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Abstract

This paper studies how to reduce the overall travel time of commuters in a transportation network by
reversing the direction of some lanes using a macroscopic network-wide perspective. Similar to the Network
Design Problem, the lane reversal problem has been shown to be NP-hard given the dependence of the users’
route selection on the lane direction decision. Herein, we propose and compare three efficient methods to
solve the routing and lane reversal problem jointly. First, we introduce an alternating method that decouples
the routing and lane assignment problems. Second, we propose a Frank-Wolfe method that jointly takes
gradient steps to adjust both the lane assignment and routing decisions. Third, we propose a convex
approximation method that uses a threshold-based approach to convexify the joint routing and lane reversal
objective. The convex approximation method is advantageous since it finds a global optimum solution for
the approximated problem and it enables the possibility to include linear constraints. Using this method,
we extend the main formulation to be able to limit a maximum number of reversed lanes, as well as to
incorporate multiple origin-destination (OD) patterns. We test the proposed methods in a case study using
the transportation network of Eastern Massachusetts where our results indicate an overall reduction in travel
times of 4.7% by selecting the best 15 reversals. Moreover, using a small test network, we investigate the
performance of the lane reversal strategies as a function of the OD demand symmetry. As expected, we
observe that when the OD demand is very asymmetric (e.g., for a single OD pair, evacuations, large events),
the reduction in travel times is larger than the symmetric case, reaching travel time reductions of 60%.

Keywords: Intelligent Transportation Systems, Smart Cities, Contraflow Lane Reversal,
Network Optimization.

1. Introduction

The rise in convenience of human mobility has brought traffic congestion to our cities and thus the
imperative need for improving efficiency, reducing greenhouse gas emissions, and reducing travel times.
While many advances have been made in this direction, like the creation of new modes of urban mobility
services (e.g., bike sharing systems) and the emergence of Connected and Automated Vehicles (CAVs), there
are still open questions related to the efficiency of Intelligent Transportation Systems (ITS).

One way to reduce traffic congestion without building new roads is to increase the network’s capacity
by dynamically adjusting the direction of the lanes of the transportation infrastructure. The idea consists
of reversing the direction of some lanes in the network during a specific time interval, for example, for the
morning peak period. These schemes are known as Lane Reversals (or Contraflow Lane Reversals) and
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(b)

Figure 1: (a) Illustration of a typical lane reversal signal. (b) Diagram of the Braess’ network with specific number of lanes
and directions. (c) Barrier transfers (or road zippers).

have been already implemented in Mexico City, Montreal, and other cities during rush hour times. Solving
the network-wide problem of identifying which are the best lanes to reverse is relevant for transportation
agencies as it helps them plan the future transportation infrastructure by providing an estimate of the
achievable benefits that lane reversals may provide.

Perhaps one of the most critical practical challenges when operating a lane reversal system is the com-
munication and coordination with the drivers, since changing the direction of a lane too often may cause
drivers’ confusion. Current lane reversal systems built to reduce traffic congestion indicate the direction
of the reversible lanes with overhead signals or road zippers, see Figs. 1la and lc, respectively. Still, the
infrastructure manager has to provide with structured (not too flexible) schedules to avoid confusing the
drivers. Propitiously, the rise of CAVs can address such limitations by their ability to communicate with
the infrastructure enabling the possibility to implement lane reversals more aggressively, either by doing it
for more roads, or by dynamically changing the direction of a single road more often.

In this paper we take a macroscopic network flow planning perspective to address the lane reversal
problem. Rather than focusing on when to reverse a particular lane, we are interested in finding the
lane configuration that minimizes traffic congestion for a given Origin-Destination (OD) demand pattern.
Figure 1b illustrates this view of the problem, where, given a network topology and an OD demand, we seek
to find the best lane directions to minimize travel times. In Figure 1b, the link connecting nodes 2 and 3
has two lanes. One has been allocated to direction (2,3) and the other still needs to be determined.

Most of the literature concerned with contraflow lane reversals has concentrated on two main applications:
(i) reversing lanes for evacuation routing during emergencies and (ii) alleviating traffic congestion. For
evacuation planning, the problem has been studied using simulation and network flow models. Simulation
methods by Jha et al. [1] and Theodoulou and Wolshon [2] showed that evacuation route capacity can
be improved by 53% and 73%, respectively when designing appropriate lane reversals. These methods
selected the reversals using the specific network knowledge from transportation managers. Different than
simulation, network flow models presented by Cova and Johnson [3] formulate the problem as a mixed-integer
program (MIP) and use a generic solver to find a solution. Their numerical results suggests evacuation time
improvements in Salt Lake City of 30% to 40%. Similarly, Zhao et al. [4] and Xie and Turnquist [5] used the
MIP heuristic Tabu search to solve the evacuation network problem while considering road intersections in
the network representation. In addition to these numerical results, Kim et al. [6] showed that the network
flow lane reversal problem is NP-complete and suggested using a greedy heuristic algorithm to find solution.

The research concerned with reducing traffic congestion has focused on reversing lanes for a single
bottleneck road (e.g., tunnels and bridges) or for the full network. For single roads, rule-based [7], optimal
control [8], discrete model predictive control [9], and fuzzy controllers [10, 11] have been proposed and they
typically rely on the fundamental diagram of traffic flow [12]. More recently, and taking into account the
advent of CAVs, a lane-free approach was proposed by Malekzadeh et al. [13] where a fluidic boundary is



dynamically adapted depending on the number and type of vehicles present in a road. Finally, Levin and
Boyles [14] used a microscopic cell-transmission model for which they solved the single lane reversal problem
using a heuristic method based on congestion estimates. Their results show a 21.8% reduction in total
system travel time. Although these methods provide useful techniques to manage a lane reversal system,
they are implemented once a link has been selected to have reversible lanes.

Instead, network-wide methods seek to identify the best links to apply a lane reversal system in the
network. To tackle this problem, most researchers have formulated it as a MIP. Unfortunately, these classes
of problems are generally NP-hard. To address this issue, Chu et al. [15] used a distributed alternating
direction method of multipliers (ADMM) to decompose the problem into smaller instances which are still
integer programs. Their numerical results show that travel times for a small subnetwork of New York City
could be improved by 61%. Hausknecht et al. [16] and Meng and Khoo [17] solved the networked reversal
problem using genetic algorithms and report increases in efficiencies on the order of 72% for the city of
Austin. Note that these models do not have guarantees on finding a global optimal solution. However, their
results show that these algorithms work well in practice.

Relatedly, the network-wide lane reversal problem shares similarities with the Network Design Problem
(NDP) whose objective is to minimize the total network travel time by identifying the best investments for
the network given a limited budget. A main difference between the NDP and the lane reversal problem is
that the NDP assumes that perturbations on the capacity of a link affect only that link. In contrast, when
dealing with lane reversals we have to account for some shared capacity between opposite direction links,
i.e., (i,7) and (j,4) which involves an additional relationship. A difficulty with NDPs, and the network-wide
lane reversals, is that the objective is typically non-convex due to the interaction of the flow and capacity
decision variables by a term a? /2% where x represents flow; z capacity; and p and g are known integers. Due
to this issue, many algorithms have been proposed to find local optimal solutions for the NDP using pattern
search [18] and gradient-based methods [19]. For a survey on this topic, we refer the reader to [20] and [21].

