

inf
β,v1,...,vL

1

N

N∑
i=1

lβ(xi, yi) + ε
L∑
l=1

dl‖vl‖2,

s.t. β =
L∑
l=1

vl,

(12)

where lβ(xi, yi) denotes the loss at sample (xi, yi), and dl is a user-specified penalty strength of group l. Let

v̂l, l = 1, . . . , L, denote an optimal solution of (12). By using the latent vectors, Formulation (12) has the

flexibility of implicitly adjusting the support of the latent vectors such that for any i ∈ supp(v̂l) where v̂l = 0,

it does not belong to the support of any non-shrunk latent vectors. As a result, the covariates that belong to

both shrunk and non-shrunk groups would not be mistakenly driven to zero. Formulation (12) favors solutions

which shrink some vl to zero, while the non-shrunk components satisfy supp(vl) = Gl, therefore leading to

estimators whose support is the union of a set of groups.

To show that (12) can be obtained from the Wasserstein DRO framework, we consider the following

weighted (2,∞)-norm on the predictor space:

s(x) = max
l
d−1l ‖x

l‖2. (13)

For simplicity, we treat the response y as a deterministic quantity so that the Wasserstein metric is defined

only on the predictor space. The scenario with stochastic responses can be accommodated by introducing

some constant M . [23] showed that the dual norm of (13) is Θ(β) ,
∑L
l=1 dl‖vl‖2, with β =

∑L
l=1 vl, and

β 7→ Θ(β) is a valid norm. By reformulating (12) as:

inf
β

1

N

N∑
i=1

lβ(xi, yi) + εΘ(β), with Θ(β) = min
v1,...,vL,∑L
l=1 vl=β

L∑
l=1

dl‖vl‖2, (14)

we have shown that (12) can be derived as a consequence of the Wasserstein DRO formulation with the

Wasserstein metric induced by (13). In fact, (14) is equivalent to a regular GLASSO in a covariate space of

higher dimension obtained by duplication of the covariates belonging to several groups. For simplicity our

subsequent analysis assumes non-overlapping groups.
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3 Grouping Effect of the Estimators

In this section we establish a grouping effect for the solutions to GWGL-LR and GWGL-LG, which measures

the similarity of the estimated coefficients in the same group. Ideally, for highly correlated predictors in the

same group, it is desired that their coefficients are close so that they can be jointly selected/dropped (group

sparsity). The discussion on the prediction and estimation quality of the solutions is deferred to Appendix A.

To investigate the grouping effect of the estimators, we examine the difference between coefficient estimates

as a function of the sample correlation between their corresponding predictors in the following theorem.

Theorem 3.1 Suppose the predictors are standardized (columns of X have zero mean and unit variance). Let

β̂ ∈ Rp be the optimal solution to (7) (or (11)). If x,i is in group l1 and x,j is in group l2, and ‖β̂
l1‖2 6= 0,

‖β̂
l2‖2 6= 0, define

D(i, j) =

∣∣∣∣∣
√
pl1 β̂i

‖β̂
l1‖2

−
√
pl2 β̂j

‖β̂
l2‖2

∣∣∣∣∣.
Then,

D(i, j) ≤
√

2(1− ρ)√
Nε

,

where ρ = x′,ix,j is the sample correlation, and pl1 , pl2 are the number of predictors in groups l1 and l2,

respectively.

Theorem 3.1 establishes a unified result for the grouping effect of the GWGL-LR and GWGL-LG solutions.

When x,i and x,j are both in group l and ‖β̂
l
‖2 6= 0, it follows

|β̂i − β̂j | ≤
√

2(1− ρ)‖β̂
l
‖2

ε
√
Npl

. (15)

From (15) we see that as the within group correlation increases, the difference between β̂i and β̂j becomes

smaller. In the extreme case where x,i and x,j are perfectly correlated, β̂i = β̂j . This grouping effect enables

recovery of sparsity on a group level when the correlation between predictors in the same group is high, and

implies the use of predictors’ correlation as a grouping criterion. One of the popular clustering algorithms,

called spectral clustering [27,22], performs grouping based on the eigenvalues/eigenvectors of the Laplacian

matrix of the similarity graph that is constructed using the similarity matrix of data, and divides the data

points (predictors) into several groups such that points in the same group are similar and points in different
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groups are dissimilar to each other. The similarity matrix measures the pairwise similarities between data

points, which in our case could be the pairwise correlations between predictors.

4 Numerical Results

In this section we compare our GWGL formulations with other commonly used predictive models. In the

linear regression setting, we compare GWGL-LR with models that either (i) use a different loss function, e.g.,

the traditional GLASSO with an `2-loss [33], and the Group Square-Root LASSO (GSRL) [7] that minimizes

the square root of the `2-loss; or (ii) do not make use of the grouping structure of the predictors, e.g., the

Elastic Net (EN) [35], and the LASSO [29]. For classification problems, we consider alternatives that minimize

the empirical logloss plus penalty terms that do not utilize the grouping structure of the predictors, e.g., the

`1-regularizer (LG-LASSO), `2-regularizer (LG-Ridge), and their combination (LG-EN).

4.1 GWGL-LR on Synthetic Datasets

In this subsection we will compare GWGL-LR with the aforementioned models on several synthetic datasets.

