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Non-asymptotic Concentration Rates in Cooperative
Learning Part I: Variational Non-Bayesian
Distributed Learning

César A. Uribe, Alex Olshevsky, and Angelia Nedic,

Abstract—We study the problem of cooperative inference
where a group of agents interact over a network and seeks to
estimate a joint parameter that best explains a set o network-wide
observations using local information only. Agents do not know
the network topology or the observations of other agents. We
explore a variational interpretation of the Bayesian posterior and
its relation to the stochastic mirror descent algorithm to prove
that, under appropriate assumptions, the beliefs generated by
the proposed algorithm concentrate around the true parameter
exponentially fast. In Part I of this two-part paper series, we
focus on providing a variation approach to distributed Bayesian
filtering. Moreover, we develop explicit and computationally effi-
cient algorithms for observation models in exponential families.
We provide a novel non-asymptotic belief concentration analysis
for distributed non-Bayesian learning on finite hypotheses sets.
This new analysis method is the basis for the results presented in
Part II. We provide the first non-asymptotic belief concentration
rate analysis for distributed non-Bayesian learning over networks
on compact hypotheses sets in Part II. Additionally, we provide
extensive numerical analysis for various distributed inference
tasks on networks for observational models in the exponential
distributions family.

Index Terms—Distributed Inference, non-Bayesian social
learning, estimation over networks, non-asymptotic rates.

I. INTRODUCTION

The increasing amount of data generated by recent appli-
cations of distributed systems such as social media, sensor
networks, and cloud-based databases has brought consider-
able attention to distributed data processing, in particular the
design of distributed algorithms that take into account the
communication constraints and make coordinated decisions
in a distributed manner [1]-[11]. In a distributed system,
interactions between agents are usually constrained by the
network structure and agents can only use locally available
information. This contrasts with centralized approaches where
all information and computation resources are available at a
single location [12]-[15].

One traditional problem in decision-making is that of pa-
rameter estimation. Given a set of noisy observations coming
from a joint distribution one would like to estimate a parameter
or distribution that minimizes a certain loss function. For
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example, Maximum a Posteriori (MAP) or Minimum Least
Squared Error (MLSE) estimators fit a parameter to some
model of the observations. Both, MAP and MLSE estimators
require some form of Bayesian posterior computation based
on models that explain the observations for a given parameter.
Computation of such a posteriori distributions depends on
having exact models about the likelihood of the corresponding
observations. This is one of the main difficulties of using
Bayesian approaches in a distributed setting. A fully Bayesian
approach is not possible because full knowledge of the network
structure, or of other agents’ likelihood models, may not be
available [16]-[18].

Following the seminal work of Jadbabaie et al. in [1],
[19], [20], there have been many studies of distributed non-
Bayesian update rules over networks. In this case, agents are
assumed to be boundedly rational (i.e., they fail to aggregate
information in a fully Bayesian way [21]). Proposed non-
Bayesian algorithms involve an aggregation step, typically
consisting of weighted geometric or arithmetic average of the
received beliefs [7], [22]-[25], and a Bayesian update with the
locally available data [18], [26]. Lalitha et al. [27], Qipeng et
al. [28], [29], Shahrampour et al. [20], [30], [31] and Rahimian
et al. [32] have proposed variations of the non-Bayesian
approach and proved consistent, geometric and non-asymptotic
convergence rates for a general class of distributed algorithms;
from asymptotic analysis to non-asymptotic bounds [33], [34],
time-varying directed graphs [35]. Su et al. [36] have also
considered adversarial agents and transmission and node fail-
ures. Constant elasticity of substitution models [37], minimum
operators [38], [39], and uncertain models [] have been also
studied. See [40] and [41] for an extended literature review.

We build upon the work in [42] on non-asymptotic be-
haviors of Bayesian estimators to derive new non-asymptotic
concentration results for distributed learning algorithms. In
contrast to the existing results which assume a finite hypothesis
set, in this paper we extend the framework to compact sets
of hypotheses. Our results show that in general, the network
structure will induce a transient time after which all agents
learn at a network independent rate, and this rate is geometric.

The contributions of this paper (Part I) are as follows:

o We provide a variational analysis of Bayesian posterior
and derive an optimization problem for which the poste-
rior is a step of the Stochastic Mirror Descent method.

« We use a variational interpretation to propose a dis-
tributed Stochastic Mirror Descent method for distributed
learning. Moreover, we specialize the proposed algorithm
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to parametric models of an exponential family which
results in especially simple updates.

o We derive novel analysis methods to prove high prob-
ability non-asymptotic bounds for the convergence rate
for the case of finite hypothesis sets. We show that this
distributed learning algorithm concentrates the beliefs of
all agents around the true parameter at an exponential
rate.

The results in Part I serve as basis for Part II of this paper
series where we analyze the case where the parameter spaces
are compact. A subset of the problem description and a weaker
set of results was presented in [43]. However, in this paper
series, we extend such results with a specific treatment of the
distributed inference problem for parametric estimation in the
exponential family. Theorem statements and proofs have been
extended.

The rest of this paper is organized as follows. Section
IT introduces the problem setup, it describes the networked
observation model and the inference task. Section III presents
a variational analysis of the Bayesian posterior, shows the
implicit representation of the posterior as steps in a stochastic
program and extends this program to the distributed setup.
Section IV specializes the proposed distributed learning pro-
tocol to the case of observation models that are members of the
exponential family. Section V shows our main results about the
exponential concentration of beliefs around the true parameter.
Section V begins by gently introducing our techniques by
proving a concentration result in the case of countably many
hypotheses, before turning to our main focus: the case when
the set of hypotheses is a compact subset of R?. Finally,
conclusions, open problems, and potential future work are
discussed.