Closer to our work, four recent articles develop global optimal methods for an approximation of the NDP:
Liu and Wang [22], Wang et al. [23], Wang and Lo [24] and Luathep et al. [25]. The first two convexify
the zP /27 term by approximating it with In(z?/2%) = pIn(z) + zIn(¢q) which generate two concave terms.
Then, they use a tight linear approximation for the logarithmic function that reduces the problem to a
mixed integer linear program (MILP). The latter two use a two-dimensional piecewise affine approximation
of the term. Although theoretically this approximation works well, it requires many decision variables in
the resulting MILP. In turn, our work uses a piecewise affine approximation only for the flow variables and
we bundle the relationship with the capacity variable through a threshold-based function. Moreover, we
account for additional constrains needed to solve the lane reversal rather than the NDP.

Finally, we note that our discussion so far focuses on the static traffic assignment and that there is a set
of literature on NDPs for the dynamic traffic assignment [26, 27, 28]. The main two advantages of using
the static traffic assignment over a dynamic one are that: (i) a solution can be computed efficiently even for
large-scale networks; (ii) in many cases we can ensure global, rather than local optimality. Mostly for these
reasons, this modelling framework has prevailed in the transportation community for decades and remains
a central model for performing analysis of the network conditions.

The contribution of this paper is threefold. First, we provide three methods to solve the lane reversal
problem while considering the routing decisions of commuters. The first method consists of decoupling the
routing and lane assignment problems and solving them sequentially to reach a joint solution. Our second
method approach uses a Frank-Wolfe algorithm which takes a gradient step for both capacity and routing
while maintaining feasibility. Both of these methods can only aspire to local optimal solutions. Lastly, we
propose a framework that convexifies the objective function such that the resulting problem is tractable and
can be optimized to find the global minimum of the convexified problem.

Second, we emphasize extensions to our convex approximation approach as it enables writing the problem
as a linear program (LP) or an integer linear program (ILP). This is convenient because it permits restricting
the maximum number of allowable reversals, as well as selecting the best reversals of a network when
considering multiple origin-destination demand patterns.

Our third contribution is to provide several case studies and numerical results for our methods. In
particular we observe that for asymmetric OD demands, for example in the case of a single OD pair, the
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benefits of lane reversals are around 65% (matching the results obtained in [15, 16, 17]). In addition to
this single OD pair example, we perform a case study using an OD demand matrix estimated using traffic
data from the Eastern Massachusetts Area (EMA) transportation network. In this case, our results show
that overall travel times in the network can be improved by 4.5%. Besides these numerical results, we
observe that the greedy/incremental approach of reversing the best lane, then letting commuters adjust,
and subsequently reversing the next best lane can reach a sub-optimal local minimum which is considerably
higher than solving the problem jointly.

Building on our model and preliminary analysis in Wollenstein-Betech et al. [29], this paper: (i) Addresses
a different and harder problem where we optimize jointly the routing decisions of commuters and the lane
reversals rather than assuming fixed flows as in our previous analysis. (ii) Devises three families of algorithms
to solve the proposed joint problem: alternating, Frank-Wolfe, and a relaxation to a convex program. (iii)
Provides extensions to our convex approximation method to allow the selection of the best set of links to
perform reversals for multiple OD demand matrices. (iv) Extends our numerical results section by comparing
the proposed approach with additional methodologies.

The rest of the paper is structured as follows. In Section 2 we present the model preliminaries and the
problem formulation. In Section 3 we introduce the three main methodologies employed to solve the lane
assignment problem. Section 4 discusses extensions of our convex model; e.g., constraining the model to a
maximum number of reversals and employing the model for multiple origin-destination demand patterns.
Section 5 reports numerical results of the different methods over a case study using the Eastern Massachusetts
Area (EMA) and a smaller test network, and Section 6 concludes.

2. Model and Problem Formulation

2.1. Preliminaries

We represent the transportation network using a directed graph denoted by G and composed by the set
of nodes V and the set of links A. We assume G to be strongly-connected such that every node is reachable
from any other node in the network, and let the node-arc incidence matrix of G be N € {0, 1, —1}MX‘A|.
For every link (4,7) in A, we denote its number of assigned lanes to be z;;; its capacity per lane be c;j;
and its total capacity be m;; = z;;¢;; expressed in vehicles per hour. To establish the relationship between
opposite direction links, i.e., (4,7),(j,7) € A, we let n;; be the maximum number of lanes in a road (i.e.,
n;; is the maximum number of lanes a link can have if all lanes in the road are facing the same direction).
Hence, n;; = ny;.

To model the user trips, let K be the number of Origin-Destination (OD) pairs and W = {wy, = (g, tx) :

=1,..., K} the set of all OD pairs. For every wy, let the demand rate of trips (veh/hr) from its source
node s € V to the target node ¢ € V be dy,, > 0.

In addition to user demand, we use ;7" to track the flow in every link (i,7) € A associated with OD

pair wi. Moreover, let z;; represent the (aggregated) total link flow in (4, j), i.e.,

K
k=1

and let x = (z;; (4,75) € A) be the vector of all link flows.

To quantify the travel times in every link, let ¢;;(x;j,2i;) : {R>0,N>0} = R be the latency cost (or
travel time) function of link (4, j) which depends on the link’s flow and on the number of lanes assigned to
the link. Using the same structure as in [30], we characterize t;;(x;j, zi;) as:

tij(@ij, 2i5) = t?jf(ﬂ)v (2)

CijZij

where f(-) is a strictly increasing, positive, and continuously differentiable function, and t?j is the free-flow
travel time on arc (4,7). We set f(0) = 1, which ensures that if there is no constraint on the arc’s capacity,
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the travel time ¢;; equals the free-flow travel time t?j. A widely used function by transportation engineers
is the Bureau of Public Roads (BPR) function [31]

F@ig/mij) = 1+ oxij/mi;)P. (3)

A common choice is @ = 0.15 and S = 4. For a discussion on how to estimate these functions using flow
data see [32]. Finally, we let the vector of travel latency functions be t(x,z) = (t;;(xij, 2i5); V(4,5) € V)
where z = (z;5; (4,7) € A) is the vector of lane assignment variables.

In this paper, all vectors are column vectors and denoted by bold lowercase letters. We use “prime” to
denote transpose, and use 1 to denote the vector whose entries are all ones. We refer to the cardinality of
a set S by |S|. For reference, in Appendix A we have included a notation table.

2.2. LASO-TAP Problem

Using the definitions presented above, we now can formulate the Lane-Assignment System-Optimal Traf-
fic Assignment Problem (LASO-TAP) as follows:

min  t(x,2z)'x (4a)
—dwk, lf] = Sk,

s.t. Z oyt — Z 2 =10, if j # spoty, Vk=1,...,K, YjeEV, (4Db)
i:(¢,5)€A £:(3,0)eA dwk, ifj =,

zij + zji S nij, V(i J) € A, (4c)

ke R 7 e NI (4d)

where in the objective (4a) we are minimizing the overall travel time; constraint (4b) ensures that x is a
feasible vector which complies with demand satisfaction and conservation of flow; constraint (4c) ensures
that the number of assigned lanes does not exceed the maximum number of available lanes (we have an
inequality instead of an equality to give more flexibility to the problem, however, it is possible to impose an
equality constraint, if desired); and (4d) restricts z to be a vector of integer variables.

