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Non-asymptotic Concentration Rates in Cooperative
Learning Part II: Inference on Compact Hypotheses

Sets
César A. Uribe, Alex Olshevsky, and Angelia Nedić,

Abstract—We study the problem of cooperative inference
where a group of agents interact over a network and seeks to
estimate a joint parameter that best explains a set o network-wide
observations using local information only. Agents do not know
the network topology or the observations of other agents. We
explore a variational interpretation of the Bayesian posterior and
its relation to the stochastic mirror descent algorithm to prove
that, under appropriate assumptions, the beliefs generated by
the proposed algorithm concentrate around the true parameter
exponentially fast. In Part I of this two-part paper series, we
focus on providing a variation approach to distributed Bayesian
filtering. Moreover, we develop explicit and computationally
efficient algorithms for observation models in the exponential
families. Additionally, we provide a novel non-asymptotic belief
concentration analysis for distributed non-Bayesian learning on
finite hypotheses sets. This new analysis method is the basis for
the results presented in Part II. In Part II, we provide the first
non-asymptotic belief concentration rate analysis for distributed
non-Bayesian learning over networks on compact hypotheses sets.
Additionally, we provide extensive numerical analysis for various
distributed inference tasks on networks for observational models
in the exponential family of distributions.

Index Terms—Distributed Inference, non-Bayesian social
learning, estimation over networks, non-asymptotic rates.

I. INTRODUCTION

The increasing amount of data generated by recent appli-
cations of distributed systems such as social media, sensor
networks, and cloud-based databases has brought consider-
able attention to distributed data processing, in particular the
design of distributed algorithms that take into account the
communication constraints and make coordinated decisions
in a distributed manner [1]–[11]. In a distributed system,
interactions between agents are usually constrained by the
network structure and agents can only use locally available
information. This contrasts with centralized approaches where
all information and computation resources are available at a
single location [12]–[15].

One traditional problem in decision-making is that of pa-
rameter estimation. Given a set of noisy observations coming
from a joint distribution one would like to estimate a parameter
or distribution that minimizes a certain loss function. For
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example, Maximum a Posteriori (MAP) or Minimum Least
Squared Error (MLSE) estimators fit a parameter to some
model of the observations. Both, MAP and MLSE estimators
require some form of Bayesian posterior computation based
on models that explain the observations for a given parameter.
Computation of such a posteriori distributions depends on
having exact models about the likelihood of the corresponding
observations. This is one of the main difficulties of using
Bayesian approaches in a distributed setting. A fully Bayesian
approach is not possible because full knowledge of the network
structure, or of other agents’ likelihood models, may not be
available [16]–[18].

Following the seminal work of Jadbabaie et al. in [1],
[19], [20], there have been many studies of distributed non-
Bayesian update rules over networks. In this case, agents are
assumed to be boundedly rational (i.e., they fail to aggregate
information in a fully Bayesian way [21]). Proposed non-
Bayesian algorithms involve an aggregation step, typically
consisting of weighted geometric or arithmetic average of the
received beliefs [7], [22]–[25], and a Bayesian update with the
locally available data [18], [26]. Lalitha et al. [27], Qipeng et
al. [28], [29], Shahrampour et al. [20], [30], [31] and Rahimian
et al. [32] have proposed variations of the non-Bayesian
approach and proved consistent, geometric and non-asymptotic
convergence rates for a general class of distributed algorithms;
from asymptotic analysis to non-asymptotic bounds [33], [34],
time-varying directed graphs [35]. Su et al. [36] have also
considered adversarial agents and transmission and node fail-
ures. Constant elasticity of substitution models [37], minimum
operators [38], [39], and uncertain models [] have been also
studied. See [40] and [41] for an extended literature review.

We build upon the work in [42] on non-asymptotic be-
haviors of Bayesian estimators to derive new non-asymptotic
concentration results for distributed learning algorithms. In
contrast to the existing results which assume a finite hypothesis
set, in this paper we extend the framework to compact sets
of hypotheses. Our results show that in general, the network
structure will induce a transient time after which all agents
learn at a network independent rate, and this rate is geometric.

The main contribution of this paper (Part II) are as follows:

• We provide the first non-asymptotic belief concentration
analysis for non-Bayesian distributed learning over com-
pact hypotheses sets.

• We show the proposed update rule concentrates its beliefs
on compact balls around the optimal set at geometric rate.
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• We provide extensive numerical results for various dis-
tributed inference tasks with observational models in the
exponential family of distributions.

The rest of this paper is organized as follows. Section
II introduces the problem setup, it describes the networked
observation model and the inference task. Section III shows
our main results about the exponential concentration of be-
liefs around the true parameter. Section III begins by gently
introducing our techniques by proving a concentration result
in the case of countably many hypotheses, before turning to
our main focus: the case when the set of hypotheses is a
compact subset of Rd. Section IV presents a set of numerical
analysis and simulation results for the proposed algorithms for
the distributed estimation of parameters of distributions from
the exponential family for various networks topologies and
number of agents. Finally, conclusions, open problems, and
potential future work are discussed.

Notation: Random variables are denoted with upper-case
letters, e.g. X , while the corresponding lower-case are used
for their realizations, e.g. x. Time indices are denoted by
subscripts, and the letter k or t is generally used. Agent indices
are denoted by superscripts, and the letters i or j are used. We
write [A]ij or aij to denote the entry of a matrix A in its i-th
row and j-th column. We use A′ for the transpose of a matrix
A, and x′ for the transpose of a vector x. The complement of
a set B is denoted as Bc.

II. PROBLEM SETUP

We begin by introducing the learning problem from a
centralized perspective, where all information is available at a
single location. Later, we will generalize the setup to the dis-
tributed setting where only partial and distributed information
is available.

