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Abstract We propose a Distributionally Robust Optimization (DRO) formulation with a Wasserstein-based
uncertainty set for selecting grouped variables under perturbations on the data for both linear regression
and classification problems. The resulting model offers robustness explanations for Grouped Least Absolute
Shrinkage and Selection Operator (GLASSO) algorithms and highlights the connection between robustness
and regularization. We prove probabilistic bounds on the out-of-sample loss and the estimation bias, and
establish the grouping effect of our estimator, showing that coefficients in the same group converge to the
same value as the sample correlation between covariates approaches 1. Based on this result, we propose to use
the spectral clustering algorithm with the Gaussian similarity function to perform grouping on the predictors,
which makes our approach applicable without knowing the grouping structure a priori. We compare our
approach to an array of alternatives and provide extensive numerical results on both synthetic data and a
real large dataset of surgery-related medical records, showing that our formulation produces an interpretable
and parsimonious model that encourages sparsity at a group level and is able to achieve better prediction

and estimation performance in the presence of outliers.
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1 Introduction

We consider the problem of finding a robust regression/classification plane under perturbations on the
training data, when there exists a predefined grouping structure for the predictors, e.g., encoding a categorical
predictor using a group of indicator variables. The goal is to jointly select/drop all variables in a group, i.e.,
induce group sparsity, and produce robust estimates that generalize well out of sample. Grouped variable
selection gives rise to more interpretable models. Moreover, group sparsity leads to an estimation error of
regression coefficients that scales with the number of groups and group sizes, instead of with the raw number

of features in the regression model [17,20].

To perform variable selection at a group level, the Grouped Least Absolute Shrinkage and Selection
Operator (GLASSO) was proposed by [1,33]. Several extensions have been explored in later works, see [34,
18,28,7]. The group sparsity in general regression/classification models has also been investigated, see, for
example, [21] for GLASSO in logistic regression, and [24] for GLASSO in generalized linear models. We note
that most of the existing works endeavor to generalize/modify the GLASSO formulation heuristically to
achieve various goals. However, few of those works were able to provide a rigorous explanation or theoretical

justification for the form of the penalty term.

In this work we attempt to fill this gap by casting the robust grouped variable selection problem into a
Distributionally Robust Optimization (DRO) framework, which induces robustness via minimizing a worst-case
expected loss function over a probabilistic ambiguity set that is constructed from the observed samples and
characterized by certain known properties of the true data-generating distribution. DRO has been an active
area of research in recent years, due to its probabilistic interpretation of the uncertain data, tractability when
assembled with certain metrics, and extraordinary performance observed on numerical examples, see, for
example, [14,13,26,12,8,9]. [11] demonstrated the advantage of DRO through providing its finite sample
and asymptotic convergence properties, showing that DRO often exhibits improved generalization and tail
performance. The uncertainty set in DRO can be constructed (i) through a moment ambiguity set [10,15,36],
or (#i) as a ball of distributions centered at some nominal distribution defined via some probabilistic distance

metric such as the ¢-divergence, the Prokhorov metric, and the Wasserstein distance.
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We consider a DRO formulation with the uncertainty set being a ball of distributions defined via the
Wasserstein metric, motivated by the fact that (i) the Wasserstein metric takes into account the closeness
between support points while other metrics only consider the probabilities on these points, and (i) the
Wasserstein ambiguity set is rich enough to contain both continuous and discrete relevant distributions,
while other metrics such as the Kullback-Leibler (KL) divergence, do not allow for probability mass outside
the support of the nominal distribution. We show that in Least Absolute Deviation (LAD) and logistic
regression (LG), for both non-overlapping and overlapping predictor groups, the Wasserstein DRO model can
be reformulated as a regularized empirical loss minimization problem, where the regularizer coincides with
the GLASSO penalty, and its magnitude is equal to the radius of the distributional ambiguity set. Through
such a reformulation we establish a connection between regularization and robustness and offer new insights

into the GLASSO penalty term.

We should note that such a connection between robustification and regularization under norm-bounded
deterministic disturbances in the predictors has been discovered in [31,32,3]. Within the Wasserstein DRO
framework, such an equivalence has been established for LG in [25], and for LAD regression in [8]. More
recently, [26,13] have provided a unified framework for connecting the Wasserstein DRO with regularized
learning procedures. None of the aforementioned works, however, considered grouped variable selection; our
work sheds new light on the significance of exploring the group-wise DRO problem. It is worth noting that
[5] has studied the group-wise regularization estimator with the square root of the expected loss under the
Wasserstein DRO framework and recovered the Grouped Square Root LASSO (GSRL). Here, we present a
more general framework that includes both the LAD and the negative log-likelihood loss functions, under
both non-overlapping and overlapping group structures. Moreover, we point out the potential of generalizing

such results to a class of loss functions with a finite growth rate.

Another contribution of this work lies in adding a correlation-based pre-clustering step to GLASSO, as
a consequence of a grouping effect result derived specifically for our DRO GLASSO estimator. This has a
similar flavor to [6], where they considered a pre-clustering step based on either the canonical correlation
between groups or the sample correlation between covariates and validated their approach from the standpoint

of statistical consistency. Here, we justify the correlation-based clustering from the optimization point of



4 Ruidi Chen, Ioannis Ch. Paschalidis

view, by analyzing the optimality conditions satisfied by the DRO GLASSO estimator. We summarize our

contributions as follows.

— We propose a Wasserstein DRO formulation for inducing group sparsity under perturbations on the data
for linear regression and classification with both non-overlapping and overlapping predictor groups.

— We establish a connection between robustness and regularization under group sparsity, offering robustness
explanations for GLASSO algorithms.

— We show probabilistic bounds on the prediction and estimation errors of the DRO estimator, and establish
its grouping effect from an optimization perspective.

— We propose a purely data-driven, correlation-based pre-clustering step to DRO GLASSO, rendering our
model applicable when the group structure is not known a priori.

— We validate the superiority of our DRO GLASSO model through providing extensive numerical results on

both synthetic data and a large dataset of surgery-related medical records.

The remainder of the paper is organized as follows. Section 2 introduces the Wasserstein GLASSO
formulations for LAD and LG. Section 3 establishes a desirable grouping effect for the solutions, which leads
to a correlation-based pre-clustering step on the predictors. Section 4 presents numerical results on both
synthetic data and a real very large dataset with surgery-related medical records. Conclusions are in Section 5.
Proofs and additional numerical results are in the Appendix.

Notational conventions: We use boldfaced lowercase letters to denote vectors, ordinary lowercase
letters to denote scalars, boldfaced uppercase letters to denote matrices, and calligraphic capital letters to
denote sets. E denotes expectation and P the probability of an event. All vectors are column vectors. For
space saving reasons, we write X = (z1,...,Z,) to denote the column vector x € R™. We use prime to denote

transpose, || - || for the general norm operator, and ||x||, = (3, |z:|?)*/? for the £, norm, where p > 1.