The data are generated as follows. (1) Set β∗i to 0.5 if predictor i belongs to an even group, and 0 otherwise. (2)

Generate x ∈ Rp from the Gaussian distribution Np(0,Σ), where Σ = (σi,j)
p
i,j=1 has diagonal elements equal

to 1, and off-diagonal elements σi,j equal to ρw if predictors i and j are in the same group, and 0 otherwise.

Here, ρw is called the within group correlation. (3) With probability 1 − q, generate y from N (x′β∗, σ2), and

with probability q, generate y from N (x′β∗ + 5σ, σ2), where σ2 is the intrinsic variance of y, and q is the

probability of abnormal samples (outliers).

We generate 10 datasets consisting of N = 100 training samples and Mt = 60 test samples with 4 groups

of predictors, where p1 = 1, p2 = 3, p3 = 5, p4 = 7, and p =
∑4
i=1 pi = 16. We are interested in studying

the impact of (i) Signal to Noise Ratio (SNR), defined as: SNR = (β∗)′Σβ∗/σ2, and (ii) the within group

correlation ρw. The performance metrics are: (i) Median Absolute Deviation (MAD) on the test set, defined

as the median value of |yi − x′iβ̂|, i = 1, . . . ,Mt, with β̂ being the estimate of β∗ obtained from the training

set, and (xi, yi), i = 1, . . . ,Mt, being the observations from the test set; (ii) Relative Risk (RR), Relative

Test Error (RTE), and Proportion of Variance Explained (PVE) of β̂ (definitions in Appendix B).
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Before solving for the regression coefficients, the grouping of predictors needs to be determined. Unlike

most of the existing works where the grouping structure is assumed to be known a priori, we propose to use

a data-driven clustering algorithm to group the predictors based on their sample correlations. Specifically,

we consider the spectral clustering [27,22] algorithm with the Gaussian similarity function Gs(x,i,x,j) ,

exp
(
− ‖x,i − x,j‖22/(2σ2

s)
)

that captures the sample pairwise correlations between predictors, where σs is

some scale parameter whose selection is discussed in Appendix B.
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Fig. 1: The impact of within group correlation on the performance metrics, q = 30%.

We plot two sets of graphs: (i) the performance metrics v.s. SNR, where SNR is equally spaced between

0.5 and 2 on a log scale, and ρw is set to 0.8 times a random noise uniformly distributed on the interval

[0.2, 0.4]; and (ii) the performance metrics v.s. ρw, where ρw takes values in (0.1, 0.2, . . . , 0.9), and SNR is

fixed to 1. In the graphs for RR, RTE and PVE, we also plot the ideal scores, which are the values achieved

by β̂ = β∗, and the null scores, which are the values achieved by β̂ = 0. Results for q = 30% are in Figs. 2

and 1 while results for q = 20% can be found in Appendix B.
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Fig. 2: The impact of SNR on the performance metrics, q = 30%.

To better highlight the benefits of GWGL-LR, we define the Maximum Percentage Improvement (MPI) to

be the maximum percentage difference of the performance metrics between GWGL-LR and the best among

all others. The MPI values for all metrics are shown in Tables 1 and 2 where we summarize the MPI brought
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about by our methods compared to other procedures, when varying the SNR and ρw, respectively. In all

tables, the number outside the parentheses is the MPI value corresponding to each metric, while the number

in the parentheses indicates the value of SNR/ρw at which the MPI is attained.

Table 1: MPI of all metrics when varying the SNR.

MAD RR RTE PVE

q = 20% 13.7 (0.5) 41.4 (1.47) 13.1 (1.47) 68.9 (0.79)

q = 30% 14.7 (1.08) 40.9 (1.08) 17 (1.08) 85.7 (0.68)

Table 2: MPI of all metrics when varying the within group correlation.

MAD RR RTE PVE

q = 20% 8.2 (0.1) 80.5 (0.9) 31.8 (0.9) 145.4 (0.9)

q = 30% 10.2 (0.1) 41.9 (0.1) 16.7 (0.1) 162.5 (0.1)

We summarize below our main findings from the results we have presented: (i) for all approaches, MAD

and RR decrease as the data become less noisy. PVE increases when the noise is reduced; (ii) the GWGL-LR

formulation has better prediction and estimation performance than all other approaches under consideration.

When the within group correlation is varied, GWGL-LR shows a more stable performance; and (iii) the

relative improvement of GWGL-LR over GLASSO is more significant for highly noisy data. Moreover,

GWGL-LR generates more stable estimators than GLASSO.

4.2 Surgery Dataset

In this section we test our GWGL formulations on a real dataset obtained from the National Surgical Quality

Improvement Program (NSQIP) containing medical records of patients who underwent a general surgical

procedure. The dataset includes (i) baseline demographics; (ii) pre-existing comorbidity information; (iii)

preoperative variables; (iv) index admission-related diagnosis and procedure information; (v) postoperative

events and complications, and (vi) additional socioeconomic variables.



16 Ruidi Chen, Ioannis Ch. Paschalidis

In our study, patients who underwent a general surgery procedure over 2011–2014 and were tracked by the

NSQIP were identified. We will focus on two supervised learning models: (i) a linear regression model whose

objective is to predict the post-operative hospital length of stay, and (ii) an LG model whose objective is to

predict the re-hospitalization of patients within 30 days after discharge. Both models are extremely useful as

they allow hospital staff to predict post-operative bed occupancy and prevent costly 30-day readmissions.

The post-processed datasets include a total of 2, 275, 452 records, with 131 numerical predictors for the

regression model and 132 for the classification model. The spectral clustering algorithm is used to group the

predictors, with the number of groups specified as 67 based on a preliminary analysis.