Notation: Random variables are denoted with upper-case
letters, e.g. X, while the corresponding lower-case are used
for their realizations, e.g. x. Time indices are denoted by
subscripts, and the letter k or ¢ is generally used. Agent indices
are denoted by superscripts, and the letters ¢ or j are used. We
write [A];; or a;; to denote the entry of a matrix A in its i-th
row and j-th column. We use A’ for the transpose of a matrix
A, and 2’ for the transpose of a vector 2. The complement of
a set B is denoted as B°.

II. PROBLEM SETUP

We begin by introducing the learning problem from a
centralized perspective, where all information is available at a
single location. Later, we will generalize the setup to the dis-
tributed setting where only partial and distributed information
is available.

Assume that we observe a sequence of independent random
variables X1, Xo,..., all taking values in some measurable
space (X,.A) and identically distributed with a common un-
known distribution P on X, i.e. X}, ~ P for all k. In addition,
we have a statistical model &2 = {Fy : § € ©} composed by
a parametrized family of probability measures on the sample
space (X,.A), where the map © — & from parameter to dis-
tribution is injective. Moreover, all distributions in the model

are dominated! by a o-finite measure A, with corresponding
densities py = dPy/d)\>. Assume also that the model & is
well-specified, thus there exists a 0* such that Py« = P. The
objective is to estimate §* based on the sequence of received
observations 1, x2, . . .. For example, given a random variable
X, the maximum likelihood estimator (MLE) can be defined
as

0(X) = argsup pg(X) = arg sup p(X).
I2e) PeP

Following a Bayesian approach, the parameter is repre-
sented as a random variable ) on the set O is equipped with
a o-algebra 7 and a prior probability measure po on the
measurable space (©, 7). Moreover, we assume the existence
of a probability measure IT on the product space (X x ©) with
o-algebra (A x T). Therefore one can pair the elements of
the parametric model with the conditional distributions ITx|s.
Furthermore, the densities py(z) are measurable functions of
0 for any x € X'. We then define the belief p as the posterior
distribution given the sequence of observations up to time k,
ie.,

fB Ht 1 Po(
f@ Ht 1 Po(

Xi)dpo(0)

X1)dpo(0)
(1

for all B € T (note that we used the independence of the
observations at each time step).

Assuming that all observations, up to time k, are readily
available at a centralized location, under appropriate condi-
tions, the recursive Bayesian posterior in Eq. (1) will be
consistent in the sense that the beliefs p; will concentrate
around 0*; see [44], [45], and [46] for a formal statement.
Furthermore, several authors have studied the rate at which this
concentration occurs, in both asymptotic and non-asymptotic
regimes [42], [47], [48].

Now consider the case where there is a network of n
agents observing the process Xi, Xo,..., where X} is now
a random vector belonging to the product space [[\ , X i
and X;, = [X}, X2,..., X}"]'. Specifically, agent i observes
the sequence X}, X3,..., where X} is now distributed ac-
cording to an unknown distributions P?, effectively making
X, ~ P =][_, P". The statistical model is now distributed,
where each agent agent ¢ has a private family of distributions
P ={P}:0 € O} it would like to fit to the observations.
However, the goal is for all agents to agree on a single 0
that best explains the complete set of observations instead
of their local observations only. In other words, the agents
collaboratively seek to find 6* such that Py~ =[]\, Pi. =
[, PP=P

Agents interact over a network defined by an undirected
graph G = (V,E), where V = {1,2,...,n} is the set of
agents and E is a set of undirected edges, i.e., (i,j) € E
if and only if agents ¢ and j can communicate with each

=MW eB|Xy,...,X

1k (B)

'A measure p is dominated by (or absolutely continuous with respect to)
a measure X if A(B) = 0 implies p(B) = 0 for every measurable set B.

2Without loss of generality we will further assume that J o dA () = 1, this
will only require our distributions to be absolutely contmuous with respect to
such measure.
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other. We study a simple interaction model where, at each
step, agents exchange their beliefs with their neighbors in the
graph. Thus at every time step k, agent ¢ will receive the
sample z} from X} as well as the beliefs of its neighboring
agents, i.e., it will receive pj,_,; for all j such that (i, j) € E.
Applying a fully Bayesian approach runs into some obstacles
in this setting, we assume agents know neither the network
topology nor the private family of distributions of other agents.
Our goal is to design a learning procedure that is both
distributed and consistent. That is, we are interested in a
belief update algorithm that aggregates information in a non-
Bayesian manner and guarantees that the beliefs of all agents
will concentrate around 6*.

As a motivating example, consider the problem of dis-
tributed source localization [49], [50]. In this scenario, a
network of n agents receives noisy measurements of the
distance to a source. The sensing capabilities of each sensor
might be limited to a specific region. The group objective is
to identify the location of the source jointly. Figure 1 shows a
group of 7 agents (circles) seeking to localize a source (star).
There is an underlying graph that indicates which nodes can
exchange messages. Moreover, each node has a sensing region
indicated by the dashed circle around it. Each agent observes
signals proportional to the distance to the target. Since a target
cannot be localized effectively from a single measure of the
distance, agents must cooperate to have any hope of achieving
proper localization. For more details on the problem, as well
as simulations of the several discrete learning rules, we refer
the reader to our earlier paper [33] dealing with the case when
the set © is finite.

Fig. 1: Distributed source localization example.

