2022 IEEE International Smart Cities Conference (I1SC2) | 978-1-6654-8561-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/15C255366.2022.9922593

Context-Aware Destination and Time-To-Destination
Prediction Using Machine Learning

Athanasios Tsiligkaridis*, Jing Zhang!, Ioannis Ch. Paschalidis*,
Hiroshi Taguchif, Satoko Sakajo?, Daniel Nikovskif
*Boston University, Boston, MA, USA
{atsili, yannisp} @bu.edu
TMitsubishi Electric Research Laboratory, Cambridge, MA, USA
{jingzhang, nikovski}@merl.com
fMaitsubishi Electric Corporation, Tokyo 100-8310, Japan
{Taguchi.Hiroshi @dw.MitsubishiElectric.co.jp, Sakajo.Satoko@ds.MitsubishiElectric.co.jp}

Abstract—The rapid adoption of Internet-connected devices
(i.e., smart phones, smart cars, etc.) in today’s society has given
rise to a massive amount of data that can be harnessed by
intelligent systems to learn and model the behavior of people. One
useful set of such data is movement data, which can readily be
obtained via GPS or motion-detection sensors, and which can be
used to create models of user movement. One relevant application
task based on this type of data is destination prediction, where
movement data are used to form highly customized models
that can forecast intended user destinations based on partially
observed trajectories. In this work, we present a two-stage pre-
dictive model for destination prediction and Time-To-Destination
(TTD) estimation using movement trajectories and contextual
information. Our two-stage approach uses a Transformer-based
architecture to predict an intended destination and a regression
model to estimate how many steps must be traversed before
a destination is reached. We showcase experimental results on
various trajectory datasets and show that our proposed approach
is able to yield significant destination prediction improvements
over previous state-of-the-art methods and can also produce
accurate TTD estimates.

Index Terms—Destination prediction, transformer, deep learn-
ing, smart city, machine learning.

I. INTRODUCTION AND RELATED WORK

The abundance of smart devices in today’s society results in
a plethora of recorded data which can be used to learn about
a given person’s behavior and trends. Location information
is a useful set of such data, which can be easily obtained
via GPS-enabled devices in an indoor/outdoor setting or from
proximity sensors. Location data consists of both positioning
(e.g., latitude/longitude coordinates, indoor grid locations) and
contextual information (e.g., timestamp, ID tag number); this
information is of high importance to user-based service tech-
nologies (e.g., Google maps, car navigation systems, predictive
smart elevator systems), as it can be used to create intelligent
models that represent a user and his/her tendencies when either
driving or walking. One beneficial use of this information is
to create a destination prediction model that can be used to
predict a person’s intended destination given position and/or
additional context data. A model of this type can be used
to provide quick and input-free routing information based on
an early predicted user destination, tailored advertisements

for shops and stores within a close proximity of a predicted
destination, and more. Having a means of creating an efficient
and accurate destination prediction model is expedient to
organizations that exploit these models, as they can provide
benefits to both the companies and their users, such as
improved user happiness and, in turn, a probable increase in
profit resulting from a potential increase in users.

The task of destination prediction has been explored in
both indoor and outdoor settings, with solutions ranging from
model-based to deep learning-based methods as of late.

A Bayesian approach to destination prediction was used to
create destination probability distributions and predict poten-
tial destinations given partial input trajectories [1]. In [2], a
trajectory distribution model using Gaussian Mixture Models
was used to model clusters of similar trajectories and then
input query trajectories were assigned to appropriate clusters
to determine intended destinations.

In [3], [4], the Sub-Trajectory Synthesis algorithm was
proposed as a means of data augmentation for the case
where not enough trajectories exist to cover all potential input
queries; a Markov model was employed to predict potential
destination given a query trajectory. Markov models [5], [6]
and Hidden Markov Models [7]-[10] have been extensively
studied for route and destination prediction problems. These
model-based approaches have been observed to falter in the
presence of long sequence inputs; deep learning approaches
remedy this.