For predicting the hospital length of stay, we report the mean (std.) of the out-of-sample MAD across 5

repetitions in Table 3. Our GWGL-LR formulation achieves the lowest mean MAD with a small variance; we

improve the mean MAD by 7.30% over the best alternative. For longer hospital length of stay, this could

imply 1 or 2 days improvement in prediction accuracy, which is both clinically and economically significant.

Table 3: The mean and standard deviation of MAD on the surgery data.

GLASSO GWGL-LR EN LASSO GSRL

Mean (Std.) 0.17

(0.0007)

0.16

(0.001)

0.17

(0.0009)

0.17

(0.0009)

0.17

(0.0009)

For predicting the re-hospitalization of patients, we notice that the dataset is highly unbalanced, with

only 6% of patients being re-hospitalized. To obtain a balanced training set, we randomly draw 20% patients

from the positive class (re-hospitalized patients), and sample the same number of patients from the negative

class, resulting in a training set of size 53, 616. All the remaining patients are assigned to the test dataset. All

formulations achieve an average out-of-sample ACC (the prediction accuracy on the test dataset) around

0.62, an average out-of-sample AUC (Area Under the ROC Curve) of 0.83, and an average logloss on the

test set ranging from 0.84 to 0.87. We define a new performance metric, called the Within Group Difference

(WGD), to measure the ability of the solution to induce group level sparsity.

WGD(β̂) ,
1

|{l : pl ≥ 2}|
∑
l:pl≥2

1(
pl
2

) ∑
xi,xj∈xl

∣∣∣∣ β̂i − β̂jx′,ix,j

∣∣∣∣,
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where |{l : pl ≥ 2}| denotes the cardinality of the set {l : pl ≥ 2}, and x′,ix,j measures the sample correlation

between predictors xi and xj . Theorem 3.1 implies that the higher the correlation, the smaller the difference

between the coefficients, and thus, a smaller WGD value would suggest a stronger ability of grouped variable

selection. Table 4 suggests that GWGL-LG encourages group level sparsity. From Table 5 (see the Appendix)

we conclude that though LG-EN and LG-LASSO obtain the most parsimonious model at an individual level,

GWGL-LG has a stronger ability to induce group level sparsity.

Table 4: The WGD of the estimators on the surgery data.

LG LG-LASSO LG-Ridge LG-EN GWGL-LG

Mean (Std.) 23.93

(1.28)

16.28

(0.72)

23.38

(1.15)

16.26

(0.74)

5.04 (0.45)

5 Conclusions

We proposed a DRO formulation under the Wasserstein metric that recovers the GLASSO penalty for LAD

and LG, through which we have established a connection between group-sparse regularization and robustness.

We provided insights on the grouping effect of our estimators, which suggests the use of spectral clustering

with the Gaussian similarity function to perform grouping on the predictors. We reported results from several

experiments, showing that our formulations achieve more accurate and stable estimates, and have a stronger

ability of inducing group level sparsity.
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Appendix

A Omitted Theoretical Results and Proofs

This section contains the theoretical statements and proofs that are omitted in Sections 2 and 3.
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Proof of Theorem 2.1

Proof From the definition of the Wasserstein distance, W1(Pout,Pmix) is the optimal value of the following optimization problem:

min
Π∈P(Z×Z)

∫
Z×Z

s(z1, z2) Π
(
dz1, dz2

)
s.t.

∫
Z
Π
(
z1, z2

)
dz2 = Pout(z1), ∀z1 ∈ Z,∫

Z
Π
(
z1, z2

)
dz1 = qPout(z2) + (1− q)P(z2), ∀z2 ∈ Z.

(16)

Similarly, W1(P,Pmix) is the optimal value of the following optimization problem:

min
Π∈P(Z×Z)

∫
Z×Z

s(z1, z2) Π
(
dz1, dz2

)
s.t.

∫
Z
Π
(
z1, z2

)
dz2 = P(z1), ∀z1 ∈ Z,∫

Z
Π
(
z1, z2

)
dz1 = qPout(z2) + (1− q)P(z2), ∀z2 ∈ Z.

(17)

We propose a decomposition strategy. For Problem (16), decompose the joint distribution Π as Π = (1− q)S + qT , where S

and T are two joint distributions of z1 and z2. The first set of constraints in Problem (16) can be equivalently expressed as:

(1− q)
∫
Z
S
(
z1, z2

)
dz2 + q

∫
Z
T
(
z1, z2

)
dz2 = (1− q)Pout(z1) + qPout(z1), ∀z1 ∈ Z,

which is satisfied if ∫
Z
S
(
z1, z2

)
dz2 = Pout(z1),

∫
Z
T
(
z1, z2

)
dz2 = Pout(z1), ∀z1 ∈ Z.

The second set of constraints can be expressed as:

(1− q)
∫
Z
S
(
z1, z2

)
dz1 + q

∫
Z
T
(
z1, z2

)
dz1 = qPout(z2) + (1− q)P(z2), ∀z2 ∈ Z,

which is satisfied if ∫
Z
S
(
z1, z2

)
dz1 = P(z2),

∫
Z
T
(
z1, z2

)
dz1 = Pout(z2), ∀z2 ∈ Z.