IIT. A VARIATIONAL APPROACH TO DISTRIBUTED
BAYESIAN FILTERING

In this section, we make the observation that the posterior
in Eq. (1) corresponds to an iteration of a first-order optimiza-
tion algorithm, namely Stochastic Mirror Descent [51]-[54].
Closely related variational interpretations of Bayes’ rule are
well-known, and in particular have been given in [55]-[57].
The specific connection to Stochastic Mirror Descent has not
been noted, as far as we are aware of. This connection will
serve to motivate a distributed learning method which will be
the main focus of the paper.

A. Bayes’ rule as Stochastic Mirror Descent

Suppose we want to solve the following optimization prob-
lem

min F'(6) = Dicr (P||Py), @)

where P is an unknown distribution and & = {Py : § € O}
is a parametrized family of distributions. Here, Dx 1, (P]|Q) is
the Kullback-Leibler (KL) divergence® between distributions
P and Q.

First note that we can rewrite the optimization problem in
Eq. (2) as

min Dy, (P Pp) = min ExDkr(P|Py)
dPy(X)
aP(X) ]
where ¢ ~ 7, X ~ P,

where ¥ ~

= min EEp {— log

TE€Ao

where Ag is the set of all possible distributions on the
parameter space O. Since the distribution P does not depend
on v, it follows that

dPy(X)

argmin E,Ep | —log ———=
"o P{ gdP(XJ

=argmin E,Ep [— log py(X)]
TEAe

=argmin EpE, [—logpy(X)]. (3)
TE€Ao

The equality in Eq. (3), where we exchange the order of the
expectations, follows from the Fubini-Tonelli theorem. Clearly,
if 6% minimizes Eq. (2), then a distribution 7* which puts all
the mass on 6* (i.e. 7*(¥ = 6*) = 1) minimizes Eq. (3).

The difficulty in evaluating the objective function in Eq. (3)
lies in the fact that the distribution P is unknown. A generic
approach to solving such problems is using algorithms from
stochastic approximation methods, where the objective is min-
imized by constructing a sequence of gradient-based iterates
whereby the true gradient of the objective (which is not
available) is replaced with a gradient sample that is available
at a given time.

A particular method that is relevant for the solution of
stochastic programs as in Eq. (3) is the stochastic mirror
descent method [51], [52], [58], [59]. In particular, recall that
the mirror descent method to find the minimum of a function
f(x) performs the update

1
Tp41 € argmin {Vf(xk)’x + aD(x7xk)} ,
'k

where D(-,-) is a specific Bregman divergence. Moreover,
note that (3) is linear in , this the derivative with respect
to m is Ep[—logpy(X)]. Finally, we use the stochastic
approximation provided by the current sample zp4; of X.
Therefore, the stochastic mirror descent approach constructs a
sequence of densities {dpuy}, as follows:

) 1

djig4+1 = arg min {(— log po(why1), m) + — Doy (T, duk)} ,
TEA af

“4)

3Dk 1 (P||Q) between distributions P and Q (with P dominated by Q)
is defined to be D1 (P||Q) = —Ep [logdQ/dP].
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where ap >0 is the step-size, the inner product is defined as

= Jop(9)q(#)do, and D,,(z, z}) is a (functional) Breg-
man dlstance functlon associated with a distance-generating
function w, i.e.,

Dy(z,2) = w(x) —w(z) — dwlz;z — 2],

where dw[z;x — z| is the Fréchet derivative of w at z in
the direction of x — z. If we choose w(z) = [zlogx
as the distance-generating function, then the corresponding
Bregman distance is the Kullback-Leibler (KL) divergence
Dy . Additionally, by selecting o, = 1, the solution to the
optimization problem in Eq. (4) can be computed explicitly,
where for each 0 € O,

dpi41(0) o< po(Tpq1)dpr(0),

which is the posterior distribution as defined in Eq. (1) (a
formal proof of this assertion is a special case of Proposition 1
shown later in the paper).

We have just shown how Bayes rule, i.e., the posterior
computation, can be viewed as an instance of mirror descent
with an stochastic approximation, for a particular choice of
Bregman function; in the next subsection, we show how this
interpretation leads to a natural algorithm in the distributed
Bayesian posterior.

B. Distributed Stochastic Mirror Descent

Now, consider the distributed problem where the network
of agents want to collectively solve the following optimization
problem

min F'(0)

Ay
min = Dir (P|[Po)

= Drr(P'|P§). (5

i=1

Recall that the distribution P is unknown (though, of
course, agents gain information about it by observing samples
from X% X4 ... and interacting with other agents) and that
2" containing all the distributions P} is a private family of
distributions and is only available to agent 3.

We propose the following algorithm as a distributed version
of the stochastic mirror descent for the solution of problem

Eq. (5):

d#iﬂ = argmin {< Inge(ka
T€EAo j=1

where 0 ~ T, (6)

with a;; > 0 denoting the weight that agent 4 assigns to beliefs
coming from its neighbor j. Specifically, a;; > 0 if (,5) €
Eorj =4 and a;; = 0 if (4,5) ¢ E. The optimization
problem in Eq. (6) has a closed form solution. In particular,
the posterior density at each 6 € © is given by
i1 (8) o pi () T (dral (6),
j=1

or equivalently, the belief on a measurable set B of an agent
7 at time k£ + 1 is

Pi1 (B) o< / Po(@hyr) [ [ (s (0)). (7)
Jj=1

)+ YDkl

We state the correctness of this claim in the following
proposition.

Proposition 1. Assume the weights (a;;) form a doubly
stochastic matrix. Then. the probability measure u};. 41 over
the set © defined by the update protocol Eq. (7) coincides,
almost everywhere, with the update the distributed stochastic
mirror descent algorithm applied to the optimization problem
in Eq. (5).