In [11], deep learning methods, such as Multi-Layer Per-
ceptrons (MLP) and Recurrent Neural Networks (RNN), were
implemented and compared in the task of destination pre-
diction on a real taxi trajectory dataset. RNNs have been
widely used for destination prediction [12]-[14]; Long-Short
Term Memory (LSTM) networks, which improve upon the
gradient vanishing/exploding limitation of the RNN [15], [16],
have also been used successfully in trajectory prediction tasks
[17]-[19]. This model has also been used for the task of
route and destination prediction using metadata and mapped
trajectories [20]; in [21], a hierarchical model using a fusion
of an attention mechanism and the LSTM structure was used
to predict destinations.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 27,2022 at 04:40:33 UTC from IEEE Xplore. Restrictions apply.

After LSTMs, Transformer-based architectures became
prevalent. In [22], a Transformer was used to predict destina-
tions in a contextless datasetting where solely positioning in-
formation was used to make informed decisions. Transformer
networks have also recently been used for the task of trajectory
forecasting [23]. A spatio-temporal based Transformer has also
been proposed as a means of predicting the next destination
of a taxi driver given geographical information [24].

As an extension to [22], which presents a contextless
Transformer for destination prediction, we propose a two-stage
context-informed prediction system for accurate destination
and Time-To-Destination (TTD) prediction. Estimating how
much time will be needed to reach a destination is something
that is immensely useful alongside the destination prediction
task.

In this paper, we ultimately make the following contri-
butions. First, we present a novel two-stage architecture for
destination prediction and TTD estimation. Second, we apply
our methods on both simulated indoor movement and real
outdoor taxi trajectory datasets and showcase improved perfor-
mances in destination prediction along with the accurate TTD
estimation element, which has not been previously explored
in destination prediction applications.

II. PROPOSED APPROACH

We propose a two-stage system, as shown in Figure 1, for
both destination prediction and Time-To-Destination (TTD)
estimation. In the first stage, positioning and context data are
used to predict a destination. In the second stage, the predicted
destination obtained from the first stage, along with the current
location (most recent position in an input sequence), is used
to estimate the amount of steps that will need to be taken in
order for a user to reach his/her intended destination, given
that the user is currently at the most recent position in the
input trajectory. We make the assumption that a user moves
around a floor, or more generally some indoor/outdoor area,
at a near constant speed; with this, if we have an estimate
of the amount of steps that need to be taken at some known
speed, then a time value can be obtained which will represent
a person’s time to his/her desired destination.

We elect to train a single global model that receives context
information as input when predicting destinations, as opposed
to training independent models for each context value or
group. This helps when context is continuous-valued or the al-
phabet of discrete context is large, where training independent
models would be computationally expensive and infeasible.
Additionally, context partitioning to form multiple models over
each created context group assumes prior domain knowledge
of how to create these groups, and pre-defining groups can
introduce bias into the model. By using a global model that
takes context into account, we avoid any such induced bias.

In the first stage of our system, we propose a Transformer
Encoder Stack (TES) as a destination prediction model that
takes as input both position and context data and outputs
a probability distribution over all potential destinations in a
given space. In the second stage, we propose a regression

Stage 1: Destination Prediction

Transformer (Encoder Stack Only) >

Fig. 1: Our proposed dual stage system for destination pre-
diction using a TES and TTD estimation using a general
regression model M.

model as a means of predicting the amount of steps that
need to be traversed to reach a desired destination. The best
regressor to use in the second stage is data dependent; in our
experiments, results are shown for several choices.

III. TES ARCHITECTURE

The original Transformer architecture was proposed in [25]
as a sequence-to-sequence model for NLP tasks and was
shown to outperform previous state of the art methods (e.g.,
BiLSTM, RNN, LSTM) in various translation, generation, and
understanding tasks [25]-[28]. The Transformer model uses an
attention mechanism to relate sequence elements; this allows
for parallelization in training (and, in turn, more efficient
model training) and the dependency modeling of elements
in an input sequence without consideration of their distances.
The original Transformer is a system comprised of a stack of
N encoder and decoder blocks containing both stacked self-
attention and fully connected feed forward layer components.