2 Problem Formulation

In this section we describe the model setup and derive what we call the Groupwise Wasserstein Grouped

LASSO (GWGL) formulation for a LAD regression model and an LG model.
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2.1 GWGL for Continuous Response Variables

Consider a linear regression model:

y =XB" +n, (1)
where y = (y1,...,yn) is the response vector, X is an N x p design matrix, with i-th row x|} being the
predictor vector for the i-th sample, 3* € RP is the vector of regression coefficients, and n € R” is a random
noise vector. We assume that the predictors belong to L prescribed groups, with group size p;, I =1,...,L,
and ZzL:1 p1 = p (no overlap among groups). We use x ; € RY to denote the j-th column of X, corresponding
to the j-th predictor. A p;-dimensional vector B' denotes the vector of regression coefficients for group I. For
a generic predictor vector x € RP, we decompose it into L groups x = (x!,...,x%), each x' containing the p,
predictors of group .

The main assumption we make regarding 3* is that it is group sparse, i.e., ,Bl = 0 for [ in some subset
of {1,...,L}. Our goal is to obtain an accurate estimate of 3" under perturbations on (X,y). Suppose we
have N ii.d. samples (x;,¥;), i = 1,..., N. We model stochastic disturbances on the data via distributional
uncertainty, and apply a Wasserstein DRO framework to inject robustness into the solution. Our learning
problem is formulated as:

inf sup E¢ [ly—x'8l], (2)
B Qen
where (x,y) € RP*! denotes a generic predictor-response pair; and Q is the probability distribution of (x,y).

The inner optimization problem is over Q in some set {2 defined as:
N2{QeP(2): Wi(Q, Py) < e}, (3)

where € > 0 specifies the size of the ambiguity set 2, Z is the set of possible values for (x,y), P(Z) is
the space of all probability distributions supported on Z, Py is the empirical probability distribution that
assigns equal probability on each training sample point (x;,v;), 4 =1,..., N, and W7 (Q, P ~) is the order-one

Wasserstein distance between Q and Py defined on the metric space (Z,s) by:

Wi(Q, Py) £ mi 11(d d 4
1(Q, Py) HG%?XZ){/ZXES((Xl’yl)7(XQ’y2)) (d(x1,1), (X27y2))}a (4)
where we use the metric s((x1,41), (X2,y2)) = |[(x1,y1) — (X2, y2)]|| for the regression setting; and IT is the

joint distribution of (x1,41) and (X2, y2) with marginals Q and Py, respectively.



6 Ruidi Chen, Ioannis Ch. Paschalidis

We assume that all the N training samples (x;,v;),4 = 1,..., N, are independent and identical realizations
of (x,y), which comes from a mixture of two distributions, with probability ¢ from an “outlying” distribution
Pous and with probability 1 — ¢ from the true distribution P. Our goal is to generate estimators that are

consistent with the true distribution P. We next show that if ¢ < 0.5, and € chosen judiciously, this is possible.

Theorem 2.1 Suppose we are given two probability distributions P and P, and the mizture distribution

Poiz s a convex combination of the two: Ppe = qPour + (1 — ¢)P. Then,

Wl (Pout»Pmiz) _ 1- q
Wl (P7 Pmiw) q .

Theorem 2.1 implies that when ¢ < 0.5, and W1 (P, Prix) < € < W1 (Pout, Pmix), for a large enough sample
size (so that Py is a good approximation of Pp,;x), the probabilistic ambiguity set 2 will include the true
distribution and exclude the outlying one, thus providing protection against the disturbances.

The formulation in (2) is robust since it minimizes over the regression coefficients the worst case expected
loss; the latter being the expected loss maximized over all probability distributions in the ambiguity set (2.
Formulation (2) injects additional robustness by adopting the LAD loss, rendering it more robust to large
residuals and yielding a smaller estimation bias [8].

It has been shown in [8] that (2) could be relaxed to:

N
.1
inf = [yi = xiB] + €| (=6, 1)]|-. (5)
s NI

where || ||« is the dual norm of || -||, which is the norm used to define the distance function s in the Wasserstein

metric (4). The dual norm is defined as [|0]]. £ SUD||4| <1 8'z. Our GWGL formulation will be derived as a
special case of (5), using a specific notion of norm on the (x,y) space that reflects the group structure of the

predictors and takes into account the group sparsity requirement. Specifically, for a vector z with a group

structure z = (z',...,z"), define its (q,t)-norm, with ¢, > 1, as:

Izl = (i(nzﬂq)t)”t

The (g,t)-norm of z is actually the ¢;-norm of the vector (||z!|,,...,|/z"||,), which represents each group

vector z!

in a concise way via the £4-norm.
Inspired by the LASSO where the ¢;-regularizer is used to induce sparsity on the individual level, we wish

to deduce an ¢1-norm penalty from (5) on the group level to induce group sparsity on 3*. This motivates the
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. . A 1 1
use of the (2, 00)-norm on the weighted predictor-response vector zy, = (\/ﬁxl7 R \/EXL, My), where the
weight vector is w = (\/1?1’ cee \/%, M), and M is a positive weight assigned to the response. Specifically,

1 1 1 I }
=max ¢ —||x"||2,..., —||x"||2, M . 6

In (6) we normalize each group by the number of predictors, to prevent large groups from having a large
impact on the distance metric. The || - ||2,00 operator computes the maximum of the £2 norms of the (weighted)
grouped predictors and the response. It essentially selects the most influential group when determining the
closeness between two points in the predictor-response space, which is consistent with our group sparsity
assumption in that not all groups of predictors contribute to the determination of y, and thus a metric that
ignores the unimportant groups (e.g., || - [|2,00) is desired.

To obtain the GWGL formulation, we need to derive the dual norm of | - ||2,00. A general result that

applies to any (g,t)-norm is presented in the following theorem.

Theorem 2.2 Consider a vector x = (x',...,xL), where each x' € RP', and 3", p; = p. Define the weighted

(r, s)-norm of x with the weight vector w = (w1, ...,wy) to be:
L
1/s
Ixwlles = (3 (et )7)
1=1
where Xy = (w1x!, ..., wrx®), w; > 0,VI, and r,s > 1. Then, the dual norm of the weighted (v, s)-norm with

weight w is the (q,t)-norm with weight w=1, where 1/r+1/q=1,1/s+1/t =1, and w=! = (1/wy,..., 1/ wy).

Now, let us go back to (6), which is the weighted (2,00)-norm of z = (x!,...,x% y) with the weight
w = (\/%1, e \/%, M). According to Theorem 2.2, the dual norm of the weighted (2, co)-norm with weight
w evaluated at some 3 = (-B%,..., —BE, 1) is

L
- 1
. 1
Bw-1ll2.1 = ;1 VoulBll2 + U

where w™' = ({/p1, ..., /DL, 1/M). Therefore, the GWGL formulation for Linear Regression (GWGL-LR)

takes the following form:
1N L
inf — > [y — X] : 7
o 57 22 b=+ vl @
where the constant term 1/M has been removed. We see that by using the weighted (2, 00)-norm in the

predictor-response space, we are able to recover the commonly used penalty term for GLASSO [1,33]. Our
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Wasserstein DRO framework offers new interpretations for the GLASSO penalty from the standpoint of the
distance metric on the predictor-response space and establishes the connection between group sparsity and
distributional robustness.