Assume that we observe a sequence of independent random
variables X1, X2, . . ., all taking values in some measurable
space (X ,A) and identically distributed with a common un-
known distribution P on X , i.e. Xk ∼ P for all k. In addition,
we have a statistical model P = {Pθ : θ ∈ Θ} composed by
a parametrized family of probability measures on the sample
space (X ,A), where the map Θ→P from parameter to dis-
tribution is injective. Moreover, all distributions in the model
are dominated1 by a σ-finite measure λ, with corresponding
densities pθ = dPθ/dλ

2. Assume also that the model P is
well-specified, thus there exists a θ∗ such that Pθ∗ = P . The
objective is to estimate θ∗ based on the sequence of received
observations x1, x2, . . .. For example, given a random variable
X , the maximum likelihood estimator (MLE) can be defined
as

θ̂(X) = arg sup
θ∈Θ

pθ(X) = arg sup
P∈P

p(X).

Following a Bayesian approach, the parameter is repre-
sented as a random variable ϑ on the set Θ is equipped with

1A measure µ is dominated by (or absolutely continuous with respect to)
a measure λ if λ(B) = 0 implies µ(B) = 0 for every measurable set B.

2Without loss of generality we will further assume that
∫
X dλ(x) = 1, this

will only require our distributions to be absolutely continuous with respect to
such measure.

a σ-algebra T and a prior probability measure µ0 on the
measurable space (Θ, T ). Moreover, we assume the existence
of a probability measure Π on the product space (X ×Θ) with
σ-algebra (A × T ). Therefore one can pair the elements of
the parametric model with the conditional distributions ΠX|ϑ.
Furthermore, the densities pθ(x) are measurable functions of
θ for any x ∈ X . We then define the belief µk as the posterior
distribution given the sequence of observations up to time k,
i.e.,

µk(B)=Π(ϑ ∈ B | X1, . . . , Xk)=

∫
B

∏k
t=1 pθ(Xt)dµ0(θ)∫

Θ

∏k
t=1 pθ(Xt)dµ0(θ)

.

(1)

for all B ∈ T (note that we used the independence of the
observations at each time step).

Assuming that all observations, up to time k, are readily
available at a centralized location, under appropriate condi-
tions, the recursive Bayesian posterior in Eq. (1) will be
consistent in the sense that the beliefs µk will concentrate
around θ∗; see [44], [45], and [46] for a formal statement.
Furthermore, several authors have studied the rate at which this
concentration occurs, in both asymptotic and non-asymptotic
regimes [42], [47], [48].

Now consider the case where there is a network of n
agents observing the process X1, X2, . . ., where Xk is now
a random vector belonging to the product space

∏n
i=1 X i

and Xk = [X1
k , X

2
k , . . . , X

n
k ]′. Specifically, agent i observes

the sequence Xi
1, X

i
2, . . ., where Xi

k is now distributed ac-
cording to an unknown distributions P i, effectively making
Xk ∼ P =

∏n
i=1 P

i. The statistical model is now distributed,
where each agent agent i has a private family of distributions
Pi = {P iθ : θ ∈ Θ} it would like to fit to the observations.
However, the goal is for all agents to agree on a single θ
that best explains the complete set of observations instead
of their local observations only. In other words, the agents
collaboratively seek to find θ∗ such that P θ∗ =

∏n
i=1 P

i
θ∗ =∏n

i=1 P
i = P .

Agents interact over a network defined by an undirected
graph G = (V,E), where V = {1, 2, . . . , n} is the set of
agents and E is a set of undirected edges, i.e., (i, j) ∈ E
if and only if agents i and j can communicate with each
other. We study a simple interaction model where, at each
step, agents exchange their beliefs with their neighbors in the
graph. Thus at every time step k, agent i will receive the
sample xik from Xi

k as well as the beliefs of its neighboring
agents, i.e., it will receive µjk−1 for all j such that (i, j) ∈ E.
Applying a fully Bayesian approach runs into some obstacles
in this setting, we assume agents know neither the network
topology nor the private family of distributions of other agents.
Our goal is to design a learning procedure that is both
distributed and consistent. That is, we are interested in a
belief update algorithm that aggregates information in a non-
Bayesian manner and guarantees that the beliefs of all agents
will concentrate around θ∗.

As shown in Part I of this paper series, the above problem
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can be written as the optimization problem

min
θ∈Θ

F (θ) , DKL (P ‖P θ) =
n∑
i=1

DKL(P i‖P iθ). (2)

We propose the following algorithm as a distributed version
of the stochastic mirror descent for the solution of problem
Eq. (2):

dµik+1 = arg min
π∈∆Θ

{
〈− log piθ(x

i
k+1), π〉+

n∑
j=1

aijDKL(π‖dµjk)
}

where θ ∼ π, (3)

with aij > 0 denoting the weight that agent i assigns to beliefs
coming from its neighbor j. Specifically, aij > 0 if (i, j) ∈
E or j = i, and aij = 0 if (i, j) /∈ E. The optimization
problem in Eq. (3) has a closed form solution. In particular,
the posterior density at each θ ∈ Θ is given by

dµik+1(θ) ∝ piθ(xik+1)

n∏
j=1

(dµjk(θ))aij ,

or equivalently, the belief on a measurable set B of an agent
i at time k + 1 is

µik+1(B) ∝
∫
B

piθ(x
i
k+1)

n∏
j=1

(dµjk(θ))aij . (4)

The update in Eq. (4) can be viewed as two-step pro-
cesses: first every agent constructs an aggregate belief using a
weighted geometric average of its own belief and the beliefs of
its neighbors, and then each agent performs a Bayes’ update
using the aggregated belief as a prior. We note that similar
arguments in the context of distributed optimization have been
proposed in [54], [60] for general Bregman distances. In the
case when the number of hypotheses is finite, variations on
this update rule were previously analyzed in [27], [30], [33].