Our TES is similar to the original Transformer except that
there is no decoder present and the original positional encod-
ing and embedding transformations of the sequence input are
concatenated when preparing the input to the encoder stack.
In the original model, these are added. The concatenation
operation has been observed to yield improved performance
in prediction accuracy over all tested datasets. Our proposed
TES architecture is shown in Figure 2.

Our proposed mechanism takes as input both a positioning
sequence and contextual information, labeled as Input and
Context, respectively, in Figure 2. The positioning sequence
passes through an embedding layer which converts the se-
quence into vectors of length d0qe1. The same sequence also
passes through a positional encoding block which identifies
information about the ordering of its elements. The outputs
of the preceding two blocks are then concatenated with each
other, and in turn, concatenated once again with a linearly
embedded version of the contextual information. This vector
then moves into an encoder stack where in each encoder it
first encounters a Multi-Head Attention (MHA) block. This
MHA block consists of a set of h scaled-dot product attention
modules, where each one attempts to focus on a specific
pattern of an input. Having multiple of these in parallel, which
is what the MHA block is, allows for the TES to focus
and learn multiple patterns in the input. Figure 3 shows the

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 27,2022 at 04:40:33 UTC from IEEE Xplore. Restrictions apply.

Predicted Destination Probabilities

Encoder (Nx)

Concatenate

Concatenate

[

Embedding

Positional
Encoding

Linear Embedding

Fig. 2: Stage 1 setup consisting of a Transformer Encoder
Stack (TES) along with an external context embedding, which
is then fed into the TES via a concatenation operation followed
by an MLP which outputs predicted destination probabilities
over a grid space.

structure of the scaled-dot product attention module, adapted
from [29]. Given a data matrix X, which represents the
input to the encoder, three projection matrices, Wq, Wik,
and Wy, are first learned in the training of the TES model.
These matrices are then used to form projections of the
data matrix which can be thought of as abstractions used
to calculate attention; specifically, query @@ = XWg, key
K = XWkg, and value V = X Wy matrices are obtained.
The query and key matrices are multiplied and then scaled
by 1/ \/dj, where dj is the number of columns in the K
matrix, in order to have the product matrix of @ and K
be unit variance. Next, a SoftMax function is applied to the
scaled product of) and K in order to form an attention
score matrix whose values will represent probabilities and
will be in the interval of (0,1). This attention score matrix
is then used as a weighting matrix and is multiplied with the
value matrix V to calculate attention. Ultimately, attention is
calculated as: Attention(Q, K, V) = softmax(QK™ /\/dy)V.
With MHA, multiple attention functions are calculated with
different learned projections (Wq, Wi, Wy/). Outside of the
MHA block, a Residual connection along with a Layer Nor-
malization (RLN) is then applied which connects the input
to the attention block with its output, adds them, and then
normalizes. This output then passes through a feed-forward
module and another RLN connection. This entire procedure is
repeated N times, where N represents the number of encoders.
The output of the final encoder then passes through a Multi-
Layer Perceptron (MLP), which is used to obtain a probability

distribution over the output space. The maximum value over
the space will represent our model’s predicted destination.

We do not use a decoder stack in our proposed model
because we do not predict a multi-element trajectory where the
initial masked attention and attention modules in the decoder
are needed; we solely attempt to predict a single element,
so our problem is cast as a classification task where we
associate a partial trajectory with a specific location in a grid
space, which can be interpreted as the destination. The decoder
stack is advantageous in problems where symbol-by-symbol
decoding is necessary, such as in trajectory prediction tasks.
Using a decoder here might result in incorrect representations
of our output, which can diminish performance. Also, using
the encoders from the Transformer architecture to form our
prediction model has the additional benefit of being able
to access the whole input sequence at once when forming
representations, unlike other sequential models that do not
have this ability (e.g., LSTM, BiLSTM); this speeds up model
training, especially on large and complex datasets.

IV. EXPERIMENTAL RESULTS

Datasets: We use the following datasets for our experiments:
1) SimTread artificial indoor human trajectory dataset, and
2) Porto taxi dataset. For each, we present results on the
datasettings where context is and is not available; this is done
to show the benefits of using contextual information in the
destination prediction task.