Proof. We need to show that the density du! 41 associated
with the probability measure 1}, 41 defined by Eq. (7) min-
imizes the problem in Eq. (6). To do so, let G(m) be the
objective function for the problem in Eq. (6), i.e.,
G(r) = )+ s Do ()
J=1

(- logpe(xk“

Next, we add and subtract the KL divergence between 7 and
the density duj,_ , to obtain

G(r) = ) + Z aij Drcr (wl|dpsy,) -

j=1
— Dir, (mlldpthsy) + Drr (7l|dpys)
= (—log py(@y1), ) + Drp (w|dptyr) +

S dﬂ’;e-‘,—l
+ a;;Er log ———.
JZ:; dys,

(= logpe(ka

Now, from Eq. (7) it follows that

G(m) = <*10gpé($2+1) ) + Dicr, (wlldpin) +

1 [ il oo
Za”E log <d 77 H (d,uZ) ’pa(IkH))
j=1 k+1 =1
= (—log pj(2}41),m) + Dir, (| dpjyy)

—log Z 1 + (log py(x)4y), )

3 oeetos (oL T )™ )

k =1
. . n .
—log Zjiy + Dicy, (wlldpsisr) = D aisEr log dp]
j=1
+ ) auBx logduj,
=1
~log Zj. .y + Dicr (wlldpj 1) , (8)

where Z} ., = [, ph(xi 1) [T}—1 (du(0)) is the corre-
sponding normalizing constant.

The first term in Eq. (8) does not depend on the distribution
m. Thus, we conclude that the solution to the problem in
Eq. (6) is the density 7 = du}, 41 as defined in Eq. (7) (almost
everywhere). O

We remark that the update in Eq. (7) can be viewed as two-
step processes: first every agent constructs an aggregate belief
using a weighted geometric average of its own belief and the
beliefs of its neighbors, and then each agent performs a Bayes’
update using the aggregated belief as a prior. We note that sim-
ilar arguments in the context of distributed optimization have
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been proposed in [54], [60] for general Bregman distances. In
the case when the number of hypotheses is finite, variations on
this update rule were previously analyzed in [27], [30], [33].
C. An example

Example 1. Consider a group of 4 agents, connected over a

network as shown in Figure 2. A set of metropolis weights for
this network is given by the following matrix:

2/3 1/6 0 1/6
A_ | 16 2/3 16 0
| o 1/6 2/3 1/6
1/6 0 1/6 2/3
2
1 4

Fig. 2: A network of 4 agents.

Furthermore, assume that each agent is observing a
Bernoulli random variable such that X} ~ Bern(0.2), X7 ~
Bern(0.4), X3 ~ Bern(0.6) and X}} ~ Bern(0.8). In this case,
the parameter space is © = [0,1]. Thus, the objective is to
collectively find a parameter 6* that best explains the joint
observations in the sense of the problem in Eq. (5), i.e.

4
in F(0) = Dxgr(Bern(6?)||Bern(6
92%?1] (0) ; rr(Bern(0”)||Bern(0))

4
0 1-6

where 01 = 0.2, 02 = 0.4, 6 = 0.6 and 0* = 0.8. The optimal
solution is 8* = 0.5 by the first-order optimality conditions or
by exploiting symmetries in the objective function.

To summarize, we have given an interpretation of Bayes’
rule as an instance of Stochastic Mirror Descent. We have
shown how this interpretation motivates a distributed update
rule. In the next section, we discuss explicit forms of this
update rule for parametric models coming from exponential
families.

IV. COOPERATIVE INFERENCE FOR EXPONENTIAL
FAMILIES

We begin with the observation that, for a general class of
models {7}, the direct computation of the posterior beliefs
[y, is intractable. Indeed, computing s, requires the
solution of an integral of the form
[ bt L.

Jj=1

€))

There is an entire area of research called variational Bayes’
approximations dedicated to efficiently approximating inte-
grals that appear in such context [61]-[63].

The purpose of this section is to show that for exponential
family [64], [65] there are closed-form expressions for the pos-
terior beliefs generated by the proposed distributed inference
algorithm.

Definition 1. The exponential family, for a parameter 6 =
[01,62,...,0%), is the set of probability distributions whose
density can be represented as

po(z) = H(x) exp(M(0)'T(x)),

for specific functions H(-), M(:) and T()
M(0) = [M(6Y), M (0?),...,M(6°))]  depends on
density parameters and T(-) depends on the observations.

where
the

For example, consider a Normal distribution parametrized
by its mean ¢ with known variance o2. Then, it holds that

1 (x —0)2
exp | ———*—
V2mo? 202
D S G S
V2102 P 202 02 202

2
exp (—;7)

po(z) =

_5P\ ) e e [ = ] (10)
V2mo? P Lf—l — 207
H(z) T(x)

Among the exponential family members, one can find
distributions such as Normal, Poisson, Exponential, Gamma,
Bernoulli, and Beta, among others [66]. In our case, we will
take advantage of the existence of conjugate priors for all
members of the exponential family. The definition of the
conjugate prior is given below.

Definition 2. Assume that the prior distribution p on a
parameter space © belongs to the exponential family. Then,
the distribution p is referred to as the conjugate prior for a
likelihood function pg(x) if the posterior distribution p(0|z)
po(x)p(0) is in the same family as the prior.

Definition 2 implies that if the belief density at some time &
is a conjugate prior for our likelihood model, then our belief at
time £+ 1 will be of the same class as our prior. For example,
if a likelihood function follows a Gaussian form, then having
a Gaussian prior will produce a Gaussian posterior. This
property simplifies the structure of the belief update procedure
since we can express the evolution of the beliefs generated
by the proposed algorithm in Eq. (7) by the evolution of the
natural parameters of the member of the exponential family
it belongs to. Naturally, by induction, if the prior belief at
time k = 0 is a conjugate prior of the likelihood function,
the beliefs for all £ > 0 will belong to the same exponential
family.