III. BELIEF CONCENTRATION RATES

We now turn to the presentation of our main results about
rate at which beliefs generated by the update rule in Eq. (4)
concentrate around the true parameter θ∗. In Part I of this
paper series, we will focus on the case when Θ is a finite set,
and prove a concentration rate on the beliefs on a Hellinger
ball around the optimal hypothesis. Contrary to Part I, in this
section we focus on the case when Θ is a compact subset
of Rd. Our proof techniques use concentration arguments for
beliefs on Hellinger balls from the recent work in [42] which,
in turn, builds on the classic paper of [69].

We begin with two subsections focusing on background
information, definitions, and assumptions.

A. Background: Hellinger Distance and Coverings

The squared Hellinger distance between two probability
distributions P and Q is given by,

h2 (P,Q) =
1

2

∫ (√
dP

dλ
−
√
dQ

dλ

)2

dλ, (5)

where P and Q are dominated by λ. Moreover, the Hellinger
distance satisfies the property that 0 ≤ h(P,Q) ≤ 1.

We equip the set of all probability distributions P over the
parameter set with the Hellinger distance to obtain the metric
space (P, h). The metric space induces a topology, where
we can define an open ball Br(θ) with a radius r ∈ (0, 1)
centered at a point θ ∈ Θ, which we use to construct a special
covering of subsets B ⊂ P . Recall that Eq. 5 defines the
squared Hellinger distance h2, rather than h.

Definition 1. Define an n-Hellinger ball of radius r centered
at θ as

Br(θ) =

{
θ̂ ∈ Θ

∣∣∣∣∣ 1n
n∑
i=1

h2
(
P iθ , P

i
θ̂

)
≤ r2

}
.

Additionally, when no center is specified, it should be assumed
that it refers to θ∗, i.e. Br = Br(θ∗).

Given an n-Hellinger ball of radius r, we will use the
following notation for a covering of its complement Bcr.
Specifically, we are going to express Bcr as the union of finite
disjoint and concentric annuli. Let r ∈ (0, 1) and {rl} be a
finite strictly decreasing sequence such that r1 = 1 and rL = r
and express the set Bcr as the union of annuli generated by the
sequence {rl} as

Bcr =
L−1⋃
l=1

Fl,

where Fl = Brl \ Brl+1
.

B. Background: Assumptions on the Network and Mixing
Weights

Naturally, we need some assumptions on the matrix A.
For one thing, the matrix A has to be “compatible” with the
underlying graph, in that information from node i should not
affect node j if there is no edge from i to j in G. At the
other extreme, we want to rule out the possibility that A is
the identity matrix, which in terms of Eq. (4) means nodes do
not talk to their neighbors. Formally, we make the following
assumption.

Assumption 1. The graph G and matrix A are such that:
(a) A is doubly-stochastic with [A]ij = aij > 0 for i 6= j if

and only if (i, j) ∈ E.
(b) A has positive diagonal entries, aii > 0 for all i ∈ V .
(c) The graph G is connected.

Assumption 1 is common in the distributed optimization
literature. The construction of a set of weights satisfying
Assumption 1 can be done in a distributed way, for example,
by choosing the so-called “lazy Metropolis” matrix, which is
a stochastic matrix given by

aij =

{ 1
2 max{di+1,dj+1} if (i, j) ∈ E,
0 if (i, j) /∈ E,

where di is the degree (the number of neighbors) of node
i. Note that although the above formula only gives the off-
diagonal entries of A, it uniquely defines the entire matrix (the
diagonal elements are uniquely defined via the stochasticity of
A). To choose the weights corresponding to a lazy Metropolis
matrix, agents will need to spend an additional round at the
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beginning of the algorithm broadcasting their degrees to their
neighbors.

Assumption 1 can be seen to guarantee that Ak →
(1/n)11T where 1 is the vector of all ones. We will use
the following result based on [30] and [33], that provides
convergence rate for the difference |Ak − (1/n)11T |,:
Lemma 1. Let Assumption 1 hold, then the matrix A satisfies
the following relation:

k∑
t=1

n∑
j=1

∣∣∣∣[Ak−t]ij − 1

n

∣∣∣∣ ≤ 4 log n

1− δ for i = 1, . . . , n,

where δ = 1− η/4n2 with η being the smallest positive entry
of the matrix A. Furthermore, if A is a lazy Metropolis matrix
associated with the graph G, then δ = 1− 1/O(n2).

C. A Concentration Result for a Compact Set of Hypotheses

Next, we will study the non-asymptotic belief concentration
process when the hypothesis set Θ is a compact subset of
Rd. We additionally require the map from Θ to

∏n
i=1 P

i
θ be

continuous (where the topology on the space of distributions
comes from the Hellinger metric). This will be useful in
defining coverings, which will be made clear shortly.

Definition 2. Let (M,d) be a metric space. A subset S ⊆M is
called ε-separated with ε > 0 if d(x, y) ≥ ε for any x, y ∈ S.
Moreover, for a set B ⊆M , let NB(ε) be the smallest number
of Hellinger balls with centers in S of radius ε needed to cover
the set B, i.e., such that B ⊆ ⋃m∈S Bε (m).

As before, given a decreasing sequence 1 = r1 ≥ r2 ≥
· · · ≥ rL = r, we will define the annulus Fl to be Fl =
Brl\Brl+1

. Furthermore, Sεl will denote maximal εl-separated
subset of Fl. Finally, Kl = |Sεl |.

Remark 1. Note that Definition 2 induces a covering of the
sets Fl by Kl balls of radius εl, centered at points m ∈ Sεl ,
i.e., Bεl(m). From this covering we can deduce a partition
Fl =

⋃
m∈S Fm,l, where each Fm,l ∈ Bεl(m).

We note that, as a consequence of our assumption that the
map from Θ to

∏n
i=1 P

i
θ is continuous, we have that each Kl

is finite (since the image of a compact set under a continuous
map is compact). Thus, we have the following covering of Bcr:

Bcr ⊆
L−1⋃
l=1

⋃
m∈Sεl

Fl,m,

where each Fl,m is the intersection of a ball centered at an
element in Sεl with Fl. Figure 1 shows the elements of a
covering for a set Bcr. The cluster of circles at the top right
corner represents the balls Bεl and, for a specific case in the
left of the image, we illustrate the set Fl,m.