The objective function can be decomposed as:

∫
Z×Z

s(z1, z2) Π
(
dz1, dz2

)
= (1− q)

∫
Z×Z

s(z1, z2) S
(
dz1, dz2

)
+ q

∫
Z×Z

s(z1, z2)T
(
dz1, dz2

)
.

Therefore, Problem (16) can be decomposed into the following two subproblems.

Subproblem 1:

min
S∈P(Z×Z)

∫
Z×Z s(z1, z2) S

(
dz1, dz2

)
s.t.

∫
Z S
(
z1, z2

)
dz2 = Pout(z1), ∀z1 ∈ Z,∫

Z S
(
z1, z2

)
dz1 = P(z2), ∀z2 ∈ Z.

Subproblem 2:

min
T∈P(Z×Z)

∫
Z×Z s(z1, z2) T

(
dz1, dz2

)
s.t.

∫
Z T

(
z1, z2

)
dz2 = Pout(z1), ∀z1 ∈ Z,∫

Z T
(
z1, z2

)
dz1 = Pout(z2), ∀z2 ∈ Z.
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Assume that the optimal solutions to the two subproblems are S∗ and T ∗, respectively, we know Π0 = (1− q)S∗ + qT ∗ is a

feasible solution to Problem (16). Therefore,

W1(Pout,Pmix) ≤
∫
Z×Z

s(z1, z2) Π0

(
dz1, dz2

)
= (1− q)W1(Pout,P) + qW1(Pout,Pout)

= (1− q)W1(Pout,P).

(18)

Similarly,

W1(P,Pmix) ≤ qW1(Pout,P). (19)

(18) and (19) imply that

W1(Pout,Pmix) +W1(P,Pmix) ≤W1(Pout,P). (20)

On the other hand, based on the subadditivity of the Wasserstein metric, we have,

W1(Pout,Pmix) +W1(P,Pmix) ≥W1(Pout,P).

We thus conclude that

W1(Pout,Pmix) +W1(P,Pmix) = W1(Pout,P). (21)

To achieve the equality in (21), (18) and (19) must be equalities, i.e.,

W1(Pout,Pmix) = (1− q)W1(Pout,P),

and,

W1(P,Pmix) = qW1(Pout,P).

To see this, notice that if either (18) or (19) is a strict inequality, then (20) becomes a strict inequality, which contradicts (21).

Thus,

W1(Pout,Pmix)

W1(P,Pmix)
=

(1− q)W1(Pout,P)

qW1(Pout,P)
=

1− q
q

.

ut

Proof of Theorem 2.2

Proof We will use Hölder’s inequality, which we state for convenience.

Hölder’s inequality: Suppose we have two scalars p, q ≥ 1 and 1/p + 1/q = 1. For any two vectors a = (a1, . . . , an) and

b = (b1, . . . , bn),
n∑
i=1

|aibi| ≤
( n∑
i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

.

The dual norm of ‖ · ‖r,s evaluated at some vector β is the optimal value of problem (22):

max
x

x′β

s.t. ‖xw‖r,s ≤ 1.

(22)



20 Ruidi Chen, Ioannis Ch. Paschalidis

We assume that β has the same group structure with x, i.e., β = (β1, . . . ,βL). Using Hölder’s inequality, we can write

x′β =
L∑
l=1

(wlx
l)′
( 1

wl
βl
)
≤

L∑
l=1

‖wlxl‖r
∥∥∥∥ 1

wl
βl
∥∥∥∥
q

.

Define two new vectors in RL

xnew = (‖w1x1‖r, . . . , ‖wLxL‖r), βnew =

(∥∥∥∥ 1

w1
β1

∥∥∥∥
q

, . . . ,

∥∥∥∥ 1

wL
βL
∥∥∥∥
q

)
.

Applying Hölder’s inequality again to xnew and βnew, we obtain:

x′β ≤ x′newβnew

≤ ‖xnew‖s‖βnew‖t

=
( L∑
l=1

(
‖wlxl‖r

)s)1/s
(

L∑
l=1

(∥∥∥∥ 1

wl
βl
∥∥∥∥
q

)t)1/t

.

Therefore,

x′β ≤ ‖xw‖r,s‖βw−1‖q,t ≤ ‖βw−1‖q,t,

due to the constraint ‖xw‖r,s ≤ 1. The result then follows. ut

Proof of Theorem 2.3

Proof To derive a tractable reformulation of the DRO-LG problem (9), we borrow the idea from [8] and [14], which states that

for any Q ∈ Ω, ∣∣∣EQ[lβ(x, y)
]
− EP̂N

[
lβ(x, y)

]∣∣∣
=

∣∣∣∣∫
Z
lβ(x1, y1)Q(d(x1, y1))−

∫
Z
lβ(x2, y2)P̂N (d(x2, y2))

∣∣∣∣
=

∣∣∣∣∫
Z
lβ(x1, y1)

∫
Z
Π0(d(x1, y1), d(x2, y2))−

∫
Z
lβ(x2, y2)

∫
Z
Π0(d(x1, y1), d(x2, y2))

∣∣∣∣
≤
∫
Z×Z

∣∣lβ(x1, y1)− lβ(x2, y2)
∣∣Π0(d(x1, y1), d(x2, y2)),

(23)

where Π0 is the optimal solution in the definition of the Wasserstein metric, i.e., it is the joint distribution of (x1, y1) and

(x2, y2) with marginals Q and P̂N that achieves the minimum mass transportation cost. Comparing (23) with the definition of

the Wasserstein distance, we wish to bound the following growth rate of lβ(x, y):