In the same way that a Gaussian likelihood function can
be represented in its canonical form as in Eq. (10), we
can find such representation as well for the belief density.
Note, however, that in this case, the sample space is not
X as in the likelihood function, but © because the belief
is a distribution over ©. Moreover, we will require some
parametric characterization. Particularly we can write a belief
density as

Px(0) = f(x) exp(M(6)x).

where M is a function of the parameter space for § € ©, and
x which is a parametric characterization of the belief density.
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Going back to the example in Eq. (10), assume that our prior
is a Normal Adistribution on 6 with mean @ and variance 62,
then y = [0 &%) and

(1)

F(x) X

Then, it can be shown that the posterior distribution, given
some observation x, has the same exponential form as the
prior, with updated parameter Yy = x + 7'(x) as follows:

px(0]z) o< po(2)py (0]2). (12)

Particularly, for the example in Eq. (10) and Eq. (11), the
posterior distribution is still Gaussian.

We will now exploit the structure of the exponential family
of distributions to reformulate the distributed inference algo-
rithm in Eq. (7) into an easy to implement algorithm in terms
of the parametric representation of the beliefs for each agent.

Initially, consider that the set of agents have a belief at time
k in the form of a distribution over the parameter space that
is a member of the exponential family. That is, assume that
each agent ¢ has a belief over the parameters 6 such that

dpi (0) o< exp (M(0)'x%,) ,

then, according to the first step in Eq. (7), an agent ¢ needs to
compute the weighted geometric average of the beliefs of its
neighbors including its own. Given the parametrization in the
exponential family, it holds that,

IT (at®)" o TT (e (a1601:0)) ™

=exp [ M(0) Z aini-
j=1

Now, if all agents have beliefs in the same exponential
family and they are conjugate priors to their corresponding
likelihood functions, then we can write the posterior of agent
1 as

dptf 41 (0) o exp | M(0) Y aijxd, | phu(@hsn)

=1

=exp | M(0) Z aijxp— | exp(M(0)' T (x}41))
=1

=exp | M(9) Zaijxi +TH(xh 1)

j=1
= exp (M(e)/Xiﬂ) .

As an immediate conclusion, it follows that for distributed
inference problems when the observation models are members
of the exponential family, one can always construct a set of
beliefs using prior conjugates, and the algorithm in Eq. (7)
simplifies to updates in the parameters of the exponential
family, as shown by the following proposition.

Proposition 2. Assume the belief density d% at time k has
an exponential form with natural parameters Xi and V,i for
all 1 < i < n, and that these densities are conjugate priors
of the likelihood models pjy. Then, the belief density of agent
1 at time k + 1, as computed in the update rule in Eq. (7),
has the same form as the beliefs at time k with the natural
parameters given by
n
Xir1 = Y aijxh + T (@)pr)- (13)
j=1
Proposition 2 simplifies the algorithm in Eq. (7) and facili-
tates its use in traditional estimation problems where members
of the exponential family are used.

A. Examples

In this subsection, we explicitly state the general distributed
algorithm in Eq. (13) presented in Proposition 2 for several
distributed parameter estimation problems. Mainly, we explic-
itly write the definition of the vector T%(z%) and Y%, from
which the parameters of the current beliefs for each agent can
be computed. Later in Section ?? we will provide simulation
results for several distributed inference problems over various
graph topologies.

1) Distributed Gaussian Filter with unknown mean and
known variance: Assume each agent in the network observes
a signal of the form X; = 6" + €;, where ¢ is finite and
unknown scalar quantity, while ¢! ~ A(0,1/7%) is a zero mean
Gaussian noise with precision 7¢ = 1/(¢*)? known only by
agent 7. The objective of the network is to agree on a single
0 that solves the optimization problem in Eq. (5).

In this case, the likelihood models, the prior and the
posterior are Normal distributions. Thus, if the beliefs of the
agents at time k are Gaussian, i.e., pi = N(0%,1/7) for
all ¢ = 1...,n, then their beliefs at time k + 1 are also
Gaussian. In particular, they are given by ui = N(0%,1/7})
forall¢=1...,n, with

v "
mo) = o). =TT = ]

We note that this specific setup is known as Gaussian Learn-
ing and has been studied in [67], [68], where the expected
parameter estimator is shown to converge at an O(1/k) rate.

2) Distributed Gaussian Filter with unknown variance and
known mean: In this case, the agents want to cooperatively
estimate the value of a variance which is the parameter for
Eq. (5). Specifically, each agent ¢ observes a realization of the
random variable X} = 0 + €, with €} ~ N(0,1/7%), where
6% is known and 7 is unknown. The beliefs of all agents are
chosen to be a Gamma distribution x}, = Gamma(a, 85) and

it follows that
T o 7l(xi o 0i)2
_ 0N 2\*k
M) = [or, | T = [THE ),
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Xk = { P } :
(0}~ 1)

3) Distributed Gaussian Filter with unknown mean and
variance: In the preceding examples, we have considered the
cases when either the mean or the variance is known. Here, we
will assume that both the mean and the variance are unknown
and need to be estimated. Explicitly, we still have noise
observations X} = 0° + €}, with €}, ~ N(0,1/7%). We are
going to assume all agents have beliefs that follow the Normal-
Gamma distribution, i.e. 1§ = NormalGamma(6}, A%, at, 1)

for : = 1,--- ,n. Moreover, the it holds that
[log 7 ) % .
|7 TS AN *5(5?2)
M(Q,T) - 0 ) T (‘rk) - x§€ )
2 1
L 7'9 4 —3
R -
R RO
¢ X0}
LIy