Computing Infrastructure: Experiments were performed
with one Tesla P100 GPU on a computer with 16GB RAM.
All deep learning-based methods were implemented using the
PyTorch deep learning framework; all conventional machine
learning-based methods were implemented using the scikit-
learn library in Python.

Baselines: For each dataset, we present performance results
for each of the two stages and compare against a set of
different approaches for each stage.

In the first stage, we compare our TES approach, with a
single encoder block, with the previous state-of-the-art one-
level stacked LSTM and BiLSTM methods. In the artificial
dataset, we additionally compare against a baseline Hidden
Markov Model (HMM), where sequence data (along with
contextual data) is first fed into an HMM which outputs a
state sequence that is fed into an MLP classifier to predict
a user’s intended destination. This HMM approach yields
very underwhelming performance for the taxi dataset, so this
result is not included in those experiments. We also provide
a comparison against the original Transformer approach used
in [22].

In the second stage, we compare various regression models
such as Linear, Ridge, LASSO, Elastic Net, MLP, Random
Forest, Adaboost, and Gradient Boosting to observe how well
TTD can be estimated.

Modeling Assumptions: All of our positioning data involves
coordinates, so we discretize the coordinate spaces of our data
into grid cells for easier data usage. With this, the problem
of destination prediction effectively becomes a classification

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 27,2022 at 04:40:33 UTC from IEEE Xplore. Restrictions apply.

—>Wy — Q@ =XW, Attention score matrix:
'b-—-—> Scaling SoftMax QK"
X — W — > K=XWg SoftMax

Attention(Q,K,V) =

Jax

—>WV 4»V=XWV

—VS f <QKT>
oftMax|— |V
Vi

Fig. 3: Visualization of one of the heads in the Multi-Head Attention module in the encoder of our proposed TES mechanism.

problem, where we use input query trajectories that are rep-
resented as grid cell index sequences to predict a destination
location which is represented by a single grid cell index.

Input discretization is a modeling choice primarily driven by
indoor applications, where positions are in most cases discrete
(e.g., based on proximity sensors). Prior approaches, such as
those mentioned in [14], [20], [21], and [22], also discretize
the input space. Treating data as continuous positions remains
an interesting problem which can be explored as future work.
Performance Metrics: For the destination prediction stage in
the artificial dataset, we look at the true destination probability
over various train/test splits as a function of the percentage of
the observed test trajectory.

For the taxi dataset, we measure model performance using
the Block Distance (BD) metric used in [22], which measures
how many grid jumps away an obtained destination D¢ is
from the true destination Dr; essentially, it is a measure of
closeness of a prediction to the true destination. If Do and
Dy are mapped to row and column grid pairs [zo,yo] and
[xT, yr], respectively, then BD is calculated as: BD|p_s7 =
max{|zr — zo|, |yr — yol}-

In the TTD estimation stage for either dataset, where we

attempt to correctly predict the amount of grid steps that
need to be traversed from a current location in a sequence to
the predicted user destination, we quantify performance using
Mean Absolute Error (MAE). This MAE metric quantifies
how close our prediction of the number of grid steps needed
to reach the true destination is to the true number of grid
steps needed to reach the destination while at the most recent
(current) location in a movement trajectory.
Implementation Details: For the taxi dataset, our TES method
was implemented using a single encoder and the dimension of
all model sub-layers and embedding layers were chosen to be
dmodel = 128. The output MLP contains a single hidden layer
of size 128. In the MHA module, i = 8 parallel scaled dot-
product attention layers are used. For each of these, we have
di = dmodel/h = 16. A dropout rate of 0.05 is used along with
a batch size B = 128. We train our model for 200 epochs using
a cross entropy loss objective and we use an ADAM optimizer
with a learning rate of 0.005. For the SimTread dataset, similar
parameters are used but we train our model for 100 epochs,
select a smaller batch size of 8, a hidden layer size of 64, and
use dmodel = 64. The original transformer we compare against
from [22] uses the same parameters for either dataset though
a NOAM optimizer with label smoothing [25] is used in place
of the ADAM optimizer.