∣∣lβ(x1, y1)− lβ(x2, y2)
∣∣

s((x1, y1), (x2, y2))
, ∀(x1, y1), (x2, y2),

in order to relate
∣∣EQ[lβ(x, y)]−EP̂N [lβ(x, y)]

∣∣ with W1(Q, P̂N ). To this end, we define a continuous and differentiable univariate

function h(a) , log(1 + exp(−a)), and apply the mean value theorem to it, which yields that for any a, b ∈ R, ∃c ∈ (a, b) such

that: ∣∣∣∣h(b)− h(a)

b− a

∣∣∣∣ =
∣∣5h(c)

∣∣ =
e−c

1 + e−c
≤ 1.
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By noting that lβ(x, y) = h(yβ′x), we immediately have:

∣∣lβ(x1, y1)− lβ(x2, y2)
∣∣ ≤ ∣∣y1β

′x1 − y2β
′x2

∣∣
≤ ‖y1x1 − y2x2‖‖β‖∗

≤ s((x1, y1), (x2, y2))‖β‖∗, ∀(x1, y1), (x2, y2),

(24)

where the second step uses the Cauchy-Schwarz inequality, and the last step is due to the definition of the metric s in (8).

Combining (24) with (23), it follows that for any Q ∈ Ω,∣∣∣EQ[lβ(x, y)
]
− EP̂N

[
lβ(x, y)

]∣∣∣ ≤ ‖β‖∗ ∫
Z×Z

s((x1, y1), (x2, y2))Π0(d(x1, y1), d(x2, y2))

= ‖β‖∗W1(Q, P̂N ) ≤ ε‖β‖∗.

Therefore, the DRO-LG problem can be reformulated as:

inf
β

EP̂N
[
lβ(x, y)

]
+ ε‖β‖∗ = inf

β

1

N

N∑
i=1

log
(
1 + exp(−yiβ′xi)

)
+ ε‖β‖∗.

ut

Prediction and Estimation Performance of the GWGL-LR Estimator

We are interested in two types of performance criteria: (1) Prediction quality, or out-of-sample performance, which measures

the predictive power of the GWGL solutions on new, unseen samples. (2) Estimation quality, which measures the discrepancy

between the GWGL solutions and the underlying unknown true coefficients.

We note that GWGL-LR is a special case of the Wasserstein DRO formulation derived in [8, Eq. 10], and thus the two types

of performance guarantees derived in [8], one for generalization ability (prediction error), and the other for the discrepancy

between the estimated and the true regression coefficients (estimation error), still apply to our GWGL-LR formulation.

We first establish a bound for the prediction bias of the solution to the GWGL-LR formulation, where the Wasserstein

metric is induced by the weighted (2,∞)-norm with weight w = ( 1√
p1
, . . . , 1√

pL
,M). The dual norm in this case is just the

weighted (2, 1)-norm with weight w−1 = (
√
p1, . . . ,

√
pL, 1/M). Throughout this section we use β∗ and β̂ to denote the true and

estimated regression coefficient vectors, respectively. We first state several assumptions that are needed to establish the results.

Assumption A The weighted (2,∞)-norm of the uncertainty parameter (x, y) with weight w = ( 1√
p1
, . . . , 1√

pL
,M) is bounded

above by R almost surely.

Assumption B For every feasible β, ‖(−β1, . . . ,−βL, 1)w−1‖2,1 ≤ B̄, where w−1 = (
√
p1, . . . ,

√
pL, 1/M).

Let β̂ be an optimal solution to (7), obtained using the samples (xi, yi), i = 1, . . . , N . Suppose we draw a new i.i.d. sample

(x, y). Using Theorem 3.3 in [8], Theorem A.1 establishes bounds on the error |y − x′β̂|.

Theorem A.1 Under Assumptions A and B, for any 0 < δ < 1, with probability at least 1− δ with respect to the sampling,

E[|y − x′β̂|] ≤
1

N

N∑
i=1

|yi − x′iβ̂|+
2B̄R
√
N

+ B̄R

√
8 log(2/δ)

N
,
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and for any ζ > (2B̄R/
√
N) + B̄R

√
8 log(2/δ)/N ,

P
(
|y − x′β̂| ≥

1

N

N∑
i=1

|yi − x′iβ̂|+ ζ

)
≤

1
N

∑N
i=1 |yi − x′iβ̂|+

2B̄R√
N

+ B̄R
√

8 log(2/δ)
N

1
N

∑N
i=1 |yi − x′iβ̂|+ ζ

.

Theorem A.1 essentially says that with a high probability, the expected loss on new test samples using our GWGL-LR

estimator can be upper bounded by the average loss in the training samples plus two terms that are related to the magnitude of

the regularizer B̄, the uncertainty level R, the confidence level δ, and converge to zero as O(1/
√
N). This result justifies the

form of the regularizer used in (7) and guarantees a small generalization error of the GWGL-LR solution.

We next discuss the estimation performance of the GWGL-LR solution. Thm. A.2, a specialization of Thm. 3.11 in [8],

provides a bound for the estimation bias in GWGL-LR. We first state the assumptions that are needed to establish the result.

Assumption C The `2 norm of (−β, 1) is bounded above by B̄2.