4) Distributed Bernoulli Filter: Here, each of the agents
receives private observations of the form X} ~ Bernoulli(p?),
with p’ unknown. In order to estimate the network-wide pa-
rameter, each agent constructs a sequence of beliefs following
a Beta distribution, i.e. u§, = Beta(a,, 3i). Then, the proposed
algorithm in Eq. (13) updates its parameters. Moreover, it
holds that

log p i ) i aj

5) Distributed Poisson Filter: Similarly as before, we con-
sider an observation model where each agent ¢ receives real-
ization of a Poisson random variable with unknown parameter
A, ie., X} ~ Poisson(\") for all i. The conjugate prior
of a Poisson likelihood model is the Gamma distribution.
Thus, if at time k the beliefs of each agent ¢ are given by
pi = Gamma(asl, 3i). Moreover, it holds that

wor- ], - 4] - Py

6) Distributed Exponential Filter: As a final example, we
consider an observation model where each agent i receives
realization of an Exponential random variable with unknown
rate \’, i.e., X} ~ Exponential(\*) for all i. The conjugate
prior of an Exponential likelihood model is the Gamma
distribution. Thus, if at time & the beliefs of each agent @
are given by ui = Gamma(as, 3;). Moreover, it holds that

A iy |1 i fer—1
V. BELIEF CONCENTRATION RATES

We now turn to the presentation of our main results about
the rate at which beliefs generated by the update rule in Eq. (7)
concentrate around the true parameter 6*. We will break up
our analysis into two cases. Initially, Part I of this paper
series will focus on when © is a finite set and will prove a

concentration rate on the beliefs on a Hellinger ball around the
optimal hypothesis. The case when O is a finite set has been
previously studied in [27], [30], [33] with similar geometric
concentration results for distributed learning has been shown.
However, we take a fundamentally different proof approach
that will allow us to gently introduce the techniques we will
use later when we turn to our main scenario of interest, namely
when © is a compact subset of R%. We analyze the case of
compact hypotheses sets in Part II of this paper series. Our
proof techniques use concentration arguments for beliefs on
Hellinger balls from the recent work in [42] which, in turn,
builds on the classic paper of [69].

We begin with two subsections focusing on background
information, definitions, and assumptions.

A. Background: Hellinger Distance and Coverings

The squared Hellinger distance between two probability
distributions P and @ is given by,

2
hz(RQ)zé/(\/ﬁ-\/fﬁ) X, (14)

where P and () are dominated by \. Moreover, the Hellinger
distance satisfies the property that 0 < h(P,Q) < 1.

We equip the set of all probability distributions &2 over the
parameter set with the Hellinger distance to obtain the metric
space (£, h). The metric space induces a topology, where
we can define an open ball B,(f) with a radius r € (0,1)
centered at a point § € O, which we use to construct a special
covering of subsets B C 7. Recall that Eq. 14 defines the
squared Hellinger distance k2, rather than h.

Definition 3. Define an n-Hellinger ball of radius r centered
at 0 as

B,(0) = {é €O

1 & S
SN2 (Pl.P?> <2\
n; 0ro) ="

Additionally, when no center is specified, it should be assumed
that it refers to 0%, i.e. B, = B,.(6).

Given an n-Hellinger ball of radius 7, we will use the
following notation for a covering of its complement B¢.
Specifically, we are going to express B¢ as the union of finite
disjoint and concentric annuli. Let » € (0,1) and {r;} be a
finite strictly decreasing sequence such thatr; = landr;, = r
and express the set B¢ as the union of annuli generated by the
sequence {r;} as

L—-1
By = J 7
=1

where F; = B, \ B, -

B. Background: Assumptions on the Network and Mixing
Weights

Naturally, we need some assumptions on the matrix A.
For one thing, the matrix A has to be “compatible” with the
underlying graph, in that information from node ¢ should not
affect node j if there is no edge from ¢ to j in G. At the
other extreme, we want to rule out the possibility that A is
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the identity matrix, which in terms of Eq. (7) means nodes do
not talk to their neighbors. Formally, we make the following
assumption.

Assumption 1. The graph G and matrix A are such that:

(a) A is doubly-stochastic with [A]ij =a;; >0 fori#jif
and only if (i,j) € E.

(b) A has positive diagonal entries, a;; > 0 for all i € V.

(c) The graph G is connected.

Assumption 1 is common in the distributed optimization
literature. The construction of a set of weights satisfying
Assumption 1 can be done in a distributed way, for example,
by choosing the so-called “lazy Metropolis” matrix, which is
a stochastic matrix given by
if (4,j) € E,

i (i.4) ¢ .

where d' is the degree (the number of neighbors) of node
1. Note that although the above formula only gives the off-
diagonal entries of A, it uniquely defines the entire matrix (the
diagonal elements are uniquely defined via the stochasticity of
A). To choose the weights corresponding to a lazy Metropolis
matrix, agents will need to spend an additional round at the
beginning of the algorithm broadcasting their degrees to their
neighbors.

Assumption 1 can be seen to guarantee that AF —
(1/n)117 where 1 is the vector of all ones. We will use
the following result based on [30] and [33], that provides
convergence rate for the difference |A* — (1/n)117,:

1
aij = { Snlax{dl+1,d7+1}

Lemma 3. Let Assumption 1 hold, then the matrix A satisfies
the following relation:

>yl

t=1 j=1

Akt

fori=1,...,n

1 4logn
n 1-6

where § = 1 —n/4n? with n being the smallest positive entry
of the matrix A. Furthermore, if A is a lazy Metropolis matrix
associated with the graph G, then § =1 —1/0(n?).