2.2.1. Origin-based formulation

The total number of variables introduced in the LASO-TAP formulation (4) is |A|(]W] + 1), which is
typically dominated by the number of OD pairs |WW|. In practice, this number can be very large, sometimes
up to |V|2. Hence, solving (4) for real networks require large memory capabilities. To mitigate this problem,
we aggregate flows by origin, similar to [33, 34]. This aggregation reduces the number of variables to
|A|(1 + |V]), which significantly improves the computation time.

Let the set of origins (sources) be O = {s : dw, > 0, k=1,...,K} and let the flow vector with o
as it source to all possible destinations be x°. The total user flow on a link is then x = > _,x° and we
define the set of user origin-link variables to be x© = {x°: 0 € O}. For every origin o € O and every node
Jj €V, let ¢o; be the node imbalance describing its excess demand or supply. This is:

Z *dwka lfj =0,

te W EW
%o =4, if (0,7) ¢ W, (52)
dw, , if j =t and s = o.



Using these definitions, we can formulate the origin-based LASO-TAP as follows:

JMINLP = H’Cl)in t(X,Z)IX (6&)
s.t. Z T — Z T5 = ¢o; Vi€V, VoeO, (6b)
i:(4,j)EA L:(j,0)eA
zij + 2ji Snij,  V(i,j) € A, (6c)
"t e R zen (6d)

Despite the reduction from (4) to (6), the LASO-TAP remains hard to solve for several reasons. First,
the interaction between the decision variables in (4a) and (6a) makes the objective non-convex. This comes
from the fact that when multiplying (3) by z;; we get the term ’yijxfjﬂ / zfj where v;; = ozt?j / c’fj Second,
we are optimizing over a set of integer variables z which increases the computational complexity of the
problem. Still, (6) reduces the dimensionality of (4) and makes the problem more manageable to solve.
In the following sections we present modifications to this problem formulation to enable efficient solution
methods.

The problem as stated in (4) and (6) is a lane assignment problem rather than a lane reversal problem.
This distinction is negligible when we are capable to reverse all lanes in the network. In reality, the trans-
portation infrastructure is not very flexible and might not be able to handle many lane reversals. Hence,
we are interested in considering a sparse lane assignment problem in which we limit the number of lane
reversals. We provide this extension in Section 4.

Remark 1. Note that the LASO-TAP as stated in (4) and (6) is seeking a System-Optimal (SO) solution
to the Traffic Assignment Problem (TAP). We can expect a SO user-behavior when vehicles collaborate
with each other when deciding their routes. This SO user-behavior has been investigated for the presence of
CAVs showing promising time improvements [35, 36]. An interesting theoretical result establishes that by
slightly modifying the objective function, the same algorithms that solve a SO TAP are capable of solving
the User-Centric (UC) TAP. In particular, Dafermos and Sparrow [37, Thm. 1.5] discusses the relationship
between the solution to these two problems where they show that if a solver is available for the SO problem,
then it can be used to find a solution to the UC problem by replacing every element of the objective
Tijtij(2ij, 2i5) with [ t;;(s, z;;)ds. Analogously this can also be seen by employing the Beckmann et al.
[30] UC formulation where the objective is to minimize  ; ;¢ 4 Jo ¥ tij(s, zij)ds. For the classical BPR
function specified in Equations (2) and (3) we have that [ t;;(s, z;;)ds = 195 (1 + F11( “ii )y In

CijZij

this paper we will mainly focus on the SO case, but our framework can handle both SO and UC TAPs. A
comparison between the solution of these two is provided in Section 5.8.

3. Methods

We have discussed how the LASO-TAP problem is hard to solve for several reasons. First, the objective
is non-convex. Second, the optimization is made over a set of integer variables z. Thus, let us consider
three main strategies to find effective solutions to the problem. To describe these strategies, we first define
a condition that will help us identify if a current solution is at an equilibrium point or not. Intuitively, we
say that Problem (6) is at an equilibrium point if the objective does not improve when we perform a single
reversal in the network. We now state this formally.

Definition 1. An equilibrium point of problems (4) and (6) is found if for all (i,5) € A the following
conditions holds

’lﬁl‘j > 0 VZZ‘]‘ :0,...,nij — 17 and
Yi; 0 Vzi; = ngy,



where ;; captures the difference on the overall travel times between the current solution (x,z) and the
solution when we perform a reversal at link (i,j). Formally, let x*% indicate the updated flow vector when
we add one lane to (i,7) and subtract a lane from (j,i). Similarly, let zT" be the updated lane configuration
where z;rl” = zp + Lky=(i) — Laky=(.) for (k1) € A. Then, v;; is defined as

Vij = t(xT, 2T x T t(x,7)x. (7)

Note that to check whether this condition holds or not, we have to run a TAP to get x*%. Therefore,
to evaluate the vector ¥ = (¢;;;(4,7) € A) we require solving |A| /2 TAPs. Checking this condition in a
sequential algorithm is computationally expensive, but could be used regularly as a measure of closeness to
an equilibrium point. Note that many equilibrium points may be encountered and that assessing the global
optimality of such a point may be a difficult and often an intractable task.

In the following subsections we present three families of algorithms that could be used to efficiently solve
the LASO-TAP problem. First, we introduce an alternating method which consists of decoupling the lane
and traffic assignment problems. Next, we provide a feasible direction (or Frank-Wolfe) algorithm which
reduces the complexity of the problem by solving a fluidic version of it. Finally, we formulate the problem
using a convex approximation for which we develop a piecewise-linear method to find its global minimizer.

3.1. Alternating method

We consider the method of sequentially and iteratively solving two disjoint and easier problems. The
idea consists of first solving the traffic assignment problem (TAP) using any of the standard methods (e.g.,
Method of Successive Averages, Frank-Wolfe, among others) and then solving for the best lane assignment
(LA) for those specific flows. With the new lane allocation, we re-solve the TAP and LA problems and
repeat this procedure until convergence. The LA problem of allocating lanes for a fixed flow vector x is
defined as

JE& =min  t(x,2z)'x (8a)
st 2y + 25 < gy, V(Z,j) € A, (8b)
z e N (8¢)

where the objective (8a) only depends on z. Problem (8) is an integer programming problem with a convex
objective and linear constraints. The convexity comes from the fact that each element J7 is convex in z;;
when we use a BPR function of the form of (3). This is because its second derivative is nonnegative for all
z;j > 0, and by the fact that the summation of convex functions is convex. Moreover, J; is monotonically
decreasing as it decreases when we increase the capacity of arc (i, j).