Without loss of generality we will make the following
technical assumption that will be convenient for the analysis
of the concentration of beliefs on compact sets.

We will require a continuity assumption of the likelihood
modes with respect to the parameter space Θ for our non-
asymptotic analysis.

Br

Fl,m Pθ∗

Fig. 1: Creating a covering for a set Br. F represents the
correct hypothesis P θ∗ .

Assumption 2. The likelihood function pθ(x) is continuous
on Θ with respect to θ for any x ∈ X .

Assumption 2 will hold for large classes of likelihood func-
tions, in particular for the exponential family of distributions.
For example, it trivially holds for Gaussian distributions with
known variance and known mean. In general this assumption
forbids arbitrarily large changes in the likelihood model for
infinitesimal changes in the parameter. We will use this as-
sumption later to guarantee the existence of a parameter inside
a closed ball in the parameter space that minimizes the integral
likelihood model defined on the ball for any measurable subset
of the observation space. Assumption 2 is only a sufficient
condition. The interested reader can see [70, Chapter 5]
for an extensive account of weaker assumption to guarantee
congruence of an estimator. Moreover, Assumption 2 will
allows us to state the following auxiliary result.

Proposition 2. Let B be a closed n-Hellinger ball (c.f.
Definition 1) centered at θB ∈ Θ, and let Assumption 2 hold
for the family of distributions Pi = {P iθ : θ ∈ Θ} for i ∈ V .
Then, there exists a θ such that for all measurable sets {Xi

t}
for i ∈ V and t = 1, · · · k. It holds that∫
B

k∏
t=1

n∏
j=1

pj
θ̂
(Xj

t )[Ak−t]ijdµ0(θ̂) ≥
k∏
t=1

n∏
j=1

pjθ(X
j
t )[Ak−t]ij .

Proof. The closedness of the n-Hellinger ball B, and the
continuity with respect to θ in Assumption 2 are sufficient
for extreme values to exists by the Weierstrass extreme value
theorem.

We next provide a concentration result for the logarithmic
likelihood of a ratio of densities, which will serve the same
technical function as Lemma ?? in the countable hypothesis
case. We begin by defining two measures. For a hypothesis θ
and a measurable set B ⊆ Θ, let P⊗kB be the probability
distribution with density, (i.e., Radon-Nikodym derivative with
respect to λ⊗nk),

gB(xk) =
1

µ0(B)

∫
B

k∏
t=1

n∏
j=1

pjθ(x
j
t )dµ0(θ). (6)
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Similarly, let P̄⊗kB be the measure with density

ḡB(xk) =
1

µ0(B)

∫
B

k∏
t=1

n∏
j=1

(pjθ(x
j
t ))

[Ak−t]ijdµ0(θ). (7)

Moreover, with some notation abuse define

gθ(x
k) =

k∏
t=1

n∏
j=1

pjθ(x
j
t ), (8)

ḡθ(x
k) =

k∏
t=1

n∏
j=1

pjθ(x
j
t )

[Ak−t]ij . (9)

Note that P̄
⊗k
B ’s are not probability distributions due to

the exponential weights. Nonetheless, they are bounded and
positive. The next lemma shows the concentration of the
logarithmic ratio of a weighted density as defined in Eq. (7)
for a sets B and a density at an arbitrary hypotheses θ̂ ∈ Θ,
in terms of the probability distribution P⊗k

θ̂
.

Lemma 3. Let Assumptions 1, and 2 hold. Consider a
measurable sets B ⊂ Θ with positive measures, and assume
that B ⊂ Br(θB) where Br(θB) and θB ∈ Θ. Moreover, let
θ ∈ Θ be an arbitrary element of the parameter space. Then,
for all y ∈ R

Pθ

[
log

ḡB1(Xk)

ḡθ(X
k)
≥ y
]

≤ exp

−y
2

+
4 log n

1− δ −
k

n

n∑
j=1

(
h(P jθB , P

j
θ )− r

)2

 ,

where Pθ is the probability measure that gives Xk a distri-
bution P⊗kθ with density gθ as defined in Eq. (8).

Proof. By the Markov inequality, it follows that

Pθ

[
log

ḡB(Xk)

ḡθ(X
k)
≥ y
]
≤ exp(−y/2)Eθ

[√
ḡB(Xk)

ḡθ(X
k)

]

= exp(−y/2)

∫
Xk

√
ḡB(xk)

ḡθ(xk)
gθ(x

k)dλ⊗kn(xk).

Initially, note that by Jensen’s inequality3, with x[Ak−t]ij

being a concave function and 1/µ0(B)
∫
B
dµ0 = 1, we have

that

ḡB(xk) =
1

µ0(B)

∫
B

k∏
t=1

n∏
j=1

(
pjθ(x

j
t )
)[Ak−t]ij

dµ0(θ)

≤
k∏
t=1

n∏
j=1

 1

µ0(B)

∫
B

pj
θ̂
(xjt )dµ0(θ̂)

[Ak−t]ij

.

3For a concave function φ and
∫
Ω f(x)dx = 1, it holds that∫

Ω φ(g(x))f(x)dx ≤ φ
(∫

Ω g(x)f(x)dx
)
.