C. Concentration Analysis for Finite Hypotheses Sets

We now turn to prove a concentration result when the set ©
of hypotheses is finite. We will show exponential convergence
of beliefs on a Hellinger Ball around the true hypothesis 6*.
The purpose is to introduce the techniques gently we will use
later in a compact set of hypotheses.

When the number of hypotheses is finite, the density update
in Eq. (7) can be written in a simpler form for discrete beliefs
over the parameter space © as

ph11(0) o< p(ahyy) H (15)

We will fix the radius r, and our goal will be to prove a
concentration result for a Hellinger ball of radius r around
the optimal hypothesis 0*. We start by partitioning the com-
plement of this ball, i.e., Bf, as described above into the
annuli ;. We introduce the notation N; to denote the number
of hypotheses within the annulus F;. We refer the reader

to Figure 3, which shows a set of probability distributions,
represented as black dots, where a star represents the true
distribution P.

. Py

Fig. 3: Creating a covering for a ball B,. % represents the
correct hypothesis Py, e indicates the location of other
hypotheses and the dash lines indicate the boundary of the
balls B,,.

The distance between hypotheses is defined in terms of the
Hellinger affinity between two distributions ) and P, given
by

p(va) =1- h2(Qap)

We are now ready to state our first result as a lemma that
bounds the concentration of aggregated log-likelihood ratios.

(16)

Lemma 4. Let Assumptions 1 hold. Given a set of independent
random variables {X}} such that X} ~ P® fori =1,...,n
and t = 1,...,k, a set of distributions {Q'} where P°
dominates @', then for all y € R,

kK n d j
Z Z[Ak_t]ij 10g %

t=1 j=1

(X7) >

y | 4logn
2 10

<exp

1 n ) .
— k= 207 pI
S W@ )
Jj=1
Proof. By the Markov inequality we have

k n d j
DD A log %

t=1 j=1

cew(V)E HW

(X7) >

an
dPJ

where the last inequality follows from the definition of the
Hellinger affinity function p(Q, P) and Jensen’s inequality.
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Moreover, it follow from p(Q7, P7) =1 — h?(Q’, P?) and Proof. We are going to focus on bounding the beliefs of a

1 -z <exp(—=x) for z € [0,1] that measurable set 53, such that #* € B. For such a set, it follows
. by induction from Eq. (15) that
- . k—t
p(Q7, pJ)[A lig . 1 no n koo e
11 wi(B) = o= S TLib @ TT Ty
E n k oeB j=1 =1 ;=1
. n i -1
e | =2 2 W@ P ). aD s 11 w@" 11 1T s
t=1 j=1 N 9eBe j=1 t=1j=1

B n . k n . . "

Now, by adding and subtracting Zle i > h2(Q7, P7) 92 T 1d(0) 4™ H1 I1 pé(Xg)[Ak Jij

€Bj=1 t=1;j=1

we have n j [ k]1 n j j [Ak,f] N
@ > o 11 {1 o

P S0 S s S ) 2 ,
=t S T #h@ T1 1 ph(x))* e

k. n 1 9€B j=1 t=1j=1
Y - i pj ;
< exp 5 Z Z ([Ak Dij — n) h*(Q7, P) where Z; is the appropriate normalization constant. Moreover,
t=1j=1 for 0* € B it follows that

k n . . [A j [Ak-t]ij
— D W) P(X7)
2 IRy T (Pe)

feBe j=1 t=1j=1
n
< exp _Yy dlogn EZ hA(Q7,P7) | . Moreover, from the assumption that u(6*) > e for all
2 1—-0 nt - .
=1 i =1,...,n, it follows that

Finally, the last line above follows from Lemma 3 applied

[ k-t]”
pp(X
to the second term inside the exponential. O pi (B) 21—~ Z H H ( > . (18)
€ GeBei=1j-1

We are now ready to state our first main result, which The relation in Eq. (18) describes the iterative averaging of
bounds the concentration of Eq. (15) around the optimal products of density functions, for which we can use Lemma 4
hypothesis for a finite hypothesis set ©. The following theorem with Q = Py and P = Py+. Then,
shows that all agents’ beliefs will concentrate around the

Hellinger ball B, at tial rate. (X7
ellinger ba at an exponential rate sup ZZ (41, (Xi) >y
Theorem 5. Let Assumption 1 hold, and let o € (0,1) be a 0eB =1 j=1 p (X7)
desired probability tolerance. Then, the belief sequences {u}~C 1
. . . Y 4logn 2/ 1
1 € V that are generated by the update rule in Eq. (15), with < Z exp | -2 + Z h2(Pj, P,
initial beliefs such that ji&,(0*) > e for all i, have the following 0eBe 2 1= ni4
property: for any radius v € (0,1) with probability 1 — o, S
and by setting y = —% 3", h*(P], P7) we obtain
i IS 2 : o
fhyr (Br) =1 == N, exp(—kriy,) Viand k> N, k n (X7 B o
e 2N B | sup 303 AR 1og D) 5 K2t iy
0eB° 121 =1 p](Xt) Lt
where
Alogn L=t < exp <4logn) Z exp _ﬁzn:hz(]gg PY)
N =inf {tZl exp( T3 > ZN” exp (—trla_l) <U}, 1-46 Pt 2n =
1=1

. Now, we let the set B be the Hellinger ball of a radius
and b as defined in Lemma 3. r centered at 0* and define a cover (as described above) to
exploit the representation of ¢ as the union of concentric

In Theorem 5, note that N indicates the time required for ) ) :
Hellinger annuli, for which we have

the beliefs on the ball B,. around the true hypothesis 8 to start
to concentrate at a geometric rate. Moreover, N is a function

(X} n o
of § and n, showing the impact of the network topology. The sup Z Z A’f g Jijl (XE) > _k Z h( Pj, P7)
time N can also be interpreted as a transient time required for beBe 7 =1 P (X}) n =1
mixing of beliefs among the agents before the impact of the
network disappears. < exp (410gn) Z Z ox Z 2/ pi pj

< pl—=— h*( Pe , P7)

=1 0cF;
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4logn\ = k 5
Sexp | 4— 3 ZN” exp ( —57ik ) -
=1

We are interested in finding a value of k large enough such
that the above probability is below o. Thus, lets define the
value of NV as

N:inf{tZl

It follows that for all k¥ > N with probability 1 — o, for all
0 e B¢

ZZAk 1, log

t=1 j=1

Zh2 (P], P7).