Assumption D For some set

A(β∗) := cone{v| ‖(−β∗, 1)w−1 + vw−1‖2,1 ≤ ‖(−β∗, 1)w−1‖2,1} ∩ Sp+1

and some positive scalar α, the following holds,

inf
v∈A(β∗)

v′ZZ′v ≥ α,

where Z = [(x1, y1), . . . , (xN , yN )] is the matrix with columns (xi, yi), i = 1, . . . , N , and Sp+1 is the unit sphere in the

(p+ 1)-dimensional Euclidean space.

Assumption E (x, y) is a centered sub-Gaussian random vector, i.e., it has zero mean and satisfies the following condition:

|||(x, y)|||ψ2
= sup

u∈Sp+1

∣∣∣∣∣∣(x, y)′u
∣∣∣∣∣∣
ψ2
≤ µ.

Assumption F The covariance matrix of (x, y) has bounded positive eigenvalues. Set Γ = E[(x, y)(x, y)′]; then,

0 < λmin , λmin(Γ ) ≤ λmax(Γ ) , λmax <∞.

Definition 1 (Sub-Gaussian random variable) A random variable z is sub-Gaussian if it is zero mean, and the ψ2-norm

defined below is finite, i.e.,

|||z|||ψ2
, sup
q≥1

(E|z|q)1/q

√
q

< +∞.

An equivalent property for sub-Gaussian random variables is that their tail distribution decays at least as fast as a Gaussian, i.e.,

P(|z| ≥ t) ≤ 2 exp{−t2/C2}, ∀t ≥ 0,

for some constant C. A random vector z ∈ Rp+1 is sub-Gaussian if z′u is sub-Gaussian for any u ∈ Rp+1. The ψ2-norm of a

vector z is defined as:

|||z|||ψ2
, sup

u∈Sp+1

∣∣∣∣∣∣z′u∣∣∣∣∣∣
ψ2
,

where Sp+1 denotes the unit sphere in the (p+ 1)-dimensional Euclidean space.
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Definition 2 (Gaussian width) For any set A ⊆ Rp+1, its Gaussian width is defined as:

w(A) , E
[

sup
u∈A

u′g
]
,

where g ∼ N (0, I) is a (p+ 1)-dimensional standard Gaussian random vector.

Theorem A.2 Suppose the true regression coefficient vector is β∗ and the solution to GWGL-LR is β̂. Under Assumptions A,

C, D, E, and F, when the sample size N ≥ C̄1µ̄4µ2
0(λmax/λmin) · (w(A(β∗)) + 3)2, with probability at least

1− exp(−C2N/µ̄4)− C4 exp(−C2
5 (w(Bu))2/(4ρ2)),

‖β̂ − β∗‖2 ≤
C̄RB̄2µ

Nλmin
w(Bu)Ψ(β∗),

where µ̄ = µ
√

(1/λmin); µ0 is the ψ2-norm of a standard Gaussian random vector g ∈ Rp+1; w(A(β∗)) is the Gaussian width

(defined below) of A(β∗) (cf. Assumption D); w(Bu) is the Gaussian width of Bu, where Bu is the unit ball of the norm ‖ · ‖∞;

ρ = supv∈Bu ‖v‖2; Ψ(β∗) = supv∈A(β∗) ‖vw−1‖2,1; and C̄1, C2, C4, C5, C̄ are positive constants.

With Thm. A.2, we are able to provide bounds for performance metrics, such as the Relative Risk (RR), Relative Test Error

(RTE), and Proportion of Variance Explained (PVE) [16]. All these metrics evaluate the accuracy of the regression coefficient

estimates on a new test sample drawn from the same probability distribution as the training samples. Let (x0, y0) be such a test

sample satisfying y0 = x′0β
∗ + η0, where η0 is random noise with zero mean and variance σ2, and independent of the zero mean

predictor x0. For a fixed set of training samples, let the solution to GWGL-LR be β̂. As in [16], define

RR(β̂) =
E(x′0β̂ − x′0β

∗)2

E(x′0β
∗)2

=
(β̂ − β∗)′Σ(β̂ − β∗)

(β∗)′Σβ∗
,

where Σ is the covariance matrix of x0, which is just the top left block of the matrix Γ in Assumption F. RTE is defined as:

RTE(β̂) =
E(y0 − x′0β̂)2

σ2
=

(β̂ − β∗)′Σ(β̂ − β∗) + σ2

σ2
.

PVE is defined as:

PVE(β̂) = 1−
E(y0 − x′0β̂)2

V ar(y0)
= 1−

(β̂ − β∗)′Σ(β̂ − β∗) + σ2

(β∗)′Σβ∗ + σ2
.

Using Theorem A.2, we can bound the term (β̂ − β∗)′Σ(β̂ − β∗) as follows:

(β̂ − β∗)′Σ(β̂ − β∗) ≤ λmax(Σ)‖β̂ − β∗‖22 ≤ λmax(Σ)

(
C̄RB̄2µ

Nλmin
w(Bu)Ψ(β∗)

)2

, (25)

where λmax(Σ) is the maximum eigenvalue of Σ. Using (25), bounds for RR, RTE, and PVE can be readily obtained and are

summarized in the following Corollary.