2.2 GWGL for Binary Categorical Response Variables

In this subsection we will explore the GWGL formulation for binary classification problems. Let x € R?
denote the predictor and y € {—1,+1} the associated binary label to be predicted. In LG, the conditional

distribution of y given x is modeled as

P(ylx) = (1+ exp(—yB'x)) ",

where 8 € RP is the unknown coefficient vector (classifier) to be estimated. The Mazimum Likelihood

FEstimator (MLE) of 3 is found by minimizing the negative log-likelihood (logloss):
Ip(x,y) = log(1 + exp(—yB'x)).
To apply the Wasserstein DRO framework, we define the following distance metric:

|x1 — x|, if y1 =2,
s((x1,91), (X2,92)) = (8)

0, otherwise.

>

Through (8) we emphasize the role of y in determining the distance between data points, i.e., samples from
different classes are considered to be infinitely far away from each other. Our robust LG problem is modeled
as:

inf sup E© [log(1 + exp(—yB'x))], (9)
B Qe

where Q is the probability distribution of (x,y), belonging to some set {2 that includes all probability
distributions whose order-one Wasserstein distance (on the metric space (Z,s) where Z = RP x {—1,+1}) to

the empirical distribution Py is no more than e. In the following theorem, we reformulate (9).

Theorem 2.3 Suppose we observe N realizations of the data, denoted by (x;,vy;), i =1,...,N. When the

Wasserstein metric is induced by (8), the DRO problem (9) can be reformulated as:

N

. P . 1

inf E™ [1g(x, y)] + el|Bll. = inf 1= > log(1 + exp(=y:8'x:)) + el|B]l.. (10)
i=1
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We note that [25,26,13] arrive at a similar formulation to (10) by other means of derivation. Different
from these existing works, we will consider specifically the application of (10) to grouped predictors where

the goal is to induce group level sparsity on the coefficients/classifier. As in Section 2.1, we assume that the

predictor vector x can be decomposed into L groups, i.e., x = (x!,... ,XL), each x' containing p; predictors

of group [, and Zle p; = p (no overlap among groups). To reflect the group sparse structure, we consider

1 1 1

T X ,...,WXL), where the weight vector is

the (2,00)-norm of the weighted predictor vector x,, = (

w = (\/1?17 ey \/%) According to Theorem 2.2, the dual norm of the weighted (2, 00)-norm with weight
w = (\/%,..., \/%) evaluated at 3 is:

L
1Bw-1ll21 =Y voillB'2,

1=1
where w=! = (\/p1,...,+/PL), and ,Bl denotes the vector of coefficients corresponding to group [. Therefore,

the GWGL formulation for LG (GWGL-LG) takes the form:
| X L
inf > log(1-+ exp(—yi8'x.) +¢ > VATl (11)
i=1 =1

The above derivation techniques also apply to other loss functions whose growth rate is finite, e.g., the
hinge loss used by the Support Vector Machine (SVM), and therefore, the GWGL SVM model can be
developed in a similar fashion. It is also worth noting that the regularizer in our tractable reformulation (10)
is related to the growth rate of the loss function, with the magnitude of the penalty being the radius of the
Wasserstein ball [8,13]. This enables new perspectives of the regularization term and provides guidance on

the selection/tuning of the regularization coefficient.

2.3 GLASSO with Overlapping Groups

In this subsection we will explore the GLASSO formulation with overlapping groups, and show that our
Wasserstein DRO framework recovers a latent GLASSO approach that was first proposed in [23].

When the groups overlap with each other, the penalty term Zlel N 18']|2 leads to a solution whose
support is almost surely the complement of a union of groups [19]. In other words, setting one group to
zero shrinks its covariates to zero even if they belong to other groups, in which case these other groups

will not be entirely selected. [23] proposed a latent GLASSO approach where they introduce a set of latent
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variables that induce a solution vector whose support is a union of groups, so that the estimator would
select entire groups of covariates. Specifically, define the latent variables v! € RP, [ = 1,..., L, such that
supp(vl) Cc G!, I =1,..., L, where supp(v') C {1,...,p} denotes the support of v!, i.e., the set of predictors
i €{1,...,p} such that Ué #£ 0, and G' denotes the set of predictors that are in group [. Our assumption is

that 3 [y, Iy such that G'* N G # (. The latent GLASSO formulation has the form:
| N L
. !
s LN ; lp(xi,yi) + € ; dif[v*l2,

s.t. B = Zvl,

=1

(12)

~

where [g(x;,y;) denotes the loss at sample (x;,¥;), and d; is a user-specified penalty strength of group I. Let
vl,1=1,...,L, denote an optimal solution of (12). By using the latent vectors, Formulation (12) has the
flexibility of implicitly adjusting the support of the latent vectors such that for any i € supp(¥') where ¥! = 0,
it does not belong to the support of any non-shrunk latent vectors. As a result, the covariates that belong to
both shrunk and non-shrunk groups would not be mistakenly driven to zero. Formulation (12) favors solutions
which shrink some v! to zero, while the non-shrunk components satisfy supp(vl) = G!, therefore leading to
estimators whose support is the union of a set of groups.

To show that (12) can be obtained from the Wasserstein DRO framework, we consider the following

weighted (2, oo)-norm on the predictor space:
s(x) = mlaxdl_1||xl\|2. (13)

For simplicity, we treat the response y as a deterministic quantity so that the Wasserstein metric is defined
only on the predictor space. The scenario with stochastic responses can be accommodated by introducing
some constant M. [23] showed that the dual norm of (13) is O(3) £ Zlel di||v!]]2, with B = ZLL:1 vl, and

B — O(B) is a valid norm. By reformulating (12) as:

N L
. 1 . .
uglf NZzﬁ(xi,y,») +e0(B), withO(8) =  min Y dif|v!]s, (14)
i=1 s g 1=
we have shown that (12) can be derived as a consequence of the Wasserstein DRO formulation with the
Wasserstein metric induced by (13). In fact, (14) is equivalent to a regular GLASSO in a covariate space of

higher dimension obtained by duplication of the covariates belonging to several groups. For simplicity our

subsequent analysis assumes non-overlapping groups.
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3 Grouping Effect of the Estimators

In this section we establish a grouping effect for the solutions to GWGL-LR and GWGL-LG, which measures
the similarity of the estimated coefficients in the same group. Ideally, for highly correlated predictors in the
same group, it is desired that their coefficients are close so that they can be jointly selected/dropped (group
sparsity). The discussion on the prediction and estimation quality of the solutions is deferred to Appendix A.