Thus, from Eq. (18) with probablhty 1 — o we have

I >1—726Xp ——ZhQ Pg,PJ

0eB:
= n
:1—fZZeXp ——ZhQ(Pg,PJ)
1=1 0€Fy =1
L—1
>1- 72/\/'7% exp( kT12+1)

O

Note that in general, the belief concentration rate described
in Theorem 5 depends on the geometry of the hypotheses set
and how are they distributed on the parameter space. The next
Corollary describes the scenario where the sequence {r;} is
such that L =2,sor; =1 and o = 7.

Corollary 6. Let Assumption I hold, and let o € (0,1) be a
desired probability tolerance. Then, the belief sequences {15, },
i € V that are generated by the update rule in Eq. (15), with
initial beliefs such that 1}, (6*) > e for all i, have the following
property: for any radius r € (0,1) with probability 1 — o,

; 2 N 4dlogn
Hisr (Br) 21— —exp (logg t 15 —er) :

where N is the number of hypotheses outside B, and § as
defined in Lemma 3.

D. Discussion and Comparison with Previous Approaches

Non-asymptotic belief concentration rates for non-Bayesian
learning has been previously studied inin [27], [30], [33]. In
this subsection, we provide some discussion and comparison
with the result from Theorem 5, and Corollary 6 respectively.

We start by recalling a general form of the main result
from [27], [30], [33].

Theorem 7 (Theorem 2 from [33]). Let Assumptions 1 hold
and let o € (0,1). The update rule of Eq. (15), with positive
and uniform initial belief on all hypotheses, has the following
property: there is an integer N (p) such that, with probability
1—p, for all k > N(p) and for all 0, ¢ ©*, we have

w1y, (0,) < exp (—272 —&—'ﬁ) foralli=1,...,n

L-1
4logn
exp ( =3 > Z_ZINn exp (—triyy) < ‘7} :

where

1 1
N(p) £ | 158 (loga)* og 7|
2

At A 1210gnlogl v2 £ = min
1™ 1-% a7

n 0,¢0*

> Dki(P|P;,),
=1

where o is a positive lower bound on the likelihood functions.

For simplicity of presentation, we will focus our comparison
with Corollary 6. Initially, note that Corollary 6 indicates the
concentration of beliefs on a n-Hellinger ball of radius r
around the optimal hypotheses, whereas Theorem 7 shows
that the beliefs on the non-optimal hypotheses will decay
to zero. These two statements are equivalent if the optimal
hypotheses are unique, and the n-Hellinger ball of radius r
contains only one hypothesis. Moreover, the rate at which such
concentrations occur is exponential in the number of iterations
for both cases. However, the rate in Corollary 6 is given by
the radius r, whereas in Theorem 7 is given by the distance
between the optimal and second-best hypotheses. These two
statements seem equivalent. However, in Corollary 6 the
distance is measured in terms of Hellinger distances, which
are naturally upper bounded by 1. In Theorem 7, the Kullback-
Leibler divergence is not upper-bounded. Thus, a larger value
is expected. This weakness of the proposed method might be
explained as the original problem in Eq. 5 involved KL diver-
gences. However, this is a trade-off for a more general analysis
that will allow us to work on compact hypotheses spaces. We
believe this is a construction of the proof. Removing such
construction is out of the scope of this paper and left for
future work. Finally, the belief concentrations for both results
happen after a time proportional to a term that depends on the
network topology. They are equal up to a constant factor of
3. Finally, Corollary 6 removes the lower bounded likelihood
assumption in Theorem 7. In both cases, the dependency on
the high probability bound is only logarithmic.

VI. CONCLUSIONS

We have proposed an algorithm for distributed learning
with both countable and compact sets of hypotheses. Our
algorithm may be viewed as a distributed version of Stochas-
tic Mirror Descent applied to the problem of minimizing
the sum of Kullback-Leibler divergences. Our results show
non-asymptotic geometric convergence rates for the beliefs
concentration around the true hypothesis. Particularly in Part
I, we provide an extensive application case of study for
observational models in the exponential family of probability
distributions. Moreover, we have developed a new belief
concentration analysis for the case of finite hypotheses. Part
IT of this paper series extends this analysis to the compact
hypotheses set case.

Future work should explore how variations on stochastic
approximation algorithms will produce new non-Bayesian
update rules for more general problems. Promising directions
include acceleration results for proximal methods, other Breg-
man distances, or constraints within the space of probability
distributions.
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Furthermore, we have modeled interactions between agents
as exchanges of local probability distributions (i.e., beliefs)
between neighboring nodes in a graph. It remains open to
understand to what extent this can be reduced when agents
transmit only an approximate summary of their beliefs. We
anticipate that future work will additionally consider the effect
of parametric approximations allowing nodes to communicate
only a finite number of parameters coming from, say, Gaussian
Mixture Models or Particle Filters.
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