For a deeper discussion on how to efficiently solve (8) we refer to [29]. However, one can see that (8) is
separable since both the objective and constraints are separable for each pair of opposite direction links (4, 5)
and (4,4). This enables the possibility of distributively solving this problem and obtaining the global optimal
solution. Solving the lane assignment problem is thus on order of O(||n|/) where n = (n;;; (4,7) € A).
This complexity is only true when we allow to reverse any lane in the network. However, if we are interested
in including other coupling constraints, for example constraining a maximum number of reversals, then we
would have to solve the full convex integer programming problem. In [29] we show how this problem can be
reformulated into a linear programming problem.

The family of algorithms presented herein consists of sequentially solving TAP and LA until convergence.
We refer to a family of algorithms since we can restrict the LA problem to have a maximum of reversals
at every iteration. For example if we restrict the LA to only select the best reversal at every iteration, we
would end up with a greedy algorithm. This greedy approach will switch the best lane, then will optimize
flows, and then will look for the next best reversal, and so forth. This approach is natural when urban
planners reverse a lane, i.e., wait to see how traffic responds, re-assess the network conditions, and select
the next most congested link.



3.2. Frank-Wolfe method

A different approach to solve the LASO-TAP problem is to relax the integer variables to continuous ones.
This relaxation is often employed when dealing with integer programming problems and has the benefit of
generating a lower bound. This relaxed problem leads to a non-convex continuous programming problem
for which standard methods can be used to find a local stationary point. In our context, we first derive
an equilibrium condition for the relaxed case which is analogous to the one described in Definition 1. We
quantify the impact on the objective when we reverse an infinitesimal fraction of a lane while assuming that
flows x remain unchanged. Its impact on the objective can be estimated using

0J* 0

8zij 8zij

(%‘tz‘j (g, 2ij) — wjitji(@5i, iy — Zz‘j))- (9)

Then, an equilibrium point for the capacity variables z is that for all (4, 7) in A:

8Jz/8zij =0, for Zij € (O,Hij),
0J%/0z;; >0, for z; =0,
3JZ/8zij < 0, for Zij = Ny

That is, there is no benefit to reversing an infinitesimal unit of capacity for any arc (i,j) for a current flow
solution.

Since the relaxed problem is not convex due to the interaction between the flow and capacity variables
in f(z;;/mij), we cannot ensure that the stable point will be a global optimal but rather a local optimal
solution. We argue that this local solution is better than the initial allocation since at every step we aim to
improve the overall travel time by modifying z.

To solve the joint (x,2z) problem we consider an enlarged Frank-Wolfe algorithm which is similar to the
one used for solving the TAP. At every iteration we find the best routing decisions based on the current
status of the infrastructure and then we immediately take a step of adjusting the capacity for the current flow
solution. Algorithm 1 provides a detailed description of this methodology. When the algorithm terminates,
we simply project the fluidic (continuous) variables to its nearest integer by applying II(z) defined in Step
11 of Algorithm 1. Note that, similarly to the Frank-Wolfe methodology for solving TAP, this method is
memory-efficient [38].

3.3. Convex approximation

The goal of this section is to develop an approximation to the problem such that efficient algorithms
can be employed to find a global optimal solution instead of a local solution. The key idea is transform the
interaction in the objective of x;; with the capacity m;; such that we construct a convex objective. To do so,
we set each link’s capacity using a fixed (nominal or current) number of lanes z?j (its vectorized version z")
where z?j + z?i = n;;. Then, we relate the new lane assignment with the flow in a threshold-based fashion.
Specifically, we propose the following objective:

I;lizn t(x,2%)x + A|| max{0,x — O(z)}|2. (10)
where X is a regularizer that trades off routing efficiency (first term) against not exceeding a link’s capacity
(second term) and © = (0;;(2;,); (i,7) € A) is a vector of affine functions pointing to capacity thresholds.
Note that the objective in (10) seeks a joint solution that avoids that the flow z;; exceeds the capacity
threshold ©,;(z;;). An intuitive function would be to consider ©;;(2;;) = ¢;;2;;, which points to the capacity
of the link (4, j) € A when z;; lanes are assigned to it. However, we allow the more general case in which any
other affine ©;;(z;;) functions can be employed, e.g., a fraction of the link’s capacity that the practitioner
would like to avoid exceeding.



Algorithm 1 LASO Frank-Wolfe

Update SO travel time. t'71 «+ t(x!,2!) + x!V,at(x!, 2!).
Capacity direction finding. Obtain V.J%(z') using (9).
Capacity step size selection. Use o} = af/I.

Move capacity. z!T! « z! — ot V.J?(2!).

1+1
y'h

7: Flow step size selection. Use line search and select as by solving

0<an<1 £ » g
(i,5)eA

8: Move flow. X't + x! + an(y' — x!).
9: Relative gap. Calculate the Relative Gap (RG) using

RG =

$£j+a2(llij*$£j) 41 41
min / tii (w2 )dw
0

(x”l)l (t(x”l, z! ) 4+ Vi t(x! zl“))

Zszl diho

where hy, is the SO shortest travel time (i.e., t(x!,z!) + V,t(x!, z!)) from wg to wy.

Initialization. Set counter [ := 1. Perform all-or-nothing assignment with t! = t(0,2z°). This yields x'.

Flow direction finding. Perform All-or-nothing assignment with t'*!' and z'*! and get auziliary flows

10: Stopping criterion. If RG < & and ||[VJ%(z)|l2 < & or | > L then continue to Step 11. Otherwise,
let I =1+ 1 and go to Step 2. &, &, and L are input parameters that restrict the level of accuracy
of the solution. &; and & identify the maximum desired closeness to a routing equilibrium and a
lane assignment equilibrium, respectively; in turn, £ indicates the maximum number of iterations to

terminate the algorithm.

11: Project 2!t to closest integer: z™ = I1(z'T!) and output (x'*!,z"). To avoid computational issues,
we will let z > 1. To do so let II(z) = (7 (z;;) for (4,) € A) and 7(zi5) = |2i;] + 12,10 — L|2,,1=0-

Using this objective and the inclusion of slack variables s = (s;;; (¢,7) € A) pointing to the flow exceeding

the threshold ©(z), we formulate an approximation to the LASO-TAP problem as follows:

Juzcvx = )Y(nzlrsl; t(x, ZO)IX + Alls[l2

s.t. Z Tij — Z l'jgzqﬁj VjEN,

i:(i,j)EA l:(j,0)eA

zij + 2 < mnig,  V(i,)) € A,

s >x— O(z),

zi; €4{0,1,...,n5;}, V(i,j) € A,
x, s > 0.

which results in a convex mixed integer program with linear constraints.

3.8.1. Piecewise-affine approximation

(11a)

(11b)

Following a similar approach as in [36], we consider approximating the travel latency function, i.e.,
Lij (xij,z?j), with a piecewise affine function as in Figure 2. For every piecewise segment in the range

@

ij

L
n 0 0 ar (1
tij(€ij, 7i5) = ti; <1 + E z()_sz('j))7
=1

)

01(;) <z < 92(;&1) we introduce a slack variable €
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Hence, t;;(xij, 27;) is approximated by



where a; < as < --- < ap, are the slopes of the L segments in the piecewise-affine approximation and
®.