For the taxi dataset, the LSTM and BiLSTM models we

compare against for both datasets are implemented using a
single stack, an embedding dimension of 128, a hidden layer
dimension of 32, a dropout rate of 0.05, and a batch size
B = 128. We train the model for 200 epochs using a cross
entropy loss objective and an ADAM optimizer with a learning
rate of 0.001. For the SimTread dataset, similar parameters are
used but we select a smaller batch size of 8 and use smaller
embedding and hidden dimensions of 64 and 32, respectively.

For the HMM method we compare against in the SimTread
dataset experiment, we use a HMM with 8 states (larger
amounts of states were tested but did not yield any im-
provements in terms of destination prediction accuracy) and
a connected MLP with two hidden layers of dimensions
(150, 100).

Regarding the TTD prediction tasks on the taxi dataset in
the second stage of our proposed system in Figure 1, we
test Linear, Lasso, Ridge, and Elastic Net regressors using
the default parameters from their scikit-learn implementations.
Various amounts of regularization were tested but the default
case with the regularization parameter o« = 1.0 yielded the
best MAE metric values. The MLP we implemented contained
three hidden layers of sizes (200, 100, 50). The Random Forest
regressor we used was defined to have a per-tree maximum
depth of 15 along with a maximum number of trees of 1000.
The Adaboost regressor we used employed a decision tree
base classifier with a per-tree maximum depth of 15, a default
learning rate of 1.0, and a maximum number of estimators at
which boosting is terminated of 1000. Finally, for the Gradient
Boosting regressor, we used 150 boosting stages with a default
learning rate of 0.1 and a maximum depth per regression
estimator of 15. For the SimTread dataset results, similar
parameters were used but a Random Forest maximum tree
depth of 8 and a Gradient Boosting stage amount of 50 were
employed.

A. Artificial Indoor Dataset

We first apply our two stage system to a small artificial
indoor dataset. The SimTread! simulation software package is
used to generate this data; this package creates continuous
coordinate data which represent movement trajectories of
people in an indoor setting. We create movement patterns on a
floor for two time intervals in a day (morning and afternoon).
In each time interval, we create 10 trajectories that can end
at one of 3 total destinations. The morning and afternoon
positional data are visualized in Figure 4 and 5, respectively.

Uhttps://www.vectorworks.cn/en/community/partner-community/partner-
products/product/simtread/

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 27,2022 at 04:40:33 UTC from IEEE Xplore. Restrictions apply.

Stage 2 - TTD Estimation (SimTread)
Method MAE (steps)

Linear Regression 10.57
Ridge Regression 10.57
LASSO Regression 10.57
Elastic Net 10.57
Multi-Layer Perceptron (MLP) 5.77
Random Forest 2.24
Adaboost 1.74

Gradient Boosting 2.81

TABLE I: MAE results for TTD Estimation using various
regression models on the SimTread dataset. We see that
Adaboost yields the smallest error when estimating the amount
of grid blocks needed to be traversed before a destination is
reached.

The entire floors are partitioned into 502 blocks and each
coordinate trajectory is converted to a sequence of grid indices.
In this data, contextual information is a time interval label,
which allows us to discern between morning and afternoon
periods in a day.

When obtaining performance results for Stage 1, we use
the Leave-One-Out Cross-Validation (LOOCYV) technique to
obtain average performance results for our tested prediction
models, since this dataset contains a small amount of trajec-
tories. Specifically, given S total trajectories, we go through
S iterations, where in each iteration we use one of the S
trajectories for model testing and the remaining S — 1 paths
for model training. Per data split iteration, we obtain a col-
lection of correct destination probabilities as we increase the
percentage of our query test trajectory. Then, we average these
values over all S iterations to obtain destination prediction
performance measures for a given model.