Therefore,

√
ḡB(xk)

ḡθ(x
j
t

k
)
≤

√√√√√√√√
k∏
t=1

n∏
j=1

(
1

µ0(B)

∫
B

pj
θ̂
(x)dµ0(θ̂)

)[Ak−t]ij

k∏
t=1

n∏
j=1

pjθ(x
j
t )

[Ak−t]ij

=

√√√√√√ k∏
t=1

n∏
j=1


1

µ0(B)

∫
B

pj
θ̂
(xjt )dµ0(θ̂)

pjθ(x
j
t )


[Ak−t]ij

Next, applying the same argument with the Jensen’s in-
equality and x[Ak−t]ij but now with respect to the measure
gθ(x

k)dλ⊗kn(xk) we obtain

Pθ

[
log

ḡB(Xk)

ḡθ(X
k)
≥ y
]
≤ exp(−y/2)×

×
∫
Xk

√√√√√√ k∏
t=1

n∏
j=1


1

µ0(B)

∫
B

pj
θ̂
(xjt )dµ0(θ̂)

pjθ(x
j
t )


[Ak−t]ij

× gθ(xk)dλ⊗kn(xk)

≤ exp(−y/2)×

×
k∏
t=1

n∏
j=1

∫
Xk

√√√√√ 1
µ0(B)

∫
B

pjθ(x
j
t )dµ0(θ)

pjθ(x
j
t )

pjθ(x
j
t )dλ

⊗kn(xk)
)[Ak−t]ij

.

Thus, we obtain

Pθ

[
log

ḡB(Xk)

ḡθ(X
k)
≥ y
]
≤ exp

(
−y

2

) k∏
t=1

n∏
j=1

ρ
(
P jB , P

j
θ

)[Ak−t]ij
,

where P jB is the measure with Radon-Nikodym derivative
gjB(x) = 1

µ0(B)

∫
B

pjθ(x)dµ0(θ) with respect to λ.

Now, recall from the call that the Hellinger distance is
bounded by above by 1. Thus similarly as in Eq. (??), we
have that

k∏
t=1

n∏
j=1

ρ(P jB , P
j
θ )[Ak−t]ij

≤ exp

− k∑
t=1

n∑
j=1

[Ak−t]ijh
2(P jB , P

j
θ )

 .

Moreover we can add and subtract
∑k
t=1

∑n
j=1

1
nh

2(P jB , P
j
θ ),

thus,
k∏
t=1

n∏
j=1

ρ(P jB , P
j
θ )[Ak−t]ij

≤ exp

− k∑
t=1

n∑
j=1

(
[Ak−t]ij −

1

n

)
h2(P jB , P

j
θ )
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−k
n

n∑
j=1

h2(P jB , P
j
θ )

 .

Additionally, from Lemma 1,

k∑
t=1

n∑
j=1

(
[Ak−t]ij −

1

n

)
h2(P jB , P

j
θ ) ≤ 4 log n

1− δ ,

from which we can conclude that

Pθ

[
log

ḡB(Xk)

ḡθ(X
k)
≥ y
]

≤ exp

−y
2

+
4 log n

1− δ −
k

n

n∑
j=1

h2(P jB , P
j
θ )

 .

Finally, note that by [42, Corollary 1], and Definition 1, it
follows that h(P jB , P

j
θ ) ≥ h

(
P jθB , P

j
θ

)
− r, and the desired

result follows.

Lemma 3 provides a concentration result for the logarithmic
ratio between a weighted densities over a subsets B and
a density on an arbitrary point θ. The terms involving the
auxiliary variable y and the influence of the graph, via δ are the
same as in Lemma 4 in Part I of this paper series. Moreover,
the rate at which this bound decays exponentially is influenced
now by the radius of the Hellinger balls B and θ.

We are ready now to state our main result regarding
the concentration of beliefs around θ∗ for compact sets of
hypotheses.

Theorem 4. Let Assumptions 1, and 2 hold, and let σ ∈ (0, 1)
be a given probability tolerance level. Moreover, for any
r ∈ (0, 1). Moreover, assume all agents start with equal initial
beliefs. Then, the beliefs {µik}, i ∈ V, generated by the update
rule in Eq. (4) have the following property: with probability
1− σ,

µik+1(Br) ≥ 1− C exp

(
−k

8
r2

)
∀i and k ≥ N,

where

N = inf

{
t ≥ 1

∣∣∣∣∣2 exp

(
4 log n

1− δ

) L−1∑
l=1

Kl exp

(
− t

8
r2
l+1

)
< σ

}
,

C =
L−1∑
l=1

exp(− 1
8r

2
l+1) and δ = 1− η/n2, where η is the

smallest positive element of the matrix A.

Proof. Lets start by analyzing the evolution of the beliefs on
a measurable set B with θ∗ ∈ B. From Eq. (4) we have that

µik(B) =

∫
B

k∏
t=1

n∏
j=1

pjθ(X
j
t )[Ak−t]ij

n∏
j=1

dµj0(θ)
[Ak]

ij

∫
Θ

k∏
t=1

n∏
j=1

pjθ(X
j
t )[Ak−t]ij

n∏
j=1

dµj0(θ)
[Ak]ij

≥ 1−

∫
Bc

k∏
t=1

n∏
j=1

pjθ(X
j
t )[Ak−t]ijdµ0(θ)

∫
B

k∏
t=1

n∏
j=1

pjθ(X
j
t )[Ak−t]ijdµ0(θ)

where
n∏
j=1

dµj0(θ)
[Ak]

ij = dµ0(θ) follows from the assumption

of equal initial beliefs for all agents.
Now lets focus specifically on the case where B is a n-

Hellinger ball of radius r ∈ (0, 1) with center at θ∗, i.e., Br.
For analysis purposes, we will let the radius r to be fixed, and
we are actually going to analyze the concentration of beliefs
on a smaller ball with radius Rk. The radius Rk needs to
be small enough, so we will impose the corresponding upper
bound when needed.

In addition, since Rk < r, we get

µik(Br) ≥ 1−

∫
Bcr

k∏
t=1

n∏
j=1

pjθ(X
j
t )[Ak−t]ijdµ0(θ)

∫
BRk

k∏
t=1

n∏
j=1

pjθ(X
j
t )[Ak−t]ijdµ0(θ)

.