To investigate the grouping effect of the estimators, we examine the difference between coefficient estimates

as a function of the sample correlation between their corresponding predictors in the following theorem.

Theorem 3.1 Suppose the predictors are standardized (columns of X have zero mean and unit variance). Let
N A1
B € R be the optimal solution to (7) (or (11)). If x; is in group Iy and xj is in group la, and |3 " ||l2 # 0,

~lg
8" ll2 # 0, define

|\/ml \/WJ
18" 18112

Then,

2(1—p)
D 7”] S =
(4,7) .
where p = xfixﬂ» is the sample correlation, and pi,,p1, are the number of predictors in groups l1 and la,

respectively.

Theorem 3.1 establishes a unified result for the grouping effect of the GWGL-LR and GWGL-LG solutions.

When x; and x ; are both in group { and ||Bl\|2 # 0, it follows

~l
-yl < YA DU, (15)

From (15) we see that as the within group correlation increases, the difference between Bl and Bj becomes
smaller. In the extreme case where x; and x ; are perfectly correlated, Bl = Bj. This grouping effect enables
recovery of sparsity on a group level when the correlation between predictors in the same group is high, and
implies the use of predictors’ correlation as a grouping criterion. One of the popular clustering algorithms,
called spectral clustering [27,22], performs grouping based on the eigenvalues/eigenvectors of the Laplacian
matrix of the similarity graph that is constructed using the similarity matriz of data, and divides the data

points (predictors) into several groups such that points in the same group are similar and points in different
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groups are dissimilar to each other. The similarity matrix measures the pairwise similarities between data

points, which in our case could be the pairwise correlations between predictors.

4 Numerical Results

In this section we compare our GWGL formulations with other commonly used predictive models. In the
linear regression setting, we compare GWGL-LR with models that either (i) use a different loss function, e.g.,
the traditional GLASSO with an ¢5-loss [33], and the Group Square-Root LASSO (GSRL) [7] that minimizes
the square root of the ¢5-loss; or (i7) do not make use of the grouping structure of the predictors, e.g., the
Elastic Net (EN) [35], and the LASSO [29]. For classification problems, we consider alternatives that minimize
the empirical logloss plus penalty terms that do not utilize the grouping structure of the predictors, e.g., the

¢q-regularizer (LG-LASSO), ¢5-regularizer (LG-Ridge), and their combination (LG-EN).

4.1 GWGL-LR on Synthetic Datasets

In this subsection we will compare GWGL-LR with the aforementioned models on several synthetic datasets.
The data are generated as follows. (1) Set 55 to 0.5 if predictor 7 belongs to an even group, and 0 otherwise. (2)
Generate x € R? from the Gaussian distribution N, (0, X'), where X = (O'iyj)fv ;j—1 has diagonal elements equal
to 1, and off-diagonal elements o; ; equal to p,, if predictors ¢ and j are in the same group, and 0 otherwise.
Here, p,, is called the within group correlation. (3) With probability 1 — g, generate y from N (x’3*,0?), and
with probability ¢, generate y from N(x’3* + 50,02), where o2 is the intrinsic variance of y, and ¢ is the
probability of abnormal samples (outliers).

We generate 10 datasets consisting of N = 100 training samples and M; = 60 test samples with 4 groups
of predictors, where py = 1,ps = 3,p3 = 5,p4 = 7, and p = Zlepi = 16. We are interested in studying
the impact of (i) Signal to Noise Ratio (SNR), defined as: SNR = (8")' X 3" /0%, and (ii) the within group
correlation p,,. The performance metrics are: (i) Median Absolute Deviation (MAD) on the test set, defined
as the median value of |y; — X;B|, i=1,..., M;, with B being the estimate of 3" obtained from the training

set, and (x;,¥;), i = 1,..., My, being the observations from the test set; (ii) Relative Risk (RR), Relative

Test Error (RTE), and Proportion of Variance Explained (PVE) of 3 (definitions in Appendix B).
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Before solving for the regression coefficients, the grouping of predictors needs to be determined. Unlike
most of the existing works where the grouping structure is assumed to be known a priori, we propose to use

a data-driven clustering algorithm to group the predictors based on their sample correlations. Specifically,

we consider the spectral clustering [27,22] algorithm with the Gaussian similarity function Gs(x;,x ;)

exp (— |lx,; — x;]13/(202)) that captures the sample pairwise correlations between predictors, where o i

some scale parameter whose selection is discussed in Appendix B.
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Fig. 1: The impact of within group correlation on the performance metrics, ¢ = 30%.

We plot two sets of graphs: (i) the performance metrics v.s. SNR, where SNR is equally spaced between

0.5 and 2 on a log scale, and p,, is set to 0.8 times a random noise uniformly distributed on the interval
[0.2,0.4]; and (i) the performance metrics v.s. p,, where p,, takes values in (0.1,0.2,...,0.9), and SNR is
fixed to 1. In the graphs for RR, RTE and PVE, we also plot the ideal scores, which are the values achieved
by ,3 = 3%, and the null scores, which are the values achieved by fi = 0. Results for ¢ = 30% are in Figs. 2

and 1 while results for ¢ = 20% can be found in Appendix B.
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Fig. 2: The impact of SNR on the performance metrics, ¢ = 30%.

To better highlight the benefits of GWGL-LR, we define the Mazimum Percentage Improvement (MPI) to
be the maximum percentage difference of the performance metrics between GWGL-LR and the best among

all others. The MPI values for all metrics are shown in Tables 1 and 2 where we summarize the MPI brought
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about by our methods compared to other procedures, when varying the SNR and p,,, respectively. In all

tables, the number outside the parentheses is the MPI value corresponding to each metric, while the number

in the parentheses indicates the value of SNR/p,, at which the MPI is attained.

Table 1: MPI of all metrics when varying the SNR.

MAD RR RTE PVE
q=20% 13.7 (0.5) 41.4 (1.47) 13.1 (1.47) 68.9 (0.79)
q = 30% 14.7 (1.08) 40.9 (1.08) 17 (1.08) 85.7 (0.68)

Table 2: MPI of all metrics when varying the within group correlation.

MAD RR RTE PVE
q=20% 8.2 (0.1) 80.5 (0.9) 31.8 (0.9) 145.4 (0.9)
q = 30% 10.2 (0.1) 41.9 (0.1) 16.7 (0.1) 162.5 (0.1)

We summarize below our main findings from the results we have presented: (i) for all approaches, MAD

and RR decrease as the data become less noisy. PVE increases when the noise is reduced; (#4) the GWGL-LR

formulation has better prediction and estimation performance than all other approaches under consideration.

When the within group correlation is varied, GWGL-LR shows a more stable performance; and (iii) the

relative improvement of GWGL-LR over GLASSO is more significant for highly noisy data. Moreover,

GWGL-LR generates more stable estimators than GLASSO.