Figure 6 displays correct destination probabilities of the
TES, LSTM, BiLSTM, and HMM approaches in the cases
where context is and is not included as model input, as a func-
tion of the percentage of observed query trajectories. We see
that the inclusion of context, which in this setting is the time-
interval label (morning or afternoon), yields improvements in
prediction probability, as expected. Additionally, we see that
our TES approach is able to correctly detect the intended user
destination early in the development of the query trajectory,
unlike with the other models.

To create the data for stage 2, we first convert each trajectory
of a given length L into L pairs of current points and true
destinations, which represent the regressor inputs. For every
input pair, we then measure the amount of grid jumps needed
to reach the destination from the current point; this represents
the output of the regression model M. We then use these
inputs and outputs to train and test various regression models
using an 80%-20% train/test split. Table 1 showcases the MAE
values of each tested method; we see that Adaboost yields the
smallest error, and in turn the best TTD estimates, for this
dataset.

Fig. 4: SimTread data in the first time interval (morning).
Trajectory start and end locations are represented by the dark
green and bright red blocks on the grid, respectively. The 3
large and bright green blocks represent destinations.

Fig. 5: SimTread data in the second time interval (afternoon).
The trajectories in this time interval are different from those
in the morning time interval; this is done to accurately model
human behavior. People tend to go to different floor destina-
tions, and possibly by using different routes, depending on the
time of day.

B. Porto Taxi Dataset

Next, we test our two-stage approach on a real dataset
involving taxi trajectories. We use the popular taxi dataset
used in a 2015 Kaggle competition?. This dataset contains
metadata and movement trajectories of 442 taxis in Porto,
Portugal, recorded over a whole year.

Figure 7 displays the taxi trajectory data we use for our
experiments, where we constrain our data to be within the
following latitude and longitude bounds: [41.135,41.160] and
[—8.600, —8.560], respectively. This region represents a neigh-
borhood in Porto which we partition into 252 grid cells. Each
trajectory in this space is converted from coordinates to grid
cell indices, and we also extract timestamps as contextual

Zhttps://www.kaggle.com/c/pkdd- 15-predict-taxi-service-trajectory-i/data

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 27,2022 at 04:40:33 UTC from IEEE Xplore. Restrictions apply.

10 _ S S E

o
@

o
o

- TES (NC)
— TES (WC)
-==- LSTM (NC)
— LSTM (WC)
==== BILSTM (NC)
— BILSTM (WC)
==== HMM (NC)
—— HMM (WC)
-==- Transformer

Probability of Correct Destination

0.0

0 10 20 30 40 50 60 70 80 20 95 100
Percent of Observed Test Trajectory

Fig. 6: Correct destination probability over increasing per-
centages of input test trajectories. Our TES approach outper-
forms the baseline HMM and previous state-of-the-art (LSTM,
BiLSTM, Transformer [22]) methods in both with (WC) and
without (NC) context settings. The importance of contextual
information is also highlighted through boosts in prediction
performance for each approach.

information. We form our training set by extracting 200 taxi
trajectories per destination over the top 20 most popular
destinations in the region; similarly, we create our testing set
by extracting 20 trajectories per destination over the top 20
most popular destinations.

Fig. 7: Visualization of the Porto taxi dataset subset used for
training and testing our prediction models. Trajectories used
for training and testing are shown in blue and red, respectively.
The color gradient from light to solid dark represents the
evolution of a trajectory from start to finish, respectively.

In the first stage, we train TES, LSTM, BiLSTM, and
Transformer (only without context since [22] does not include
a means of handling contextual information) models using full
trajectories, and we test on partial trajectories of increasing
length. Figure 8 displays the BD performance curves for all
tested methods with and without contextual information. We
do not display performance curves for the HMM approach as
it performed significantly worse than all other deep learning-
based approaches. We display BD results for observed tra-
jectory percentages of over 40%, as the obtained metrics are
insignificant and too large to be advantageous for all tested
methods for smaller percentages in this taxi application. We
first observe that the use of contextual information tends to

Stage 2 - TTD Estimation (Taxi)
Method MAE (steps)

Linear Regression 4.56
Ridge Regression 4.56
LASSO Regression 4.56
Elastic Net 4.56
Multi-Layer Perceptron (MLP) 3.45
Random Forest 1.99
Adaboost 3.64
Gradient Boosting 1.96

TABLE II: MAE results for TTD Estimation using various
regression models using the Porto taxi dataset. We see that
Gradient Boosting yields the smallest error when estimating
the amount of grid blocks needed to be traversed before an
intended destination is reached.

yield smaller BD values over the no-context cases in most
methods. Also, our TES approach consistently yields smaller
BD values, and in turn more accurate destination estimates
early in the development of a test trajectory, over all compared
methods, both with and without context.