€ij = (aij ;1 =1,...,L). Using this function we obtain the quadratic objective

Tij(eij) = tij(eij, 25) (Veig) = tij(wg, 205w,

where 1'e;; = ;5 (recall that 1 is a vector of all ones) and we define Tj; = t;; (2, 20;)2i;. In [36] we showed
that this piecewise affine approximation for the classical TAP results in a convex quadratic program (QP)
that could be further approximated by a linear program (LP). Using this piecewise affine approximation,
we formulate the LASO-TAP problem as a mixed integer quadratic programming problem (MIQP). To ease
notation we let T(€) = (T;(e4;); (i,5) € A). Then, the problem is written as

Juge = min 1T(E) + AIs|2 (12a)
s.t. Z 1/€ij — Z ]—/Ejk = ¢j, Vj e N, (12b)

i:(i,5)€A k:(j,k)eA

O] (1+1) ® _

0<e; <0; " —06;, l=1..,L (12¢)
zij + zji <ngj,  Y(i,7) € A, (12d)
s >x — O(z), (12e)
Zij S {0,1,...,711‘]‘}, V(Z,j) GA, (].Qf)
s > 0. (12¢g)

An interesting result of this formulation is that we can formulate this problem as a mixed integer linear
program (MILP) by approximating the routing part of the objective (1'T(£)) as in [36] and by penalizing
the slack variables s with an ¢;-norm instead of an ¢3-norm, we let the objective of the MILP be Jyrrp.

Although the problem we are dealing with is NP-hard due to the integrality of z, exact methods such as
branch and bound have been found to perform well in practice. However, in order to guarantee tractability,
we can always relax z by letting it be a non-negative continuous variable. When considering this relaxation,
we can handle it in two different ways. First, we can think of the non-integer part of the solution as a
percentage of the time in which the lane is reversed. For example, if the solution indicates that an optimal
lane configuration is equal to z12 = 4/3 and 221 = 5/3 for a 3 hours period, we can think that for lane (1, 2)
will have 1 lane assigned for the full period and only for one hour will be assigned a second lane. Similarly,
link (2,1) will have 1 lane assigned during the whole period and a second lane will be assigned for 2 hours.
This interpretation can also be employed for the continuous solution of the FW method in Section 3.2 and
Algorithm 1 before performing the projection step. The second approach for which this continuous solution
can be mapped to a feasible solution is by projecting the continuous solution to the closest integer (as in the
proposed Frank-Wolfe method). We let the cost of the relaxzed MIQP and MILP be Jgp and Jyp, respectively.
Moreover, we let the objective of the projections of the solution of QP and LP to the closest integer be Jry(gp)
and Jr(Lp), respectively.

We conclude by observing that this convex approximation approach gives us four different methodologies:
the integer-based NP-hard methods MIQP and MILP; and the polynomial-time methods QP and LP with
their appropriate projections. In addition, in the following lemmata we formalize the relationship of the
solutions of these convex approximation models using classical results from integer programming theory [39)
and affine approximations [36].

Lemma 3.1. For the QP we have that Jgp < Jyrgp < Jri(ge)- Stmilarly, for the LP we have Jip < Jyzp <
Jrze) -

Proof. Since the LP and QP are relaxations of the original MILP and MIQP, Jgp will generate a lower-bound
to Jurqe since the feasible set of the MIQP is a subset of the feasible set of QP. Moreover, when projecting to
the closest integer, Jiygp) Will provide an upper-bound for Jyigp since any feasible solution is an upper-bound
to the optimal solution. The same argument follows for the LP models. O
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Using these results, we can solve a relaxed problem (LP or QP) and its projection in polynomial time
and use the results to assess the performance of the solution by computing the ratio between the upper and
lower bounds, i.e., Jirp)/Jrp. This metric provide an upper bound on the suboptimality of the solution

Jr(p)-

Lemma 3.2. Let the OD demands dy,, , thresholds Gg), the capacities n;; be non-negative and bounded by
above. Let the slope parameters in fij follow a1 < ag < -+ < ap < oo; and ﬂgp(sij), Tg)(sij) be the affine
approzimation functions for the LP and QP models as defined in [36], respectively. Then, as L — oo, we
have that T[ (€i;) — Tgp(eij) for all (i,7) € A.

Proof. The proof follows Lemma 1 and Theroem 2 in [36]. O

This result establishes the relationship between the first element of the objective in (12) for the LP and
QP models. It suggests that the QP yields a better approximation of the original function T'(z) than the LP
problem. Moreover, it indicates that as the number of linear segments, L, increases, the LP approximation
is closer to the QP approximation. Hence, for small L’s, it is desirable to use the QP formulation in terms of
the solution’s quality. However, the LP provide benefits with respect to computational times (as it is later
shown in Section 5.7).

1S 785 T i A B
— #(z/m), n =5
— t(z/m)

3.0 F
2.5 | Fo(1) fp(2)

20

Travel time

1.5

1.0 —— .

1 1 :
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

x/m

Figure 2: Piecewise affine approximation of the travel time function

3.4. Discussion

A few comments are relevant to consider. First, one should note that contraflow lane reversals could
violate our assumption regarding the strong connectivity of G. This may happen since we could disconnect
certain nodes in the network while performing a lane reversal. One way to avoid this issue is to restrict
the solution to maintain at least one lane in each direction of the road. While this approach maintains
connectivity, it may sacrifice some efficiency. An alternative way to handle this issue is by assuming a tiny
amount of demand for every pair of nodes in the network. In this case, the algorithm will avoid disconnecting
the nodes as this tiny flow will incur an infinite cost. In this way, we ensure that there is a path connecting
any two nodes. Note however, that this trick may increase the dimensionality of the problem by increasing
the number of variables. This is because now every node will become an origin in (6).

Second, the convexified version requires tuning A. Although there is no specific way to set A\, we observe
that it is trading off routing with not exceeding a link’s capacity. Fortunately, these two objectives, routing
and not exceeding a link’s capacity, are somehow aligned because as flows get closer to a link’s capacity,
they also become less attractive for routing purposes due to higher travel times (see Figure 2).

Third, we would like to argue the flexibility that the convexified (the MIQP, MILP, QP and LP) ap-
proaches provide in comparison with the alternating and Frank-Wolfe methods. Their main advantage is
that they allow the inclusion of additional linear constraints to our problem. This offers the possibility
to extend the framework to more realistic and practical examples. Another advantage of the convex ap-
proaches, and more specifically the LP approach, is the ability to provide with very low effort sensitivity
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analysis of the solution with respect to the demand vector. Up to now, we have assumed that we have
perfect knowledge of the OD demand. However, this is typically not the case. In addition to sensitivity
analysis, the LP method also allows us to extend this work to handle robust (or uncertainty-aware) instances
of the problem in which the OD demand lies inside an uncertainty set and we aim to choose the best lane
configuration of the worst selection of OD demands [40]. Our LP formulation can accommodate this with
relatively low effort using [41]. Finally, commercial software for solving LPs and QPs is widely available and
has been improved over the years such that it is quite efficient to compute a solution to the problem using
this strategy.