4.2 Surgery Dataset

In this section we test our GWGL formulations on a real dataset obtained from the National Surgical Quality

Improvement Program (NSQIP) containing medical records of patients who underwent a general surgical

procedure. The dataset includes (¢) baseline demographics; (ii) pre-existing comorbidity information; (ii7)

preoperative variables; (iv) index admission-related diagnosis and procedure information; (v) postoperative

events and complications, and (vi) additional socioeconomic variables.
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In our study, patients who underwent a general surgery procedure over 2011-2014 and were tracked by the
NSQIP were identified. We will focus on two supervised learning models: (i) a linear regression model whose
objective is to predict the post-operative hospital length of stay, and (¢¢) an LG model whose objective is to
predict the re-hospitalization of patients within 30 days after discharge. Both models are extremely useful as
they allow hospital staff to predict post-operative bed occupancy and prevent costly 30-day readmissions.

The post-processed datasets include a total of 2,275,452 records, with 131 numerical predictors for the
regression model and 132 for the classification model. The spectral clustering algorithm is used to group the
predictors, with the number of groups specified as 67 based on a preliminary analysis.

For predicting the hospital length of stay, we report the mean (std.) of the out-of-sample MAD across 5
repetitions in Table 3. Our GWGL-LR formulation achieves the lowest mean MAD with a small variance; we
improve the mean MAD by 7.30% over the best alternative. For longer hospital length of stay, this could

imply 1 or 2 days improvement in prediction accuracy, which is both clinically and economically significant.

Table 3: The mean and standard deviation of MAD on the surgery data.

GLASSO | GWGL-LR EN LASSO GSRL
Mean (Std.) 0.17 0.16 0.17 0.17 0.17
(0.0007) (0.001) (0.0009) (0.0009) (0.0009)

For predicting the re-hospitalization of patients, we notice that the dataset is highly unbalanced, with
only 6% of patients being re-hospitalized. To obtain a balanced training set, we randomly draw 20% patients
from the positive class (re-hospitalized patients), and sample the same number of patients from the negative
class, resulting in a training set of size 53,616. All the remaining patients are assigned to the test dataset. All
formulations achieve an average out-of-sample ACC' (the prediction accuracy on the test dataset) around
0.62, an average out-of-sample AUC (Area Under the ROC Curve) of 0.83, and an average logloss on the
test set ranging from 0.84 to 0.87. We define a new performance metric, called the Within Group Difference
(WGD), to measure the ability of the solution to induce group level sparsity.
Bi = B;

7

XX,

D

xq,x; EX!

)

L 1 1
WGD(B) £ 1 S ay 2

Iip;>2 \2
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where |[{l : p; > 2}| denotes the cardinality of the set {/: p; > 2}, and x/;x ; measures the sample correlation
between predictors x; and x;. Theorem 3.1 implies that the higher the correlation, the smaller the difference
between the coefficients, and thus, a smaller WGD value would suggest a stronger ability of grouped variable
selection. Table 4 suggests that GWGL-LG encourages group level sparsity. From Table 5 (see the Appendix)
we conclude that though LG-EN and LG-LASSO obtain the most parsimonious model at an individual level,

GWGL-LG has a stronger ability to induce group level sparsity.

Table 4: The WGD of the estimators on the surgery data.

LG LG-LASSO | LG-Ridge LG-EN GWGL-LG
Mean (Std.) 23.93 16.28 23.38 16.26 5.04 (0.45)
(1.28) (0.72) (1.15) (0.74)

5 Conclusions

We proposed a DRO formulation under the Wasserstein metric that recovers the GLASSO penalty for LAD
and LG, through which we have established a connection between group-sparse regularization and robustness.
We provided insights on the grouping effect of our estimators, which suggests the use of spectral clustering
with the Gaussian similarity function to perform grouping on the predictors. We reported results from several
experiments, showing that our formulations achieve more accurate and stable estimates, and have a stronger

ability of inducing group level sparsity.
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Appendix
A Omitted Theoretical Results and Proofs

This section contains the theoretical statements and proofs that are omitted in Sections 2 and 3.
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Proof of Theorem 2.1

Proof From the definition of the Wasserstein distance, Wi (Pout, Pmix) is the optimal value of the following optimization problem:

min / s(z1,22) H(le,dZQ)
IIeEP(ZXZ) ZXZ
s.t. / H(Zl,ZQ)dZQ = Pout(z1),Vz1 € Z, (16)
Z
/ H(Z1,ZQ)dzl = qPout(z2) + (1 — q)P(2z2),Vz2 € Z.
Z

Similarly, Wi (P, Pyix) is the optimal value of the following optimization problem:

min / s(z1,22) H(dz1,dz2)
IIeEP(ZXZ) ZXZ

s.t. / H(Zl,ZQ)dZQ = ]P’(zl),Vzl € Z, (17)
Z
/ H(z1,22)dz1 = qPout(z2) + (1 — q)P(2z2),Vz2 € Z.
Z

We propose a decomposition strategy. For Problem (16), decompose the joint distribution I as IT = (1 — q)S + ¢T', where S

and T are two joint distributions of z; and z2. The first set of constraints in Problem (16) can be equivalently expressed as:

1- q)/ S(zl,zg)dzg + q/ T(zl,zg)dzg = (1 — ¢)Pout(z1) + ¢Pout(z1), V21 € Z,
Z Z
which is satisfied if
/ S(Z1722)d22 = ]P]out(zl), / T(Z17Z2)dz2 = ]P’out(zl),Vzl €z
Z Zz

The second set of constraints can be expressed as:

(1- q)/ S(z1,22)dz1 +q/ T (z1,22)dz1 = qPout(z2) + (1 — q)P(z2), V22 € Z,
zZ zZ

which is satisfied if

/ S(Zl,zz)dzl = ]P’(ZQ), / T(Z1,Z2)dZ1 = Pout(ZQ),VZQ € Z.
zZ zZ

The objective function can be decomposed as:

/ s(z1,2z2) H(dzl,dZQ) = (1- q)/ s(z1,2z2) S(dzl,dZQ) + q/ s(zl,ZQ)T(dzl,dZQ).
ZXZ ZXZ ZXZ
Therefore, Problem (16) can be decomposed into the following two subproblems.