TES (NC)
— TES (WC)
--=- LSTM (NC)
— LSTM (WC)
==== BILSTM (NC)
— BILSTM (WC)
-==- Transformer

10{ == f—

Block Distance

40 50 60 70 80 90 95 100
Percent of Observed Test Trajectory

Fig. 8: Block Distance plot over the percentages of observed
trajectories. Our TES approach outperforms all other methods
in both the with (WC) and without (NC) context cases.
Additionally, we observe that the inclusion of contextual data
provides prediction benefits early in the development of the
trajectories, but as more of the trajectory is seen, context
becomes less important.

To create the data for Stage 2, we carry out the same data
preparation procedure that was used in the SimTread dataset.
Table 2 presents the MAE values of each tested method; we see
that the Gradient Boosting regressor yields the smallest TTD
estimation error in this setting and provides the best estimate
of the number of grid steps that must be traversed to reach an
intended destination.

V. CONCLUSION

In this paper, we proposed a two-stage system for desti-
nation prediction and Time-To-Destination estimation using
movement data along with additional contextual information.
Through experimental results, we demonstrated improved pre-
diction performance over previous state-of-the-art approaches
and an ability to accurately estimate the amount of grid units

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 27,2022 at 04:40:33 UTC from IEEE Xplore. Restrictions apply.

a user will traverse before reaching the intended destination,
which in turn can be used to estimate the amount of time
needed to reach a destination under the assumption of a
known travel speed. As future work, we can explore an online
approach to user movement modeling where movement trajec-
tories are monitored over time, and a continual learning-based
model updates itself without full re-training. Additionally,
we can consider a multi-task learning approach where both
destination and TTD are jointly predicted.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

J. Krumm and E. Horvitz, “Predestination: Inferring destinations
from partial trajectories,” in Proceedings of the Eighth International
Conference on Ubiquitous Computing, 2006.

P. C. Besse, B. Guillouet, J. Loubes and F. Royer, ‘“Destination
prediction by trajectory distribution-based model,” in Proceedings of
the 21st IEEE International Conference on Intelligent Transportation
Systems, 2018.

A.Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang and Z. Xu, “Destination
prediction by sub-trajectory synthesis and privacy protection against
such prediction,” in Proceedings of the 2013 IEEE International
Conference on Data Engineering, 2013.

A. Y. Xue, J. Qi, X. Xie, R. Zhang, J. Huang and Y. Li, “Solving the
data sparsity problem in destination prediction,” The VLDB Journal,
vol. 24, no. 2, pp. 219-243, 2015.

B. D. Ziebart, A. L. Maas, A. K. Dey and J. A. Bagnell, “Navigate like a
cabbie: Probabilistic reasoning from observed context-aware behavior,”
in Proceedings of the Tenth International Conference on Ubiquitous
Computing, 2008.

N. Ye, Z. Wang, R. Malekian, Q. Lin and R. Wang, “A method for driv-
ing route predictions based on hidden markov models,” Mathematical
Problems in Engineering, 2015.

R. Simmons, B. Browning, Y. Zhang and V. Sadekar, “Learning to
predict driver route and destination intent,” in Proceedings of the 9th
IEEE International Conference on Intelligent Transportation Systems,
2006.

Y. Lassoued, J. Monteil, Y. Gu, G. Russo, R. Shorten and M. Mevissen,
“A hidden markov model for route and destination prediction,” in
Proceedings of the 20th IEEE International Conference on Intelligent
Transportation Systems, 2017.