4. Extensions

In the previous section we introduced three main methodologies to solve the lane assignment problem
while considering the routing decisions of commuters. Now, we exploit the convex approximation method-
ology to extend the framework to be suitable for more practical implementations, especially to limit the
number of reversals either by limiting the number of lanes to reverse or limiting the number of links (roads)
to reverse. Imposing a maximum number of reversals becomes relevant for several reasons. First, when
considering the case of human-driven vehicles, we would like to have fewer reversible roads in the network to
avoid confusion. Second, if the transportation agency is planning to invest on infrastructure in these roads,
e.g., surveillance cameras, barrier transfer machines (see Fig. 1c), then the agency will limit the number
of reversible lanes/links in the network due to budget constraints. The extensions presented herein are
suitable for the MIQP and MILP frameworks but are not suitable for LP and QP. This is because we rely
on inequalities that are well-defined for the integer variables but not for the continuous ones.

4.1. Mazimum number of lane reversals

So far we have selected the lane configuration such that it complies with the constraint z;; + z;; = nyj.
Note that this does not consider the current infrastructure status and it assigns lanes to links regardless
of implementation costs. However, transportation infrastructure is, in general, not flexible to perform
many reversals during a day. Therefore, we would like to limit the number of allowable lane reversals. To
achieve that, we seek to ensure that our solution does not deviate too much from the nominal (or current)
configuration. This can be modeled as |2; — zi;| < & where 27; is the current lane allocation in (7, 7) and £ is
the maximum number of lane reversals allowed. Then, using the convex formulation (12) we can simply add
for each link (¢, j) € A, a slack variable r;; > 0 and the linear constraints r;; > z?j — Zij; Tij > —(z?j — Zij);
and E(i,j)G.A Tij < f

4.2. Mazimum number of link reversals

In a similar way to the previous subsection, suppose now that the planner would like to limit the number
of allowable links (instead of lane) reversals. This is relevant because when investing in reversal infrastructure
for a link/road, the cost of reversing one versus multiple lanes may not be significant as compared to the
cost of investing in infrastructure for multiple lanes in different roads. To model this, we introduce for every
arc (i,7) € A the variable

¢i; = min{1, \Z?j — 2|} = max{—1, —r;;}. (13)

where 7;; is defined as in Section 4.1. To introduce this to our MIQP or MILP, we let £ be the number of
allowable link/road reversals and we add the slack variables ¢;; with constraints ¢;; < 0; gi; < r4j; ¢ij > —1;
and Z(z} fHea iy < £. Note that the extension to limit a planning budget, rather than a fixed number of link
reversals, is an immediate result of this formulation. We can simply multiply by a constant b;;, denoting
the cost of investing in a reversal at link (7, j), before each ¢;; in the previous summation, and restrict the
right-hand side by a total budget rather than a maximum number of link reversals. A similar approach can
be followed for the lane reversal extension in Section 4.1, if desired.
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4.8. Multi-period optimization

Until now, we have considered the problem of finding the best lane configuration for a single OD demand
matrix. However, in practice we would like to decide where to invest based on multiple traffic patterns. For
example, by considering the morning and the afternoon peak traffic.

To achieve this, suppose that we have an OD demand matrix for every time interval ¢t € 7. For exam-
ple, let 7 = {AM, MD,PM,NT} corresponding to morning, midday, afternoon and night traffic patterns,
respectively. Then, by using the slack variables r = (r;;; (¢,j) € A) and q = (gi5; (4,7) € A) defined in
sections 4.1 and 4.2, respectively, we can formulate this problem as:

. o
{St,ctgltlI‘lteT} tele T (&) + Allsel|2, (14a)
st Y wii— Y, mjn =i, VjEN, VEET, (14b)

1:(1,5)€A L:(3,0)e A
Zijt + zjit < nij, V(i,j) €A, VteT, (14c)
st >x;—O(z), YVteT, (14d)
vy >z —z, VteT, (14e)
ry > (20 —2z,), VteT, (14f)
q> -1, (14g)
a<-> 1, (14h)

teT

1'q <¢, (14i)
€4,8 >0, 2z, e Ny, VteT, (14j)

where we have written an augmented version of (12) with an additional coupling constraint (14h) which
limits the number of links to invest over all the OD demand setting in 7. Notice that constraint (14h) is the
only coupling constraint over 7. Therefore, this formulation is suitable for using decomposition techniques,
such as Dantzig-Wolfe decomposition [42].

5. Numerical Results and Case Studies

To validate and compare the methods described above, we consider several numerical examples over two
different transportation networks shown in Figure 3. The test network is a small example that is useful to
test our methods. In addition, we perform a case study using the Eastern Massachusetts interstate highways
(EMA) subnetwork (Figure 3a). The EMA road network is relevant in the context of lane reversals as it
captures the dynamics of suburban/urban mobility where we expect lane reversal strategies to be beneficial.
This is because arterial roads typically have a large number of lanes and, at the same time, they experience
high traffic congestion. The values of the network topology (e.g., capacities, free flow speeds), as well as the
code used to perform the experiments is publicly available in our online repository.’

We present our numerical results in the same order as our methods were presented in Section 3. First, we
analyze the convergence of different alternating methods and the Frank-Wolfe algorithm. Then, we report
numerical results for different selections of the \ parameter for the convex programming approach and we
compare all approaches. Then, we provide an example of one of our extensions which limits the number of
link reversals and we experiment with the symmetry of the OD demand. Finally, we show the computation
effort of the methods as well as the differences between the user-centric and system-optimal solutions of the
problem.

Thttps://github.com/salomonw/contraflow-lane-reversal
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Figure 3: (a) EMA transportation network composed of 74 nodes, 258 arcs, 581 lanes, and 1113 OD pairs; (b) Test network
consists of 9 nodes, 26 arcs, 61 lanes, and 5 OD pairs.

5.1. Alternating and Greedy

Using the alternating method described in Section 3.1 we solve the LASO-TAP problem using three
different methodologies. First, we introduce the greedy (or One) approach in which we first solve the TAP.
Then, find the best possible reversal and switch it. Once we have changed the lane, we re-solve the TAP and
carry out this process iteratively until we optimistically converge (since cannot be guaranteed) to a value.
The second approach, which we called Five, implements the same idea, but instead of changing the best
possible lane, it changes the top 5 lane reversals at every iteration. Similarly, our last alternating approach
referred to as Full follows the same procedure but at each step reverses all the possible lanes that improve
the travelling times. Figure 4b indicates the convergence of these three approaches where we observe two
main patterns. First, the convergence of the algorithm is reached within a few (two to three) iterations
which is consistent with many bi-level formulations involving the traffic assignment problem. Second, and
more interestingly, the greedy approach performs poorly compared to the other methods. Our justification
for this behavior is that when flows (or routes) are re-optimized, they are trying to use the links of the
network infrastructure efficiently. Hence, we find a good allocation of flows to lanes such that the whole
system is closer to a stationary point.