Corollary A.3 Under the specifications in Theorem A.2, when the sample size

N ≥ C̄1µ̄
4µ2

0(λmax/λmin)(w(A(β∗)) + 3)2,

with probability at least 1− exp(−C2N/µ̄4)− C4 exp(−C2
5 (w(Bu))2/(4ρ2)),

RR(β̂) ≤
λmax(Σ)

(
C̄RB̄2µ
Nλmin

w(Bu)Ψ(β∗)

)2

(β∗)′Σβ∗
,
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RTE(β̂) ≤
λmax(Σ)

(
C̄RB̄2µ
Nλmin

w(Bu)Ψ(β∗)

)2

+ σ2

σ2
,

PVE(β̂) ≥ 1−
λmax(Σ)

(
C̄RB̄2µ
Nλmin

w(Bu)Ψ(β∗)

)2

+ σ2

(β∗)′Σβ∗ + σ2
,

where all parameters are defined in the same way as in Theorem A.2.

Predictive Performance of the GWGL-LG Estimator

In this subsection we establish bounds on the prediction error of the GWGL-LG solution. Similar to [8], we will use the Rademacher

complexity of the class of logloss (negative log-likelihood) functions to bound the generalization error. Two assumptions that

impose conditions on the magnitude of the regularizer and the uncertainty level of the predictor are needed.

Assumption G The weighted (2,∞)-norm of x with weight w = ( 1√
p1
, . . . , 1√

pL
) is bounded above almost surely, i.e.,

‖xw‖2,∞ ≤ Rx.

Assumption H The weighted (2, 1)-norm of β with w−1 = (
√
p1, . . . ,

√
pL) is bounded above, namely, supβ ‖βw−1‖2,1 = B̄1.

Under these two assumptions, the logloss could be bounded via the Cauchy-Schwarz inequality.

Lemma A.4 Under Assumptions G and H, it follows

log
(
1 + exp(−yβ′x)

)
≤ log

(
1 + exp(RxB̄1)

)
, almost surely.

Now consider the following class of loss functions:

L =
{

(x, y) 7→ lβ(x, y) : lβ(x, y) = log
(
1 + exp(−yβ′x)

)
, ‖βw−1‖2,1 ≤ B̄1

}
.

It follows from [8,4] that the empirical Rademacher complexity of L, denoted by RN (L), can be upper bounded by:

RN (L) ≤
2 log

(
1 + exp(RxB̄1)

)
√
N

.

Then, applying Theorem 8 in [2], we have the following result on the prediction error of our GWGL-LG estimator.

Theorem A.5 Let β̂ be an optimal solution to (11), obtained using N training samples (xi, yi), i = 1, . . . , N . Suppose we

draw a new i.i.d. sample (x, y). Under Assumptions G and H, for any 0 < δ < 1, with probability at least 1− δ with respect to

the sampling,

E
[

log
(
1 + exp(−yx′β̂)

)]
≤

1

N

N∑
i=1

log
(
1 + exp(−yix′iβ̂)

)
+

2 log
(
1 + exp(RxB̄1)

)
√
N

+ log
(
1 + exp(RxB̄1)

)√8 log(2/δ)

N
, (26)

and for any ζ >
2 log(1+exp(RxB̄1))√

N
+ log

(
1 + exp(RxB̄1)

)√ 8 log(2/δ)
N

,

P
(

log
(
1 + exp(−yx′β̂)

)
≥

1

N

N∑
i=1

log
(
1 + exp(−yix′iβ̂)

)
+ ζ
)

≤
1
N

∑N
i=1 log

(
1 + exp(−yix′iβ̂)

)
+

2 log(1+exp(RxB̄1))√
N

+ log
(
1 + exp(RxB̄1)

)√ 8 log(2/δ)
N

1
N

∑N
i=1 log

(
1 + exp(−yix′iβ̂)

)
+ ζ

.

(27)

Theorem A.5 implies that the groupwise regularized LG formulation (11) yields a solution with a small generalization error

on new i.i.d. samples.
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Proof of Theorem 3.1 for GWGL-LR

Proof By the optimality condition associated with formulation (7), β̂ satisfies:

x′,isgn(y −Xβ̂) = Nε
√
pl1

β̂i

‖β̂l1‖2
, (28)

x′,jsgn(y −Xβ̂) = Nε
√
pl2

β̂j

‖β̂l2‖2
, (29)

where the sgn(·) function is applied to a vector elementwise. Subtracting (29) from (28), we obtain:

(x,i − x,j)
′sgn(y −Xβ̂) = Nε

(√
pl1 β̂i

‖β̂l1‖2
−
√
pl2 β̂j

‖β̂l2‖2

)
.

Using the Cauchy-Schwarz inequality and ‖x,i − x,j‖22 = 2(1− ρ), we obtain

D(i, j) =

∣∣∣∣∣
√
pl1 β̂i

‖β̂l1‖2
−
√
pl2 β̂j

‖β̂l2‖2

∣∣∣∣∣
≤

1

Nε
‖x,i − x,j‖2‖sgn(y −Xβ̂)‖2

≤
√

2(1− ρ)
√
Nε

.

ut

Proof of Theorem 3.1 for GWGL-LG

Proof By the optimality condition associated with formulation (11), β̂ satisfies:

N∑
k=1

exp(−ykx′kβ̂)

1 + exp(−ykx′kβ̂)
ykxk,i = Nε

√
pl1

β̂i

‖β̂l1‖2
, (30)

N∑
k=1

exp(−ykx′kβ̂)

1 + exp(−ykx′kβ̂)
ykxk,j = Nε

√
pl2

β̂j

‖β̂l2‖2
, (31)

where xk,i and xk,j denote the i-th and j-th elements of xk, respectively. Subtracting (31) from (30), we get:

N∑
k=1

exp(−ykx′kβ̂)

1 + exp(−ykx′kβ̂)

(
ykxk,i − ykxk,j

)
= Nε

(√
pl1 β̂i

‖β̂l1‖2
−
√
pl2 β̂j

‖β̂l2‖2

)
. (32)

Note that the LHS of 32 can be written as v′1v2, where

v1 =

(
exp(−y1x′1β̂)

1 + exp(−y1x′1β̂)
, . . . ,

exp(−yNx′N β̂)

1 + exp(−yNx′N β̂)

)
,

v2 =
(
y1(x1,i − x1,j), . . . , yN (xN,i − xN,j)

)
.