Se?g?iznxz) fz><z s(z1,22) S(dz1,dz2)
Subproblem 1: st. [z S(z1,22)dz2 = Pout(z1), V21 € Z,
fZ S(Zl,ZQ)dzl = P(ZQ),VZQ (S
TG'lgr(lngZ) foZ s(z1,22) T(dzl,dzz)
Subproblem 2: s.t. fZ T(Z17Z2)d22 = Pout (zl),Vzl € Z,

fZT(Zl,Zg)dzl = ]P’out(ZQ),VZQ € Z.
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Assume that the optimal solutions to the two subproblems are S* and T, respectively, we know ITp = (1 — ¢)S* +¢T™* is a

feasible solution to Problem (16). Therefore,

W1(Pout; Pmix) S/ s(z1,22) Iy (dz1, dz2)
ZXZ
(1 _ (18)
- (1 q) Wl (Pout ) P) + qu (Pouty IPout)
= (1 - Q)Wl (Pout,]P))-
Similarly,

Wl (Pv 11:Dmix) S qWI (Pouty P) (19)

(18) and (19) imply that

Wl (Pout 5 ]Pmix) + Wl (]P)7 ]Pmix) S Wl (Pouh P)- (20)
On the other hand, based on the subadditivity of the Wasserstein metric, we have,
Wl (Pout ) 11:Dmix) + Wl (]Py Pmix) 2 Wl (Pout: P)

We thus conclude that

Wl (Pout 5 Pmix) + Wl (]P7 ]Pmix) - Wl (Pouta P) (21)

To achieve the equality in (21), (18) and (19) must be equalities, i.e.,
Wi (Pout» H:Dmix) = (1 - q)Wl (Pout: P)v

and,

Wl (Py Pmix) = qu (]Pouta P)

To see this, notice that if either (18) or (19) is a strict inequality, then (20) becomes a strict inequality, which contradicts (21).

Thus,
Wy (Poutypmix) _ (1 - CI)W1 (Poutylp) _ 1-— q
Wi (P7 IFDrnix) qu (Pout 5 P) q '
O
Proof of Theorem 2.2
Proof We will use Holder’s inequality, which we state for convenience.
Holder’s inequality: Suppose we have two scalars p,g > 1 and 1/p 4+ 1/q = 1. For any two vectors a = (a1, ...,an) and
b = (b1,...,bn),
~ ~ 1/p /& 1/q
> asbil < (D laal?) (3 1bal)
i=1 i=1 i=1
The dual norm of || - ||r,s evaluated at some vector 3 is the optimal value of problem (22):
max x'(3
X
(22)

st [xwllrs < 1.
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We assume that B has the same group structure with x, i.e., 3 = (ﬁl, ... ,ﬁL). Using Holder’s inequality, we can write

L L
1 1
fB:EJWMVC—d)szmwﬂmH—H
=1 wi =1 wi

q
Define two new vectors in R
1 L 1 1 .r
Xnew = (”wlx ||7“7---7HwLx “’P)v ﬂnew = 7ﬁ IR} 7ﬁ .
w1 q wr q
Applying Holder’s inequality again to Xnew and B,,.,,, we obtain:
x/ﬁ S X;IE’UJBTLEM
S ”x’ﬂew”S”ﬁnew“t
L t\ 1/t
1/s 1
- () (5 (o))
=1 =1 l q
Therefore,
X'B < [xwllrslBw-1llg.t < 1Bw-1llq.t;
due to the constraint ||Xw||r,s < 1. The result then follows. [}

Proof of Theorem 2.3

Proof To derive a tractable reformulation of the DRO-LG problem (9), we borrow the idea from [8] and [14], which states that
for any Q € (2,
[E2 15, )] — 7~ [16(x,v)]|
:‘/ lg(x1,91)Q(d(x1,¥y1)) — / la(XQ,yz)I@’N(d(X%yQ))'
z z
(23)
='/ lﬁ(thl)/ Io(d(x1,y1), d(x2,y2)) — / l,@(xz,yz)/ Iy (d(x1,y1), d(x2,92))
z z z z
S/ [18(x1,y1) — lg(x2,y2) | Ho(d(x1, 1), d(x2, y2)),
ZXZ
where Ilg is the optimal solution in the definition of the Wasserstein metric, i.e., it is the joint distribution of (x1,y1) and
(x2,y2) with marginals Q and Py that achieves the minimum mass transportation cost. Comparing (23) with the definition of
the Wasserstein distance, we wish to bound the following growth rate of lg(x,y):

|la(x1,91) — Ip(x2, 32)|
S((xl’ yl)» (X2,y2))

, Y(x1,91), (x2,2),

in order to relate |EQ lg(x,y)] —EPN [ls(x,y)]| with W1(Q, Px). To this end, we define a continuous and differentiable univariate
function h(a) £ log(1 + exp(—a)), and apply the mean value theorem to it, which yields that for any a,b € R, 3¢ € (a,b) such

that:
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By noting that Ig(x,y) = h(yB'x), we immediately have:

[lg(x1,y1) — lg(x2,92)| < |y18'x1 — y28'x2]
< lyixa — yaxa||l18]]« (24)

< S((XL yl)’ (x27 yQ))HIBH*: V(Xl, yl)v (x27 yQ):
where the second step uses the Cauchy-Schwarz inequality, and the last step is due to the definition of the metric s in (8).

Combining (24) with (23), it follows that for any Q € (2,

‘EQ[ZB(X:?J)} —EFN [lﬁ(&y)}‘ < HﬁH*/sz8((x17y1)7(X27yz))Uo(d(xlyyl),d(x2vy2))

= 1B W1(Q, Bn) < €|l

Therefore, the DRO-LG problem can be reformulated as:

N

. B .1

fE [t (6, )] +ellBll- = inf 5 > log(1 4 exp(—yif'x0)) + /Bl
i=1

Prediction and Estimation Performance of the GWGL-LR Estimator

We are interested in two types of performance criteria: (1) Prediction quality, or out-of-sample performance, which measures
the predictive power of the GWGL solutions on new, unseen samples. (2) Estimation quality, which measures the discrepancy
between the GWGL solutions and the underlying unknown true coefficients.

We note that GWGL-LR is a special case of the Wasserstein DRO formulation derived in [8, Eq. 10], and thus the two types
of performance guarantees derived in [8], one for generalization ability (prediction error), and the other for the discrepancy
between the estimated and the true regression coefficients (estimation error), still apply to our GWGL-LR formulation.

We first establish a bound for the prediction bias of the solution to the GWGL-LR formulation, where the Wasserstein

metric is induced by the weighted (2, co)-norm with weight w = ( ,M). The dual norm in this case is just the

1
VP /PL
weighted (2, 1)-norm with weight w=1 = (\/p1, ..., /PL, 1/M). Throughout this section we use 3* and 3 to denote the true and

estimated regression coefficient vectors, respectively. We first state several assumptions that are needed to establish the results.

Assumption A The weighted (2, 00)-norm of the uncertainty parameter (x,y) with weight w = (\/171’ R \/%, M) is bounded

above by R almost surely.

Assumption B For every feasible B, ||(—8%,...,—BL,1)y-1ll2,1 < B, where w—* = (\/p1,...,+/PL,1/M).
Let ,3 be an optimal solution to (7), obtained using the samples (x;,¥;), ¢ = 1,..., N. Suppose we draw a new i.i.d. sample

(x,y). Using Theorem 3.3 in [8], Theorem A.1 establishes bounds on the error |y — x’3|.