5.2. Convergence of Alg. 1

With the aim of validating our Frank-Wolfe methodology described in Section 3.2, we observe its tra-
jectory over the iterates using the EMA transportation network. Similar to the other examples, we run the
algorithm using the EMA transportation network with ¢;; (s, zij) = t9;(1+0.15(xi; /cijzi5)*), and f = 30.
Hence, we can estimate Equation (9) with

0 .5 0,5

J%(z) 0.6tz 0.6¢5,27;
T T T ALs T Ay L E

0z Cij%ij Cji(nlj Zij)

Figure 4a shows (i) the value of the objective function J(x,z); (ii) the ¢3 norm of the gradient with respect
to the lane reversals, i.e., ||VJ%(z)||2. When this value equals zero, we know that an infinitesimal change in
reversing a lane will not be beneficial to the system; (iii) the relative gap (RG) pointing to the closeness to
a solution that follows a Wardrop equilibrium. Hence, these results shows the effectiveness of Alg. 1 in the
sense that it is minimizing the overall travel times by adjusting the routing and the links capacity at every
iteration.

5.3. Dependence on A
As we discussed in Subsection 3.4, one of the main drawbacks of our convex formulation is the inclusion
of the parameter A. This parameter serves as a trade-off between the routing and the lane assignment
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decisions. Hence, we would like to observe the performance of our solution for different values of A\. To
perform the experiment, we use the EMA network and we solve the problem for A € (0,1 x 10°). Figure 4c
reports the objective for different values of A and for different algorithms. The numerical results show that
the model is robust for different values of A, i.e., the performance does not change substantially for different
N's. This is a positive result, since it suggest that calibrating A does not play an important role in the
performance of this method.

5.4. Comparison between methods

Now, we compare all the methods proposed in Section 3. We solve the routing problem, i.e., the TAP,
with the current lane configuration and call it the nominal solution. Then, we solve the LASO-TAP problem
for the test and the EMA networks using all the methodologies described earlier, i.e., Frank-Wolfe (FW),
the three variations of the alternating method, and the different convex integer and continuous programs.
In Table 1 we report the computational time of each method, as well as their performance compared to the
nominal lane allocation. Specifically, we take 1 — (OBJmethod/OBJnominal) to obtain a relative improvement
(RI) metric with respect to the nominal allocation.

We observe that the convex approximation methods perform very well in terms of obtaining efficient
solutions to the problem. In particular LP, QP and MILP compute the solution relatively fast compared
with the FW or the alternating methods and achieve good solutions while providing the flexibility to add
linear constraints.

5.5. Mazximum number of reversed lanes

This experiment computes the Pareto optimal frontier using the MIQP and the extension of our convex
approximation that limits the number of link reversals presented in Section 4.2. We compute the performance
of different values of the maximum number of allowable link reversals in Figure 5a for the EMA network.
We observe that the first lanes are the ones that contribute the most to the improvement of the overall
travel times since we expect certain diminishing returns behavior.
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Table 1: Results indicating the relative improvement in the overall travel time between a method and the nominal capacity.

Test, EMA
Method g1 o) Time (s) | RI (%) Time (s)
Nominal 0.0 0.01 0.0 0.42
FW 12.7 11.5 0.7 956.2
Alt. (1) 10.3 0.62 1.4 12.2
Alt. (5) 14.6 0.60 2.9 12.4
Alt. (full)  14.7 0.59 5.4 12.4
MIQP 17.5 0.02 4.7 101.37
QP 174 0.02 4.5 0.71
MILP 17.5 0.02 4.6 5.67
LP 17.3 0.01 4.2 0.36
100 T T T T T ] g 60 i T T T T 1
X 99F : g
5 £d0p 1
] L ] 4
.g 98 g
Z 9rf ] E20f ]
z E
° 96 - b = ol —o— MIQP ) 1
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(a) Performance on the overall travel times as the number of (b) The relative improvement for different OD demand distribu-
allowed link reversals increases. We employed the MIQP method tions in the Test network. The x-axis p indicate the fraction of
in the EMA network demand travelling from west to east. Similarly, (1 — p) captures

the fraction of vehicles travelling from east to west. The extremes
(p =0 and p = 1) are the most assymetric travelling patterns

Figure 5

This extension to the model, and corresponding results, are of interest to urban planners that might need
to prioritize the most critical roads and may have a budget that depends on the overall benefit of reducing
travel times for the system. In addition, our numerical results imply that it is not necessary to invest in
too many lane reversals to achieve a large fraction of achievable improvement. For example, by investing
between 10 and 15 links in the network (out of 129 possible links) the solution has already reached most of
the benefit.

5.6. Effect of OD demand symmetry

A characteristic of lane reversal strategies is that larger benefits occur when the demand is not symmetric.
Consider the demand patterns of a large metropolitan area on a weekday morning. In most cases, we expect a
large fraction of the demand to be travelling towards the city center. Hence, we expect high traffic heading
towards the city center and low traffic traveling to suburban areas. We refer to this as an asymmetric
demand. In contrast, the traffic flows between two major cities could serve as an example of a symmetric
OD demand. We generated an experiment using the Test network (Figure 3b) to exemplify the effect of
symmetry in the performance of lane reversals. To do so, let p € (0,1) be a parameter describing the fraction
of the OD demand travelling from west to east and (1 — p) the fraction of vehicles going from east to west.
More explicitly, we defined the OD matrix to be d(1,9) = 15000p, d(1,9y = 15000(1 — p) and d(,+) = 0 for all
(s,£) € WA {(1,9), (9, 1)}.

Figure 5b shows the relative improvement of the lane reversal solution, using MIQP and QP, with respect
to the nominal capacity solution. We observe that for the cases in which demand is not symmetric, the
improvements in travel time can be as high as to 65%. In contrast, when the demand is symmetric, there
are fewer benefits (considering uniform capacities across the network). Notice that negative values can be
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Table 2: Computational times for convex approximation methods

Network Num. of Num. of L Num. of Num. of integer Computational Times (ms)
lanes constraints vars. vars. in IPs LP QP MILP MIQP
236 3 286 26 2.1 3.2 5.6 4.9
Test 61 288 5 338 26 2.1 4.3 5.8 7.7
340 7 390 26 2.6 5.3 4.4 7.7
257 3 384 24 1.7 3.5 5.2 1224
EMA Small 105 305 5 432 24 2.2 5.0 4.0 48.1
353 7 480 24 2.3 5.5 12.2 229
1,185 3 2,432 76 36.3 91.3 40.2 481.7
Sioux Falls 506 1,337 5 2,584 76 46.9 123.1 47.4 511.8
1,489 7 2,736 76 53.6 120.6 65.5 550.7
6,209 3 16,512 258 154.0 402.9 315.7 2,599.8
EMA 581 6,725 5 17,028 258 276.8 478.0 490.4 1,413.1
7,241 7 17,544 258 290.9 588.1 492.2 1,445.7
24,891 3 56,912 1,268 1,073.9  1,421.0 1,104.6  25,964.0
Anaheim 4,214 26,719 5 58,740 1,268 1,882.7  1,523.0  2,0204  11,204.2
28,547 7 60,568 1,268 2,021.6  1,559.7 2,685.1 10,983.4
164,811 3 458,538 4,330 30,179.0 67,486.6 69,788.6 NA
NYC 17,870 171,085 5 464,812 4,330 56,658.5 85,796.0 250,996.9 NA
177,359 7 471,086 4,330 68,534.7 74,356.9 143,835.1 NA

observed (as in the QP case) since we are solving an approximation method (both by the convex approach
and by projecting the continuous QP solution) that could deviate from the optimal value in certain cases.
These results provide a tractable example to understand the potential of lane reversals depending on the
symmetry of the demand and suggest the instances for which these interventions provide large benefits.
Some real-life examples in which asymmetric demands can be found include: morning and afternoon peaks,
massive events, and holiday travel.