Using the Cauchy-Schwarz inequality and ‖x,i − x,j‖22 = 2(1− ρ), we obtain

D(i, j) =

∣∣∣∣∣
√
pl1 β̂i

‖β̂l1‖2
−
√
pl2 β̂j

‖β̂l2‖2

∣∣∣∣∣
≤

1

Nε
‖v1‖2‖v2‖2

≤
1

Nε

√
N‖x,i − x,j‖2 =

√
2(1− ρ)
√
Nε

.

ut
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B Omitted Numerical Results

This section contains the experimental setup and results that are omitted in Section 4.

Omitted Results in Section 4.1

Hyperparameter Tuning

All the penalty parameters are tuned using a separate validation dataset. Specifically, we divide all the N training samples into

two sets, dataset 1 and dataset 2 (validation set). For a pre-specified range of values for the penalty parameters, dataset 1 is

used to train the models and derive β̂, and the performance of β̂ is evaluated on dataset 2. We choose the penalty parameter

that yields the minimum unpenalized loss of the respective approaches on the validation set. As to the range of values for the

tuned parameters, we borrow ideas from [16], where the LASSO was tuned over 50 values ranging from λm , ‖X′y‖∞ to a

small fraction of λm on a log scale. In our experiments, this range is properly adjusted for the GLASSO estimators. Specifically,

for GWGL and GSRL, the tuning range is:
√

exp(lin(log(0.005 · ‖X′y‖∞), log(‖X′y‖∞), 50))/max(p1, . . . , pL), where the

function lin(a, b, n) takes in scalars a, b and n (integer) and outputs a set of n values equally spaced between a and b; the exp

function is applied elementwise to a vector. Compared to LASSO, the values are scaled by max(p1, . . . , pL), and the square root

operation is due to the `1-loss function, or the square root of the `2-loss used in these formulations. For the GLASSO with

`2-loss, the range is: exp(lin(log(0.005 · ‖X′y‖∞), log(‖X′y‖∞), 50))/
√

max(p1, . . . , pL).

Implementation of Spectral Clustering

In our implementation, the k-nearest neighbor similarity graph is constructed, where we connect x,i and x,j with an undirected

edge if x,i is among the k-nearest neighbors of x,j (in the sense of Euclidean distance) or if x,j is among the k-nearest neighbors

of x,i. The parameter k is chosen such that the resulting graph is connected. Recall that we use the Gaussian similarity function

Gs(x,i,x,j) , exp
(
− ‖x,i − x,j‖22/(2σ2

s)
)
, (33)

to construct the graph. The scale parameter σs in (33) is set to the mean distance of a point to its k-th nearest neighbor [30].

We assume that the number of clusters is known in order to perform spectral clustering, but in case it is unknown, the eigengap

heuristic [30] can be used, where the goal is to choose the number of clusters c such that all eigenvalues λ1, . . . , λc of the graph

Laplacian are very small, but λc+1 is relatively large.

The number of dropped groups/features on the surgery data

These results are in Table 5.

The Impact on the Performance Metrics when q = 20%

See Figs. 3 and 4.
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Table 5: The number of dropped groups/features on the surgery data.

LG LG-LASSO LG-Ridge LG-EN GWGL-LG

No. of dropped groups 1 6 2 10 16

No. of dropped features 2 24 2 25 19

Omitted Results in Section 4.2

Pre-processing the Dataset

Data were pre-processed as follows: (i) categorical variables (such as race, discharge destination, insurance type) were numerically

encoded and units homogenized; (ii) missing values were replaced by the mode; (iii) all variables were normalized by subtracting

the mean and divided by the standard deviation; (iv) patients who died within 30 days of discharge or had a postoperative

length of stay greater than 30 days were excluded.
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Fig. 3: The impact of SNR on the performance metrics, q = 20%.



Robust Grouped Variable Selection Using Distributionally Robust Optimization 31

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Within group correlation

1.5

2

2.5

3

3.5

4

M
e
a
n
 M

A
D

GLASSO

GWGL-LR

EN

LASSO

GSRL

(a) Median Absolute Deviation.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Within group correlation

0

0.5

1

1.5

M
e
a
n
 R

R

GLASSO

GWGL-LR

EN

LASSO

GSRL

Ideal RR

Null RR

(b) Relative risk.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Within group correlation

1

1.5

2

2.5

M
e
a
n
 R

T
E

GLASSO

GWGL-LR

EN

LASSO

GSRL

Ideal RTE

Null RTE

(c) Relative test error.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Within group correlation

0

0.1

0.2

0.3

0.4

0.5

0.6

M
e
a
n
 P

V
E

GLASSO

GWGL-LR

EN

LASSO

GSRL

Ideal PVE

Null PVE

(d) Proportion of variance explained.

Fig. 4: The impact of within group correlation on the performance metrics, q = 20%.
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