Theorem A.1 Under Assumptions A and B, for any 0 < § < 1, with probability at least 1 — § with respect to the sampling,

N _
. 1 - 2BR = _ 8log(2/4)
Efly — x’ < — E 4 ~—— +B —o
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and for any ¢ > (2BR/VN) + BR+/810g(2/5)/N,

% B > 1 )
Tl = X8l + 22 + BRy/ SRR
N X Iy = X8l +¢

o1 X R
Py x'Bl 2 5 Dl —xiBl+¢) <
i=1

Theorem A.1 essentially says that with a high probability, the expected loss on new test samples using our GWGL-LR
estimator can be upper bounded by the average loss in the training samples plus two terms that are related to the magnitude of
the regularizer B, the uncertainty level R, the confidence level §, and converge to zero as O(1/v/N). This result justifies the
form of the regularizer used in (7) and guarantees a small generalization error of the GWGL-LR solution.

We next discuss the estimation performance of the GWGL-LR solution. Thm. A.2, a specialization of Thm. 3.11 in [§],

provides a bound for the estimation bias in GWGL-LR. We first state the assumptions that are needed to establish the result.
Assumption C The £3 norm of (—3,1) is bounded above by Bs.
Assumption D For some set
A(B*) = cone{v] [(=B" 1)1 + Vy-1ll2,0 < (8" 1)yp-1ll2,2} NSPH
and some positive scalar a, the following holds,

inf Vv/'ZZ'v > a,
veA(B*)

where Z = [(X1,Y1),--.,(XN,yN)] is the matriz with columns (x;,yi),3 = 1,...,N, and SPT! is the unit sphere in the

(p + 1)-dimensional Fuclidean space.

Assumption E (x,y) is a centered sub-Gaussian random vector, i.e., it has zero mean and satisfies the following condition:
/
X = su X u < u.
Ioewlly, = sup [lIow) ulll,, <
Assumption F The covariance matriz of (x,y) has bounded positive eigenvalues. Set I' = E[(x,y)(x,y)’]; then,
0< Amm £ /\mm(F) < /\maz(r) £ Amaz < 00.

Definition 1 (Sub-Gaussian random variable) A random variable z is sub-Gaussian if it is zero mean, and the ¥2-norm
defined below is finite, i.e.,

(E|z[9)1/a
lzlly, & sup BT o
q>1 Va

An equivalent property for sub-Gaussian random variables is that their tail distribution decays at least as fast as a Gaussian, i.e.,
P(|z[ > t) < 2exp{-t?/C?}, Vi >0,

for some constant C. A random vector z € RP+! is sub-Gaussian if z’'u is sub-Gaussian for any u € RP*+1. The t2-norm of a

vector z is defined as:

lelly, 2 sup [la"wll,,,

where SP*1 denotes the unit sphere in the (p + 1)-dimensional Euclidean space.
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Definition 2 (Gaussian width) For any set A C RPTL its Gaussian width is defined as:

w(A) £ E[Egiu'g],

where g ~ N(0,1) is a (p + 1)-dimensional standard Gaussian random vector.

Theorem A.2 Suppose the true regression coefficient vector is 3* and the solution to GWGL-LR 1is B Under Assumptions A,
C, D, E, and F, when the sample size N > C1i*p2(Amaz/Amin) - (W(A(B*)) + 3)2, with probability at least
1 — exp(—=CaN/i*) — Ca exp(—C3 (w(Bu))?/(4p?)),

CRBap
—w

B—pB2<
Il I N

(Bu)¥(87),

where i = pn/(1/Xmin); po is the Y2-norm of a standard Gaussian random vector g € RPHL: w(A(B*)) is the Gaussian width
(defined below) of A(B*) (cf. Assumption D); w(By) is the Gaussian width of By, where By is the unit ball of the norm || - ||oo;

p =supyeg, IVll2; ¥(B") = supyc 4(g+) [Vw-1ll2,1; and C1,C2,C4,Cs,C are positive constants.

With Thm. A.2, we are able to provide bounds for performance metrics, such as the Relative Risk (RR), Relative Test Error
(RTE), and Proportion of Variance Explained (PVE) [16]. All these metrics evaluate the accuracy of the regression coefficient
estimates on a new test sample drawn from the same probability distribution as the training samples. Let (X0, yo) be such a test
sample satisfying yo = x(8" + 1o, where 7 is random noise with zero mean and variance 02, and independent of the zero mean

predictor xg. For a fixed set of training samples, let the solution to GWGL-LR be B As in [16], define

5 _ EC0B—x(B")° _ (B-B)S(B-67)
W= gmy T @yse

where 3 is the covariance matrix of xg, which is just the top left block of the matrix I" in Assumption F. RTE is defined as:

_ Eo —x(B)> _ (B-B")Z(B-B") + o?

RTE(B) — = =
PVE is defined as:
o Ewo-x(B)? . (B-B)Z(B-B)+o°
PVER) =1~ =ty L (B*)=B* +02

Using Theorem A.2, we can bound the term (,@ — ﬂ*)/Z(,@ — 3%) as follows:

C_’Rég,u

2
B (E)) (25)

B=B")Z(B - B") < Amac(D)1B - B3 < Amaz(z)(

where A\pmaz(X) is the maximum eigenvalue of X. Using (25), bounds for RR, RTE, and PVE can be readily obtained and are

summarized in the following Corollary.
Corollary A.3 Under the specifications in Theorem A.2, when the sample size
N > C1p* g (Amaz/Amin) (w(A(B")) + 3)%,

with probability at least 1 — exp(—CaN/fi*) — Cyexp(—CE(w(Bu))?/(4p?)),

o 2
Amaz (X) (C]'\,H;\]if:w([j’u)gp(ﬂ*))
(B*)Ep* '

RR(B) <
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R 2
)\maz(Z)(%if:w(Bu)W(g*g +o?
o2

o 2
Amaz(E)(%ﬁ‘w(Bu)W(g*)) + 02
(B*)ZB" + o2 '

where all parameters are defined in the same way as in Theorem A.2.

RTE(B) <

)

PVE(3) >1—

Predictive Performance of the GWGL-LG Estimator

In this subsection we establish bounds on the prediction error of the GWGL-LG solution. Similar to [8], we will use the Rademacher
complexity of the class of logloss (negative log-likelihood) functions to bound the generalization error. Two assumptions that
impose conditions on the magnitude of the regularizer and the uncertainty level of the predictor are needed.

1 1

Assumption G The weighted (2,00)-norm of x with weight w = ( ) is bounded above almost surely, i.e.,

||XW||2,oo < Rx.
Assumption H The weighted (2,1)-norm of B with w—1 = (V/P1,--,/PL) is bounded above, namely, supg [|By-1ll2,1 = Bj.
Under these two assumptions, the logloss could be bounded via the Cauchy-Schwarz inequality.
Lemma A.4 Under Assumptions G and H, it follows
log (1 + exp(—yﬁ’x)) < log (1 + exp(RxB1)), almost surely.
Now consider the following class of loss functions:
L= {(xy) = la(x,9) : lg(x,y) = log (1 + exp(~yB'x)), |By-1ll2,1 < B1}.