Following Proposition 2, it follows that there exists a θ ∈ Br
such that

µik(Br) ≥ 1−

∫
Bcr

k∏
t=1

n∏
j=1

pjθ(X
j
t )[Ak−t]ijdµ0(θ)

k∏
t=1

n∏
j=1

pjθ(X
j
t )[Ak−t]ij

.

Furthermore, we can use the covering of the set Bcr to obtain,

µik(Br) ≥ 1−

L−1∑
l=1

Kl∑
m=1

∫
Fl,m

k∏
t=1

n∏
j=1

pjθ(X
j
t )[Ak−t]ijdµ0(θ)

k∏
t=1

n∏
j=1

pjθ(X
j
t )[Ak−t]ij

≥ 1−

L−1∑
l=1

Kl∑
m=1

ḡFl,m(Xk)µ0(Fl,m)

ḡθ(X
k)

, (10)

where by definition, each Fl,m is contained in a n-Hellinger
ball of radius εl centered at a point m ∈ Sεl

Equation 10 defines a ratio between two densities, i.e.
ḡFl,m(Xk)/ḡθ(X

k), where the numerator is defined over the
set Fl,m and the denominator with respect to θ ∈ Br ⊂ Θ.

Lemma 3 provides a way to bound term
ḡFl,m(Xk)/ḡθ(X

k) with high probability. Thus

Pθ

({
Xk

∣∣∣∣∣ sup
l,m

log
ḡFl,m(Xk)

ḡθ(X
k)
≥ y
})

≤
L−1∑
l=1

Kl∑
m=1

PBRk

(
log

ḡFl,m(Xk)

ḡθ(X
k)
≥ y
)

≤
L−1∑
l=1

Kl∑
m=1

exp

y
2

+
4 log n

1− δ −
k

n

n∑
j=1

(
h(P jm, P

j
θ )− εl

)2 ,

(11)
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where P jm is the distribution at a point m ∈ Sεl , where Sεl is
the maximal εl separated set of Fl as in Definition 2. Now, lets
analyze the result in (11) with respect to the used covering.

1

n

n∑
j=1

(
h(P jm, P

j
θ )− εl

)2

=
1

n

n∑
j=1

(
h2(P jm, P

j
θ )− 2εlh(P jm, P

j
θ ) + ε2

l

)
≥ 1

n

n∑
j=1

(
h2(P jm, P

j
θ )− 2εlh(P jm, P

j
θ )
)

=
1

n

n∑
j=1

h2(P jm, P
j
θ )− 2εl

1

n

n∑
j=1

h(P jm, P
j
θ ).

Moreover, note that
(

1
n

∑n
j=1 h(P jm, P

j)
)2

≤
1
n

∑n
j=1 h

2(P jm, P
j), thus

1

n

n∑
j=1

h2(P jm, P
j
θ )− 2εl

1

n

n∑
j=1

h(P jm, P
j
θ )

≥ 1

n

n∑
j=1

h2(P jm, P
j
θ )− 2εl

√√√√ 1

n

n∑
j=1

h2(P jm, P
j
θ ).

Now, applying the triangle inequality, we know that

1

n

n∑
j=1

h2(P jm, P
j
θ ) ≥ 1

n

n∑
j=1

h2(P jm, P
j)− 1

n

n∑
j=1

h2(P j , P jθ ),

and by definition we know that 1
n

∑n
j=1 h

2(P j , P jθ ) ≤ R2
k,

and 1
n

∑n
j=1 h

2(P jm, P
j) ≥ r2

l+1, thus

1

n

n∑
j=1

h2(P jm, P
j
θ ) ≥ r2

l+1 −R2
k

1

n

n∑
j=1

h2(P jm, P
j
θ ) ≥ 1

2
r2
l+1,

where the last inequality follows by setting Rk ≤ rl+1/
√

2.
Therefore, so far we have

1

n

n∑
j=1

(
h(P jm, P

j
θ )− εl

)2

≥ 1

2
r2
l+1 − 2εlrl.

Next, we can set εl = rl+1/16, and rl ≤ 2rl+1, and obtain

1

n

n∑
j=1

(
h(P jm, P

j
θ )− εl

)2

≥ 1

4
r2
l+1.

We can conclude that

Pθ

({
Xk

∣∣∣∣∣ sup
l,m

log
ḡFl,m(Xk)

ḡθ(X
k)
≥ y
})

≤
L−1∑
l=1

Kl∑
m=1

exp

(
y

2
+

4 log n

1− δ − k
r2
l+1

4

)
. (12)

Thus, using Eq. (12), and setting y = −k8 r2
l+1 in Eq. (11), it

follows that

Pθ

({
Xk

∣∣∣∣∣ sup
l,m

log
ḡFl,m(Xk)

ḡθ(X
k)
≥ y
})

≤
L−1∑
l=1

Kl exp

(
4 log n

1− δ +
k

8
r2
l+1 − k

1

4
r2
l+1

)

≤ exp

(
4 log n

1− δ

) L−1∑
l=1

Kl exp

(
−k

8
r2
l+1

)
. (13)

The probability measure in Eq. (13) is computed for Xk

distributed according to P⊗kθ . Nonetheless, Xk is distributed
according to the (slightly different) P⊗k. Our next step is to
relate these two measures.

First, note that it holds that the total variation distance
D(Pn, Qn) ≥ h2(Pn, Qn) = 1− ρn(P,Q), see for example,
[69, Proof of Lemma 1];. Now, by definition of the Hellinger
metric for any measurable set B it holds that

sup
B
|P⊗kθ (B)− P⊗k(B)|2 ≤ 1− ρ2(P⊗kθ ,P⊗k),

and by definition of the Hellinger affinity we have that

sup
B

(
P⊗kθ (B)− P⊗k(B)

)2
= 1− (1− h2(P⊗kθ ,P⊗k))2

≤ 2h2(P⊗kθ ,P⊗k),

where first we have used the relation that for any x ∈ R, it
holds that 1− (1− x2)2 < 2x2. Moreover, we know that for
Hellinger distances the following inequality holds

h2(P⊗kθ ,P⊗k) = 2− 2
k∏
t=1

n∏
j=1

(1− 1

2
h2(P jθ , P

j)) (14)

≤ 2− 2 exp

−nk 1

2

1

n

n∑
j=1

h2(P jθ , P
j)


(15)

≤ 2− 2 exp

(
−nk 1

2
R2
k

)
(16)

Then, from the fact that θ ∈ BRk , we have

sup
B

(
Pθ(B)− P⊗k(B)

)2 ≤ 4
(
1− exp

(
− nk 1

2
R2
k

))
.