5.7. Computational effort

This experiment aims to compare the computational times of the convex approximation methods de-
scribed in Section 3.3.1 for different network sizes and levels of L (number of piecewise linear segments).
The motivation is to provide an empirical sensitivity analysis of the main methods and parameters of the
algorithms. To do so, we apply the methods to benchmark network topologies available in Stabler et al. [43]
and in Wollenstein-Betech et al. [36] ranging the number of lanes between 61 and 17870. Table 2 reports
the number of lanes, constraints, variables and integer variables needed for each of the problems, as well as
the computational times for the LP, QP, MILP and MIQP methods. We highlight the fact that increasing L
does not have a large impact in the computational times but we can expect to affect the solutions’ quality.
Moreover, we note that for the NYC case, the largest network, the MIQP was unable to converge while the
MILP was able to obtain an exact optimal solution almost in comparable times to those of the QP method.
This provides empirical evidence that it is attainable to find an exact global integer optimal solution for
considerably large networks.

5.8. System-Optimal and User-Centric comparison

We show that our method is capable of solving the Lane Assignment User Centric TAP (LAUC-TAP) and
compare the quality of its solution with the LASO-TAP; observing small differences between their solutions.
To do so, let us first provide intuition on how our convex approximation method could fail to improve the
total system travel time. Let us consider Braess’ paradox whose main insight is that the addition of new
capacity could worsen the objective due to the routing decisions of UC users. In the most classical example
of Braess’ paradox, the capacity of the link connecting nodes 2 to 3 in Figure 1b is assumed to be infinite.
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Table 3: UC vs SO solutions

Max. Lane Reversals TAPYY(z},,) TAPYY(z%,) TAP%°(z%,)

0 1.038 1.038 1.000
1 1.020 1.031 0.986
5 1.002 1.002 0.959
10 0.992 0.992 0.945
15 0.979 0.982 0.934
18 0.976 0.988 0.935

Hence, the second element of the objective of our method, i.e., A|| max{0, za3} — ca3223]|, will be equal to
zero since co3 is very large. Therefore, there is no signaling to the optimization program indicating that
link (2,3) is congested. Hence, the optimization will decide to keep the lane open and will not be able to
improve the solution.

However, in more realistic scenarios (e.g., using a larger network and the BPR function), we observe
that our method finds a better solution when assuming UC behavior and solving the LAUC-TAP rather
than the LASO-TAP. To show this, we report the normalized total system travel times of the UC- and SO-
TAP with lane configurations coming from the solution of the LASO-TAP and LAUC-TAP. Specifically, in
Table 3, TAPYC (z#,) reports the normalized total system travel time (dividing by TAPS3©(z%,) with zero
allowable reversals) of a network of user-centric agents and by assigning the lane configuration according to
the LAUC-TAP. In contrast, TAPUc(ng) assumes a user-centric behavior but implements the solution of
the LASO-TAP. Finally, TAPS© (z%o) reports results for a network with socially-optimal agents evaluated
at the solution of z§,.

When the maximum number of reversed lanes is equal to zero, we have under the TAPUC(Z* ¢) the value
of the Price of Anarchy. Moreover, for 1 allowable reversal, we see that TAPY (z},,) < TAPY“(2%,,) show-
ing how our UC approach finds a better lane allocation by anticipating the agents’ selfish behavior. However,
as the maximum number of lane reversals increases, we observe that the difference between TAPUC(Z*UC)
and TAPUC(ZEO) becomes most of the times negligible. We believe this happens because in practice the
SO flows are a good predictor of the UC flows [44].

6. Conclusion

The problem of identifying the best lanes to reverse in a congested network is challenging because it
requires to solve a mixed integer non-convex programming problem. The literature dealing with this problem
has been focused on using heuristic algorithms for solving it. In this work we propose three strategies to
reduce the complexity of the problem. Our first method uses the principle of decomposition or divide and
conquer by separating the joint routing and assignment problem into separate ones. Our second method
uses the idea of relaxation by converting the integer variables to continuous ones. Lastly, our third method
converifies the objective by modifying the objective function. This last method is interesting since it allows
including additional constraints to the problem, e.g., a maximum number of reversals.

We provide numerical results for all our methods showing their performance over a test network and a
case study using the transportation network of Eastern Massachusetts. Interestingly our results show that
the greedy approach, the one that reverses the most relevant lane at every iteration, can result in near-
optimal solutions. Moreover, our results suggest that the convexification approach is efficient in both the
quality of the solution and the computational burden.

We identify the following future research directions. First, herein we consider the static TAP which
is a good model for transportation planning purposes. However, extending this work to a dynamic traffic
setup would be beneficial to design real-time network-wide lane reversal controllers which could consider
the dynamic intersection management similar to Xie et al. [45]. Second, as explained in Section 3.3, our
convex approximation method finds an assignment that avoids generating congested links by setting up a
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threshold ©;;(z;;). Although this approach follows our intuition on what lanes to reverse, it may fail to
provide good solutions for certain examples of the user-centric behavior; for example, the Braess’ paradox.
Therefore, extending this method to identify these cases would be advantageous to improve the allocation for
user-centric behavior. Third, the LP and QP formulations that we have described require many variables
(and memory) for large networks. Hence, designing decomposition techniques can reduce the memory
requirements and speed up the computational times for large networks with many OD pairs. Finally, our
convex approximation approach can be extended to include robustness with the aim to provide the best
allocation for an allowable set of OD demands rather than a single vector.
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Appendix A: Notation table

Table 4: Notation Table of main variables and parameters

Sets

S

Parameters

Links of the transportation network.
Nodes of the transportation network.
Origin-Destination pairs.

Set of origins with positive demand.

Graph representing a transportation network.

Node-arc incidence matrix of G.

Number of OD pairs.

OD pair k£ with source s € V and target ¢ € V.

Demand rate of OD pair wy € W.

Maximum number of lanes that could be assigned to (i, 7).
Nominal (current) lane configuration.

Capacity per lane in link (¢, j) € A.

Total capacity in link (4, ) € A.

Free-flow travel time for link (7,5) € A.

Node imbalance describing excess demand or supply.

Difference in the overall travel time between current network lane
assignment and when we reverse a link in (4, j).

Regularizer term trading off routing efficiency and not exceeding
a links capacity.

Threshold in capacity of (i, j) for the convex approach.

Number of piecewise affine segments.

Slope of the piecewise affine segment [ =1,..., L.

Piecewise affine function breakpoints.

Decision Variables

x;"]’_k
x;?j
Lij
Zij
0
Sij

Flow on link (4, j) associated with OD pair wy,.
Flow on link (7, j) whose origin is node o.
Total flow on link (i, j).

Number of lanes assigned to link (i, 7).
Flow exceeding threshold Gg) and up to 02(;“)9%).

Slack variable pointing to the flow exceeding threshold ©;;(z;;).
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