It follows from [8,4] that the empirical Rademacher complezity of L, denoted by R (L), can be upper bounded by:

2log (1 + exp(RxB1))

RN (L) < TN

Then, applying Theorem 8 in [2], we have the following result on the prediction error of our GWGL-LG estimator.

Theorem A.5 Let 3 be an optimal solution to (11), obtained using N training samples (xi,ys), i = 1,..., N. Suppose we
draw a new i.i.d. sample (x,y). Under Assumptions G and H, for any 0 < § < 1, with probability at least 1 — & with respect to

the sampling,

N _
N 1 ; 2log (1 + exp(RxB1)) . 8log(2/9)
E[log (1 + exp(fyx'ﬁ))] < = Z log (1 + exp(fyix;,ﬁ)) + + log (1 + exp(RxBl)) ——= (26)
N3 VN N
and for any ¢ > QIOE(L\/}R\;R"M +log (1 + exp(RxB1))4 /81%(2/5)!
. 1 X .
P(log (1 +exp(~yx'B)) > 1 > log (1 + exp(-uixi)) + <)
= (27)

LSV log (1 + exp(—yixB)) + 21esUtexpUBL) 1og<1+3(%(3x31>> +log (1 + exp(Rx B1)) /) 318(2/9)
& 1Ly log (1 + exp(—yix(B)) +¢

Theorem A.5 implies that the groupwise regularized LG formulation (11) yields a solution with a small generalization error

on new i.i.d. samples.



Robust Grouped Variable Selection Using Distributionally Robust Optimization 25
Proof of Theorem 3.1 for GWGL-LR
Proof By the optimality condition associated with formulation (7), 3 satisfies:
/ 2\ Bz
x/;sgn(y — XB) = Ney/pr, — (28)
181
xfjsgn(y — XB) = Ne/Pr, — (29)
||,3 ||
where the sgn(-) function is applied to a vector elementwise. Subtracting (29) from (28), we obtain:
- VPl 3; VPi B
(xi = x,5)'sgn(y — XB) = N€< T ljj> :
18702 18712
Using the Cauchy-Schwarz inequality and ||x,; — x,;||3 = 2(1 — p), we obtain
‘\/leﬁz VP Bi
! ~1
187 2 11872
< -l = gl lsgn(y — XB)ll
2(1 —
< V20 -p)
vV Ne
O
Proof of Theorem 3.1 for GWGL-LG
Proof By the optimality condition associated with formulation (11), B satisfies:
N ’
exp(—yxx},B)
S RV s = ey (30)
=1 L+ exp(—yrx.8) ||5 ||
N R
exp(—ykx},8) B;
Z R e ki = Ney/pi, #, (31)
=1 L +exp(— ykxkﬁ) 187 l2
where zj ; and xj ; denote the i-th and j-th elements of xy, respectively. Subtracting (31) from (30), we get:
N i
exp(—yrx;.0) NN \/’Pz
Z R (g — k) = ( 17 Vel (32)

< 1+ exp(—yxx,B) 182 1812

Note that the LHS of 32 can be written as V/1V2, where

v ( exp(—y1x}3) exp(—ynx/yB) )
I+exp(—y1xiB)" 1+ exp(—ynxyB)
va = (yi(z1,i —@15), - YN(@NG — TN,5))-

Using the Cauchy-Schwarz inequality and ||x; — x,;||3 = 2(1 — p), we obtain

VP B PP

D(i,j>=‘ P D
R ERE
< Livallafval
— ||V Vv
= Ne 112 21|12
L i 20
< VN[ xlle = Y2
Ne \/Ne
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B Omitted Numerical Results

This section contains the experimental setup and results that are omitted in Section 4.

Omitted Results in Section 4.1
Hyperparameter Tuning

All the penalty parameters are tuned using a separate validation dataset. Specifically, we divide all the N training samples into
two sets, dataset 1 and dataset 2 (validation set). For a pre-specified range of values for the penalty parameters, dataset 1 is
used to train the models and derive B, and the performance of B is evaluated on dataset 2. We choose the penalty parameter
that yields the minimum unpenalized loss of the respective approaches on the validation set. As to the range of values for the
tuned parameters, we borrow ideas from [16], where the LASSO was tuned over 50 values ranging from Anm, 2 ||X'y|co to a

small fraction of A\, on a log scale. In our experiments, this range is properly adjusted for the GLASSO estimators. Specifically,

for GWGL and GSRL, the tuning range is: 1/exp(lin(log(0.005 - [ X'y][s0), log(|[ X’y |ls), 50))/ max(p1, - . ., pr,), where the

function lin(a, b, n) takes in scalars a, b and n (integer) and outputs a set of n values equally spaced between a and b; the exp
function is applied elementwise to a vector. Compared to LASSO, the values are scaled by max(p1,...,pr), and the square root
operation is due to the £1-loss function, or the square root of the £2-loss used in these formulations. For the GLASSO with

£2-loss, the range is: exp(lin(log(0.005 - [|X'y||oo), log(||X'y]|oc), 50))/+/max(p1, .. .,pL).

Implementation of Spectral Clustering

In our implementation, the k-nearest neighbor similarity graph is constructed, where we connect x ; and x ; with an undirected
edge if x ; is among the k-nearest neighbors of x ; (in the sense of Euclidean distance) or if x ; is among the k-nearest neighbors

of x ;. The parameter k is chosen such that the resulting graph is connected. Recall that we use the Gaussian similarity function
2 2
Gs(x,i,x,5) = exp (= [Ix,i — x,;[3/(202)), (33)

to construct the graph. The scale parameter o5 in (33) is set to the mean distance of a point to its k-th nearest neighbor [30].
We assume that the number of clusters is known in order to perform spectral clustering, but in case it is unknown, the eigengap
heuristic [30] can be used, where the goal is to choose the number of clusters ¢ such that all eigenvalues A1, ..., Ac of the graph

Laplacian are very small, but A.41 is relatively large.

The number of dropped groups/features on the surgery data

These results are in Table 5.

The Impact on the Performance Metrics when q = 20%

See Figs. 3 and 4.
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Table 5: The number of dropped groups/features on the surgery data.

LG LG-LASSO | LG-Ridge LG-EN GWGL-LG

No. of dropped groups 1 6 2 10 16

No. of dropped features 2 24 2 25 19

Omitted Results in Section 4.2

Pre-processing the Dataset

Data were pre-processed as follows: (i) categorical variables (such as race, discharge destination, insurance type) were numerically

encoded and units homogenized; (i7) missing values were replaced by the mode; (7i:) all variables were normalized by subtracting

the mean and divided by the standard deviation; (iv) patients who died within 30 days of discharge or had a postoperative

length of stay greater than 30 days were excluded.
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Fig. 3: The impact of SNR on the performance metrics, ¢ = 20%.
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