Therefore it suffices to have

Rk ≤
√

2

nk
log

(
16

1− σ2

)
, (17)

to obtain

sup
B

(
P⊗kθ (B)− P⊗k(B)

)2 ≤ σ

2
.

Additionally, as a result we have the following restrictions
about how small the radius Rk needs to be:

Rk ≤ min

{√
2

nk
log

(
16

1− σ2

)
, r/
√

2

}
.

Therefore, by considering the measurable subset

Γk =

{
Xk

∣∣∣∣∣ supl,m log
ḡFl,m (Xk)

ḡθ(Xk)
≥ − k

16r
2
l+1

}
, we have

that

P
(
Γk
)
< Pθ

(
Γk
)

+

√
4
(
1− k exp

(
− n1

2
R2
k

))
.
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≤ exp

(
4 log n

1− δ

) L−1∑
l=1

Kl exp

(
− k

16
r2
l+1

)
+
σ

2
.

Furthermore, we are interested in finding a large enough k
such that the probability described in Eq. (13) is at most σ.
Thus, we define

N ≥ inf

{
t ≥ 1

∣∣∣∣∣ exp

(
4 log n

1− δ

)
×

×
L−1∑
l=1

Kl exp

(
− t

8
r2
l+1

)
<
σ

2

}
.

Moreover, from Eq. (10) we obtain that with probability
1− σ for all k ≥ N ,

µik(Br) ≥ 1−
L−1∑
l=1

Kl∑
m=1

exp

(
−k

8
r2
l+1

)
µ0(Fl,m)

= 1−
L−1∑
l=1

exp

(
−k

8
r2
l+1

)
µ0(Fl)

≥ 1−
L−1∑
l=1

exp

(
−k

8
r2
l+1

)
.

Note that in the last upper bound follows from the fact that
µ0(Fl) ≤ 1 given that Fl ⊆ Θ. Moreover, we have that∑Kl
m=1 µ0(Fl,m) = µ0(Fl), see Remark 1.

Now, lets define χ =
L−1∑
l=1

exp
(
− 1

8r
2
l+1

)
, then it follows

that

µik(Br) ≥ 1−
L−1∑
l=1

exp

(
−k

8
r2
l+1

)

= 1−
L−1∑
l=1

exp

(
−1

8
r2
l+1

)
exp

(
−k − 1

8
r2
l+1

)
≥ 1− C exp

(
−k − 1

8
r2

)
,

or equivalently µik+1(Br) ≥ 1− C exp(−k8 r2).

Analogous to Theorem 5 in Part I, Theorem 4 provides a
probabilistic concentration result for the agents’ beliefs around
a Hellinger ball of radius r with center at θ∗ for sufficiently
large k. We provide an explicit number of iterations after
which an exponential concentration occurs. Moreover, the rate
at which this happens is proportional to the radius r of a ball
around the optimal hypotheses.

IV. EXPERIMENTAL RESULTS

In this section, we show a number of experimental re-
sults for the problem of distributed estimation of network-
wide parameters for various network topologies and various
observational models. In particular we focus on observational
models form the exponential family of distributions.

Table I recall the results from Part I for a number of dis-
tributed estimation problems with likelihood models coming

from exponential families. Particularly, we describe the rela-
tion between the distribution of the observations, the parameter
space and the belief distributions. Moreover, we provide
explicit relations between the parameters in the canonical form
and the corresponding parameters of the beliefs.

We present the experimental results with the following
format.

We explore six different estimation problems
• Figure 2: Distributed estimation of network-wide mean

parameter with Gaussian observations with local knowl-
edge of private variances.

• Figure 3: Distributed estimation of network-wide variance
parameter with Gaussian observations with local knowl-
edge of private means.

• Figure 4: Distributed estimation of network-wide mean
and variance parameters with Gaussian observations with-
out knowledge of local means or variances.

• Figure 5: Distributed estimation of network-wide param-
eter with heterogeneous Bernoulli observations.

• Figure 6: Distributed estimation of network-wide param-
eter with heterogeneous Poisson observations.

• Figure 7: Distributed estimation of network-wide param-
eter with heterogeneous Exponential observations.

For each of the figures described above, we measure the
performance of the proposed algorithm using its normalized
distance to optimality and the distance to consensus, defined
as follows

Distance to Optimality:
|F (θk)− F (θ∗)|
|F (θ0)− F (θ∗)| ,

Distance to Consensus: ‖Lθk‖22,
where θk = (θ1

k, θ
2
k, · · · , θnk ) is the aggregation of all the

current parameters estimation for each of the agents, the
function F (θk) is defined as

F (θk) =
n∑
i=1

DKL(P i‖P iθik),

and L is the graph Laplacian of the communication graph.
We have used the graph Laplacian as a measure to distance of
consensus since by definition the set where θ1

k = θ2
k = · · · =

θnk , i.e. consensus, is null space of the matrix L.
Finally, we present the results for five classes of networks,

namely: complete graphs, cycle graphs, path graphs, star
graphs, and Erdős-Rényi random graphs. For each of the
network classes we show the performance for 10 agents, 100
agents, and 1000 agents.