J. P. Epperlein, J. Monteil, M. Liu, Y. Gu, S. Zhuk and R. Shorten,
“Bayesian classifier for route prediction with markov chains,” in
Proceedings of the 21st IEEE International Conference on Intelligent
Transportation Systems, 2018.

F. Zong, Y. Tian, Y. He, J. Tang and J. Lv, “Predicting destinations by
a deep learning based approach,” Physica A, vol. 515, 2019.

A. D. Brebisson, E. Simon, A. Auvolat, P. Vincent and Y. Bengio,
“Artificial neural networks applied to taxi destination prediction,” in
Proceedings of the International Conference on ECML PKDD, 2015.
L. Zhang, G. Zhang, Z. Liang and E. F. Ozioko, “Multi-features taxi
destination prediction with frequency domain processing,” PLoS One,
vol. 13, no. 3, 2018.

L. Zhang, G. Zhang, Z. Liang, Q. Fan and Y. Li, “Predicting taxi
destination by regularized RNN with SDZ,” [EICE Transactions on
Information and Systems, vol. E101.D, no. 8, 2018.

Y. Endo, K. Nishida, H. Toda and H. Sawada, “Predicting destinations
from partial trajectories using recurrent neural network,” in Proceedings
of the 21st Pacific-Asia Conference on Knowledge Discovery and Data
Mining, 2017.

Y. Bengio, P. Frasconi and P. Simard, “The problem of learning long-
term dependencies in recurrent networks,” in Proceedings of the IEEE
International Conference on Neural Networks, 1993.

R. Pascanu, T. Mikolov and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proceedings of the 30th International
Conference on Machine Learning (ICML), 2013.

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei and
S. Savarese, “Social Istm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

(18]

[19]
[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Y. Xu, Z. Piao and S. Gao, “Encoding crowd interaction with deep
neural network for pedestrian trajectory prediction,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018.

X. Shi, X. Shao, Z. Guo, G. Wu, H. Zhang and R. Shibasaki, “Pedestrian
trajectory prediction in extremely crowded scenarios,” Sensors, 2019.
P. Ebel, I. E. Gol, C. Lingenfelder and A. Vogelsang, “Destination
Prediction Based on Partial Trajectory Data,” arXiv e-prints, Apr 2020.
J. Xu, J. Zhao, R. Zhou, C. Liu, P. Zhao and L. Zhao, “Predicting
destinations by a deep learning based approach,” IEEE Transactions on
Knowledge and Data Engineering, vol. 33, no. 2, 2021.

A. Tsiligkaridis, J. Zhang, H. Taguchi and D. Nikovski, ‘“Personalized
destination prediction using transformers in a contextless data setting,”
in Proceedings of the 2020 International Joint Conference on Neural
Networks, 2020.

F. Giuliari, I. Hasan, M. Cristani and F. Galasso, ‘“Transformer
networks for trajectory forecasting,” in Proceedings of the International
Conference on Pattern Recognition, 2020.

Z. U. Abideen, H. Sun, Z. Yang, R. Z. Ahmad, A. Iftekhar and A. Ali,
“Deep wide spatial-temporal based transformer networks modeling for
the next destination according to the taxi driver behavior prediction,”
Applied Sciences, vol. 11, no. 17, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser and 1. Polosukhin, “Attention is all you need,” in
Proceedings of the 31st Conference on Neural Information Processing
Systems, 2017.

T. Young, D. Hazarika, S. Poria and E. Cambria, “Recent Trends in
Deep Learning Based Natural Language Processing,” arXiv e-prints,
Aug 2017.

A. Radford, K. Narasimhan, T. Salimans and I. Sutskever, “Improving
language understanding by generative pre-training,” in OpenAl, 2018.
P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R.Sepassi, L. Kaiser and
N. Shazeer, “Generating wikipedia by summarizing long sequences,”
in Proceedings of the 6th International Conference on Learning Repre-
sentations, 2018.

S. Yildirim and M. Asgari-Chenaghlu, Mastering Transformers, Packt
Publishing, 2021.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 27,2022 at 04:40:33 UTC from IEEE Xplore. Restrictions apply.