In all experimental results, the predicted geometric conver-
gence rate is observed. Moreover, as the number of agents in
the network increases, the effects of the network topology be-
come more evident. Particularly, for highly connected graphs
such as the complete graph or the Erdős-Rényi, the distance to
optimality and consensus decays faster. One interesting obser-
vation is that contrary to what was expected, the performance
of the proposed algorithm on graphs with a star topology is
worst is most of the cases. This can be explained by the fact,
that given that the agents are in a well connected graph, they
are oblivious to the topology of the network, and thus cannot
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Observations Xi
k Parameter Space Θ Beliefs Distribution T (x) M(θ) Belief Parameters

Bern(θi) {θ ∈ [0, 1]} Beta(αik, β
i
k) x log θ

1−θ

 αik = χik + 1

βik = χik + νik + 1


Binomial(θi,mi) {θ ∈ [0, 1]} Beta(αik, β

i
k) x log θ

1−θ

 αik = χik + 1

βik = χik +miνik + 1


Multinomial(θi,mi)

{
θ ∈ [0, 1]d,

∑
θi = 1

}
Dirichlet(αik ∈ Rd+) x log θ

[
αik = χik + 1

]

Poisson(θi) {θ > 0} Gamma(αik, β
i
k) x log θ

 αik = χik + 1

βik = νik


Exp(θi) {θ > 0} Gamma(αik, β

i
k) x −θ

 αik = νik + 1

βik = χik


N (θi|(σi)2) {θ ∈ R} N (θ̄ik, (σ̄

i
k)2) x θ

(σi)2

 θ̄ik =
χik
νi
k

(σ̄ik)2 =
(σi)2

νi
k


N (τ i|θi) {τ > 0} Gamma(αik, β

i
k) 1

2
(x− θi)2 -τ

 αik =
νik
2

+ 1

βik = χik



N (θi, τ i) {θ ∈ R, τ > 0} N -Gamma(θ̄ik, τ̄
i
k, α

i
k, β

i
k)


x2

x

1
2




− 1

2
τ

τθ

log τ





αik = [χik]1 − 1
2

βik = 1
2

[χik]2 − 1
2

([χik]3)2

νi
k

θik =
[χik]3
νi
k

λik = [χik]4


TABLE I: Parameter Descriptions for Distributed Learning on the Exponential Family.

exploit the network structure. That is, the central node does not
know it is a central node, and similarly for the other agents.

Complete Cycle Path Star Erdős-Rényi

101 102 103 104 105
10−7
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10−1

Iterations

10
A
ge
nt
s

|F (θk)− F (θ∗)|/|F (θ0)− F (θ∗)|

101 102 103 104 105
10−10

10−6

10−2

Iterations

‖Lθk‖22

101 102 103 104 105

10−3

10−1

Iterations

1
00
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101 102 103 104 105
10−10
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10−2
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10−1
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Fig. 2: Optimality and distance to consensus for the distributed
estimation of a network-wide unknown mean parameter, from
Gaussian observations, for various graph topologies (complete,
cycle, path, star and Erdős-Rényi ) of increasing size (10
agents, 100 agents and 100 agents).

Complete Cycle Path Star Erdős-Rényi
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10−3

10−1

Iterations

10
A
ge
nt
s

|F (θk)− F (θ∗)|/|F (θ0)− F (θ∗)|
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Fig. 3: Optimality and distance to consensus for the distributed
estimation of a network-wide variance parameter, from Gaus-
sian observations, for various graph topologies (complete,
cycle, path, star and Erdős-Rényi ) of increasing size (10
agents, 100 agents and 100 agents).
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Complete Cycle Path Star Erdős-Rényi
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Fig. 4: Optimality and distance to consensus for the distributed
estimation of a network-wide mean and variance parameters,
from Gaussian observations, for various graph topologies
(complete, cycle, path, star and Erdős-Rényi ) of increasing
size (10 agents, 100 agents and 100 agents).
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Fig. 5: Optimality and distance to consensus for the distributed
estimation of a network-wide parameter of Bernoulli observa-
tions for various graph topologies (complete, cycle, path, star
and Erdős-Rényi ) of increasing size (10 agents, 100 agents
and 100 agents).
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Fig. 6: Optimality and distance to consensus for the distributed
estimation of a network-wide parameter of Poisson observa-
tions for various graph topologies (complete, cycle, path, star
and Erdős-Rényi ) of increasing size (10 agents, 100 agents
and 100 agents).
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Fig. 7: Optimality and distance to consensus for the distributed
estimation of a network-wide parameter of Exponential obser-
vations for various graph topologies (complete, cycle, path,
star and Erdős-Rényi ) of increasing size (10 agents, 100
agents and 100 agents).
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V. CONCLUSIONS

We have proposed an algorithm for distributed learning
with both countable and compact sets of hypotheses. Our
algorithm may be viewed as a distributed version of Stochas-
tic Mirror Descent applied to the problem of minimizing
the sum of Kullback-Leibler divergences. Our results show
non-asymptotic geometric convergence rates for the beliefs
concentration around the true hypothesis. Particularly in Part
I, we provide an extensive application case of study for
observational models in the exponential family of probability
distributions. Moreover, we have developed a new belief
concentration analysis for the case of finite hypotheses. Part
II of this paper series extends this analysis to the compact
hypotheses set case.

Future work should explore how variations on stochastic
approximation algorithms will produce new non-Bayesian
update rules for more general problems. Promising directions
include acceleration results for proximal methods, other Breg-
man distances, or constraints within the space of probability
distributions.

Furthermore, we have modeled interactions between agents
as exchanges of local probability distributions (i.e., beliefs)
between neighboring nodes in a graph. It remains open to
understand to what extent this can be reduced when agents
transmit only an approximate summary of their beliefs. We
anticipate that future work will additionally consider the effect
of parametric approximations allowing nodes to communicate
only a finite number of parameters coming from, say, Gaussian
Mixture Models or Particle Filters.
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[33] A. Nedić, A. Olshevsky, and C. A. Uribe, “Fast convergence rates for
distributed non-bayesian learning,” preprint arXiv:1508.05161, 2015.
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